
Extending Lagrangian and Hamiltonian Neural
Networks with Differentiable Contact Models

Yaofeng Desmond Zhong†, Biswadip Dey†, Amit Chakraborty†
†Siemens Technology, Princeton, NJ 08536, USA.

{yaofeng.zhong, biswadip.dey, amit.chakraborty}@siemens.com

Abstract

The incorporation of appropriate inductive bias plays a critical role in learning
dynamics from data. A growing body of work has been exploring ways to enforce
energy conservation in the learned dynamics by encoding Lagrangian or Hamil-
tonian dynamics into the neural network architecture. These existing approaches
are based on differential equations, which do not allow discontinuity in the states
and thereby limit the class of systems one can learn. However, in reality, most
physical systems, such as legged robots and robotic manipulators, involve contacts
and collisions, which introduce discontinuities in the states. In this paper, we
introduce a differentiable contact model, which can capture contact mechanics:
frictionless/frictional, as well as elastic/inelastic. This model can also accommo-
date inequality constraints, such as limits on the joint angles. The proposed contact
model extends the scope of Lagrangian and Hamiltonian neural networks by allow-
ing simultaneous learning of contact and system properties. We demonstrate this
framework on a series of challenging 2D and 3D physical systems with different
coefficients of restitution and friction. The learned dynamics can be used as a
differentiable physics simulator for downstream gradient-based optimization tasks,
such as planning and control. 1 2

1 Introduction

A large class of real-world physical systems evolves in a piecewise-continuous manner. For example,
while playing tennis, tennis balls collide with the ground and the rackets with high elasticity but follow
smooth trajectories governed in between those collisions. The ability to walk/run depends heavily
on the contacts between the legs and the ground. Unfavorable contact properties can significantly
hinder this ability; for example, lack of friction makes it very difficult to walk on icy roads. Robotic
manipulators and grippers also rely on contacts and collisions to perform their assigned tasks. These
examples highlight the importance of contacts and collisions, which can be found everywhere.

Encoding energy conservation into the computation graph of a neural network constitutes an effective
way to improve its data-efficiency and generalization performance in inferring the dynamics of a
physical system from its trajectory data [1]. However, as these energy-conserving models assume
the system trajectories to be smooth and governed by ordinary differential equations (ODE), they
cannot model dynamics with contacts and collisions. On the other hand, another line of work, for
example, interaction network [2], neural physics engine [3], and iterative neural projection [4] can
model collisions and contacts and learn the associated properties. However, they are not ODE-based
and hence cannot infer the continuous dynamics governing the smooth portion of the trajectories. A
more recent work [5] has encoded a discrete form of the Euler-Lagrange equation while learning

1Code available at https://github.com/Physics-aware-AI/DiffCoSim.
2Video available at https://www.youtube.com/watch?v=DdJ7RLmG0kg.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/Physics-aware-AI/DiffCoSim
https://www.youtube.com/watch?v=DdJ7RLmG0kg


properties of frictionless 2D contacts. Learning of properties associated with frictional contacts and
3D contacts still remains a relatively underexplored topic in the literature.

In this work, we introduce a contact model that can handle frictional contacts both with or without
elasticity as well as enforces energy-conservation during the smooth portions of the trajectories. The
scope of energy-conserving neural networks are extended by the contact model. The contact model
solves convex optimization problems to calculate the jump in velocity during contact. In order to
use this contact model in deep learning tasks, we build upon the recent progress on differentiating
through convex optimization problems [6]. We demonstrate the performance of the differentiable
contact model in learning coefficients of restitution and friction associated with a variety of 2D and
3D contacts. In addition, we also demonstrate the framework as a differentiable physics simulator
and test it in downstream planning tasks.

1.1 Related Work

Lagrangian/Hamiltonian-inspired Neural Networks: In the last few years, an increasing volume
of work has proposed neural network models to learn the underlying dynamics from data while
enforcing energy conservation. This line of works leverage Lagrangian dynamics [7–12] or Hamilto-
nian dynamics [13–16] to incorporate the physics prior of energy conservation into deep learning.
Recently, Finzi et al. [17] show that using Cartesian coordinates and enforcing explicit constraints
improve learning in both Lagrangian and Hamiltonian settings. To learn the underlying dynamics
governed by an ODE, many of these prior works have used Neural ODE [18] which can learn an
ODE from observed trajectories. However, real systems often exhibit non-smooth trajectories caused
by sudden/abrupt changes in the velocity due to contacts and collisions. Although Neural ODE
based approaches have recently been extended for learning dynamics with jump discontinuities
[19–21], they cannot accommodate the physical constraints (e.g., maximum dissipation principle,
non-negative normal force) associated with contacts. Among the energy-conserving neural networks,
only [16] attempted to address contacts and collisions; to capture the elastic collision of a billiard
ball, it manually reverses the momentum of the ball orthogonal to the contact surface. However, this
specialized technique cannot be applied to frictional or inelastic contacts, or objects that can rotate.

Contact Model: Our contact model shares similarity with the contact model of MuJoCo [22–24].
However, there are three differences: (1) our contact model handles elastic contacts while MuJoCo
only focuses on inelastic contacts; (2) MuJoCo solves the convex optimization problem with a
generalization of the Projected Gauss-Seidel method while we leverage the open-source scs solver
[25] to solve the optimization problem; (3) the dynamics in MuJoCo is described using generalized
coordinates, while we use Cartesian coordinates, since it has been shown in previous work [17], the
use of Cartesian coordinates improves the learning of system properties. Another category of contact
models solve contact impulses by solving a linear complementarity problem (LCP) [26]. Recently, a
number of works [27–32] has proposed differentiable LCPs for downstream planning and control
tasks. However, their performance on learning the contact properties has yet to be tested.

Differentiable Simulation: The recent past has also witnessed a growing interest in differentiable
physics simulation that can be used in many downstream tasks (e.g., parameter estimation, planning,
and control) [33–38]. Jiang et al. [39] use an LCP formulation to learn contact impulses for perfectly
inelastic contacts. DiffTaichi [35] focuses on material point method and only provides intuitively
simple contact mechanisms. The support for partially elastic frictional contacts is yet to be provided.
Geilinger et al. [36] differentiates through the dynamics solver analytically. Macklin et al. [37]
develop a compliant contact model and formulate an implicit time-stepping scheme for integrating
the dynamics. Incremental Potential Contact (IPC) [40] uses a custom implicitly time-stepped solver
to solve nonlinear intersection-free and inversion-free elastodynamics. However, it is not clear if
unknown dynamics and contact properties can be learned using the implicit time-stepping scheme
proposed in [37, 40]. NeuralSim [38] formulates a nonlinear complementarity problem to learn
contact impulses and then solves it using Projected Gauss-Siedel. GradSim [41] uses a relaxed
Coulomb model to learn contacts from video sequences. Le Lidec et al. [42] propose a differentiable
physics simulator that can handle conic friction and elasticity. They demonstrate its ability for system
identification on a simple 2D system. Chen et al. [43] propose neural event functions to handle
instantaneous changes in a continuous system and test it on frictionless bouncing balls. However,
these prior differentiable simulation models do not focus on the energy aspect of the system and their
performance on the prediction of system energy (of learned dynamics) has not been evaluated.

2



1.2 Contribution

The main contribution of this work is three-fold. First, by introducing a differentiable contact model,
we extend the scope of Lagrangian/Hamiltonian-inspired deep learning methods from collision-
free systems to more realistic systems with contact and collisions. Second, we demonstrate the
simultaneous learning of system and contact properties in a variety of physical systems by integrating
the contact model with Constrained Lagrangian/Hamiltonian neural networks (CLNN/CHNN). We
show that the learned contact properties, i.e., coefficients of restitution and friction, are interpretable
and match the ground truth with high accuracy. Finally, the learned contact model with CLNN/CHNN
can be used to solve downstream gradient-based optimization tasks.

2 Preliminaries

2.1 Rigid body dynamics without contacts

Consider a rigid body system whose configuration at time t is described by a set of coordinates
x(t) := (x1(t), x2(t), ..., xD(t)). Then the time evolution of this system can be expressed as the
following second-order ODE,

ẍ = h(x, ẋ;ps), (1)
where ps denote system properties, which may include inertia of objects M(x) and potential energy
V(x). The vector-valued function h can be derived from the laws of physics, e.g, Lagrangian/Hamil-
tonian dynamics. By introducing v := ẋ, Eqn. (1) can be written as the following first-order ODE(

ẋ
v̇

)
=

(
v

h(x,v;ps)

)
= g(x,v;ps). (2)

There are two popular choices for the coordinates x – the generalized coordinates and the Cartesian
coordinates. The generalized coordinates are usually chosen as a set of independent coordinates
which implicitly enforces holonomic constraints (equality constraints, see Appendix B for details)
in the system. The Cartesian coordinates are in general not independent of each other, so that the
holonomic constraints in the system must be enforced explicitly in the dynamics (2). Although g
is usually derived with generalized coordinates, this work uses Cartesian coordinates and explicit
constraints [17] to demonstrate the results. The proposed contact model is independent of the choice
of coordinates and g. We provide the expression of g used in this work in Appendix B.

2.2 Rigid body dynamics with contacts

Algorithm 1: Rigid Body Dynamics with Contact
Input :
t0, t1, ..., tN Sequence of time points
(x0,v0) Initial condition at t0
ps = (M(x), V (x)) System properties
pc = (µµµ, eP ) Contact properties
g(x,v;ps) First-order system dynamics
Initialize output trajectories T = {(x0,v0)}.
for i = 0→ N − 1 do

(xi+1,vi+1)←
ODESolve(g, (xi,vi), ti, ti+1)

Get active contacts ca (collision detection)
if exist active contacts then

∆v←
ContactModel(xi+1,vi+1,ca,ps,pc)

vi+1 ← vi+1 + ∆v
T ← T ∪ {(xi+1,vi+1)}

In robotics tasks, the above assumption of no
collision and contact no longer holds. For ex-
ample, legged robots move around through re-
peated collisions/contacts between the robot
legs and the ground, and robot arms grasp ob-
jects by making frictional contact with them.
The difficulty of modeling these phenomena
is that they essentially make the dynamics dis-
continuous. For example, when a ball hits the
ground, its velocity changes from pointing
downward to pointing upward in an infinites-
imally small period of time, which can be
modeled as an instantaneous change in veloc-
ity ∆v. In general, contacts, collisions, and
joint limits can all be modeled in this way.
Algorithm 1 shows the general procedure of
modeling rigid body with contacts, where a
jump in velocity is calculated by a contact
model whenever there exist active contacts.

From a simulation perspective, with known system properties, contact properties (coefficients of
friction and restitution), and vector field g, the trajectory of the system can be simulated by Algo-
rithm 1. From a learning perspective, we frame the problem as learning unknown system and contact

3



properties from a given set of trajectories given a model prior of vector field g. In this case, we can
parametrize the unknown system and contact properties (ps,pc) by neural networks and learnable
parameters, predict trajectories by Algorithm 1 and minimize the difference between the predicted
and actual trajectories by backpropagation. This training scheme requires all operations in the forward
pass (Algorithm 1) to be differentiable. There are two key parts in the forward pass – the ODE solver
module and the contact model. Operations in the ODE solver are in general differentiable, and Neural
ODE [18, 44] provides a framework of backpropagating through ODE solvers with constant memory
cost. In this work, we provide a differentiable contact model so that we can extend these previous
works to learn rigid body dynamics with contacts.

3 A differentiable contact model

In this section, we introduce a differentiable contact model for learning rigid body dynamics with
contacts. The proposed contact model solves post-contact velocities by solving contact impulses in
two phases [45] – a compression phase, starting from the first contact of objects till the maximum
compression, and a restitution phase, starting right after the compression phase till the separation of
objects. We start by presenting the constraints imposed by frictional contacts.

3.1 Contact constraints

This work focuses on two types of contact – frictional contact and limit constraint. For any conceptual
frictional contact i in a 3D contact space, the contact impulse fi ∈ R3 must lie in the friction cone,

µifi,n ≥
√
f2i,t1 + f2i,t2 , ∀i, (3)

where µi ≥ 0 is the coefficient of friction for conceptual contact i. In addition, the normal impulses
must be non-negative, since objects can only push but not pull others:

fi,n ≥ 0, ∀i. (4)

For any limit constraint such as limit in joint angle or distance, the contact space is essentially
one dimensional and the constraints on contact impulses are only fi,n ≥ 0. This is mathematically
equivalent to setting up a 3D contact space like that in frictional contact and letting µi = 0 in Eqn. (3).

3.2 Contact model in compression phase

The idea behind solving contact impulses during the compression phase is the maximum dissipation
principle [46], which states that the compression impulses should maximize the rate of energy
dissipation. Equivalently, the compression impulses are those that minimizes the kinetic energy at the
end of the compression phase. This can be described by an optimization problem [4, 46, 22, 23]. We
choose the following form, which is similar to the one used in Mujoco [22–24],

Minimize
fcC

1

2
(f cC)TAf cC + (f cC)Tvc−

C (5)

subject to (3), (4).

where f cC denotes the impulses in compression phase, A is the inverse inertia in the contact space, and
vc−
C represents the velocity in the contact space before the compression phase. This formulation is an

approximation to the Signorini condition, please see [47, 24] for more details. A concise derivation
of (5) from the first principle is provided in Appendix C.

3.3 Contact model in restitution phase

Similarly, we can set up an optimization problem to solve for the contact impulses in the restitution
phase frC . We assume the restitution follows Poisson’s hypothesis, where the normal components
in frC equals those in f cC scaled by the coefficient of restitution eP . We adopt Poisson’s hypothesis
instead of the popular Newton’s hypothesis used in prior works [2, 27, 35, 16], because the latter
might result in unrealistic energy increase in certain systems [48]. Please see Appendix D for a
discussion. We set up the following constraint:

fri,n ≥ eP,i · f ci,n, ∀i. (6)

4



We have inequality instead of equality here since we would like to compensate for existing penetration
in the simulation. Since we simulate the rigid body system in discrete time steps, almost every time
when a collision is detected, penetration has already occurred among the objects involved in that
collision. Consider the case where the collision is perfectly inelastic, i.e., COR eP = 0, then the
true normal impulse during restitution phase would be zero, which fails to fix existing unrealistic
penetration. By setting up the constraint as in Eqn. (6), a larger normal impulse is allowed to fix
existing penetration. The optimization problem in the restitution phase is

Minimize
frC

1

2
(frC)TAfrC + (frC)T (vc+

C − v∗C) (7)

subject to (3), (4), (6).

with vc+
C as the velocity in contact space after the compression phase and v∗C as the target velocity,

used for fixing penetration. If there’s no penetration, v∗C = 0. A detailed discussion of penetration
compensation can be found in Appendix G. From the principle of maximum dissipation, the equality
in Eqn. (6) would hold for the solution when COR is large and penetration is small, thus respecting
Poisson’s hypothesis when penetration can be fixed naturally.

3.4 Differentiability

Solving optimization problems (5) and (7) for contact impulses allow us to calculate instantaneous
velocity change to perform simulation (Algorithm 1). Moreover, we would like to back-propagate
through the contact model to learn unknown properties. In fact, our proposed contact model is
differentiable, thanks to recent progress on differentiable convex optimization layers. Both problems
(5) and (7) are convex optimization problems with convex quadratic objectives (we show that A is
positive semi-definite in Appendix E) as well as linear constraints and second-order cone constraints.
We can then express our problems using disciplined parametrized programming (DPP) and set up
these two problems as differentiable layers using CvxpyLayers [6]. Thus, our model is differentiable
and can be used in dynamics and parameter learning as well as downstream tasks.

4 Experiments: dynamics and parameter learning

4.1 Simulated systems

To evaluate the proposed contact model, we simulate five different systems with contacts (Fig. 1) and
propose eight dynamics and parameter learning tasks based on these systems with different contact
properties (Table 1). Previous work has studied the bouncing point masses (Fig. 1(a)) which is often
referred to as billiards or bouncing balls [16, 27, 35]. To make this task more challenging, we let the
size of each object be different. We also propose the bouncing disks (Fig. 1(b)) where each disk can
rotate. The 2-pendulum colliding with the ground has been used to study and analyze contact models
for more than three decades [49]. We make this task more challenging by studying a 3-Pendulum
colliding with the ground (Fig. 1(c)). The gyroscope is a 3D system that exhibits complex dynamics.
A gyroscope colliding with a wall (Fig. 1(d)) is a system where the normal contact impulse does not
point towards the center of mass (c.o.m), and Newton’s hypothesis might give an unrealistic result
with increased energy after collisions [48]. The rope (Fig. 1(e)) has also been studied in previous
works [2, 4]. Please refer to Appendix H for further details about these systems and the tasks.

(a) (b) (c) (d) (e)

Figure 1: Simulated systems with contact. From left to right: (a) bouncing point masses, (b) bouncing
disks, (c) chained pendulums with ground, (d) gyroscope with a wall, and (e) rope. The black lines in
bouncing disks show the orientations of disks.

5



Table 1: Benchmark tasks. The columns D, E, max(C) denote dimension of the dynamics, number
of equality constraints, and the maximum number of contacts that could be simultaneously active ,
respectively.

Name System D E max(C) Space Same eP , µ for
all contacts

Conserve
energy

BP5-e Bouncing point masses 10 0 8 2D Y Y
BP5 Bouncing point masses 10 0 8 2D N N

CP3-e Chained pendulums w/ ground 6 3 1 2D Y Y
CP3 Chained pendulums w/ ground 6 3 1 2D Y N
BD5 Bouncing disks 30 15 8 2D N N
Rope Rope 400 0 ∼ 399 2D Y N

Gyro-e Gyroscope w/ a wall 12 7 1 3D Y Y
Gyro Gyroscope w/ a wall 12 7 1 3D Y N

4.2 Dynamics and parameter learning experimental setup

For each simulated system, we jointly learn system and contact properties from trajectory data by
extending CLNN/CHNN with the proposed contact model. Fig. 2 shows the architecture.

Data: For each task, the training set is generated by randomly sampling 800 collision-free initial
conditions and then simulating the dynamics for 100 time steps. Since for some systems, there are
very few data points in a trajectory that involves collision, we select a small chunk containing 5
consecutive time steps from each simulated trajectory such that the final training set contains 800
trajectories of length 5, where around half of the trajectories contain collisions and the other half are
collision-free. We also make sure that the initial state of these selected chunks is collision-free. The
evaluation and test set are generated in a similar way with 100 trajectories, respectively.

Architecture and training details: In the experiments, we assume the system properties, i.e., object
inertia and potential energy, as well as contact properties, i.e., coefficients of friction and restitution,
are unknown and need to be learned from trajectory data. The system properties are parametrized
as in CLNN and CHNN [17]. As for contact properties, all coefficient of friction are non-negative,
so they are parametrized by scalar learnable parameters passed through ReLu function. As each
coefficient of restitution lies in the interval of [0, 1], it is parametrized by a learnable parameter passed
through a hard sigmoid function. The predicted trajectories are generated by running Algorithm 1
with parametrized system and contact properties. We use RK4 as the ODE solver in Neural ODE.
We compute the L1-norm of the difference between predicted and true trajectories, and use it as the
loss function for training. The gradients are computed by differentiating through Algorithm 1, and
learnable parameters are updated using the AdamW optimizer [50, 51] with a learning rate of 0.001.

Models: We implement two slightly different versions of the contact model. The first version,
referred to as CM, set up optimization problems exactly as stated in (5) and (7). The second version,
referred to as CMr, adds a diagonal positive regularization matrix R = εI to A in (5) and (7), such

ODESolve(CLNN)

ContactModel

ContactModel

ODESolve(CLNN)

ContactModel

CLNN

ContactModel - CM

ODESolve(CLNN) Loss

…
…

…
…

…
…

…
…

Figure 2: Dynamics and parameter learning schema of the CM-CD-CLNN model. Neural networks
and learnable parameters are denoted in red. Predicted trajectories are generated using parametrized
CM and CLNN. The difference between the true and predicted trajectories are minimized to learn
dynamics and parameters.

6



that (A + R) is always positive definite, which ensures a unique global minimum in each problem.3
These two versions are combined with CLNN and CHNN to set up the following four neural network
models: (i) CM-CD-CLNN, (ii) CM-CD-CHNN, (iii) CMr-CD-CLNN, and (iv) CMr-CD-CHNN.
The “CD" in model names emphasizes that we assume that a collision detection module is given.

Baselines: We also set up three baselines. In the first baseline, MLP-CD-CLNN, we calculate the
instantaneous velocity change from a multi-layer perceptron (MLP) instead of the proposed contact
model. Our second baseline, IN-CP-CLNN, calculates velocity change from an interaction network
(IN) [2] without requiring a collision detection module, since IN has the ability to learn collisions
and contact. IN requires system and contact properties as input. Here the “CP" in the model name
emphasizes true contact properties are given and the system properties learned by CLNN are fed into
IN. Our last baseline, IN-CP-SP, is the original interaction network which has shown strong ability in
predicting 2D rigid body trajectories without equality constraints, but haven’t been tested on systems
with equality constraints or 3D systems. The name emphasizes that true system and contact properties
are known and are fed into IN. Also, the name indicates no collision detection module is needed in
this baseline. To train these baseline models, we transform each trajectory into multiple one-step
pairs, as has been done in IN [2]. We also attempted to use the LCP formulation of contact model
[27] as a baseline. However, the implementation of gradient computation of the LCP function in [27]
results in NaN in our examples. Please refer to Appendix J for additional details. As the forward
computation of LCP works as expected, we use LCP-generated training data to test the robustness of
our model.

4.3 Dynamics and parameter learning results

Our implementation relies on publicly available codebases including Pytorch [52], CHNN [17],
Symplectic ODE-Net [14] and Neural ODE [18]. We handle training using Pytorch Lightning [53]
for the purpose of reproducibility.

Prediction: We report the average relative L1 error over the test trajectories of 7 models on 8 tasks
in Fig. 3. In all tasks, our models beat baseline models. The performance difference between CLNN
and CHNN is minor since their architectures are similar. In most tasks, CM outperforms CMr. In the
BP5-e task, CM beats CMr by 2 orders of magnitude. IN does not perform well even in BP5 tasks
since our training set (3.2k one-step pairs) is much smaller than the dataset (1M one-step pairs) used
in the IN paper. We also report average relative L1 errors along test trajectories of 50 time steps in
Fig. 4, in order to show each model’s ability in long term prediction. We observe that our contact
models CM and CMr outperform baselines in all tasks.

Interpretable mass ratio: Without direct supervision on mass, deep learning algorithms are unlikely
to recover the true mass, as pointed out in [14]. However, one can still inspect the ratio of learned
mass values to see how well this physical property is learned. The mass ratio plays an important
role in determining the motion of objects when they interact with each other, e.g., during colli-
sions. In our BP5 task, CM-CD-CLNN learns the mass ratio [m2/m1,m3/m1,m4/m1,m5/m1] =
[2.0001, 6.0036, 8.0014, 10.0024], which is very close to the true ratio [2, 6, 8, 10]. In fact, our
framework is able to accurately learn mass ratios across tasks (please see Appendix I for details).

Interpretable contact properties: Table 2 shows the learned contact properties by our 4 models in
6 tasks where the contact properties are the same for all contacts. For all tasks, CM can learn contact

3The regularization is important for obtaining the inverse dynamics, as stated in [23]. However, the unregu-
larized one learns more accurate dynamics and contact properties, as shown in Fig. 4 and Table 2.

BP5-e BP5 CP3-e CP3 BD5 Rope Gyro-e Gyro
10−5

10−3

10−1

101

Tr
aj

. r
el

. e
rro

r

CM-CD-CLNN CM-CD-CHNN CMr-CD-CLNN CMr-CD-CHNN MLP-CD-CLNN IN-CP-CLNN IN-CP-SP(original IN)

Figure 3: Trajectory relative error (log scale) with 95% confidence interval error bars. Each error is
averaged over 100 test trajectories of length 5.

7



0.0 0.1 0.2 0.3 0.4 0.5
10−5

10−2

101

BP5-e

0.0 0.1 0.2 0.3 0.4 0.5

CP3-e

0.0 0.1 0.2 0.3 0.4 0.5

BD5

0.0 0.2 0.4 0.6 0.8 1.0

Gyro-e

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

10−5

10−2

101

BP5

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

CP3

0.00 0.05 0.10 0.15 0.20 0.25
Time (s)

Rope

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

Gyro

Re
la

tiv
e 

er
ro

r i
n 

st
at

es

CM-CD-CLNN CM-CD-CHNN CMr-CD-CLNN CMr-CD-CHNN MLP-CD-CLNN IN-CP-CLNN IN-CP-SP(original IN)

Figure 4: Relative error (log scale) along long test trajectories (50 times steps). Each curve is averaged
over 100 test trajectories. Vertical dashed lines show the trajectory length during training.

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

0.1

0.2

0.3

0.4

BP5-e

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

−1.9

−1.8

−1.7

−1.6

CP3-e

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

2.0

2.2

Gyro-e

En
er

gy
 a

lo
ng

 tr
aj

.

True CM-CD-CLNN CM-CD-CHNN CMr-CD-CLNN CMr-CD-CHNN MLP-CD-CLNN IN-CP-CLNN IN-CP-SP

Figure 5: Energy of the predicted trajectories of all 7 models on a sampled test initial condition from
BP5-e, CP3-e and Gyro-e tasks. The true energy in each task is represented by the horizontal black
line in the middle, which is constant along the trajecotry.

properties accurately which explains its good performance in prediction. CMr is an approximate
model and does not infer contact properties as accurately as CM. The interpretability of the learned
contact properties along with the mass ratio explains the performance of our framework and shows
that the proposed contact model indeed extends Lagrangian and Hamiltonian neural networks.

Energy: The prior of Lagrangian/Hamiltonian dynamics conserve energy along each collision-free
trajectory, which is one of the reason that Lagrangian/Hamiltonian-based neural network models
perform better in prediction and generalization [7, 13, 14, 10]. Fig. 5 illustrates how the total energy
changes over time for the predicted trajectories of 7 models on 3 tasks that conserve energy since
the contacts are elastic and frictionless (i.e., eP = 1, µ = 0). Models using CM perform the best
in conserving energy in all three tasks since CM learns contact properties perfectly (Table 2). This
demonstrates that the proposed contact model can uncover the energy conserving aspect even though
energy conservation has not been enforced explicitly. For CP3-e and Gyro-e systems, models using
CMr lose energy each time collision happens since they learn positive coefficients of friction in these
tasks (Table 2). The baseline models perform the worst in terms of energy conservation.

Sample efficiency: We use the BP5 task to demonstrate the sample efficiency of this proposed
framework. We vary the training sample size from 25 to 800 trajectories and report the validation
loss (L1-norm) of CM-CD-CLNN, MLP-CD-CLNN, and Interaction Network. Figure 6 shows that
our framework works well even with limited training data.

Table 2: Learned contact properties from our 4 models on 6 tasks that has unique contact properties
for all contacts. Bold numbers are the best learned contact properties in each task across 4 models.

BP5-e CP3-e CP3 Rope Gyro-e Gyro
µ eP µ eP µ eP µ eP µ eP µ eP

Ground Truth 0.000 1.000 0.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000 0.100 0.800

CM-CD-CLNN 0.000 1.000 0.000 1.000 0.500 0.005 0.026 0.000 0.000 1.000 0.100 0.800
CM-CD-CHNN 0.000 1.000 0.000 1.000 0.500 0.004 0.017 0.000 0.000 1.000 0.100 0.800
CMr-CD-CLNN 0.000 1.000 0.002 1.000 0.500 0.023 0.037 0.011 0.002 1.000 0.099 0.892
CMr-CD-CHNN 0.000 1.000 0.002 1.000 0.500 0.023 0.046 0.019 0.002 1.000 0.099 0.893

8



Figure 6: Validation losses for the
BP5 task.

Table 3: Average wall clock time
in each iteration of ropes. The last
column shows increases in time

D max(C) time (s)

100 ∼ 99 0.869 1x
200 ∼ 199 1.563 1.7x
400 ∼ 399 3.225 3.7x

Scalability: In Table 3, we report the average wall clock time in
each iteration (forward pass and backward pass) during training
of three sizes of ropes. The time scales approximately linearly
with the numbers of coordinates (D) and contacts (C). See
Appendix L for additional results for scalability.

Robustness: We evaluate the robustness of our framework by
training our model using data generated by LCP formulation
and noisy data. (See Appendix K for details.) When trained on
LCP data, our framework can learn accurate contact properties
in 2D tasks. For the 3D Gyro tasks, the learned contact prop-
erties are not as accurate (e.g., learned COR of 0.822 instead
of 0.800). This is expected since the LCP formulation relaxes
the 3D friction cone into a (linear) polyhedral cone and the
direction of friction impulses would deviate from those given
by our contact model, which is based on the second-order fric-
tion cone. In addition, we observe that the performance of our
model does not suffer from noisy data since we incorporate
strong physics prior into deep learning. For CMr, we also perform an ablation test to investigate the
influence of the amount of regularization. By setting the regularizer as R = εI, we observe that a
smaller ε (e.g. 0.001) result in more accurate learned contact properties. This is expected since a
smaller ε approximate (5) and (7) better. However, making ε a learnable parameter does not improve
accuracy. Please see Appendix K for more details.

5 Experiments: downstream tasks

Since our framework is differentiable, we can use it as a differentiable physics simulator to solve
downstream tasks after we have learned the system and contact properties. Here we demonstrate this
capability by considering three gradient-based trajectory planning tasks and using CM-CD-CLNN.

Billiards: We study the same billiard task as in DiffTaichi [35]. The goal is to find the initial position
and velocity of the white ball such that blue ball hit the black target at the 1024th time step. In
order to test our framework’s ability to solve downstream task and make comparison with DiffTaichi,
we assume the parameters such as mass and contact properties are known, the same assumption
in DiffTaichi. Fig 7(a) and 7(b) shows the solution found by our proposed model and DiffTaichi,
respectively. This task does not have a unique solution since one can place the white ball closer to the
billiards with a relatively small initial velocity (e.g. DiffTaichi solution) or place the ball farther away
from the billiards with a relatively large initial velocity (e.g. our solution). Fig 7(c) compares the
convergence, where the loss is the distance between the black target and the blue ball at the 1024th
time step. DiffTaichi has better convergence probably because it implements a simpler contact and
dynamics model and it takes time of impact (TOI) into account. The TOI might be able to explain
why the optimized positions of the white balls in DiffTaichi and our method are on the right and left
of the initial guess, respectively - the gradient w.r.t. the initial position using naive integrator and TOI
have different signs (Figure 4 in [35]).

Throwing: We present two throwing tasks as shown in Fig. 8. These throwing tasks are simpli-
fied versions of similar tasks studied in [36, 37], but we solve the tasks based on learned dynam-
ics while previous works [36, 37] solve them with true dynamics. In the “hit” task (Fig. 8(a)),

(a) (b) (c)
Figure 7: Billiards. (a), (b): The solid white ball and arrow shows the initial position and velocity
optimized by CM-CD-CLNN and DiffTaichi, respectively, while dashed white ball and arrow shows
those of the white ball before optimization. (c): Loss as a function of training iterations.

9



(a) (b)

Figure 8: Blue hollow circles indi-
cate the initial position of the disk.
(a) the “hit” task. The black hollow
circle indicate the target position.
(b) the “vertical” task.

the initial position of the disk is fixed, the goal is to find a
desired initial velocity so that the disk reach the target (black
circle) after exactly one bounce off the ground. In the “vertical”
task (Fig. 8(b)), the initial position and the translational velocity
are fixed, so that first half of the center of mass (c.o.m) trajectory
(dashed blue) is fixed. The goal is to find a desired initial
angular velocity such that the second half of the c.o.m trajectory
is as close to a vertical line (dashed black) as possible. In this
task we need to learn a counter-clockwise spin such that when
the disk bounces off the ground, there are enough friction to
stop the horizontal motion.

For these two tasks, we parametrize the initial condition to be
learned, simulate the trajectory based on the learned system
and contact properties, and minimize the difference between
simulated outcome and the goal by gradient descent. We can successfully find the initial conditions
to achieve the tasks, evaluated using the true system and contact properties. (Please see the video for
additional details).

6 Conclusion

In this work, we have introduced a differentiable contact model, which can capture contact dynamics
with different properties. Our contact model extends the applicability of Lagrangian/Hamiltonian-
inspired neural networks to enable the learning of hybrid dynamics in rigid body systems and
offer interpretability about system and contact properties. We show that the proposed framework
achieves better prediction with fewer samples and is robust against noisy data or LCP-generated data.
Future works will incorporate model-based control and explore interpretable safe control policies for
robotics applications. A particular direction could be to develop appropriate energy shaping control
policies [54] and integrate them with this proposed learning framework.

Limitations: Our framework assumes a known collision detection module. Although it can be
obtained from an idealized touch feedback sensor [5], this information might be unavailable in other
scenarios. Future work would explore how to relax this assumption. Our framework might fail to
correctly simulate systems which have extremely high mass ratios or stiffness ratios as compared
to Macklin et al. [37], where they show their primal method and dual method perform well in high
mass ratios and high stiffness ratios scenarios, respectively. Our model might also have challenges in
contact-rich systems and might not be as scalable as IPC [40]. Please see Appendix L for additional
scalability results. Our framework also uses a mix of acceleration-based simulation (integrating
continuous dynamics) and time-stepping methods (calculating instantaneous velocity change) while
other simulation methods typically use only one of them. This is because we’d like to use RK4
to better enforce the conservation of energy as done in [14, 17]. However, this choice also makes
our simulator not as efficient as other simulators. We would like to compare our method to other
differentiable physics model such as NeuralSim [38] and gradSim [41]. However, gradSim has
not been open sourced when this work is conducted and it is hard to reproduce model. NeuralSim
has its own automatic differentiation engine where gradient are computed one at the time, which
is suitable for downstream tasks as demonstrated in [38]; however, it is not suitable for dynamics
and parameter learning tasks where a large number of parameters need to be updated based on their
gradients. Additional efforts need to made to incorporate NeuralSim with deep learning frameworks.
Although we are not able to compare our work with these differentiable physics simulators, these
difficulties demonstrate that dynamics and parameter learning with differentiable physics simulators
are currently underexplored in the literature.

Societal impact: We introduce a framework for data-driven dynamics modelling which uses physics-
based priors to improve generalization, sample efficiency, and interpretability. Data-driven dynamics
modelling, in general, can have a profound effect in learning-based control synthesis, especially in
robotics and automation. However, our proposed framework is still a conceptual proposal and has
a very low (around 2) Technology Readiness Level (TRL) [55]. We are yet to fully understand its
limitations and failure scenarios that can significantly influence its real-world adoption.

10



Acknowledgments and Disclosure of Funding

The authors would like to thank Siemens Technology for supporting this work. Funding in direct
support of this work are from Siemens Technology. There are no competing interests.

References

[1] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Benchmarking Energy-Conserving
Neural Networks for Learning Dynamics from Data. arXiv preprint arXiv:2012.02334, 2020.

[2] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray Kavukcuoglu. Inter-
action Networks for Learning about Objects, Relations and Physics. In Advances in Neural Information
Processing Systems, volume 29, pages 4502–4510, 2016.

[3] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional object-
based approach to learning physical dynamics. In International Conference on Learning Representations,
2017.

[4] Shuqi Yang, Xingzhe He, and Bo Zhu. Learning physical constraints with neural projections. In Advances
in Neural Information Processing Systems, volume 33, 2020.

[5] Andreas Hochlehnert, Alexander Terenin, Steindor Saemundsson, and Marc Deisenroth. Learning Contact
Dynamics using Physically Structured Neural Networks. In Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, volume 130, pages 2152–2160, 2021.

[6] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter.
Differentiable Convex Optimization Layers. In Advances in Neural Information Processing Systems,
volume 32, pages 9562–9574, 2019.

[7] Michael Lutter, Christian Ritter, and Jan Peters. Deep Lagrangian Networks: Using Physics as Model Prior
for Deep Learning. In International Conference on Learning Representations, 2019.

[8] Michael Lutter, Kim Listmann, and Jan Peters. Deep Lagrangian Networks for end-to-end learning of
energy-based control for under-actuated systems. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 7718–7725, 2019.

[9] Manuel A. Roehrl, Thomas A. Runkler, Veronika Brandtstetter, Michel Tokic, and Stefan Obermayer.
Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics. In
21st IFAC World Congress, 2020.

[10] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho. La-
grangian neural networks. In ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations, 2020.

[11] Yaofeng Desmond Zhong and Naomi Leonard. Unsupervised Learning of Lagrangian Dynamics from
Images for Prediction and Control. volume 33, 2020.

[12] Christine Allen-Blanchette, Sushant Veer, Anirudha Majumdar, and Naomi Ehrich Leonard. LagNetViP: A
Lagrangian Neural Network for Video Prediction. arXiv preprint arXiv:2010.12932, 2020.

[13] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In Advances in
Neural Information Processing Systems, volume 32, pages 15379–15389, 2019.

[14] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ODE-Net: Learning
Hamiltonian Dynamics with Control. In International Conference on Learning Representations, 2020.

[15] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Dissipative SymODEN: Encoding
Hamiltonian Dynamics with Dissipation and Control into Deep Learning. In ICLR 2020 Workshop on
Integration of Deep Neural Models and Differential Equations, 2020.

[16] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic Recurrent Neural Networks.
In International Conference on Learning Representations, 2020.

[17] Marc Finzi, Ke Alexander Wang, and Andrew Gordon Wilson. Simplifying Hamiltonian and Lagrangian
Neural Networks via Explicit Constraints. volume 33, 2020.

[18] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, volume 31, pages 6571–6583, 2018.

[19] Junteng Jia and Austin R Benson. Neural Jump Stochastic Differential Equations. In Advances in Neural
Information Processing Systems, volume 32, pages 9847–9858, 2019.

[20] Daehoon Gwak, Gyuhyeon Sim, Michael Poli, Stefano Massaroli, Jaegul Choo, and Edward Choi. Neural
ordinary differential equations for intervention modeling. arXiv preprint arXiv:2010.08304, 2020.

[21] Calypso Herrera, Florian Krach, and Josef Teichmann. Neural Jump Ordinary Differential Equations. In
International Conference on Learning Representations, 2021.

[22] Emanuel Todorov. A convex, smooth and invertible contact model for trajectory optimization. In 2011
IEEE International Conference on Robotics and Automation, pages 1071–1076, 2011.

11



[23] Emanuel Todorov. Convex and analytically-invertible dynamics with contacts and constraints: Theory and
implementation in MuJoCo. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 6054–6061, 2014.

[24] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[25] Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator splitting
and homogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169(3):1042–
1068, 2016.

[26] Mihai Anitescu and Florian A Potra. Formulating dynamic multi-rigid-body contact problems with friction
as solvable linear complementarity problems. Nonlinear Dynamics, 14(3):231–247, 1997.

[27] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Joshua B Tenenbaum, and J Zico Kolter. End-to-
end differentiable physics for learning and control. In Advances in neural information processing systems,
volume 31, pages 7178–7189, 2018.

[28] Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis Wyffels. A differentiable physics engine for
deep learning in robotics. Frontiers in Neurorobotics, 13:6, 2019.

[29] Junbang Liang and Ming C. Lin. Differentiable Physics Simulation. In ICLR 2020 Workshop on Integration
of Deep Neural Models and Differential Equations, 2020.

[30] Changkyu Song and Abdeslam Boularias. Identifying mechanical models of unknown objects with
differentiable physics simulations. In Proceedings of the 2nd Conference on Learning for Dynamics and
Control, volume 120 of Proceedings of Machine Learning Research, pages 749–760. PMLR, 2020.

[31] Changkyu Song and Abdeslam Boularias. Learning to slide unknown objects with differentiable physics
simulations. In Robotics science and systems, 2020.

[32] Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and C Karen Liu. Fast and feature-
complete differentiable physics for articulated rigid bodies with contact. arXiv preprint arXiv:2103.16021,
2021.

[33] Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B Tenenbaum, and Shuran Song. DensePhysNet: Learn-
ing Dense Physical Object Representations via Multi-step Dynamic Interactions. arXiv preprint
arXiv:1906.03853, 2019.

[34] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
Learning to simulate complex physics with graph networks. In International Conference on Machine
Learning, pages 8459–8468, 2020.

[35] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Fredo
Durand. DiffTaichi: Differentiable Programming for Physical Simulation. In International Conference on
Learning Representations (ICLR), 2020.

[36] Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and Stelian
Coros. ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact. ACM
Transactions on Graphics, 39(6), November 2020. ISSN 0730-0301.

[37] M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T. Y. Kim. Primal/dual descent methods
for dynamics. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2020.

[38] Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng, and Gaurav S. Sukhatme. NeuralSim:
Augmenting Differentiable Simulators with Neural Networks. In IEEE International Conference on
Robotics and Automation (ICRA), 2021.

[39] Yifeng Jiang, Jiazheng Sun, and C. Karen Liu. Data-Augmented Contact Model for Rigid Body Simulation.
arXiv Preprint, 1803.04019, 2018.

[40] Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo,
Chenfanfu Jiang, and Danny M Kaufman. Incremental potential contact: Intersection-and inversion-free,
large-deformation dynamics. ACM transactions on graphics, 2020.

[41] J. Krishna Murthy, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan
Considine, Jérôme Parent-Lévesque, Kevin Xie, Kenny Erleben, Liam Paull, Florian Shkurti, Derek
Nowrouzezahrai, and Sanja Fidler. GradSim: Differentiable simulation for system identification and
visuomotor control. In International Conference on Learning Representations (ICLR), 2021.

[42] Quentin Le Lidec, Igor Kalevatykh, Ivan Laptev, Cordelia Schmid, and Justin Carpentier. Differentiable
simulation for physical system identification. IEEE Robotics and Automation Letters, 6(2):3413–3420,
2021.

[43] Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Learning neural event functions for ordinary
differential equations. In International Conference on Learning Representations, 2021.

[44] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting Neural
ODEs. In Advances in Neural Information Processing Systems, volume 33, 2020.

12



[45] Siméon D Poisson. Mechanics, vol. ii. Trans. HH Harte, Longman, London, 1817.
[46] David E Stewart. Rigid-body dynamics with friction and impact. SIAM Review, 42(1):3–39, 2000.
[47] Michel Jean. The non-smooth contact dynamics method. Computer methods in applied mechanics and

engineering, 177(3-4):235–257, 1999.
[48] Shlomo Djerassi. Collision with friction; Part A: Newton’s hypothesis. Multibody System Dynamics, 21

(1):37, 2009.
[49] Thomas R Kane and David A Levinson. Dynamics, Theory and Applications. McGraw Hill, 1985.
[50] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.
[51] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on

Learning Representations, 2019.
[52] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems, volume 32, pages 8024–8035. 2019.

[53] Falcon W. A. et al. PyTorch Lightning. GitHub. Note: https://github.com/PyTorchLightning/pytorch-
lightning, 3, 2019.

[54] Jianping Lin, Nikhil Divekar, Ge Lv, and Robert D. Gregg. Energy shaping control with virtual spring and
damper for powered exoskeletons. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages
3039–3045, 2019. doi: 10.1109/CDC40024.2019.9029624.

[55] Steven Hirshorn and Sharon Jefferies. Final Report of the NASA Technology Readiness Assessment (TRA)
Study Team. 2016.

13


	Introduction
	Related Work
	Contribution

	Preliminaries
	Rigid body dynamics without contacts
	Rigid body dynamics with contacts

	A differentiable contact model
	Contact constraints
	Contact model in compression phase
	Contact model in restitution phase
	Differentiability

	Experiments: dynamics and parameter learning
	Simulated systems
	Dynamics and parameter learning experimental setup
	Dynamics and parameter learning results

	Experiments: downstream tasks
	Conclusion

