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Abstract
Parameter-efficient fine-tuning (PEFT) techniques
have unlocked the potential to cheaply and eas-
ily specialize large pretrained models. However,
the most prominent approaches, like low-rank
adapters (LoRA) depend on heuristics or rules-of-
thumb for their architectural choices—potentially
limiting their performance for new models and
architectures. This limitation suggests that tech-
niques from neural architecture search could be
used to obtain optimal adapter architectures, but
these are often expensive and difficult to imple-
ment. We address this challenge with Monarch
Rectangular Fine-tuning (MoRe), a simple frame-
work to search over adapter architectures that
relies on the Monarch matrix class. Theoreti-
cally, we show that MoRe is more expressive
than LoRA. Empirically, our approach is more
parameter-efficient and performant than state-of-
the-art PEFTs on a range of tasks and models,
with as few as 5% of LoRA’s parameters.

1. Introduction
Large pretrained ‘foundation’ models (Bommasani et al.,
2021) were originally conceived as a convenient base for
rapidly building applications. The size and complexity of
these models; however, paradoxically often made specializa-
tion more complex and challenging than traditional machine
learning. Recently, adapters, like the popular LoRA (Hu
et al., 2021), have dramatically decreased the cost of spe-
cialization. This has unlocked the potential of foundation
models for efficient use in everyday settings

Despite their popularity, parameter-efficient adapter tech-
niques make particular architectural assumptions, such as
the eponymous low rank in LoRA (Hu et al., 2021; 2023;
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Zhang et al., 2023; Chavan et al., 2023; Liu et al., 2024b).
These assumptions are a good fit for certain models, tasks,
and datasets—but may result in poor performance on others.
There has been a resulting arms race of parameter-efficient
fine-tuning (PEFTs) techniques, each with their own ben-
efits and drawbacks. This suggests that the right adapter
architecture should be learnable.

Learning architectures is the traditional domain of neural
architecture search (NAS). Unfortunately, most NAS tech-
niques are heavyweight (Pham et al., 2018; Liu et al., 2019a;
Li & Talwalkar, 2020; Li et al., 2021), creating a tension:
NAS may learn better adapter architectures for a particu-
lar task but costs substantially more compute—sacrificing
much of the benefits of adapters in the first place.

We show how to resolve this tension by relying on the
Monarch matrix class (Dao et al., 2022a). This class
presents a simple parametrization that can express a vast
range of structured matrices, enabling conveniently learning
a wide variety of parameter-efficient architectures. In other
words, building adapters from Monarch matrices simulta-
neously produces two benefits—flexibly searching over
architectures and efficient training for adapters.

Based on this idea, we introduce a simple PEFT framework
called Monarch Rectangular Fine-tuning (MoRe). We study
its expressiveness properties theoretically and validate it
empirically. When fixing block configuration after exten-
sive architectural ablations, the most performant adapter we
produced via MoRe is 10×−20× more parameter-efficient
than LoRA and has the fewest tunable hyperparameters
among all PEFTs.

2. Related Work
PEFT methods trade off mechanisms for parameter-
efficiency and performance. These mechanisms are de-
signed heuristically, and may not be the best choice for
all settings. Popular methods such as LoRA (Hu et al.,
2021) may not strike the best tradeoff between efficiency
and performance. Other methods often sacrifice increased
complexity and a reliance on search for improved perfor-
mance, limiting scalability. Methods such as GLoRA and
AdaLora (Chavan et al., 2023; Zhang et al., 2023) require
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expensive search for their rank and block configurations.
Our goal is to strike a better tradeoff compared to current
PEFT techniques, all while avoiding expensive search proce-
dures. We describe the relation between MoRe and existing
techniques below.

Orthogonal Fine-tuning. Butterly Orthogonal Fine-tuning
(BOFT) (Liu et al., 2024b) uses a compute-heavy neighbor
of Monarch, the butterfly matrices, to parameterize Cayley-
transformed orthogonal blocks that are multiplied with the
original weight matrices. It has two more tunable param-
eters, the block number and size. In contrast, MoRe does
not require tuning the number of blocks or rank and is more
performant and parameter-efficient than BOFT.

Representation Editing. ReFT (Wu et al., 2024) is a
prompt editing method operating on low-rank subspaces.
It balances expressivity and parameter efficiency by only
intervening on selected layers and tokens, often surpassing
PEFTs that adapt model weights. However, it induces infer-
ence overhead and an even larger search space than LoRA
(token positions and layers to intervene). It is also somewhat
less well-understood compared to existing PEFTs from a
theoretical point of view.

3. MoRe Framework
Monarch matrices (Dao et al., 2022a) are a rich collection of
block-sparse structured matrices that subsume butterfly ma-
trices and belong to the Kaleidoscope matrices (Dao et al.,
2020), a class of matrices that can represent any structured
matrix and a variety of transforms such as the Fourier trans-
form, cosine transforms, and Hadamard transform. Unlike
structure-agnostic matrix families, such as those of low rank,
Monarch matrices can have arbitrary rank, and their prod-
ucts are not closed, allowing for a richer matrix class as
more Monarch matrices are multiplied.

Let n be the dimensions of the Monarch matrix M , i.e. M ∈
Rn×n. Define N as the number of blocks in component
matrices L and R and rblk as the rank of each sub-block. In
the standard formulation, rblk = n/N . Monarch matrices
have the following structure:

M = P1LP2R, (1)

where P1 and P2 are permutation matrices and L and R are
block diagonal (see Figure 1).

Original work in Monarch matrices focused on the case
where L and R are block-wise square, but the family of
Monarch matrices is more general and includes low-rank
Monarch matrices. This extension allows for L and R to be
rectangular, with similarly shaped block diagonal compo-
nents. This allows the overall rank of the Monarch matrix to
be constrained by forcing L and R to have similar shapes to
LoRA components—but with fewer parameters, as Monarch
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Figure 1. The structure of low-rank Monarch matrices contains
two permutations P1 and P2 along with two block-diagonal com-
ponents L and R which are learned while P1 and P2 are both fixed.
In the above, the number of blocks N = 4, with input dimension
n = 16, and the block ‘rank’ is rblk = 2 and size is n/N = 4.
The pseudo-code can be found in appendix G.
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Figure 2. Matthew’s Correlation on CoLA when trade parameter
counts for performance on two axes: the block dimension and the
number of blocks, both with square blocks. The block dimensions
used are [4, 8, 16, 32, 64] and the N are [1024, 256, 128, 32, 16].

only contains non-zero entries within the diagonal blocks.

MoRe Fine-Tuning. During training, for a pretrained
weight matrix W ∈ Rm×n and bias b ∈ Rm, we apply
MoRe via:

ΦMoRe(x) = Wx+Mx+ b, (2)

and update L and R, where L has shape (N , rblk, n/N ) and
R has shape (N , n/N , rblk). During inference, W absorbs
M as in LoRA so there is zero additional overhead.

Monarch matrices were originally proposed to accelerate
pre-training, using two block-wise square monarch factors
to substitute one dense matrix multiplication, with O(n

√
n)

FLOPs. However, an interesting property of these matrices
from rectangular factors is that even though each block is
constrained to rank rblk, the overall product can have a rank
as large as r = Nrblk. We set N to 4 for the best rank-
sparsity balance. MoRe can achieve the same rank as LoRA
with far fewer parameters, which empirically translates to
added fine-tuning performance.
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Method #Params BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

LoRAr=32 53.3M (0.830%) 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
LoRAr=32, Llama 13B 83.2M (0.670%) 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
MoRer=32; q, k, v (ours) 3M (0.047%) 67 86.4 88.4 97.3 95.1 88.5 76.6 79.9 84.9
ReFT 2.0M (0.031%) 69.3 84.4 80.3 93.1 84.2 83.2 68.2 78.9 80.2
ReFT, Llama 13B 3.1M (0.025%) 72.1 86.3 81.8 95.1 87.2 86.2 73.7 84.2 83.3
AdapterS* 99.3M (0.800%) 71.8 83.0 79.2 88.1 82.4 82.5 67.3 81.8 79.5
AdapterP* 358.7M (2.890%) 72.5 84.9 79.8 92.1 84.7 84.2 71.2 82.4 81.5
DoRA (half)* 43.4M (0.350%) 72.5 85.3 79.9 90.1 82.9 82.7 69.7 83.6 80.8
DoRA 84.4M (0.680%) 72.4 84.9 81.5 92.4 84.2 84.2 69.6 82.8 81.5
ChatGPT – 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

Table 1. Commonsense reasoning results. We take all numbers except for MoRe from Liu et al. (2024a). Llama 1 7B is used unless
otherwise specified.

PEFT #Params AQuA GSM8K MAWPS SVAMP Avg.

LoRAr=32 53.3M (0.830%) 18.9 37.5 79.0 52.1 46.9
MoRer=32; q, k, v (ours) 3M (0.047%) 22.1 28.5 84.3 48.4 45.8
MoRer=32 (ours) 10.68M (0.166%) 24.0 29.6 85.7 48.7 47.0
ReFT 1.99M (0.031%) 21.4 26.0 76.2 46.8 42.6
PrefT* 7.1M (0.110%) 14.2 24.4 63.4 38.1 35.0
AdapterS* 63.6M (0.990%) 15.0 33.3 77.7 52.3 44.6
AdapterP* 227.5M (3.540%) 18.1 35.3 82.4 49.6 46.4

Table 2. Math reasoning results on Llama 1 7b. We take all baseline results from (Hu et al., 2023).
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Figure 3. Fixing rblk = 4, increasing the number of blocks beyond
4 does not lead to better performance.

3.1. Architectural Choices & Analysis

Inspired by work on search-based adaptation:
AdaLoRA (Zhang et al., 2023) which adaptively al-
locates parameters for different ranks, and GLoRA (Chavan
et al., 2023), which tunes the adapter complexity layer-wise,
we explored different adapter styles (see Appendix C) as
well as trading sparsity (N ) and rank (rblk) for the best
investment of our parameter budget (Figure 2). Since
merely changing N does not change the parameter count,
we constrained each block to be square for block number
scaling.

Interestingly, our search converged to a minimal 4-block ar-
chitecture with the fewest tunable hyperparameters among

all methods, without the adapter scaler α in LoRA. Our
search space trivially subsumes LoRA if we set N to 1.
Empirically, MoRe with N = 1 and r = rblk = 8 obtains
68.18 Matthew’s Correlation on CoLA, aligning with the
68.3 for rank 8 LoRA.

Should we tune the number of blocks? Due to our rectan-
gular block-diagonal parametrization, increasing N while
fixing rblk increases the total rank r under the same pa-
rameter budget. However, this induces worse performance,
possibly because the matrix is sparser and it is harder to
converge to a stable subspace. Empirically, performance
drops drastically when N > 4 (Figure 3).

Relationship To BOFT. BOFT (Liu et al., 2024b) uses
butterfly matrices (Dao et al., 2019; 2020), a related class
of structured matrices. Monarch (Dao et al., 2022a) was
proposed to replace butterfly matrices due to their hardware-
unfriendly sparsity patterns. While it has O(n log n) FLOPs,
it is empirically 2x slower than LoRA and occupies much
more memory, which we show in the following.

Theoretical Analysis. One advantage of MoRe is that it is
amenable to a theoretical analysis of its expressivity, mir-
roring that of LoRA (Zeng & Lee, 2024). We show in
Appendix A that MoRe is more expressive than LoRA.
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PEFT #Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

LoRAr=8 0.79M 90.2 96.0 89.8 65.5 94.7 90.7 86.3 91.7 88.16
MoRer=32 (ours) 0.56M 90.77 96.36 90.93 68.69 94.78 91.00 85.92 92.08 88.8
MoRer=4 (ours) 0.14M 89.69 96.18 89.71 67.54 94.85 90.41 85.08 91.77 88.15
ReFT 0.048M 89.2 96.2 90.1 68.0 94.1 88.5 87.5 91.6 88.2
BOFT

m=4
b=4 1.266M 89.45 95.8 90.21 64.79 94.31 88.37 85.92 92.26 87.64

Adapter* 0.89M 90.1 95.2 90.5 65.4 94.6 91.4 85.3 91.5 88.0
AdapterFFN 0.79M 90.3 96.1 90.5 64.4 94.3 91.3 84.8 90.2 87.7
RED 0.048M 89.5 96.0 90.3 68.1 93.5 88.8 86.2 91.3 88.0

Table 3. Language understanding comparisons. We take LoRA, Adapter, ReFT and RED results from Wu et al. (2024). All runs are
averaged over 3 random seeds. We report Pearson Correlation for STS-B, Matthew’s correlation for CoLA, matched accuracy for MNLI,
and accuracy for other tasks. We report different parameter counts for BOFT from the original paper—while it is claimed that due to
skew-symmetricity, only half of the matrix parameters are needed, then negated and copied to the other half, in practice the whole matrix
requires gradients.

4. Experimental Results
We conducted experiments on three challenging NLP tasks
covering over 20 datasets: commonsense reasoning, math
reasoning, and language understanding of models ranging
from Roberta-large to Llama 7B. We follow the widely
adopted dataset settings in LLM-Adapters (Hu et al., 2023)
and ReFT (Wu et al., 2024). All experiments are performed
on a single NVIDIA A100 40G, and use Flash Attention
(Dao et al., 2022b) when applicable. As we shall see, besides
fixing N , MoRe needs almost no tuning for rank rblk.

Commonsense Reasoning. We train the Llama 1 7b
model (Touvron et al., 2023) on the challenging Common-
sense170k benchmark in (Hu et al., 2023) consisting of eight
commonsense reasoning tasks. The model is prompted with
multiple-choice problems to output the correct choice with-
out step-wise reasoning. We report accuracy on the test set
in table 1, and hyperparameter details can be found in B.
Note that MoRe with Llama 7B largely surpasses the
state-of-the-art ReFT with Llama 13B with around 1/6
of its training steps (3 epochs).

Math Reasoning. We train Llama 1 on the Math 10k dataset
consisting of seven complex math reasoning tasks from Hu
et al. (2023). Following Wu et al. (2024), we only used
4 datasets for final evaluation to avoid data leakage. The
results are shown in Table 2.

Natural Language Understanding. We evaluate MoRe
on the GLUE benchmark (Wang et al., 2018) to show its
superior parameter efficiency on small LLMs. We fine-tune
RoBERTa-large 350M (Liu et al., 2019b) on eight datasets
consisting of tasks such as sentiment classification and natu-
ral language inference, and report performance on the evalu-
ation set following Hu et al. (2021) over 3 different random
seeds. Classifier heads are excluded from the parameter
count. We use fp32 for all GLUE tasks, and hyperparameter
tuning is done for each task separately (Appendix B). By de-

Model PEFT Task Peak Memory Runtime

RoBERTa-large BOFT
m=4
b=4 CoLA 5.98 GB 29.9 min

RoBERTa-large LoRAr=8 CoLA 4.3 GB 14.7 min
RoBERTa-large MoRer=32 CoLA 5.68 GB 15.5 min
Llama 7b BOFT

m=4
b=4 ; q, k, v Math 53.97 GB 10 hr

Llama 7b BOFT
m=4
b=4 Math OOM OOM

Llama 7b LoRAr=32 Math 24.86 GB 4.83 hr
Llama 7b MoRer=32 Math 22.09 GB 4.55 hr

Table 4. Comparison of peak memory and runtime. We use a batch
size of 2 for Llama 7B and 32 for RoBERTa. Due to the prohibitive
memory cost of BOFT, we use H100 to benchmark Llama and
only adapted query, key, and value for BOFT.

fault, we adapt query, key, and values. Notably, MoRe is on
par with LoRA even with rblk = 1 and 0.14M parameters,
and outperforms all other methods when rblk = 4.

Memory Cost and Runtime. Modern GPUs rely on the
tensor cores to accelerate matrix multiplication. MoRe
leverages optimized CUDA batched matrix multiplication
(BMM) kernels to populate the tensor core with many small
matrices, with on par or better performance than GEMM.
Here we show how our training speed compares with BOFT1

and LoRA in Table 4, using the setting in our training exper-
iments (see Appendix B). For Llama, we apply bf16, flash
attention, and adapt all linear modules by default. Notably,
BOFT runs out of memory even on H100 80G, rendering
it impractical for large models. MoRe slightly lags behind
LoRA for the 350M RoBERTa due to the overhead of permu-
tations allocating extra memory and multiple CUDA kernel
launches, which we will address in a future Triton imple-
mentation, but excels in larger models due to its parameter
efficiency.

1BOFT’s public implementation does not support bf16 and
fp16, so we added these features.
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5. Conclusion
We introduced MoRe, a framework for searching for high-
quality adapter architectures via Monarch matrices. MoRe
offers excellent performance and has multiple promising
directions for future work (described in Appendix F).
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Appendix

A. Theoretical results
We show a theoretical finding for the expressiveness of
MoRe in the spirit of Zeng & Lee (2024).

We start with a simple result.

Lemma A.1. Let W be an n × n matrix, where n = m2

for some integer m. Let Wjk denote the submatrix of W
such that

W =


W11 W12 . . . W1m

W21 W22 . . . W2m

...
...

...
Wn1 Wm2 . . . Wmm


Let x ∈ Rn, with a similar decomposition into xk for k =
1, 2, . . . ,m. Then ∥Wx∥2 ≤

∑
jk ∥Wjkxk∥2.

Proof. We have that

∥Wx∥2 = ∥

W11 . . . W1m

...
. . .

...
Wn1 . . . Wmm


x1

...
xn

 ∥2

= ∥

 W11x1 + . . .+W1mxm

...
Wm1x1 + . . .+Wmmxm

 ∥2

≤
∑
j

∥Wj1x1 + . . .+Wjmxm∥2

≤
∑
jk

∥Wjkxk∥2

Corollary A.2. Let W be an n× n matrix, where n = m2

for some integer m. Let Wjk denote the submatrices of W .
Then σ1(W ) ≤

∑
jk σ1(Wjk).

Proof. Note that σ1(M) = ∥M∥2 for any matrix M . Let
x ∈ Rn such that ∥x∥2 = 1 and ∥Wx∥2 = ∥W∥2. Using
Lemma A.1,

∥W∥2 = ∥Wx∥2 ≤
∑
jk

∥Wjkxk∥2

Since ∥Wjkxk∥2 ≤ ∥Wjk∥2 · ∥xk∥2 ≤ ∥Wjk∥2, we have

∥W∥2 ≤
∑
jk

∥Wjkxk∥2 ≤
∑
jk

∥Wjk∥2

Theorem A.3. Suppose both the target and frozen model
are linear and respectively parameterized by W̄ and W =∏L

l=1 Wl with both W̄ and W full rank. Assume that r = N
for these Monarch matrices, i.e. the Monarch factors are
square with square blocks on the diagonal. The adapted
model is allowed to fine-tune the last layer’s parameters
with a Monarch matrix: Ŵ =

∏L−1
l=1 Wl(WL + ∆WL

),
where ∆WL

∈ M. Define error between the target and the
frozen model as E = W̄ − W , and regularized error as
Ẽ = (

∏L−1
l=1 Wl)

−1E. The estimation error between the
adapted model and the target model is bounded:

∥W̄ − Ŵ∥2F ≤ ∥
L−1∏
l=1

Wl∥2F · ∥Ẽ −∆WL
∥2F

= ∥
L−1∏
l=1

Wl∥2F · (
∑
jk

(
∑
i=2

σ2
i (Ẽ:,j,k,:))).

where σi is the i-th eigenvalue of the given function and
Ẽijkl is Ẽ reshaped into a 4-D tensor.

Proof. The proof directly follows the decomposition in the
Monarch paper (Dao et al., 2022a) and the previously de-
rived results.

We now use a worst-case to illustrate how the Monarch
approximation differs from a rank-1 approximation. Let A
be any matrix of size n × n. Reshape A into a 4D tensor
Ã of dimension m×m×m×m, where m =

√
n. Then

in the worst case, each sub-matrix is of full-rank m and the
singular values are all equal. An optimal monarch matrix
M in Frobeneus norm performs a rank-1 approximation
for each sub-matrix. The estimation error ∥A−M∥2F can
be interpreted as all unexplained singular values, whose
proportion is m−1

m . Hence ∥A−M∥2F = m−1
m ∥A∥2F . This

provides a bound when in a general case.

Now consider a rank-1 approximation of A. In the worst
case, since A’s rank cannot be smaller than m (a full ma-
trix’s rank is always equal or greater than the rank of its sub-
matrix), let A be of rank m. Suppose A’s non-zero singular
values are still all equal (?). The estimation error for a rank-1
approximation D of A will be ∥A − D∥2F = m−1

m ∥A∥2F ,
which equals the Monarch approximation. However, in
other cases where A’s rank is greater than m, a Monarch
approximation is strictly better than a rank-one approxima-
tion.

A.1. Optimizations for Rectangular Monarch matrices

There are two distinct cases with variable-rank Monarch ma-
trices. Each case depends on how the block rank compares
to the block number.

Let n be the dimensions of M , the Monarch product, let N
be the number of blocks in each factor L and R, let m =

7
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n/N be the block width, and let r be the block rank. In total,
we have that M , L, and R are of dimension (n, n), (n, r),
and (r, n) respectively. When compressed into 4- and 3-
tensors, these have dimension (m,N,N,m), (N, r,m), and
(N,m, r) respectively. To investigate the behavior of M =
P1LP2R, consider a vector x ∈ Rn and how M transforms
this vector. Reshape x into a 2-tensor with dimensions
(N,m).

First, assume N ≥ r where r divides N and let b =
N/r. For this case, further reshape M , L, R, and x
into shapes (m, r, b, r, b,m), (r, b, r,m), (r, b,m, r), and
(r, b,m), which is possible since rb = N .

• Apply R: This results in the intermediate ykbj =∑
i Rkbjixkbi.

• Apply P2: This transposes the first and third coordi-
nates of y, so ykbj −→ yjbk.

• Apply L: This results in the intermediate zjbl =∑
k Ljblkyjbk.

• Apply P1: This again transposes the first and third
coordinates of z, so zjbl −→ zlbj .

In total, this amounts to computing zlbj =∑
k,i LjblkRkbjixkbi. We then can define

Mljbkbi = LjblkRkbji which defines the operation
zlbj =

∑
k,i Mljbkbixkbi. Notice that the optimal solution

can be found through a collection of rank-1 decompositions
of M:jbkb:, each of size (m,m). This common index b
implies that whenever those coordinates in the 6-tensor
disagree, this Monarch product contains zeros, so this
decomposition will be sparse. Next, assume that N < r
where N divides r and let b = r/N . For this case, further
reshape L and R into shapes (N,N, b,m) and (N,m,N, b),
which is possible since Nb = r.

• Apply R: This results in the intermediate ykjb =∑
i Rkjbixki.

• Apply P2: This transposes the first and second coordi-
nates of y, so ykjb −→ yjkb.

• Apply L: This results in the intermediate zlj =∑
k,b Ljlkbyjkb.

• Apply P1: This again transposes the first and second
coordinates of z, so zlj −→ zjl.

In total, this amounts to computing zjl =∑
k,i,b LjlkbRkjbixki. We then can define

Mljki =
∑

b LjlkbRkjbi which defines the operation
zlbj =

∑
k,i Mljkixki. Notice that the optimal solution can

Figure 4. Llama 7b trained on Math Reasoning tasks
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be found through a collection of rank-b decompositions of
M:jk:, each of size (m,m).

Using these decompositions, we obtain some straightfor-
ward extensions of Theorem A.3.

Theorem A.4. Suppose both the target and frozen model
are linear and respectively parameterized by W̄ and W =∏L

l=1 Wl with both W̄ and W full rank. Assume that N < r
with r a multiple of N . The adapted model is allowed to
fine-tune the last layer’s parameters with a Monarch matrix:
Ŵ =

∏L−1
l=1 Wl(WL +∆WL

), where ∆WL
∈ M. Define

error between the target and the frozen model as E =
W̄ − W , and regularized error as Ẽ = (

∏L−1
l=1 Wl)

−1E.
The estimation error between the adapted model and the
target model is bounded:

∥W̄ − Ŵ∥2F ≤ ∥
L−1∏
l=1

Wl∥2F · ∥Ẽ −∆WL
∥2F

= ∥
L−1∏
l=1

Wl∥2F · (
∑
jk

(
∑

i=r/N+1

σ2
i (Ẽ:,j,k,:))).

where σi is the i-th eigenvalue of the given function and
Ẽijkl is Ẽ reshaped into a 4-D tensor.

Notice the difference in the rightmost sum. The sum over i
starts at r/N + 1 instead of 2.

Next, we provide experimental details.

B. Hyperparameter Tuning
We use the asynchronous successive halving algorithm
(ASHA) (Li et al., 2020) to efficiently search and early-stop
on our 8 * A100 cluster.

B.1. GLUE Language Understanding

For BOFT, we took the hyperparameters for DeBERTA-v3
base on GLUE from their paper and tuned the learning rate
only. For MoRe, we started from the hyperparameters in
(Hu et al., 2021) and randomly sampled the learning rate
and batch size. We present the hyperparameters in table 5.

Hyperparameter MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

learning rate 2e-4 4.4e-4 3.2e-4 2.1e-4 3e-4 6.2e-4 5.4e-4 6.4e-4
batch size 32 32 16 32 32 16 32 32
weight decay 1e-3
lr scheduler cosine
Epochs 10 10 20 20 20 10 20 20

Table 5. GLUE hyperparameters

B.2. Math reasoning and Commonsense reasoning

For these challenging reasoning tasks, we found perfor-
mance to be less sensitive to hyperparameters. We took
1000 examples and 10,000 examples from Math10K and

Commonsense170K as the tuning evaluation set, respec-
tively. We present the hyperparameters in table 6.

Hyperparameter Math reasoning Commonsense reasoning

learning rate 3e-4 4e-4
batch size(w/ gradient accumulation) 64 16
weight decay 0
lr scheduler cosine
dropout 0.1
Epochs 12 3

Table 6. Reasoning hyperparameters

C. Architecture Ablations
With 3 potential architectural hyperparameters (rblk, N and
whether to use square blocks) in our setup, one might ask
whether we should use NAS to find the most efficient archi-
tecture.

We tested using monarch as a multiplicative factor instead
of an additive factor as in BOFT, adding a scaler α on the
adapter outputs as in LoRA and adding a scaler parameter;
all underperform our default 4-block configuration. We also
tried including rblk and N in our hyperparameter search to
mimic NAS, but all runs converged to the configuration
with the largest parameter count, with marginal perfor-
mance gains. Therefore we didn’t pursue expensive NAS
algorithms.

Method GLUE CoLA

MoRe (learnable scaler) 41.1
MoRe (α = 2) 0
MoRe (multiplicative factor) 0

D. Learned Weight Distributions
We demonstrate in figure 4 and 5 that the trained block-
diagonal matrices approximate Gaussian distribution well
as the amount of training increases, in an attempt to interpret
the results.

E. Failure Cases
Inspired by Meng et al. (2024) that fine-tuning is strengthen-
ing some task-specific subspace components, we attempted
using the dense to sparse projection algorithm (block-wise
SVD) from (Dao et al., 2022a) to initialize MoRe from prin-
cipal components. However, the method fails to converge
on reasoning tasks and obtains only a 57.9 correlation on
CoLA.

We’ve also tested naively replacing the low-rank projections
in ReFT with a single Monarch factor P plus permutation
P1, which only achieved a 19.5 correlation on CoLA.

9
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Figure 5. RoBERTa-large trained on CoLA

F. Limitations and Future Work
Currently, MoRe poses a few limitations that we are working
to address.

1. MoRe is implemented with two BMMs and two per-
mutations, which introduces overhead due to 4 CUDA
kernel launches. With machine learning compilers
such as Triton(Tillet et al., 2019), it’s easy to fuse them
into one kernel and recompute the activations during
backward, with memory savings and speed-up. We’re
testing the Triton implementation’s precision.

2. We seek to substitute low-rank projections. A natural
extension from our low-rank adaptation use case is to
establish MoRe as a general drop-in low-rank projec-
tion module. However as shown in the Appendix E, it
does not work directly with ReFT.

3. Projection subspace interpretation: we show (Ap-
pendix D) that Monarch weights approach Gaussian
distribution. However, we’ve not explored the subspace
similarity between the dense and MoRe projections
such as which dense components are strengthened by
MoRe, due to complicated block-diagonality. Such an
understanding may enable us to initialize MoRe from
dense matrices’ principal components as in Meng et al.
(2024) with improved convergence and performance,
and explain why scaling rank doesn’t always deliver
performance.

G. Pseudocode
As the permutations P1 and P2 may be less intuitive, we
provide a minimal PyTorch pseudocode to demonstrate their
usage below.
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# Input:
# x: (bs, n)
# blkdiag1: (nblocks, block rank, block size)
# blkdiag2: (nblocks, block size, block rank)
batch_shape, n = x.shape[:-1], x.shape[-1]
nblocks, blk_r, blk_sz = blkdiag1.shape
batch_dim = torch.prod(batch_shape)
x = x.reshape(bs, nblocks, blk_sz)
out1 = torch.empty(batch_dim, nblocks, blk_r).transpose(0, 1)
# (nblocks, batch_dim, blk_sz) @ (nblocks, blk_sz, blk_r) -> (nblocks, batch_dim, blk_r)
out1 = torch.bmm(x, blkdiag1.transpose(-1, -2), out=out1)
out1 = out1.transpose(0, 1).reshape(batch_dim, blk_r, nblocks)
out1 = out1.transpose(-1, -2).contiguous().transpose(0, 1)
out2 = torch.empty(nblocks, batch_dim, blk_sz)
# (nblocks, batch_dim, blk_r) @ (nblocks, blk_r, blk_sz) -> (nblocks, batch_dim, blk_sz)
out2 = torch.bmm(out1, blkdiag2.transpose(-1, -2), out=out2)
out2 = out2.permute(1, 2, 0).reshape(*batch_shape, blk_sz * nblocks)
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