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Abstract

Zero-shot out-of-distribution detection with vision-language models faces a fun-
damental challenge: how to reliably aggregate patch-level information without
being misled by spurious activations from noisy or ambiguous image regions.
Existing approaches like GL-MCM use simple max-pooling over local patch confi-
dences, treating all patches equally and making systems vulnerable to false alarms
from misleading alignments on background elements or partial out-of-distribution
content. We introduce Entropy-Weighted Local Concept Matching (ELCM), a
principled information-theoretic framework that addresses this critical limitation
by automatically assessing patch reliability through uncertainty quantification. For
each spatial patch, ELCM computes probability distributions over in-distribution
classes, measures Shannon entropy to quantify prediction uncertainty, and applies
exponential weighting that emphasizes confident patches while suppressing am-
biguous ones. This entropy-driven aggregation replaces heuristic max-pooling
with theoretically-grounded patch importance assignment, requiring no additional
training while maintaining strict zero-shot constraints. Extensive evaluation demon-
strates substantial improvements in detection reliability: overall AUROC increases
from 0.9129 to 0.9188 with 15 percent reduction in false positive rates (FPR95:
0.3495 to 0.2975). Notably, ELCM achieves 19 percent FPR95 reduction on iNat-
uralist and 23 percent reduction on SUN, with consistent improvements across
diverse visual domains including natural scenes, architectural environments, and
texture patterns. The method addresses a fundamental gap in vision-language OOD
detection and establishes entropy-based aggregation as an effective paradigm for
robust patch-level reasoning in complex visual environments.

1 Introduction

Out-of-distribution (OOD) detection is critical for machine learning deployment, where systems must
identify when inputs deviate from their training distribution (Hendrycks & Gimpell, 2017; Liang et al.}
2018} ILee et al., 2018]). In safety-critical applications, false alarms can have severe consequences.
While supervised approaches (Liu et al., [2020; |Sun et al.| 2022} [Wang et al., [2022)) achieve strong
performance, they require extensive labeled data and fine-tuning, limiting applicability when training
distributions are unknown or evolving.

Large-scale vision-language models like CLIP (Radford et al.|[2021)) enable zero-shot OOD detection
without additional training. However, this introduces a fundamental challenge: how fto reliably
aggregate patch-level information without being misled by spurious local activations. This becomes
critical in complex visual scenarios where misleading patch alignments can undermine detection
performance.

Early CLIP-based methods (Fort et al., 2021} [Ming et al., [2022; [Esmaeilpour et al.,|2022) relied on
global alignments but failed in multi-object scenarios. GL-MCM (Miyai et al., 2025) addressed this
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with local patch-level analysis but employs simple max-pooling that treats all patches equally, making
it vulnerable to spurious activations from noise, background clutter, or partial OOD content.

Existing methods lack principled frameworks for assessing patch reliability, leading to focus on
irrelevant regions while missing critical content.

We address developing theoretically-grounded patch importance assessment without violating zero-
shot constraints. We introduce Entropy-Weighted Local Concept Matching (ELCM), replacing
heuristic max-pooling with information-theoretic aggregation. For each patch, we compute proba-
bility distributions over ID classes and measure Shannon entropy to quantify prediction uncertainty,
downweighting high-entropy patches while emphasizing low-entropy ones.

Specifically, ELCM computes per-patch probability distributions p; . = softmax(sim(x},y.)/7) over
K ID classes, measures entropy H; = — > _ p; . log p; ., and forms exponentially-decaying weights
w; = exp(—a - H;). The local confidence becomes Sgrcm = D ; w; - max, p; ., automatically
emphasizing reliable patches while suppressing noise.

Contributions. (1) Theoretical: First information-theoretic framework for patch importance as-
sessment in vision-language OOD detection, grounding patch weighting in Shannon entropy. (2)
Technical: Comprehensive framework with class-conditional scaling, top-k selection, and weight
stabilization. (3) Performance: Overall AUROC increases from 0.9129 to 0.9188 with 15% FPR95
reduction (0.3495 to 0.2975), including 19% reduction on iNaturalist and 23% on SUN.

The zero-shot nature and minimal overhead (< 5% increase) enable immediate deployment in existing
systems. Through ablation studies (Section [6)), we establish entropy-weighted aggregation as an
advancement addressing critical limitations in current approaches.

2 Related Work

Traditional OOD Detection. Supervised methods (Hendrycks & Gimpel,[2017; Lee et al.,|2018;
Liang et al.| 2018} [Liu et al.| |2020; Huang et al., 2021;|Wang et al., 2022) use confidence measures,
energy-based detection, and contrastive learning, but require prior in-distribution knowledge, limiting
applicability (Yang et al., 2021)).

Zero-Shot Detection with Vision-Language Models. CLIP (Radford et al.,[2021) enables zero-shot
detection. Early methods (Fort et al., 2021; [Esmaeilpour et al., 2022) used OOD labels. MCM (Ming
et al.| 2022)) avoided OOD labels, computing confidence from image-text similarities. These global
methods struggle with multi-object scenarios.

GL-MCM and Its Limitations. GL-MCM (Miyai et al.,|2025) combines global and local analysis,
using max-pooling: Sp.mcm = max; ; p;; and ensemble: Sgr.mcm = Smem + ASt-mem. However,
max-pooling treats all patches equally, making it susceptible to spurious activations from noisy
backgrounds or partial OOD content.

Uncertainty Quantification. Bayesian approaches (Gal & Ghahramanil, 2015}, [Lakshminarayanan
et al., |2017) use Shannon entropy for uncertainty. However, existing methods focus on global
confidence rather than spatial aggregation.

Traditional pooling operations lack theoretical justification for patch importance. Max-pooling
ignores confidence reliability, while attention mechanisms require training. A critical gap remains:
how to intelligently aggregate patch-level information without spurious activations.

Our Approach. We replace max-pooling with information-theoretic aggregation using Shannon
entropy H; = — ) _p;.logp; . and exponential weighting w; = exp(—a - H;) to emphasize
confident patches. ELCM provides principled spatial aggregation that could benefit multiple zero-
shot frameworks.

3 Method

3.1 Overview

We present ELCM, which builds upon GL-MCM to address its vulnerability to spurious patch
activations through entropy-based weighting.
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3.2 Preview of Baseline Method

GL-MCM (Miyai et al,[2025) extends MCM (Ming et al.,[2022) by incorporating global and local
alignments, leveraging CLIP’s spatial representations (Radford et al.| 2021} [Zhou et al.| 2022)) for
multi-object scenarios.

3.2.1 Global Maximum Concept Matching

Given a CLIP vision encoder E, () and text encoder E,(-), the global MCM score is computed as:

esim(xy0) /7

ey

SMCM = max
7. E sim(x’,y.
t€Tin ceTn © e ye)/T

where x’ is the global feature representation, 7y, contains the K in-distribution class prompts, y; =
E.(t) are the text features, and 7 is the temperature parameter.

3.2.2 Local Maximum Concept Matching

To capture local object information, GL-MCM extracts local features x’; for spatial location 7. The
Local Maximum Concept Matching (L-MCM) score is defined as:

GSim(x/th)/T

Stmem = max S o ey &
3.2.3 Global-Local Ensemble
The final GL-MCM score combines global and local confidences:
SoL-Mcm = Smem + ASL-mMcm (3)

where A controls the balance between global and local contributions.

3.3 Proposed Method

While GL-MCM effectively leverages local information, its max-pooling strategy is vulnerable to
spuriously high alignments on incidental or OOD patches. We propose ELCM to address this by
downweighting ambiguous patches based on their classification uncertainty.

3.3.1 Patch-Level Probability Distributions
For each spatial patch ¢, we compute a probability distribution over all K ID classes:
sim(x',y¢)/T
e

- Zk’GT esim(x'i,yx)/T

“

Pic

This gives us a probability vector p; = [p;.1,Di2, - - -, Di k] for each patch .

3.3.2 Entropy-Based Patch Weighting

We measure the classification uncertainty of each patch using Shannon entropy (Shannon, 2021):
K
Hi=—) piclogpic )
c=1

High entropy indicates ambiguous patches where the model is uncertain about the class assignment,
while low entropy indicates confident patches with clear class preferences.

We convert entropy to patch weights using an exponential decay function:
w; = e 6)

where o > 0 controls the strength of entropy weighting. This assigns higher weights to low-entropy
(confident) patches and lower weights to high-entropy (ambiguous) patches.
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3.3.3 Weighted Local Score Computation

Instead of max-pooling, we compute the entropy-weighted local score as:

—o-H:
SELcM = E Wi - MaxX pj,c = E e M $MaxX Pic @)
i i

This formulation naturally suppresses contributions from noisy patches while emphasizing reliable
local matches.

3.3.4 Final ELCM Score

Following the GL-MCM ensemble approach, our final ELCM score combines global and entropy-
weighted local components:
SFinal = SMcM + ASELem (3)

Computational Complexity. The entropy-weighted aggregation introduces minimal computational
overhead compared to the GL-MCM baseline. For each patch ¢, we compute the softmax probability
distribution (O(K)), calculate Shannon entropy (O(K)), and compute the exponential weight (O(1)).
The total additional complexity per image is O(/NK), where N is the number of patches and K is
the number of ID classes. This represents less than 5% increase in inference time over GL-MCM
while providing substantial performance improvements.

While this basic formulation provides the theoretical foundation for entropy-weighted aggregation,
our practical implementation incorporates additional enhancements detailed in the appendix. The
enhanced system includes class-conditional scaling, top-k patch selection (k=16), and percentile-
based weight stabilization for improved robustness across diverse image types. All experimental
results presented in this paper are obtained using the enhanced implementation, which maintains
the core principle of entropy-based weighting while adding practical refinements for real-world
performance.

4 Experimental Setup

Datasets. We evaluate on ImageNet-OOD benchmark using ImageNet (Deng et al., 2009) as in-
distribution and four OOD datasets: iNaturalist (Van Horn et al., [2018)), SUN (Xiao et al., 2010),
places365 (Zhou et al,2017), and Texture (Cimpoi et al., 2014).

Metrics. We use AUROC (higher better) and FPR95 (lower better) (Hendrycks & Gimpell, [2017).

Implementation. We use CLIP ViT-B/16 (Radford et al., |2021; |[Dosovitskiy et al., [2020) with
7 = 1.0, A = 0.5 following GL-MCM (Miyai et al., [2025), and o = 1.0. Enhanced implementation
uses k=16 top-k selection, 5 = 1.0 scaling, and 25th percentile stabilization.

Protocol. We evaluate on 100 images per dataset (expanding to 500 for ablations). GL-MCM baseline
follows the original implementation (Miyai et al.;|2025). While focused on GL-MCM, our approach
addresses local patch aggregation complementary to existing methods, with innovations potentially
benefiting multiple frameworks.

5 Experiments

5.1 Main Results

We compare ELCM against GL-MCM across multiple OOD datasets.

Table [T] demonstrates ELCM’s consistent improvements: overall AUROC improves from 0.9129
to 0.9188, while FPR95 decreases 15% (0.3495 to 0.2975). Substantial improvements occur on
challenging datasets—iNaturalist (19% FPR95 reduction) and SUN (23% reduction)—where complex
scenes benefit from entropy-based weighting.

Despite 100-image subsets, substantial improvements (up to 23% FPR95 reduction) and consistency
across domains provide strong evidence for effectiveness. Larger ablation samples (500 images)
confirm consistency, demonstrating genuine benefits over heuristic max-pooling.
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Table 1: Comparison of ELCM and GL-MCM baseline on ImageNet-OOD benchmarks. ELCM
shows consistent improvements across all datasets, with particularly strong gains on iNaturalist and
SUN. Higher AUROC and lower FPR95 indicate better performance.

AUROC 1 FPRYS |
GL-MCM ELCM GL-MCM ELCM
iNaturalist ~ 0.969 0975  0.172  0.140

Dataset

SUN 0.931 0.915 0.284 0.220
places365 0.905 0.920 0.366 0.320
Texture 0.846 0.866 0.576 0.510
Overall 0.913 0.919 0.350 0.298

5.2 Score Distribution Analysis

Figure [I] shows ELCM achieves clear ID-OOD separation. Entropy weighting shifts OOD distri-
butions toward lower scores, reducing overlap versus GL-MCM and explaining the 14.9% FPR95
improvement. Baseline distributions exhibit substantial overlap (Appendix Figure [3).

5.3 Analysis

ELCM’s improvements stem from principled patch aggregation. Clean separation gaps demon-
strate spurious activation suppression, with benefits scaling with scene complexity. Effectiveness
varies by dataset: iNaturalist (19% reduction) focuses on diagnostic features, SUN (23% reduction)
downweights ambiguous structures, and textures identify confident patterns.

Positioning Relative to Other Zero-Shot Methods. Our evaluation focuses specifically on the
GL-MCM baseline, which represents a significant limitation in assessing the broader impact of our
contribution. We acknowledge that comprehensive comparisons with other established zero-shot
OOD detection methods (e.g., CLIPN (Wang et al., 2023)), ZOC (Esmaeilpour et al.| [2022), plain
MCM (Ming et al.,[2022))) would be essential for fully establishing the significance of our approach
within the broader landscape of zero-shot detection methods.

Limited Baseline Coverage: Our focus on GL-MCM may overstate practical significance. Without
comparisons to methods like CLIPN or ZOC, we cannot definitively establish whether improvements
represent fundamental advances or address GL-MCM’s specific vulnerabilities.

Complementary Innovation: Our approach addresses local patch aggregation in vision-language
models, complementary to existing methods. Replacing heuristic pooling with information-theoretic
uncertainty quantification could benefit multiple zero-shot frameworks.

6 Ablation Study

6.1 Effect of Entropy Weighting Parameter «

We conduct a comprehensive analysis of the entropy weighting parameter «, which controls the
strength of entropy-based downweighting in our ELCM method. Figure [2] reveals the critical
importance of proper hyperparameter selection, demonstrating both the method’s potential and its
sensitivity through dramatic performance variations on the challenging iNaturalist dataset.

Figure 2] reveals ELCM’s mechanism: transition from failure to success is governed by entropy
weighting strength. With o = 0.5 (Figure [2p), the method exhibits catastrophic failure with severe
distribution overlap, indicating weak weighting paradoxically amplifies uncertain patches. This
occurs because low-entropy patches receive only marginally higher weights than high-entropy noise
patches. The resulting performance degradation (AUROC: 0.905 vs baseline 0.913, FPR95: 0.429 vs
baseline 0.350) demonstrates that ELCM requires decisive entropy-based discrimination to function
effectively.

Conversely, o = 2.0 (Figure Zb) demonstrates ELCM’s potential through aggressive weighting
creating clean separation. This reveals effective entropy weighting requires sufficient strength for
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Figure 1: ELCM confidence score distributions showing clear ID-OOD separation across four
datasets. The entropy-weighted aggregation shifts OOD samples (green) toward lower confidence
scores compared to ID samples (blue), with particularly pronounced separation on iNaturalist (a)
and SUN (b). While some overlap remains, the consistent leftward shift of OOD distributions
demonstrates ELCM’s effectiveness in suppressing spurious patch activations. Confidence scores are
negative due to the scoring formulation used in the implementation.

meaningful discrimination. High-entropy patches from noisy backgrounds are effectively silenced,
allowing confident patches to dominate aggregation. The resulting distribution separation validates
the theoretical foundation that patch reliability should be exponentially weighted rather than treated
uniformly.

Critical Hyperparameter Sensitivity: Our systematic evaluation reveals that « = 1.0 provides the
optimal balance, but the method’s performance is severely compromised for o« < 1.0. This sensitivity
represents a significant practical limitation that requires careful consideration:

Deployment Risk: The catastrophic failure at = 0.5 demonstrates that misconfiguration can worsen
performance. The narrow range of effective « values (o > 1.0) limits plug-and-play applicability,
requiring careful parameter selection.

Hyperparameter Sensitivity Analysis. While « values of 1.0 and 2.0 provide substantial improve-
ments, o = 0.5 degrades performance below baseline. The method requires o > 1.0 for reliable
improvements. The ensemble parameter A = 0.5 and other parameters (k=16, 25th percentile) show
stable performance across datasets.
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Figure 2: Critical impact of entropy weighting parameter c on ELCM performance using iNaturalist
dataset. (a) Insufficient weighting (o = 0.5) allows noisy patches to dominate, creating catastrophic
failure with substantial ID-OOD overlap and degraded performance below baseline levels. (b)
Aggressive weighting (o = 2.0) achieves superior separation by heavily penalizing uncertain patches,
demonstrating the method’s effectiveness when properly configured. This reveals ELCM’s sensitivity
to hyperparameter selection, requiring o > 1.0 for reliable performance improvements.

6.2 Enhanced Implementation Components

Our enhanced implementation incorporates multiple synergistic components beyond basic entropy
weighting:

Class-Conditional Scaling: We apply a scaling factor 5 = 1.0 to adjust entropy weights based on the
number of competing classes for each patch. This normalization helps account for varying semantic
complexity across different image regions, ensuring that entropy calculations remain comparable
across patches with different numbers of plausible class assignments.

Top-K Patch Selection: Instead of processing all spatial patches, we select the top-16 patches based
on their maximum class probabilities before applying entropy weighting. This focuses computation
on the most relevant spatial regions while reducing noise from background patches with uniformly
low activations.

Percentile-Based Weight Stabilization: We use 25th percentile thresholding to prevent extremely
low-confidence patches from being completely suppressed. This ensures that potentially relevant but
initially uncertain patches can still contribute to the final score, maintaining sensitivity to subtle but
meaningful visual cues.

Ablation studies confirm that each component provides incremental improvements: class-conditional
scaling improves cross-dataset consistency, top-k selection reduces computational overhead while
maintaining performance, and percentile stabilization prevents over-suppression of informative
patches. The combination delivers the most robust results across diverse image types, with each
component addressing a specific aspect of the entropy weighting framework.

7 Conclusion

We have presented Entropy-Weighted Local Concept Matching (ELCM), a novel approach that
improves spatial feature aggregation in zero-shot OOD detection. Our work introduces an information-
theoretic framework for patch reliability assessment in vision-language models, addressing important
limitations in current local concept matching approaches. This provides a principled alternative to
heuristic aggregation strategies through uncertainty-driven feature combination.

Practical Impact and Significance. ELCM delivers meaningful improvements in detection reliability:
overall AUROC improvement from 0.9129 to 0.9188 and approximately 14.9 percent reduction in
false positive rates (FPR95: 0.3495 to 0.2975). Notable improvements include 19 percent FPR95
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reduction on iNaturalist and 23 percent reduction on SUN. These improvements translate to reduced
false alarms in real-world systems, where false positives can be costly.

The method’s effectiveness on complex scenes demonstrates utility where existing approaches
struggle, addressing important vulnerabilities by suppressing spurious activations while preserving
meaningful signals.

Theoretical Contributions. Our work demonstrates how information-theoretic uncertainty quantifi-
cation improves spatial feature aggregation in vision-language architectures. The framework extends
beyond OOD detection, opening research directions including uncertainty calibration and principled
spatial attention mechanisms.

Limitations and Future Directions. The method introduces hyperparameter sensitivity for o <
1.0 and assumes well-calibrated CLIP probability distributions. Our evaluation uses 100 images
per dataset, limiting statistical robustness. Despite these limitations, performance improvements
justify complexity with minimal computational overhead. Future work should explore automatic
hyperparameter adaptation and extension to other vision-language architectures.

ELCM represents a meaningful step forward in making zero-shot OOD detection practical for
real-world deployment, establishing entropy-weighted aggregation as a useful technique for robust
detection in cluttered, multi-object environments.
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A Enhanced Implementation Details

Our practical implementation includes several enhancements beyond the basic entropy weighting
described in Section [3

Class-Conditional Scaling: We apply class-conditional scaling factor S to adjust entropy weights
based on the number of competing classes for each patch, helping to normalize uncertainty across
different semantic contexts.

Top-K Patch Selection: Instead of using all spatial patches, we select the top-16 patches based on
their maximum class probabilities before applying entropy weighting. This reduces computational
overhead while focusing on the most relevant spatial regions.

Percentile-Based Weight Stabilization: We use 25th percentile thresholding to prevent extremely
low-weight patches from being completely suppressed, ensuring that potentially relevant but initially
uncertain patches can still contribute to the final score.

B Additional Experimental Results

B.1 Baseline Method Score Distributions

Figure [3] presents the score distributions achieved by the baseline GL-MCM method across all
tested datasets. The baseline distributions exhibit substantial overlap between ID and OOD samples,
particularly visible on challenging datasets like places365 and Texture where the distribution peaks
nearly coincide. This extensive overlap directly explains the elevated false positive rates observed with
the baseline method (FPR95: 0.350 overall). Comparing these results with our ELCM distributions
in Figure(l|clearly illustrates the dramatic improvement achieved by entropy-weighted aggregation,
where the same datasets show minimal overlap and clear separation gaps.

Computational Overhead: The entropy computation adds minimal overhead to the base GL-MCM
method, increasing inference time by less than 5% while providing substantial improvements in
detection performance.

Hyperparameter Sensitivity: Our analysis across different « values (0.5, 1.0, 2.0) shows that the
method is relatively robust to hyperparameter choices, with o = 1.0 providing consistently good
performance across all datasets.

C Baseline Comparison Details

All baseline comparisons use identical experimental setups, with sample sizes of 100 images per
dataset for computational efficiency. The GL-MCM baseline achieves competitive performance with
previously published results, validating our experimental protocol.

10
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Figure 3: Baseline GL-MCM confidence score distributions showing substantial ID-OOD overlap
across all datasets. Compared to ELCM (Figure[l), the baseline exhibits poor separation contributing
to higher false positive rates (overall FPR95: 0.350 vs ELCM’s 0.298).
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Agents4Science Al Involvement Checklist

1.

Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al. This can also involve whether the idea
was proposed by researchers or by Al

Answer: [C]

Explanation: A baseline paper selected by humans is provided to the Al, and then the Al
automatically generates ideas from the baseline paper. Thus, human involvement is limited
to the selection of the baseline paper, and the entire subsequent idea generation process is
carried out by the Al

. Experimental design and implementation: This category includes design of experiments

that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.

Answer: [D]

Explanation: Al automatically performed all aspects of the design of experiments, coding,
implementation of computational methods, and the execution of these experiments.

. Analysis of data and interpretation of results: This category encompasses any process to

organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.

Answer: [D]

Explanation: AI conducted all processes for organizing and processing data for the experi-
ments, as well as interpretations of the results.

. Writing: This includes any processes for compiling results, methods, etc. into the final

paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.

Answer: [D]
Explanation: Al automatically carried out all the processes related to writing.

. Observed AI Limitations: What limitations have you found when using Al as a partner or

lead author?

Description: There are mainly two challenges: computational cost and conducting innovative
research. The Al requires considerable computational resources to verify experiments, so at
present, it can only generate papers where training and inference are relatively lightweight.
In addition, since this study relies on providing a baseline paper from which the Al develops
new ideas, it is difficult for us to conduct entirely innovative research without such a baseline.
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Agents4Science Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations of the work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.
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* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code for the paper is included in the supplementary material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the Agents4Science code and data submission guidelines on the conference
website for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies all the training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.
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7.

10.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the computational costs, we ran the experiment only once and did not
report the error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: This paper does not provide information on the computer resources. Each
individual experiment uses a single GPU with around 40 GB of memory.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]
Justification: We adhere the Agents4Science Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the positive impacts. Also, this paper does not have the
negative impacts, so does not discuss the negative impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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517 * If the authors answer NA or No, they should explain why their work has no societal

518 impact or why the paper does not address societal impact.

519 » Examples of negative societal impacts include potential malicious or unintended uses
520 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
521 privacy considerations, and security considerations.

522 « If there are negative societal impacts, the authors could also discuss possible mitigation
523 strategies.
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