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Abstract
Recent studies have shown that high disparities
in effective learning rates (ELRs) across layers in
deep neural networks can negatively affect train-
ability. We formalize how these disparities evolve
over time by modeling weight dynamics (evolu-
tion of expected gradient and weight norms) of
networks with normalization layers, predicting
the evolution of layer-wise ELR ratios. We prove
that when training with any constant learning rate,
ELR ratios converge to 1, despite initial gradient
explosion. We identify a “critical learning rate”
beyond which ELR disparities widen, which only
depends on current ELRs. To validate our find-
ings, we devise a hyper-parameter-free warm-up
method that successfully minimizes ELR spread
quickly in theory and practice. Our experiments
link ELR spread with trainability, a relationship
that is most evident in very deep networks with
significant gradient magnitude excursions.

1. Introduction
In the past decade, combining neural networks and big
data has enabled dramatic breakthroughs (Krizhevsky et al.,
2012; OpenAI, 2023), and network depth has been a key
factor: Compositions of many individual layers provide rich
function spaces that empirically appear to be better-aligned
with real-world data distributions than any other inductive
biases we are aware of today. A fundamental problem of
deep networks, maybe easily brushed over as technicality at
first sight, is the problem of vanishing and exploding gradi-
ents. Propagating signals through a multi-layer networks is
not easy: In the forward pass, the magnitude input signals
easily increases or decreases, thus leading to an exponential
excursion of signal magnitude. Similarly, during the back-
ward pass, we easily obtain similar excursion of gradient
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magnitudes (Yang et al., 2019). Further, using deep stacks
of layers also easily increase correlations, thereby causing
vanishing dimensionality (Saxe et al., 2013). Proper Initial-
ization (He et al., 2015a) can reduce the problem; trying to
prevent it completely in a simple feed-forward network is
challenging though (Pennington et al., 2017).

Modern architectures (He et al., 2016a; Vaswani et al., 2017)
thus usually address these issues by combining residual
connections (He et al., 2016a) and variants of normalization
layers such as batch normalization (BN) (Ioffe and Szegedy,
2015). The former implicitly performs a down-weighting
of deep paths, exponentially with depth (Veit et al., 2016),
and in combination with normalization layers, this effect is
further increased (at initialization) by decreasing the weight
of the residual branch (De and Smith, 2020). The central
objective of our paper is to understand how the dynamics
(over training time) of gradient magnitude excursions (we
do not consider correlations) are affected by normalization
layers (BN and the similar).

2. Related Work and Contributions
Understanding of the benefits of BatchNorm standalone
is not straightforward and still subject to debate. The ini-
tial claim of reduced “internal covariate shift” was quickly
refuted (Awais et al., 2021) and many alternative explana-
tions were proposed, such as smoothing of the loss surface
(Santurkar et al., 2018) or enabling bigger learning rates
(Bjorck et al., 2018). Salimans and Kingma (2016) intro-
duced WeightNorm, a method to decouple a layer’s length
and direction by training them as independent network pa-
rameters. They also demonstrated that in weight-normalized
networks, gradients are orthogonal to layer weights, allow-
ing update size calculation via the Pythagorean theorem.
Hoffer et al. (2018) showed that the “effective step size”
in normalized networks is approximately proportional to

1
||W ||22

; this shows that scale invariance gives us an additional
degree of freedom, as scaling a layer’s weights is equivalent
to inversely scaling its gradients or learning rate. You et
al. (2017) have observed that the ratio ||∇W ||F

||W ||F , which we
call effective learning rates (ELR), can vary wildly (up to
a factor ∼ 250 in AlexNet-BN) between layers after only
one step of gradient descent. The authors conjecture that
this can create instability in training, especially for large
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batch training requiring high learning rates, and propose to
re-scale gradients by their effective learning rate. You et
al. (2020) have later proposed a modified version of this
algorithm for increased performance with transformer mod-
els. Brock et al. (2021) have combined a similar re-scaling
of the gradients with gradient clipping and are able to train
normalizer-free networks using this technique. Bernstein
et al. (2020) supported this intuition by showing that in a
perturbed gradient descent, an optimization step decreases
the loss function if all layer-wise ELRs are bounded by a
term that depends on the perturbation angle. Arora et al.
(2019) described the auto rate-tuning effect, proving that
gradient descent asymptotically converges to a stationary
point without manual tuning of learning rates for specific
layers, given certain assumptions. Wan et al. (2021) prove
that the “angular update” (a measure similar to ELR) of a
given normalized layer eventually converges to a constant
limit value which does not depend on initial conditions, but
rely on weight decay for their demonstration. Interestingly,
Li and Arora (2020) show that using weight decay with a
constant learning rate schedule is mathematically equivalent
to using no weight decay and an exponentially increasing
learning rate schedule.

The above-mentioned works show that the learning speeds
of different layers do eventually align, but glance over the
importance of correct learning rate scheduling in the early
training phase, which we believe to be crucial in practice.
We find that while convergence is always guaranteed given
simplifying assumptions and over an indefinite number of
iterations, choosing an excessively high learning rate, espe-
cially in the first steps of training, can drastically increase
imbalances in layer-wise learning speeds (ELR spread) to a
degree where recovery is impossible within a realistic time
frame. Furthermore, Li and Arora show a connection be-
tween weight decay and warm-up but do not demonstrate
how these techniques affect ELR spread.

In this work, we model the dynamic effects solely induced
by normalization layers and assume that the layer-wise gra-
dient magnitude excluding normalization effects (base gra-
dient magnitude) remains constant over time. In this setting,
we derive a model predicting the evolution of a network’s
weight dynamics (expected layer-wise gradient and weight
norms). In the gradient flow, this behavior reduces to a
non-linear ODE with a closed-form solution, where all ELR
ratios between layers smoothly converge to 1. When training
with higher learning rates, the behavior changes fundamen-
tally, as the layer with the highest ELR can flip even below
the layer with the lowest ELR in a single step if a certain
critical learning rate is exceeded, which in turn increases
ELR spread of the network. When training with constant
learning rates, ELR spread can increase only during the first
step, slowing down convergence, but still eventually con-
verging. From there, we derive a warm-up scheme that is

guaranteed to converge in num layers steps. Empirically,
we were able to show that high ELR spreads indeed seem
to correlate with low trainability: by using techniques that
control ELR spread (gradient normalization and warm-up),
we are able to reduce the high (initially exponential in the
number of layers) ELR spreads of a 110 layer feedforward
network and render the previously un-trainable network
trainable. In summary, we create a theoretical framework
that shows how the dynamical effects of normalization lay-
ers can help counter gradient magnitude excursions in deep
neural networks.

3. Auto Rate-Tuning Effect and Its Dynamics
The core observation is that for any layer N that is invariant
to scaling in the forward pass N(γ · x) = N(x) (e.g. all
normalization layers), its gradient scales inversely with its
input:

dN

dγx
(γx) =

1

γ

dN

dx
(x). (1)

This is a simple consequence of the chain rule and has been
shown for BatchNorm by Wu et al. (2018) and for Layer-
Norm by Xiong et al. (2020). Secondly, Arora et al. (2019)
show that since normalization layers are scale-invariant, no
gradient can flow in this direction. Hence, weight updates
∇W are orthogonal to the weights W themselves:

⟨∇W,W ⟩ = 0. (2)

We now explore how this affects a network’s weight dynam-
ics. Intuitively, the weight norm of layers with high gradient
norms grows fast and thus down-scales the gradient, lead-
ing to auto-regulation: this effect is called auto rate-tuning.
We would like to point out that in a realistic scenario, the
data tensor is multi-dimensional and condition 1 is satisfied
along a subset of its dimensions (e.g. the batch, height and
width axis for BatchNorm); auto-rate tuning is therefore
given along those dimensions.

3.1. Sufficient Conditions for Auto Rate-Tuning /
Correct Placement of Normalization Layers

A necessary condition for auto rate-tuning of a linear layer
L is the invariance of the network’s output with respect to
re-scaling the weights in L (Arora et al., 2019). We deduct
that any type of normalization layer (e.g. BatchNorm, Lay-
erNorm) induces auto-rate tuning and that placing a nor-
malization layer directly after every linear layer, as it is the
case in most convolutional networks, is sufficient to achieve
scale-invariance. In Transformer models, this was initially
not the case, and we conjecture that this could explain the
improvements when adding additional normalization layers
in the feedforward blocks (Shleifer et al., 2021) or query/key
blocks (Henry et al., 2020). Arora et al. also note that the
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scale invariance property is not disrupted by positive ho-
mogeneous functions of degree 1. We infer the following
classification of commonly used layers:

Auto-tuning passes through Breaks auto-tuning

Linear layers w/o bias Linear layers w. bias
Homogeneous nonlin. of deg. 1 Other nonlinearities
Dropout MaxPool

If a residual connection is placed in-between a linear layer
and the next normalization layer, it can break auto rate-
tuning; this is the case e.g. in a ResNet v2 (He et al., 2016b).

3.2. Training Dynamics Induced by Auto Rate-Tuning

To model training dynamics, we assume that weights of a
given layer, as well as their gradients, are random matrices
where entries are normally distributed with zero mean and a
time-dependent standard deviation that is uniform in each
layer. We parameterize training time t ∈ R such that ti =
i · λ2 after i optimization steps with a constant learning rate
λ > 0. In this notation, gradient descent updates can be
written as W (ti+1) = W (ti + λ2) = W (ti) − λ∇W (ti).
The updates preserve zero norm and uniform variance of
all entries in W . Assuming the independence of all entries
in the weight and gradient matrices, we can deduce the
following update rule from the orthogonality condition (2):

||W (ti+1)||2F = ||W (ti)||2F + λ2||∇W (ti)||2F . (3)

Condition (1) implies that gradient updates are inversely
proportional to the current layer weights. We now assume
that the “base gradient” of a layer, meaning the gradient
magnitude excluding normalization induced scaling effects,
is constant during training i.e.

E(||W (ti)||F · ||∇W (ti)||)F = c, (4)

for a constant c ∈ R at all times-steps ti. We discuss
the limitations of this assumption in Section 4.1.2. Using
shorthand σ2(ti) := E(∥W (ti)∥2F ) and σ(ti) =

√
σ2(ti),

we obtain:

σ2(ti+1) = σ2(ti) +
λ2c2

σ2(ti)
, (5)

for a constant base gradient c > 0 depending only on layer
depth and initial weights norm that we assume to be strictly
positive σ2(0) > 0. We call this the discrete model.

3.3. Gradient Norms at Initialization

Feed-forward networks: The dynamics of Eq. 12 apply to
all normalized layers equally, but the initial gradient norms
∥∇Wi(0)∥F differ substantially across layers i ≤ L: Yang
et al. (2019) show that in feedforward networks with Batch
Normalization, the gradient norm at initialization grows as:

ci ∼ αL−i, (6)

with α :=
√

π/(π − 1) ≈ 1.21 for ReLU activations and
He. initialization. See also Luther (2020) for a simplified
derivation.

ResNets: When considering residual networks, as per the
multivariate chain rule, the gradient of residual blocks is ad-
ditive instead of multiplicative (He et al., 2016b). Addition-
ally, frequency-dependent signal-averaging further dampens
gradients in a ResNet (Ali Mehmeti-Göpel et al., 2021). It
follows from the consideration for fully-connected network
above and He et al. (2016b) Eq. 5 that for a residual network
using ReLU units:

ci ∼ 1 + ⌊L− i

s
⌋αs, (7)

where s is the number of ReLU units in a residual block.

3.4. Auto Rate-Tuning Affects Each Layer Separately

In this section, we establish that the dynamic re-scaling of
gradients explored above applies to each layer independently
and does not affect layers above or below, showing that a
simple layer-wise view is sufficient.

Proposition 3.1 (Every Layer Auto-Tunes Separately). Con-
sider a concatenation of a linear layer L(x,W ) = xTW
followed by a normalization layer N . Then, the derivative
wrt. the input remains the same when layer weights are
scaled by a factor γ:

dN

dx
(x, γW ) =

dN

dx
(x,W ). (8)

The proof can be found in the Appendix Section A.

3.5. Effective Learning Rates and Their Ratios

To account for scale variance induced by normalization
layers, we are interested in the update size of the weight
direction Ŵ := W

∥W∥2
. Similarly to van Laarhoven (2017a),

by approximating ∥W (ti+1)∥2 ≈ ∥W (ti)∥2, we can write:

Ŵ (ti+1)− Ŵ (ti) ≈
W (ti+1)−W (ti)

∥W (ti)∥2
∼ ∇W (ti)

∥W (ti)∥2
.

(9)
It is therefore imperative to consider the ratio from gradient-
to-weight norm as measure of change in the layer’s weights.

Definition 3.2 (Effective Learning Rate). We define the
effective learning rate E of a layer with weight norm σ2 and
base gradient c as:

E(ti) := E
(
||∇W (ti)||F
||W (ti)||F

)
=

c

σ2(ti)
. (10)

As all effective learning rates can simply be globally re-
scaled by adjusting the learning rate, we are interested in
the evolution of layer-wise ratios of effective learning rates.
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Definition 3.3 (Effective Learning Rate Ratios). We define
the effective learning rate ratio Rjk of two layers j and
k with weight norms σ2

j , σ
2
k and base gradients cj , ck at a

given time step ti as:

Rjk(ti) :=
Ej

Ek
(ti) =

cjσ
2
k

ckσ2
j

(ti). (11)

3.6. Analysis in the Gradient Flow

In this section, we show that in the gradient flow, weight
dynamics have a closed-form solution and all ELR ratios
converge smoothly to 1.

Theorem 3.4 (Closed-Form Solution). In the gradient flow
(λ→ 0), Eq. 5 has the following closed form solution:

σ2(t) =
√
2c2t+ k0. (12)

with k0 = 4, assuming He initialization (He et al., 2015b).
We will further call this the continuous model.

Proof. Starting from Eq. 5, we can utilize that ti+1 = t+λ2

to drop the index and solve for the difference quotient:

σ2(t+ λ2)− σ2(t)

λ2
=

c2

σ(t)2
. (13)

In the limit λ2 → 0, this yields the gradient flow that can be
expressed as a nonlinear first order differential equation :

dσ2

dt
=

c2

σ2
(14)

The exact positive solution to the differential equation is
given by:

σ2(t) =
√
2c2t+ k0. (15)

Assuming He initialization, the expected initial squared
weight norm is 2 for layer width n. Thus, 2 = σ2(0) =

√
k0

and therefore k0 = 4.

Theorem 3.5 (Convergence to Fixed Point). In the gradient
flow (λ → 0), all effective learning rate ratios eventually
converge given enough time, i.e. for any layer pair j, k ≤ L:

lim
i→∞

Rjk(ti) = 1. (16)

Proof. We consider two arbitrary layers j and k with re-
spective weight norms σ2

j , σ2
k > 0 and base gradients cj ,

ck > 0. Using the formulae for gradient norm (Eq. 14) and
weight norm (Eq. 12) in the continuous model, we write:

Ej

Ek
(t) =

cj
σ2
j (t)
· σ

2
k(t)

ck
=

cj
√

2c2kt+ k0

ck
√
2c2j t+ k0

t→∞−→ 1. (17)

3.7. Analysis for Bigger Learning Rates

In this section, we characterize the evolution of ELR ratios
for non-infinitesimal, scheduled learning rates λ(ti), now
relying solely on the discrete model. If λ(ti) is constant, we
find the asymptotic behavior to be the same as in the gradient
flow, where ELRs ratios converge in the time limit. On the
contrary to the continous model, ratios can (temporarily)
widen when surpassing a certain critical learning rate.
Theorem 3.6 (Convergence to Fixed Point). In the time
limit and for a constant learning rate λ(ti) = λ, all effective
learning rate ratios converge. For any layer pair j, k ≤ L:

lim
i→∞

Rjk(ti) = 1. (18)

The proof can be found in Appendix Section A. The main

idea is that by substituting xi :=
σ2
j (ti)

cjλ
and yi :=

σ2
k(ti)
ckλ

,
we can rewrite Eq. 4 for two distinct layers j and k as
two sequences obeying the same recurrence relation and
consequently bound the expression.
Proposition 3.7 (Ratios Shrink). Let j, k ≤ L be any layer
pair.

1. If Rjk(ti) > 1, the ratio Rjk is then strictly lower in
the next time step, i.e. Rjk(ti+1) < Rjk(ti).

2. If Rjk(ti) < 1, the ratio Rjk is then strictly greater in
the next time step, i.e. Rjk(ti+1) > Rjk(ti).

Proof. We start by showing the first proposition. We can
reformulate the expression Ej

Ek
(ti+1) <

Ej

Ek
(ti) using the

definition of the effective learning rate as the following
equivalent expression:

c2jσ
4
k

σ4
j c

2
k

(ti+1) <
c2jσ

4
k

σ4
j c

2
k

(ti). (19)

We simplify this expression and take the square root. Since
σ are variances and thus non-negative, the following expres-
sion is also equivalent:

σ2
k

σ2
j

(ti)−
σ2
k

σ2
j

(ti+1) > 0. (20)

We expand the second term using Eq. 5:

σ2
k

σ2
j

(ti+1) =
σ2
k +

c2kλ
2

σ2
k

σ2
j +

c2jλ
2

σ2
j

(ti) =
σ2
jσ

4
k + σ2

j c
2
kλ

2

σ4
jσ

2
k + σ2

kc
2
jλ

2
(ti). (21)

Substituting this term on the left hand side of Eq. 20 and
combining the terms yields:

σ2
k

σ2
j

(ti)−
σ2
jσ

4
k + σ2

j c
2
kλ

2

σ4
jσ

2
k + σ2

kc
2
jλ

2
(ti) =

σ4
kc

2
jλ

2 − σ4
j c

2
kλ

2

σ2
j (σ

4
jσ

2
k + σ2

kc
2
jλ

2)
(ti).

(22)

4



On the Weight Dynamics of Deep Normalized Networks

Since the denominator is strictly positive. Eq. 20 is therefore
equivalent to:

σ4
kc

2
jλ

2(ti) > σ4
j c

2
kλ

2(ti), (23)

which is in turn equivalent to Ej

Ek
(ti) > 1 by definition. The

second proposition can be shown analogously.

A consequence of this proposition is that a given ratio Rjk

diminishes during every step, except for when it flips, i.e.
Rjk(ti) > 1 and Rjk(ti+1) < 1. In Appendix Section A,
we show that when training with constant learning rates, this
can only happen during the first step. Now, we would like
to find the precise learning rate where the ratio flips.

Definition 3.8 (Flipping Ratio). We define the “flipping
ratio” κjk of two layers j and k at a given time step ti as:

κjk(ti) :=
σjσk√
cjck

(ti) =

√
1

EjEk
(ti). (24)

Proposition 3.9 (Flipping Conditions). Let j, k ≤ L be any
layer pair with w.l.o.g. be Rjk(ti) > 1.

1. The effective learning rate ratio does not flip between
time steps ti and ti+1 i.e. Rjk(ti+1) > 1 if and only if
λ(ti) < κjk(ti).

2. The effective learning rate ratio does flip between time
steps ti and ti+1 i.e. Rjk(ti+1) < 1 if and only if
λ(ti) > κjk(ti).

3. The ratio Ej

Ek
has reached a stationary point at a given

time step ti, i.e. Rjk(tj) = Rjk(tj+1) for all j ≥ i if
and only if λ(ti) = κjk(ti).

Proof. We start by showing the first proposition. Using the
definition of Rjk and Eq. 21, we can write:

Rjk(ti+1) =
cjσ

2
k

ckσ2
j

(ti+1) =
σ2
jσ

4
kcj + σ2

j cjc
2
kλ

2

σ4
jσ

2
kck + σ2

kc
2
jckλ

2
(ti).

(25)

Thus, the condition Rjk(ti+1) > 1 is equivalent to:(
σ2
jσ

4
kcj + σ2

j cjc
2
kλ

2
)
(ti) >

(
σ4
jσ

2
kck + σ2

kc
2
jckλ

2
)
(ti)

(26)

⇔
(
σ2
j cjc

2
kλ

2 − σ2
kc

2
jckλ

2
)
(ti) >

(
σ4
jσ

2
kck − σ2

jσ
4
kcj
)
(ti)

(27)

⇔λ2(σ2
j cjc

2
k − σ2

kc
2
jck)(ti) > σ4

jσ
2
kck − σ2

jσ
4
kcj(ti)

(28)

⇔cjckλ
2(σ2

j ck − σ2
kcj)(ti) > σ2

jσ
2
k(σ

2
j ck − σ2

kcj)(ti)

(29)

Since we assumed Rjk(ti) =
Ej

Ek
(ti) =

σ2
kcj

σ2
j ck

(ti) > 1, it

follows that
(
σ2
j ck − σ2

kcj
)
(ti) < 0 and thus we invert the

sign of the inequality when dividing by this quantity and we
obtain the following equivalent condition:

λ2(ti) <
σ2
jσ

2
k

cjck
(ti). (30)

All quantities are non-negative, therefore taking the square
root preserves equivalence and we obtain the sought condi-
tion. The other propositions can be shown analogously.

Since we are interested in reducing the highest overall ratio
Rhℓ(ti) where ℓ, h are the layers with the lowest respective
highest effective learning rate, we call κℓh(ti) the critrical
learning rate. When using higher learning rates than this
value, Eh(ti) flips below Eℓ(ti) during the next step, thus
(for high λ considerably) increasing total ELR spread. In
the following we will come to understand that in practice,
a more conservative choice is advisable; for this reason,
we propose the subcritical, but still provably fast warm-up
scheme below.

Corollary 3.10 (Subcritical Warm-Up). Given a network
with L > 0 layers, if we schedule the learning rate as
λ(ti) = κhh′(ti), where we chose h, h′ ≤ L at each step to
be the two layers with the highest effective learning rates,
then no ratio Rjk for any j, k ≤ L ever flips between a
time step and the next and all pairs of effective learning rate
ratios Rjk for any j, k ≤ L converge to 1 in L steps.

Proof. Let h, h′ be the two layers with the highest effective
learning rates at time step ti. By Proposition 3.9, if we
chose λ(ti) = κhh′(ti), we have Rhh′ = 1 at the next time
step ti+1 and for all further time steps. Since h, h′ are the
two layers with the highest effective learning rate at time
step ti and we chose λ(ti) to be equal to their flipping ratio
κhh′(ti), we have:

λ(ti) = κhh′(ti) ≤ κjk(ti) (31)

for all other layers j, k ≤ L. Therefore, by Lemma 3.9, no
ratio Rjk will ever flip between a time step and the next for
any j, k ≤ L. If we repeat this process L times, all pairwise
learning rate ratios converge to 1.

3.8. Simulating Warm-Up Schedulers and Criticality

In Figure 1, in order to visualize the concept of criticality,
we simulated the evolution of effective learning rates and
weight norms for popular learning rate schedulers with our
discrete model (ref. Eq. 5), assuming initially exponentially
exploding gradients (ref. Eq. 6). We also indicated λ(t)
along with the critical learning rate κℓh(t). As predicted by
our analysis in Section 3.7, whenever λ(t) > κℓh(t), we see
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Figure 1. Simulated evolution of layer-wise effective learning rates (top), weight norms (middle), learning rates λ(t) and critical LRs
κℓh(t) (bottom) for popular learning rate schedulers. All y-axes are in logarithmic scale. Blue color corresponds to the lower layers.

Figure 2. Short term evolution (after 10 steps) of predicted vs.
measured weight and gradient norms of the lowest layer of a
ResNet56 NoShort trained with random gradients (left) and real
gradients (right) for various λ.

that the highest effective learning rate flips below the lowest,
which in turn increases the ELR spread and consequently
the convergence time. We conclude that whether a warm-up
scheme succeeds in quickly reducing ELR spread highly
depends on the chosen hyper-parameters.

4. Experimental Validation
In this experimental Section, we will first check the lim-
itations of the assumption about constant base gradients
and validate the predictivity of our model. Then, we will
compare the predicted critical learning rate to an empirical
value extracted from real training runs. Finally, we confirm
that high ELR spreads correlate with network trainability in
practice.

4.1. Experimental Setup

4.1.1. ARCHITECTURES, DATASETS AND TRAINING
PROTOCOLS

We chose ResNet v1 (He et al., 2016a) with (“Short”) and
without (“NoShort”) residual connections as examples of
standard architectures. We chose a ResNet v1 as opposed to

a v2 since in the former, the “correct” placement of normal-
ization layers (ref. Section 3.1) is given without modifying
the architecture. Theory predicts that a high number of lay-
ers and not using residual connections increase the strength
of the observed effect (ref. Section 3.3). We therefore use
56 and 110 layer networks: Without residual connections,
the former is deep but still trainable and the latter is mostly
un-trainable with basic constant LR training. The final layer
of a ResNet v1 is not scale-invariant and we therefore ex-
clude it from our analysis. For computer vision tasks, we
work with standard image classification datasets of variable
difficulty: CIFAR-10, CIFAR-100 (Krizhevsky, 2009) and
ILSVRC 2012 (called ImageNet in the following) (Deng
et al., 2009). We use the most basic training setting possible
(vanilla SGD) and disable all possible factors that influence
weight dynamics: momentum, weight decay, affine Batch-
Norm parameters and bias on linear layers (for a discussion,
please refer to Appendix Section C). We further use dif-
ferent kinds of learning rate scheduling with and without
warm-up; further details about the architectures and training
process can be found in the Appendix.

4.1.2. MEASURING ELR SPREAD

In our experiments, we need a measure for ELR spreads that
is relative to the network’s mean ELR.

Definition 4.1 (Relative Logarithmic ELR Spread). We
define the Relative Logarithmic ELR Spread as:

Srel := std(ln(E)), (32)

computed across the layers of the network and usually aver-
aged over all channels and the entire training process.

4.1.3. RANDOM WALK

In the past section, we modeled exclusively the dynamics
induced by normalization assuming constant base gradients
(ref. Eq 4), meaning that the layer-wise expected gradi-
ent magnitude excluding normalization effects is constant
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Figure 3. Long term evolution of predicted vs. measured layer-wise effective learning rates for a ResNet56 NoShort trained with random
gradients (left) and real gradients (right). Blue color corresponds to the lower layers.

over time. This is obviously not strictly true in a practical
setting: apart from the obvious factors mentioned above
(momentum, affine parameters etc.), the derivative of non-
linear layers and the objective function itself changes when
varying inputs or weights. During training, gradient norms
tend to shrink as the objective function saturates (Lee et al.,
2019). To verify that mostly learning effects are responsible
for fluctuations in base gradients, we observe how weight
dynamics evolve during a random walk.

Definition 4.2 (Random Walk). During each training step,
before applying the gradients computed in the backward-
pass, we replace every layer’s gradient by a random vector of
similar norm which is also orthogonal to the layer’s weights.
Please refer to Algorithm 1 for a formal description.

Algorithm 1 Random Walk
Let eℓ denote the number of elements of the
weight vector Wℓ and ⟨·, ·⟩ the dot product.

for each gradient descent step i do
for each layer ℓ do

Compute ∇Wℓ(ti)
σ ←

√
∥∇Wℓ(ti)∥22/eℓ

R← N (0, σ2)eℓ

V ←W (ti)

∇Wℓ(ti)← R− ⟨R,V ⟩
⟨V,V ⟩V // orthogonalize

end for
end for

4.2. Model Validation and Limitations

To validate our theory, we measure the initial gradient and
weight norms of a network and extrapolate their evolution
using our discrete model (Eq. 5). We then compare the pre-
dicted weight/gradient norms to the empirically measured
values after a given number of steps. We will first see that for
a feedforward network with ReLU activations, it is already
enough to exclude learning effects (random walk scenario)

for our model to be long-term predictive. When including
them, as expected, gradients are lower than predicted but
the main takeaway qualitatively still holds: ELR spreads
diminish over time, given that a certain learning rate is not
exceeded.

Short-Term Validation : In Figure 2, we compare the
measured weight/gradient norm of the lowest layer of a
ResNet56 NoShort after training on Cifar10 for 10 steps
to the values predicted using our discrete model on the ini-
tial values. In a random walk (left), predictions are quite
accurate up to λ ≈ 1 and get slightly inaccurate for higher
λ, presumably due to numerical issues. As for real train-
ing (right), we see that gradients are notably smaller than
expected after 10 steps. For the following, it is crucial to
note that the difference between the predicted and measured
values is not a constant ratio but instead increases in λ.

Long Term Validation : We conducted a similar experi-
ment for only two different learning rates λ ∈ {0.001, 1}
over 3000 epochs and visualize the measured/predicted ELR
of all layers in Figure 3. We see that in the random walk
scenario, our prediction is remarkably accurate. In real
training and for λ = 1, our model predicts this learning
rate to be critical, but in reality it is super-critical as the
gradients of the lower layers (blue) significantly undershoot
with regard to the prediction and their ELR flips below the
highest layers (red); further training does not seem to be
able to recover the high ELR spread. Since training with
any subcritical learning rate reduces ELR spread, we will
see that it is sufficient to use a slightly lower λ than the
predicted critical value to avoid an increase in ELR spread.

Predicting Criticality: In Figure 4, we train a ResNet110
NoShort for a single epoch using various constant learn-
ing rates on Cifar10 in a random walk and a real training
scenario, tracking the evolution of ELR spreads. We plot
ELR spreads at initialization and after one epoch, averaging
measurements over 10 runs for each datapoint. First, we
note that as predicted, up to a certain learning rate, ELR
spreads are always lowered by training. Next, we indicate
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Figure 4. Relative spread after one epoch (solid blue), relative spread at initialization (dotted blue) and the critical (red) / subcritical
(green) learning rate at initialization of a ResNet110 NoShort with random gradients (left) and real gradients (right).

Figure 5. Test accuracies and relative spreads of a ResNet110
(No)Short trained on Cifar10 using regular, warm-up and con-
strained ELR training protocols for different target (E)LRs.

the predicted (sub)critical learning rate at initialization: as
per Proposition A.1, if a learning rate is subcritical in step 0,
it should also not increase spreads during later steps. Con-
sequently, we expect the runs with λ ≈ κℓh(0) to have the
lowest Srel value after training. In Figure 4, we see that this
is indeed the case for the random walk. In real training, the
qualitative behavior is similar but the curve is shifted to the
left as gradients are smaller. We also note that in real train-
ing, when using super-critical learning rates (λ > 10−3),
ELRs do not seem to converge anymore, presumably to
auto-rate tuning effects becoming too weak compared to
fluctuations in base gradient magnitude caused by training.

4.3. ELR Spread and Trainability

In this section, we want to show empirically that net-
works with high ELR spreads correlate with low trainabil-
ity and that lowering spreads using various methods can
restore trainability. For this, we chose an experimental set-
ting where ELR spreads are large: we train a ResNet110
(No)Short on Cifar10. For all runs, we use a simple multi-
step learning rate decay. In Figure 5 (top), we see that for
the “NoShort” networks in regular training without warm-up
(“base”), spreads (averaged over the training run) are very

high and trainability is very low. Using skip connections
(bottom), spreads are much lower and the network is able to
train.

4.3.1. SUBCRITICAL WARM-UP

As we have seen in Figure 4 (right), because of learning
effects present in real training, the more conservative choice
of using the subcritical learning rate for warm-up seems like
a more sensible value to avoid overshooting in practice but
still guarantees fast convergence in theory (ref. Corollary
3.10). Further, since we are using BatchNorm, we obtain
channel-wise ELR values and use the maximum of these
values as our layer-wise value.

4.3.2. CONSTRAINING LAYER-WISE ELRS

Another possibility of controlling ELR spread is scaling
each layer’s gradients before each step so that layer-wise
effective learning rates are constrained to be constant:

∇W ← ∇W · Egoal

E + ϵ
, (33)

for a given constant goal effective learning rate Egoal and
a small ϵ we chose as ϵ = 10−5. A similar mechanic was
used in the popular LARS optimizer (You et al., 2017). To
prevent increasing weight norms W from overflowing, we
additionally divide all layer weights by the maximum layer
weight Ŵ = max(||W ||F ) over all layers before every
step. This should not change the network function since
normalization layers are scale invariant and gradients are
normalized. Alternatively, one could re-scale the gradients
by 1√

1+λ2
after every optimization step, as described by

Bernstein et al. (2020).

4.3.3. EVALUATION

In Figure 5 (left), we see that both techniques lower ELR
spread across layers which correlates with the previously
untrainable ResNet110 NoShort becoming trainable, despite
its initially exponentially exploding gradients. Although
not a proof of a general causal connection between ELR
spread and trainability, the fact that an untrainable network
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becomes trainable with the intervention made yields some
compelling evidence supporting such a hypothesis. For the
network with skip-connections (right), we can observe the
same effects but less pronounced, which is expected since
the initial spread is linear and not exponential in the number
of layers as shown in Section 3.3. In Appendix Section B,
we repeat this experiment on the Cifar100 dataset and draw
similar conclusions.

Finally, we train a ResNet101 (No)Short on ImageNet for 50
epochs using three different warm-up schedulers: OneCy-
cle (Smith and Topin, 2017), sub-critical warm-up and no
warm-up; we use the exact same cool-down phase (cosine)
for all schedulers. We use default hyper-parameters for the
OneCycle scheduler that work well in training a ResNet101
Short in a short amount of epochs on this dataset. In Table
1, we see that indeed warm-up lowers Srel and correlates
with increased performance, but the hyper-parameters used
for OneCycle that work well with the residual network still
result in significant spreads for the non-residual network
with higher initial spreads. This confirms that warm-up
should be scheduled as a function of current ELRs. Al-
though subcritical warm-up uses very few warm-up steps, it
yields comparable or better results than our preset OneCycle
warm-up. Using the ELR-constrain method to prescribe a
global ELR similar to the OneCycle run, we see that we are
able to train the network without residual connections; us-
ing warm-up additionally decreases performance, showing
that warm-up presents no benefits in a setting with no ELR
spread.

Table 1. Test accuracies and relative spread of a ResNet101
(No)Short trained on ImageNet using different types of warm-
up / ELR-constrain; RES indicates residual connections and CTN
whether the ELR-constrain method was used.

RES CTN W. TYPE W. STEPS ACC. Srel

NO NO NONE 0 08.50 3.96
NO NO ONECYCLE 64060 22.82 1.96
NO NO SUBCRITICAL 9 41.83 0.70
NO YES NONE 0 47.99 -
NO YES ONECYCLE 64060 45.61 -
YES NO NONE 0 72.85 0.29
YES NO ONECYCLE 64060 72.83 0.31
YES NO SUBCRITICAL 3 73.06 0.27

5. Discussion and Future Work
In past work, high spreads in effective learning rates
have been conjectured to negatively affect trainability,
but to our best knowledge, no formal model exists that
describes their time-based evolution in early training
phases for scheduled learning rates. Under the assumption

of constant gradient magnitudes beyond normalization
effects, we derived a simple model from first principles
that describes the evolution of expected weight/gradient
norms and consequently effective learning rates during
training. Under our model’s assumption, we were able to
prove that when training long enough using any constant
learning rate, all ratios of layer-wise effective learning
rates eventually converge to the same value. Problems can
still arise in the first step(s) if the learning rate λ(ti) is
bigger than the critical value κℓh(ti) (which depends on
current weight/gradient norms), momentarily increasing the
disparity between layer-wise effective learning rates. We
consider this theoretical model of normalization-induced
dynamic effects to be our main contribution.

In a series of empirical experiments, we have shown that
although we exclusively model norm-induced dynamics
(scale-invariant linear layers) and assume that the expected
gradient norm of other layers (objective function, nonlinear
layers) does not change over time, our main takeaway
still holds when training a deep convolutional ReLU
network on real data: training reduces effective learning
rate spread up to a certain critical learning rate. By
using live gradient values at each step and using a slightly
more conservative learning rate choice than predicted,
we were able to design a hyper-parameter-free warm-up
scheduler that is able to quickly reduce effective learning
rate spreads in practice. In an (extreme) setting with
exponentially exploding initial gradients, we show that
reducing ELR spreads using warm-up or by normaliz-
ing gradients to prescribe a constant effective learning
rate correlates with the network’s trainability being restored.

Our analysis applies to all normalized networks, i.e. archi-
tectures where the network function is invariant wrt. scaling
in weight matrices, which is usually the case in most nor-
malized feedforward architectures. Unfortunately, unlike
most other traditional MLPs/CNNs/ResNets, the weight ma-
trices of attention blocks are not scale-invariant and thus the
inverse scaling property (Eq. 1) and orthogonality (Eq. 2),
which our model relies on, are violated. Moreover, modi-
fying the architecture (i.e. adding additional normalization
layers) would fundamentally impact its way of working (e.g.
attention cannot be unlearnt anymore). Preliminary results
show that for architectures containing higher degree non-
linearities (e.g. Transformer models), base gradients can
vary much more compared to simple feedforward ReLU
networks, therefore limiting the applicability of our model
as is. If the order of the fluctuations of the base gradient ex-
ceeds that of the auto-rate tuning effects, the effect vanishes.
We could envision extending our model to include an error
analysis for non-constant base gradients, estimating when
this is the case.

9



On the Weight Dynamics of Deep Normalized Networks

Acknowledgments
The authors acknowledge funding from the Emergent AI
Center funded by the Carl-Zeiss-Stiftung. The authors
would like to thank Daniel Franzen and Jan Disselhoff for
their helpful discussions. The authors would also like to
express their gratitude to the HPC working group of the
Johannes-Gutenberg University Mainz for sharing their com-
pute power in times of need.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Christian H. X. Ali Mehmeti-Göpel, David Hartmann, and
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A. Additional Proofs
This section contains proofs of theorems as well as
additional material complementary to the main section.

Proof of Proposition 3.1. We compute the derivative of the
output with regard to the input using the chain rule and
relate it to the derivative with unscaled inputs:

dN

dx
(x, γW ) =

dN

dL
(x, γW ) · dL

dx
(x, γW ) (34)

=
1

γ

dN

dL
(x,W ) · γ dL

dW
(x,W ) (35)

=
dN

dx
(x,W ). (36)

Where in Eq. 35, we used the inverse scaling property from
Eq. 1.

Proof of Theorem 3.6. We would like to credit the original

author of this proof (Szwarc). By setting xi :=
σ2
j (ti)

cjλ
and

yi :=
σ2
k(ti)
ckλ

, we can rewrite Eq. 4 for layers j and k as two
sequences obeying the same recurrence relation:

xi+1 = xi +
1

xi
(37)

yi+1 = yi +
1

yi
. (38)

Raising xi to the second power yields:

x2
i+1 = x2

i + 2 +
1

x2
i

. (39)

This allows us to unroll the recursion as follows :

x2
i = x2

1 + 2(i− 1) +
1

u2
1

+ . . .+
1

u2
i−1

. (40)

As xj ≥ 2(j − 1), we can write the following inequality:

2(i−1) ≤ x2
i ≤ 2(i−1)+x2

1+
1

x2
1

+
1

2
+
1

4
+. . .+2(i−2).

(41)
By the integral test, it is clear that

∑n−1
i=1

1
k ≤ ln(n) and

therefore
∑n−1

i=1
1
2k ≤

ln(n)
2 = ln(

√
n). Let be

γ := u2
1 +

1
u2
1
− 2, we consider the square root of the

expression above:

√
2i− 2 ≤ xi ≤

√
2i+ log(

√
i− 1) + γ. (42)

Since γ is a constant and limi→∞
log(i)

i = 0, it follows
that:

lim
i→∞

xi√
2i

= 1. (43)

and analogously

lim
i→∞

yi√
2i

= 1. (44)

We therefore obtain:

lim
i→∞

xi

yi
=

σ2
j ck

σ2
kcj

(ti) = Rkj(ti) = 1, (45)

which is in turn also true for the inverse fraction.

Proposition A.1 (Ratios Flip at Most Once). Let j, k ≤ L
be any layer pair with w.l.o.g. Rjk(ti) > 1 and assume a
constant learning rate λ(ti) = λ.

1. If effective learning rate ratios do not flip between a
given time step and the next, they will never flip at a
later time step, i.e. if Rjk(ti+1) > 1 it follows that
Rjk(ti+j) > 1 for all j ≥ 1.

2. If effective learning rate ratios do flip between a given
time step and the next, they will never flip again at a
later time step,, i.e. if Rjk(ti+1) < 1 it follows that
Rjk(ti+j) < 1 for all j ≥ 1.

Proof. We start by showing the first statement. Assuming
that the effective learning rate ratio does not flip between
time steps ti and ti+1, we know by Lemma 3.9 that
λ < κjk(ti). We now just have to show that λ < κjk for all
successive time steps. Since cj and ck are constants and
we know by the definition of the discrete process in Eq. 5
that all weight norms σ(ti) are strictly increasing over time,
we can write:

λ < κjk(ti) =
σjσk√
cjck

(ti) <
σjσk√
cjck

(ti+j) = κjk(ti+j)

(46)
for all j ≥ 1 and thus by Lemma 3.9 the ratio will never
flip again.
We now show the second statement. Assuming that the
effective learning rate ratio does flip between time steps ti
and ti+1, we know by Lemma 3.9 that λ > κjk(ti). We
start by showing that the ratio will not flip for the next time
step, which is in turn equivalent to λ < κjk(ti+1). We can
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expand this term as follows:

κ2
jk(ti+1) =

σ2
jσ

2
k

cjck
(ti+1) (47)

=
1

cjck

(
σ2
j +

c2jλ
2

σ2
j

)(
σ2
k +

c2kλ
2

σ2
k

)
(ti)

(48)

=

(
σ2
jσ

2
k

cjck
+

σ2
j ckλ

2

σ2
kcj

+
σ2
kcjλ

2

σ2
j ck

+
cjckλ

4

σ2
jσ

2
k

)
(ti)

(49)

=

(
κ2
jk +

Ek

Ej
λ2 +

Ej

Ek
λ2 +

1

κ2
jk

λ4

)
(ti)

(50)

>

(
κ2
jk +

Ek

Ej
λ2 +

Ej

Ek
λ2 +

1

λ2
λ4

)
(ti) (51)

≥ λ2. (52)

We can write Eq. 51 because of the assumption that
λ > κjk(ti) and Eq. 52 because all summands are
non-negative. We have therefore shown that λ < κjk(ti+1)
and thus the ratio will not flip between time step ti+1 and
ti+2. By the first proposition shown above, we know it will
therefore never flip in future time steps, i.e. Rjk(ti+j) < 1
for all j ≥ 1.

B. Additional Experiments
In Figure 6, we repeated the experiment of Figure 5 on the
Cifar100 dataset. Qualitatively, we observe the same
effects. The ResNet110 NoShort does not train at all and
has high ELR spreads. By using the ELR-constrain or
critical-warmup method, we are able to train the network to
a significant, but not very good performance. As for the
ResNet110 Short, we start to see a difference between runs
without warm-up our sub-critical scheduler for high
learning rates λ > 10) where again, a reduced spread
results in increased trainability. We conclude that reducing
ELR spread correlates with increased trainability, but other
factors (e.g. vanishing dimensionalty) explain the gap
between short and no-short architectures.

C. Other Factors Influencing Weight
Dynamics

As mentioned in the main paper, some techniques
commonly used in training influence the evolution of
weight dynamics in a way that is not modeled by Eq. 5; in
this section we will discuss them.

Figure 6. Test accuracies and relative spread of a ResNet110
(No)Short trained on Cifar100 using regular, warm-up and con-
strained ELR training protocols.

C.1. Weight Decay

The fact that weight decay influences weight dynamics in
normalized networks is quite trivial and well-explored in
recent literature: (Hoffer et al., 2018) (van Laarhoven,
2017b). In a normalized network, if all weights are reduced
by a factor α, this corresponds to an increase of the global
learning rate by a factor α, as per Eq 1.

C.2. Momentum

As momentum SGD (Polyak, 1964) modifies each
gradient’s direction and length before it is applied, it is easy
to see that it must influence weight dynamics. It is possible
to compute weight dynamics of a network optimized with
momentum SGD, but we consider this to be out of scope of
this work.

C.3. Affine Normalization Parameters

Normalization layers are usually applied with learnable
affine parameters γ ·N(x) + β that are initialized to γ = 1
and β = 0 (PyTorch). In the case of a network where
normalization layers are followed by ReLUs (this is the
case in our experiments), this means that we initialize in the
“maximum curvature region” of the nonlinearity but drift
away from it during training (Ali Mehmeti-Göpel et al.,
2021) leading to gradients dropping further than expected.
In Figure 7, we repeated the experiment of Figure 3 using
random gradients (a setting that produces a reliable
prediction) but add affine BatchNorm parameters to our
training protocol. For λ = 0.001, the prediction is still
quite accurate but for λ = 1, we see that the real gradients
are much smaller than predicted.
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Figure 7. Long term evolution of simulated/real layer-wise effec-
tive learning rates for a ResNet56 NoShort trained with random
gradients and affine BatchNorm parameters.

D. Architecture and Training Details
As described in the main paper, we used ResNet variants
with varying hyper-parameters, with and without skip
connections. Architectural details can be found in the tables
below.

The experiments in the paper were made on computers
running Arch Linux, Python 3.11.5, PyTorch Version
2.1.2+cu121. Various Nvidia GPUS were used ranging
from GeForce GTX 1080TI, GeForce GTX 2080Ti RTX
4090.

Table 2. Network architecture and training regime used for the
Cifar10/100 task.

ARCHITECTURE RESNET56/110

BLOCK BASICBLOCK V1
NUM. BLOCKS 9 9 9 / 18 18 18
NUM. PLANES 16 32 64
SHORTCUT TYPE A (PADDING)

TRAINING CIFAR-10 / CIFAR-100

EPOCHS 200
SCHEDULER MULTISTEP (γ = 0.1)
MILESTONES 100, 150
LEARNING RATE VARIABLE
BATCH SIZE 256
OPTIMIZER SGD
MOMENTUM 0
WEIGHT DECAY 0
AUGMENTATION RANDOM FLIP
NESTEROV FALSE

Table 3. Network architecture and training regime used for the
ImageNet task.

ARCHITECTURE RESNET101

BLOCK BOTTLENECKBLOCK V1
NUM. BLOCKS 3 4 32 3
NUM. PLANES 64 128 256 512
SHORTCUT TYPE B (1X1-CONV+BN)

TRAINING IMAGENET

EPOCHS 50
SCHEDULER ONECYCLE/

NO-WARMUP + COSINE/
SUBCRITICAL + COSINE

MAX. LR 0.4
BATCH SIZE 100
OPTIMIZER SGD
NESTEROV FALSE
MOMENTUM 0
WEIGHT DECAY 0
AUGMENTATION RANDOM FLIP

ONECYCLE ANNEALSTRATEGY COSINE
ONECYCLE BASEMOMENTUM 0
ONECYCLE CYCLEMOMENTUM TRUE
ONECYCLE DIVFACTOR 20
ONECYCLE EPOCHSSTART 0.1
ONECYCLE FINALDIVFACTOR 2000
ONECYCLE MAXMOMENTUM 0.0
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