Under review as a conference paper at ICLR 2026

PRUNING AS A COOPERATIVE GAME: SURROGATE-
ASSISTED LAYER CONTRIBUTION ESTIMATION FOR
LLARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

While large language models (LLMs) demonstrate impressive performance across
various tasks, their deployment in real-world scenarios is still constrained by high
computational demands. Layer-wise pruning, a commonly employed strategy to
mitigate inference costs, can partially address this challenge. However, existing
approaches generally depend on static heuristic rules and fail to account for the
interdependencies among layers, thereby limiting the effectiveness of the pruning
process. To this end, this paper proposes a game-theoretic framework that for-
mulates layer pruning as a cooperative game in which each layer acts as a player
and model performance serves as the utility. As computing exact Shapley val-
ues is computationally infeasible for large language models (LLMs), we propose
using a lightweight surrogate network to estimate layer-wise marginal contribu-
tions. This network can predict LLM performance for arbitrary layer combina-
tions at a low computational cost. Additionally, we employ stratified Monte Carlo
mask sampling to further reduce the cost of Sharpley value estimation. This ap-
proach captures inter-layer dependencies and dynamically identifies critical layers
for pruning. Extensive experiments demonstrate the consistent superiority of our
method in terms of perplexity and zero-shot accuracy, achieving more efficient
and effective layer-wise pruning for large language models.

1 INTRODUCTION

Large language models (LLMs) achieve state-of-the-art performance across a wide range of tasks
(Chen et al.;,2023;|Duan et al.| [2024} Zhu et al., 2025), but their massive computational and memory
requirements pose significant challenges for practical deployment (Wang et al., [2024a}; |Sun et al.|
2024a). This has prompted extensive research into model compression techniques. Among these,
layer pruning, which removes entire transformer layers, stands out as an effective method for re-
ducing inference cost. Compared to width pruning, depth pruning offers superior throughput and
inference speed, while also being easier to implement than other compression methods, making it
an attractive approach for large-scale model compression (Kim et al.| 2024)).

Existing deep pruning methods typically assign an importance score to each layer to determine the
pruning order. These scores are often based on heuristics such as weight magnitudes, activation
norms (Filters’Importancel [2016), or sensitivity analysis (Men et al., [2024; |[Kim et al., 2024), as-
suming that layer importance is fixed and independent. However, our experiments reveal that layer
importance is context-dependent. In single-layer pruning (Fig. [Tp), the rankings of early and late
layers remain relatively stable, whereas the rankings of middle layers fluctuate significantly. When
extended to multi-layer pruning (Fig.[Ib), this volatility is further amplified, with some layers show-
ing strong fluctuations throughout the pruning process. These observations highlight the dynamic
interdependencies between layers: pruning one layer can alter the relative importance of others,
and evaluating layers in isolation often results in suboptimal pruning decisions. Previous studies
have partially considered interactions between layers, such as merging redundant layers (Ding et al.,
2025b) or progressively pruning less important ones during training (Song et al., [2024). However,
these approaches often fail to find the globally optimal layer set. For example, pruning layers se-
quentially based on individual importance may not yield the best two-layer combination, because

Under review as a conference paper at ICLR 2026

the optimal strategy could involve simultaneously removing a pair of layers that are not the least
important individually (see Tab. T).

(a) Single-Layer Pruning A Rank (b) Multi-Layer Cumulative Pruning A Rank

Pruning Cases Top 5 Layers
Remove-7 Remove-11 Remove-17 mmm Remove-21 Layer 13 Layer 22 ~e— Layer 15 —e— Layer 17 —e— Layer 20

Figure 1: Layer importance is context-dependent under pruning. Both plots are based on
the change in PPL before and after pruning on the BookCorpus dataset to rank layer importance.
(Left) Bar plot showing the ARank changes for random single-layer pruning, highlighting that some
layers’ importance shifts more dramatically when others are pruned. (Right) Line plot showing the
ARank changes during multi-layer pruning, where the lowest-ranked layer is removed at each step.
The five most volatile layers are highlighted in darker colors, reflecting their fluctuating importance.

Scheme Deleted Layers Post-deletion PPL Explanation
Layer 27 14.9845 Delete the least important layer
Single Deletion | Layer 10 14.9915 Delete the second least important layer
Layer 11 15.0154 Delete the third least important layer
Scheme 1 Layer 27 + Layer 10 15.4535 Delete the two least important layers
Scheme 2 Layer 27 + Layer 10 15.4535 Delete the least important layer, re-test, then delete the next
Optimal Combo | Layer 10 + Layer 11 15.4279 Delete a pair of layers accounting for inter-layer interactions

Table 1: Summary of layer deletion schemes and their corresponding PPL values on Book-
Corpus. Both pruning based on static importance and re-calculated importance after each deletion
may not always lead to optimal performance.

To address the limitations of static heuristics and explicitly capture the dynamic interdependencies
among layers, we formulate LLM pruning as a cooperative game, where each Transformer layer is
treated as a player with the model’s performance defining the utility. In this setting, a layer’s contri-
bution is inherently context-dependent, shaped by its interactions with other layers. While Shapley
values offer a principled way to quantify such contributions, their exact computation is intractable
for large-scale models due to the exponential number of possible layer combinations. To make this
feasible, we propose a two-stage approximation strategy aligned with cooperative game theory. In
the first stage, we generate diverse pruning masks through stratified Monte Carlo sampling with con-
trolled Hamming weights, and evaluate them on calibration data to measure perplexity (PPL). The
performance gap between each pruned model and the original model provides supervision signals
for learning. In the second stage, we train a lightweight surrogate network to predict these per-
formance drops for unseen masks, enabling efficient estimation of marginal contributions without
repeated full-model evaluations. Once trained, the surrogate allows us to estimate Shapley values
from a large pool of candidate masks. This design preserves inter-layer dependencies, adaptively
identifies critical layers, and scales effectively to pruning large language models.

Extensive experiments on language modeling and downstream tasks demonstrate the effectiveness
of our method. Specifically, we report perplexity on WikiText, PTB, and C4, and assess inference
performance across eight zero-shot benchmarks and an adversarial reasoning robustness metric.
Compared to depth-wise and width-wise pruning baselines, our method achieves lower perplex-
ity, higher accuracy, and favorable trade-offs in speed and throughput. Furthermore, we show that
our framework extends beyond Transformer-based LLMs, demonstrating strong generality on non-
Transformer architectures, and can be seamlessly combined with quantization to deliver additional
efficiency gains.

In summary, our contributions are as follows:

Under review as a conference paper at ICLR 2026

* We rethink LLM pruning from a game-theoretic perspective, treating layers as interdepen-
dent players and revealing inter-layer dependencies that static heuristics fail to capture.

* We propose a scalable approximation framework that leverages stratified Monte Carlo mask
sampling and a lightweight surrogate network, enabling efficient Shapley-based estimation
of layer contributions in large LLMs.

* We validate our method on language modeling tasks and zero-shot benchmarks, showing
consistent improvements over strong pruning baselines across diverse architectures.

2 RELATED WORK

2.1 PRUNING METHODS FOR LARGE LANGUAGE MODELS

The rapid growth of large language models (LLMs) has led to the development of various com-
pression techniques, including quantization (Frantar et al.| 2023} Dettmers et al.,|2022), knowledge
distillation (Fu et al.l 2023; |Hsieh et al., |2023)), tensor decomposition (Wang et al., [2024b; |Ding
et al.| [2025a), and pruning. Pruning reduces inference costs by removing model components with-
out complex retraining. It has evolved from unstructured sparsity (removing individual weights) to
structured sparsity (pruning entire neurons, attention heads, or layers). For example, SparseGPT
uses the OBS error formula to assess weight importance and decide whether to prune, while ad-
dressing the challenge of non-structured sparsity on real hardware through semi-structured pruning
(Frantar & Alistarh, [2023). Methods like Wanda combine weight magnitudes with input feature
norms for layer selection (Sun et al) [2023). LLM-Pruner and FLAP focus on pruning coupled
structures, such as attention heads, to reduce network width while maintaining the number of layers
(Ma et al.,|2023; |An et al.l 2024). These methods show pruning’s potential for deploying LLMs on
resource-constrained devices with minimal performance loss.

2.2 MEASURING LAYER CONTRIBUTIONS

Direct layer-wise pruning methods are straightforward and effective, offering better inference speed
and throughput. Most of these methods in LLM pruning use heuristics like weight magnitude, gradi-
ent sensitivity, or activation statistics to assess layer importance. ShortGPT introduces Block Influ-
ence (BI) to quantify the importance of each layer and prunes redundant layers (Men et al., |2024),
while LAYERIF tracks the sensitivity of different layers to training data using influence function
(Askari et al., [2025)). Shortened-LLaMA, on the other hand, calculates weight importance scores at
the output neuron level using Taylor+ and PPL metrics, assessing block-level importance (Kim et al.}
2024). SLEB prunes redundant transformer blocks iteratively using Metric3, integrating smoothly
into the forward pass (Song et al.| [2024). In contrast, CALM, Mixture-of-Depths, and SkipDecode
dynamically allocate computation resources based on context, adjusting compute expenditure to
optimize efficiency (Del Corro et al.,[2023]; |Raposo et al., [2024; |Schuster et al., [2022]).

Cooperative game theory studies how multiple rational decision-makers form alliances to achieve
common goals. This makes it well-suited for assessing the importance of different layers in LLMs.
The GTAP method, for instance, treats neurons as cooperative agents and uses power indices to eval-
uate importance (Diaz-Ortiz Jr et al.,|2023). While computational complexity limits its application
to ultra-large models, the principles offer a valuable perspective for pruning. [Zhang et al.| (2024)
applied the Shapley value to model interpretation, noting its computational infeasibility for LLMs.
They proposed using early truncation or similar SV-NUP methods, considering only the influence
of adjacent layers for non-uniform pruning (Sun et al., 2025)).

3 METHOD

3.1 LAYER PRUNING AS A COOPERATIVE GAME

Layer pruning in large language models (LLMs) is inherently challenging because the contribution
of each Transformer layer is not independent: conventional importance rankings often ignore inter-
layer dependencies, leading to suboptimal pruning. To address this, we formulate layer pruning as a
cooperative game, where each layer acts as a player and the model’s performance defines the utility
function.

Under review as a conference paper at ICLR 2026

Formally, let £ = {1,2,..., L} denote the set of layers in an LLM with L layers. For any subset of
layers S C L, let M (.S) be the model obtained by retaining only layers in .S, and let u(S) denote its
performance measured by perplexity (PPL) on calibration data, where a lower PPL corresponds to
higher utility. The marginal contribution of layer i to a subset S is

Ai(8) = u(SU{i}) — u(S). (1

While the Shapley value provides a theoretically grounded measure of layer importance, computing
it exactly is infeasible due to the exponential number of subsets. This motivates our fwo-stage
approximation framework, which efficiently estimates layer contributions while preserving inter-
layer dependencies.

3.2 ALGORITHM OVERVIEW

Figure 2] illustrates the overall pipeline of our approach. The goal is to efficiently estimate the
contribution of each layer to the model’s performance, enabling informed pruning decisions while
preserving inter-layer dependencies. Our framework proceeds in two stages:

1. Mask Generation and Performance Evaluation: In the first stage, we generate diverse
pruning masks using stratified Monte Carlo sampling with controlled Hamming weights.
Each mask defines a subset of layers to retain, and we evaluate the corresponding pruned
models on calibration data to obtain performance scores (perplexity differences). These
scores serve as supervision signals for learning.

2. Surrogate Training and Shapley Value Estimation: In the second stage, we train a
lightweight surrogate network fy to predict the performance of unseen masks. Once
trained, the surrogate enables efficient estimation of each layer’s marginal contribution,
which is then aggregated to compute approximate Shapley values. Finally, layers with the
lowest contributions are pruned.

For clarity, the complete procedure is also provided in pseudo-code in Algorithm[T]in Appendix.[B3]

Large Language Model PPLgyig
Layer Remove
Calibration () ()
T T
Data P s N Y |
: \ \ Scorey = PPLyyig / PPLyrune,
(-) Pall =) Pl Score; = PPLyyig / PPLyrune,
Pl) () P .
0 L :
— e S— Scorey = PPLyrig / PPLyrune,
() ()
Pruned Model 1 Pruned Model 2 Pruned Model n
MSE Loss
Binary Mask
: —>
Mask Generate M“kl|1lol1lol I1IOI°I1I1I
- Hammingweignt fixes the Mask2: [1JoJo v [.[1orJof1]_J jsSurrogate
number of retained layers ‘ Model . L .
: odel marginal contribution of layer i:
* Monte Carlo sampling
introduces randomness. Mask n: | 1 I 1 I 1 I 0 I I 0 I 1 I 0 I 1 I 1 I £(S) = u(Su{i}) —u(s)
——> :Stagel ——> :Stage2 ———> : Both Stage 1 and Stage 2

Figure 2: Framework of our method. Both stages use stratified Monte Carlo masks with con-
trolled Hamming weight. Stage one uses calibration data to compute PPL-based scores for training
a lightweight surrogate network, and stage two uses the surrogate to efficiently compute Shapley-
based layer importance for scalable LLM pruning.

3.3 STAGE ONE: MASK GENERATION AND PERFORMANCE EVALUATION

Directly computing Shapley values requires evaluating all 2% layer subsets, which is computation-
ally infeasible for LLMs. In the first stage, we approximate layer contributions via stratified Monte

Under review as a conference paper at ICLR 2026

Carlo sampling of binary pruning masks. Each mask m € {0, 1}¥ denotes a subset of retained lay-
ers, where m; = 1 indicates that layer 7 is preserved. The corresponding pruned model is M (m).

To quantify the contribution of each mask, we compute a performance score as the ratio of the
original perplexity to the pruned model’s perplexity:

R o 2

~ PPL(M(m))’

where s(m) closer to 1 indicates better preservation of the original model’s performance.

2

s(m)

To ensure balanced exploration across pruning ratios, we design a stratified sampling strategy based
on Hamming weight (i.e., number of retained layers k(m) = Zle m;). Let K = {kq,. .., kx| } be
the set of target weights. For each weight k; € K we draw Ny, masks that retain exactly k; layers.
Given a total budget of N masks we enforce Z‘j’g Ny, = N and in practice set Ny, ~ |[N/|K|]
(distributing any remainder to the first few strata). The ¢-th mask sampled within the stratum of
Hamming weight k; is denoted by m(*-t) and drawn as

m¥it) NUniform{me 0,1} : k(m) =kj}, t=1,... N, j=1,..,|K. ®

This stratified sampling ensures balanced coverage across pruning ratios, while Monte Carlo ran-
domness captures diverse interactions among layers. The resulting masks and their corresponding
scores form the training data for the surrogate network in Stage Two.

3.4 STAGE TWO: SURROGATE TRAINING AND SHAPLEY VALUE ESTIMATION

Direct evaluation of s(m) for every pruned model is computationally prohibitive. To address this,
we introduce a lightweight surrogate network fp(m), implemented as a two-layer feed-forward
network, that predicts the performance score of any binary mask m. This surrogate decouples
expensive full-model inference from large-scale Shapley value estimation.

Training the surrogate The surrogate is trained on the limited set of masks and their true scores
obtained in Stage One, denoted as {(m(*i-¥) s(m(*i-1)))}. We optimize the mean squared error:

N
1
£0) = 37 3 (folmn) = sma))*,)
where N is the total number of training masks. Once trained, fy generalizes to unseen masks,
enabling efficient prediction of model performance without costly full-model evaluations.

Approximating Shapley values Using the surrogate, we approximate each layer’s Shapley value
via stratified Monte Carlo sampling in Eq. (3). For layer i, we repeatedly sample @) binary masks
m (%59 and compute the marginal contribution of layer 7:

Q
b= o > (m S U) futm®). @
g=1

This efficiently estimates layer-wise contributions while preserving inter-layer dependencies, as the
surrogate captures performance shifts under diverse layer coalitions.

Layer pruning Finally, layers are ranked by their estimated Shapley values {¢; }Z_,. We remove

the least-contributing layers until the target compression ratio. The resulting pruned LLM retains
critical layers while eliminating redundant ones, maintaining overall model performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Foundation LLMs. We evaluate on open-source LLMs, including Transformer models (LLaMA2-
{7B, 13B} (Touvron et al., [2023), Meta-LLaMA3-8B, Vicuna-7B-v1.3 (Chiang et al., 2023)) and
non-Transformer models (RWKV-7B (Peng et al., 2023)), Mamba-2.8B (Gu & Daol 2023)).

Under review as a conference paper at ICLR 2026

Benchmarks. Model performance is assessed on language modeling and zero-shot reasoning tasks.
For language modeling, we measure perplexity on WikiText2, PTB, and C4 to quantify generative
quality after pruning.Zero-shot reasoning is evaluated on nine datasets: PIQA (Bisk et al.l [2020),
HellaSwag (Zellers et al.| 2019), ARC-easy and ARC-challenge (Clark et al.l 2018]), OpenbookQA
(Mihaylov et al.,|2018)), RACE (Lai et al.;, 2017), WSC273 (Levesque et al., 2012), LAMBADA (Pa-
perno et al., 2016), and MMLU (Hendrycks et al.| 2021), using the 1m—-evaluation—-harness
(Gao et al.|[2024). We further test adversarial reasoning robustness on ANLI (Nie et al.,[2020) across
its three rounds (R1-R3).

Baselines. We compare against width pruning methods (LLM-Pruner (Ma et al.| 2023)), Wanda-sp,
FLAP (An et al}[2024)) and depth pruning methods (SliceGPT (Ashkboos et al.,[2024)), SLEB (Song
et al.,[2024), Shortened-LLM (Kim et al., 2024}, ShortGPT (Men et al., 2024))).

Implementation Details. Experiments are implemented in PyTorch (Paszke et al., 2019) using
HuggingFace Transformers (Wolf et al., 2020). Following|Ma et al.|(2023)), we randomly sample 10
BookCorpus (Zhul,2015) examples for pruning calibration, using the same set across all baselines for
fair comparison. We provide additional experiments on LoRA finetuning in Appendix. [E] ablation
studies in Appendix.[F] and an analysis of the computational cost of our method in Appendix.

4.2 LANGUAGE MODELING

Tab.[2]compares compares the language modeling performance of our method with depth-wise prun-
ing baselines. Our approach consistently yields the lowest or near-lowest perplexity across models
and pruning ratios, with the advantage becoming more pronounced under aggressive pruning. No-
tably, while baseline methods on Meta-LLaMA-3-8B degrade sharply at high pruning ratios, our
method maintains stable and significantly lower perplexity, confirming its effectiveness in preserv-
ing generative performance under substantial compression.

Remove 3 layers Remove 6 layers Remove 9 layers Remove 12 layers
PPL_WikiText2 PPL_PTB PPL_C4 PPL_WikiText2 PPL_PTB PPL_C4 PPL_WikiText2 PPL_PTB PPL_C4 PPL_WikiText2 PPL_PTB PPL_C4
LLaMA-2-7B-hf

Method

SliceGPT 108.0990 131.3884 103.9473 212.8867 219.2298 191.5134 291.8482 293.8186 257.7473 393.8880 365.7072 343.4214
SLEB 14.2428 52.9183 12.9682 19.4676 63.8317 16.3933 27.4537 79.4398 21.3809 58.1194 135.1317 43.8708
Shortened-LLaMA 16.6515 54.5982 13.8046 36.3702 105.2407 29.2243 81.9615 196.6155 61.8678 304.5240 486.6280 252.4593
ShortGPT 16.6515 54.5982 13.5906 36.3702 1052407 29.2243 81.9615 196.6155 61.8678 157.9850 295.1548 98.8645
Ours 14.6949 53.7517 12.9682 18.8686 61.8678 16.1392 24.6093 76.9957 20.7231 38.1157 105.2407 28.7712
Vicuna-7B-v1.3
SliceGPT 151.4702 1953507 133.0439 2923765 339.8809 250.8779 401.3294 435.8758 343.5819 5555617 566.6461 474.9028
SLEB 19.7741 74.6268 16.1392 26.6090 87.2476 21.3809 38.1157 115.5843 30.6268 65.8579 196.6155 474357
Shortened-LLaMA 20.4018 70.1054 17.4506 35.8063 98.8645 27.8860 67.9485 143.8470 48.1827 244.6919 356.0247 157.9850
ShortGPT 23.1183 79.4398 18.0046 67.9485 143.8470 48.1827 67.9485 143.8470 48.1827 2524593 518.0128 153.1243
Ours 20.7231 70.1054 17.7254 24.6093 81.9615 20.7231 37.5247 112.0281 29.2243 67.9485 209.2961 43.1907
Meta-LLaMA-3-8B
SliceGPT 316.1936 307.9020 231.0099 447.8662 488.1207 316.6689 746.2088 802.4747 530.2491 1182.3573 1214.1042 830.1348
SLEB 20.4018 38.1157 20.7231 33.6369 53.7517 30.1520 63.8317 115.5843 49.7122 126.9445 190.5663 90.0171
Shortened-LLaMA 20.7231 37.5247 20.7231 79.4398 105.2407 50.4950 5928.3428 9774.1849 2048.7805 15138.5538 46630.0285 2113.8157
ShortGPT 23.8522 412128 227599 84.5633 119.2533 61.8678 2549.7485 2714.1931 1364.7820 15138.5538 46630.0285 2113.8157
Ours 18.5761 347047 19.1658 25.3905 45.9763 24.9969 45.2635 70.1054 33.1155 304.5240 173.5126 65.8579

Table 2: Perplexity results of different pruning methods on WikiText2, PTB, and C4 for LLaMA-2-
7B-hf, Vicuna-7B-v1.3 and Meta-LLaMA-3-8B.

4.3 INFERENCE PERFORMANCE

Zero-shot Performance We compare depth-wise pruning methods on LLaMA-2-7B-hf across
eight zero-shot multiple-choice tasks in Tab. [3] Across all model sizes, our method consistently
achieves the highest or near-highest average performance. For instance, when pruning the model to
5.5B parameters, our approach reaches 0.5227 average accuracy, outperforming SliceGPT (0.3865)
and Shortened-LLaMA (0.5050). Similar trends hold for 4.9B and 4.3B models, where baselines
degrade more sharply, particularly on reasoning-focused tasks such as ARC-challenge and WSC273.
These results indicate that our method effectively preserves layers critical for downstream reasoning,
complementing the generative capability retention observed in the language modeling experiments.

Adversarial Reasoning Robustness To evaluate robustness under adversarial reasoning, we test
pruned models on the ANLI dataset (Nie et al.,|2020), which consists of three increasingly difficult
rounds (R1-R3). As shown in Fig. [3| our method achieves the highest average accuracy across all
rounds and consistently surpasses baselines, ranking first on R1 (36.7%) and R3 (36.6%). These

Under review as a conference paper at ICLR 2026

Params | Method PIQA HeSw ARC-e ARC-c OBQA Race WSC273 LAMBADA MMLU Average
6.7B | LLaMA-2-7B-hf 0.7807 0.7602 0.7630 0.4625 0.4420 0.3962 0.8059 0.7388 04177 0.6186
SliceGPT 0.6676 0.5299 0.4663 0.3020 0.3140 0.3397 0.8022 0.3152 0.2500 0.4430

SLEB 0.7644 0.7180 0.7138 0.3985 0.4080 0.3550 0.7839 0.6216 0.3084 0.5635

6.1B | Shortened-LLaMA 0.7497 0.7298 0.7201 0.4360 0.4040 0.3799 0.8278 0.6301 0.3572 0.5816
ShortGPT 0.7573 0.7162 0.7104 0.4292 0.4040 0.3847 0.7692 0.6167 0.351 0.5709

Ours 0.7709 0.7185 0.7155 0.4096 0.3940 0.3694 0.7912 0.6682 0.3663 0.5782
SliceGPT 0.6077 0.4270 0.3590 0.2756 0.2700 0.3081 0.7473 0.2395 0.2441 0.3865

SLEB 0.7301 0.6656 0.6700 0.3951 0.3880 0.3502 0.7399 0.4477 0.2378 05138

5.5B | Shortened-LLaMA 0.7095 0.6528 0.5934 0.3797 0.3740 0.3330 0.7692 0.4747 0.2589 0.5050
ShortGPT 0.7095 0.6528 0.5934 0.3797 0.3740 0.3330 0.7692 0.4747 0.2589 0.5050

Ours 0.7372 0.6719 0.6473 0.3729 0.3860 0.3646 0.7546 0.4739 0.2955 0.5227
SliceGPT 0.5887 0.3856 0.3245 0.2619 0.2700 0.2947 0.7253 0.1846 0.2452 0.3645

SLEB 0.6910 0.5640 0.5947 0.3251 0.3520 0.3263 0.6850 0.3134 0.2372 0.4543

49B | Shortened-LLaMA 0.6485 0.5617 0.4802 0.3276 0.3280 0.3225 0.7143 0.2915 0.3811 0.4506
ShortGPT 0.6485 0.5617 0.4802 0.3276 0.3280 0.3225 0.7143 0.2915 0.3811 0.4506

Ours 0.7046 0.5840 0.5821 0.3404 0.3600 0.3301 0.7033 0.3427 0.2725 0.4689
SliceGPT 0.5718 0.3475 0.3077 0.2500 0.2560 0.2775 0.6923 0.1450 0.2493 0.3441

SLEB 0.6186 0.4665 0.4491 0.3020 0.3100 0.3024 0.5788 0.1527 0.2507 0.3812

43B | Shortened-LLaMA 0.6023 0.4430 0.3611 0.3063 0.2760 0.2909 0.6081 0.0505 0.3373 0.3640
ShortGPT 0.5952 0.4371 0.4158 0.3003 0.3500 0.2900 0.6886 0.1100 0.3332 03911

Ours 0.6659 0.4618 0.4937 0.2876 0.3260 0.2989 0.6117 0.1731 0.2370 0.3951

Table 3: Performance comparison of models with different retained parameters using various prun-
ing methods on eight zero-shot benchmark datasets. Higher values indicate better performance.

s (a) Comparison of Different Methods s (b) Comparison across Parameter Scales
Shortened-LLama ANLI-R1
ShortGPT ANLI-R2
N SLEB ~—e— ANLI-R3
037 0.367 0365 ™ Ours 037 == e
0361
036 022 0.36
- 0.353 0.35 >
& 3% 350 8
35035 5035
8 8
< <
034 0.34
0.33 0.33
0.32 0.32
ANLI-R1 ANLI-R2 ANLI-R3 ANLI-Average 4.38 4.98 5.58B 6.1B

Parameter Scale (B)

Figure 3: Adversarial reasoning accuracy on ANLI. (a) Comparison of pruned models on R1-R3
and average; only top two values per x are labeled. (b) Accuracy across parameter scales (3—12
layers, 6.1B—4.3B); only the average is labeled.

results indicate that by explicitly capturing inter-layer dependencies, our method better preserves
adversarial reasoning robustness, highlighting its potential for deployment in scenarios requiring
resilience to distribution shifts and adversarial perturbations.

Performance on larger-scale models To further demonstrate the generality of our method, we
extend experiments to larger-scale models. Tab.] reports average zero-shot accuracy across eight
tasks for Meta-LLaMA-3-8B and LLaMA-2-13B-hf. Our approach consistently outperforms or
matches depth-wise baselines across pruning levels. For instance, at 9.2B parameters on LLaMA-
2-13B-hf, our method achieves 0.5327 accuracy, compared to 0.3950 for SliceGPT and 0.4825 for
Shortened-LLaMA, demonstrating robust generalization at high pruning ratios.

4.4 COMPARISON WITH WIDTH-WISE PRUNING METHOD

We extend our analysis to width-wise pruning methods on LLaMA-2-7B-hf, as shown in Fig. 4
Using the PTB dataset as a representative case, our method consistently achieves lower perplexity
than width-wise pruning across different sparsity levels, confirming its superior ability to preserve
generative capacity. For example, at 4.3B parameters, our model achieves a PPL of 105.2, substan-

Under review as a conference paper at ICLR 2026

(a) Meta-LLaMA-3-8B (b) LLaMA-2-13B-hf
Method 7.4B 6.1B 5.4B Method 11.8B 10.5B 9.2B
SliceGPT 0.4465 0.3620 0.3296 SliceGPT 0.4959 0.4286 0.3950
SLEB 0.6109 0.4526 0.3696 SLEB 0.6393 0.5762 0.5289
Shortened-LLaMA | 0.6299 0.3323 0.3576 Shortened-LLaMA | 0.6349 0.5340 0.4825
ShortGPT 0.6054 0.3598 0.3576 ShortGPT 0.6456 0.5878 0.4825
Ours 0.6354 0.4676 0.3912 Ours 0.6470 0.5970 0.5327

Table 4: Average zero-shot accuracy on eight datasets for Meta-LLaMA-3-8B (a) and LLaMA-2-
13B-hf (b) with different parameter sizes. Higher values indicate better performance.

tially outperforming Wanda-sp and LLM-Pruner. In terms of efficiency, depth-wise pruning proves
more favorable: removing layers leads to consistent improvements in both throughput and latency as
pruning ratios increase, while width-wise pruning exhibits limited gains. These improvements are
realized without additional memory overhead, with usage remaining in the range of 8.3-11.8 GB.
Overall, our method outperforms width-wise pruning both in preserving language modeling quality
and in delivering scalable runtime efficiency.

(a) Language Modeling (b) Inference Speed (c) Processing Efficiency (d) Resource Usage
i s 7“ 2 —
150 438
125 40 P N NS oo tis & 620 I 2

105.2

a
2

°

Latency (seconds)

Throughput (tokens/s)
s

s
»
g

<100
F 77.0
a5
5 619
o 538
50 2%
T~ == * ——o i
25 ~ g - > 618
~——— ¥
-~
0
558 498

6.18 438 6.18 5.58 498 4.38 6.18 558 498 438 0 2000 4000 6000 8000 10000 12000
nparam nparam nparam GPU Memory (MB)

Wanda-sp FLAP —&— LLM-Pruner —4— Ours

Figure 4: Comparison with structured width pruning methods (Wanda-sp, FLAP, LLM-Pruner) on
PTB and system efficiency metrics across progressively reduced parameter budgets. Our method
consistently achieves the best trade-off between perplexity, latency, throughput, and GPU memory.

4.5 PERFORMANCE IN NON-TRANSFORMER LLM

We apply our pruning strategy to RWKV-4-World-7B and Mamba-2.8B, and evaluate perplexity on
WikiText2, PTB, and C4 under varying pruning scales in Tab. [5] Despite progressive layer reduc-
tion, our method maintains the overall generative performance of these non-Transformer models.
For example, RWKV-7B retains a PPL of 56.3313 at 5.6B parameters before degradation becomes
significant at more aggressive pruning. Similar robustness is observed on Mamba-2.8B, indicat-
ing that our pruning method generalizes beyond Transformer architectures and effectively preserves
language modeling quality across diverse backbones.

(a) RWKV-4-World-7B (b) Mamba-2.8B
Params | Method PPL_WikiText2 PPL_PTB PPL_C4 Params | Method PPL_WikiText2 PPL_PTB PPL_C4
6.2B ShortGPT 38.7159 61.8678 31.5990 258 ShortGPT 378.9863 1865.4358 391.0166
Ours 34.1666 65.8579 32.0966 Ours 24.2278 43.1907 22.0596
5.6B ShortGPT 90.0171 179.0204 67.9485 238 ShortGPT 4074.4865 15138.5538 4074.4865
Ours 56.3313 105.2407 48.9415 Ours 31.1091 53.7517 26.1965
49B ShortGPT 252.4593 471.6560 179.0204 20B ShortGPT 98715.7710 143630.5993 49637.4069
Ours 130.9742 252.4593 95.8227 Ours 41.2128 72.3308 33.6369

Table 5: PPL on WikiText2, PTB and C4 for non-Transformer models RWKV-4-World-7B (a) and
Mamba-2.8B (b) with different parameter sizes. Lower values indicate better performance.

Under review as a conference paper at ICLR 2026

4.6 COMPATIBILITY WITH POST-TRAINING QUANTIZATION

Post-training quantization (PTQ) is a common technique to reduce memory usage during LLM in-
ference. We evaluate its compatibility with our method by applying GPTQ (Frantar et al., [2023))
to LLaMA-2-7B-hf at different pruning scales. As illustrated in Fig. [5} pruning and quantization
demonstrate strong compatibility: quantization incurs only a modest increase in perplexity, while
their combination effectively improves throughput and further amplifies memory savings—for ex-
ample, reducing usage from 12.9 GB to 4.8 GB on the 6.7B variant. We further consider the in-
fluence by different integration orders of our pruning strategy and 4-bit quantization in Tab.[6] The
results show that the language modeling performance differences across orders are generally small,
confirming that our method is highly compatible with PTQ. Interestingly, we observe that placing
the pruning step last often achieves the lowest perplexity. We attribute this to our method’s explicit
consideration of inter-layer dependencies: by analyzing the layer contributions after quantization,
pruning decisions can be made on a representation that is closer to the model’s final inference form,
thereby yielding better retention of critical capacity.

(a) PPL vs Model Size

Before Quantization After Quantization

(b) Latency vs Throughput

L) @ Before Quantization
288 _32 1 3.0 . B After Quantization
4.3B 1052 123.0 g 28 I‘ﬁ\m
bl ~.
38.1 432 226
> 558
224 ~
822 o498
4.98 77.0 82.0 ~-.
®
246 27.0 20 LR 35\
18 A
161 | 3 40 45 50 55 60 65 70
Throughput (tokens/s)
5.58 619 65.9
189 198 (c) GPU Memory vs Model Size
53.8 56.3)
6.18 g
147 15.4 = 10000
5
106 -11 1 £ 8000
=
6.7 Dataset 474 50.5 S 6000
Wikitext-2 é
B 122 128 I beee L .
- e ~
-100 =50 o 50 100 6.7B 6.1B 5.5B 4.98 438
PPL Model Size

Figure 5: Evaluation before and after quantization across model sizes: (a) PPL (left / right bars), (b)
Latency vs Throughput (circles / squares), and (c) GPU Memory (solid / dashed lines).

Scheme PPL_WikiText2 PPL_PTB PPL_C4
Remove 3 layers by ours then 4-bit quantization 15.4001 56.3313 13.3799
4-bit quantization then remove 3 layers by ours 14.9263 56.3313 13.1724
Remove 6 layers by ours then 4-bit quantization 19.7741 65.8579 169137
Remove 3 layers by ours then 4-bit quantization then remove 3 layers by ours 19.4676 67.9485 16.3933
4-bit quantization then remove 6 layers by ours 18.5761 65.8579 15.8890

Table 6: Perplexity results on LLaMA-2-7B-hf under different integration orders of our pruning
strategy and 4-bit quantization.

5 CONCLUSION

We formulate model compression as a cooperative game among layers, enabling principled esti-
mation of inter-layer dependencies via a lightweight surrogate model. Extensive benchmarks show
that our approach consistently outperforms depth-wise and width-wise pruning baselines, achiev-
ing lower perplexity and higher zero-shot accuracy while delivering superior efficiency in latency,
throughput, and memory usage. Evaluations on larger-scale models and non-Transformer architec-
tures further underscore the generality of our method. Moreover, compatibility with post-training
quantization highlights the potential for practical deployment. By introducing a game-theoretic per-
spective to model compression, our approach provides a novel framework for systematically and
efficiently pruning large language models, achieving a balance between performance preservation
and practical efficiency.

Under review as a conference paper at ICLR 2026

Ethics Statement This work adheres to the ICLR Code of Ethics. Our study exclusively uses
publicly available datasets (e.g., WikiText2, PTB, C4, BookCorpus) that do not contain personally
identifiable information. We believe that our work, which focuses on efficient pruning, primarily
contributes to reducing the computational cost of training and deploying large models. We have
disclosed all relevant details and ensured research integrity in accordance with the Code of Ethics.

Reproducibility Statement We have taken multiple steps to ensure reproducibility. All experimen-
tal settings, including datasets, hyperparameters, model configurations, and evaluation metrics, are
detailed in the main text and Appendix. Algorithmic details and ablation studies are also included.
To further facilitate reproduction, we provide an anonymized code repository in the supplementary
material, containing scripts for data preprocessing, model pruning, training, and evaluation. These
resources allow others to reproduce our results and verify the claims made in this paper.

REFERENCES

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865-10873, 2024.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Hadi Askari, Shivanshu Gupta, Fei Wang, Anshuman Chhabra, and Muhao Chen. Layerif: Es-
timating layer quality for large language models using influence functions. arXiv preprint
arXiv:2505.23811, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 74327439, 2020.

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng Gong, Wayne Xin Zhao, and Ji-Rong Wen. Chat-
cot: Tool-augmented chain-of-thought reasoning on chat-based large language models. arXiv
preprint arXiv:2305.14323, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. Imsys. org (accessed 14 April
2023), 2(3):6, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Subhabrata
Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for efficient
lIm inference. arXiv preprint arXiv:2307.02628, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix

multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318-30332, 2022.

Mauricio Diaz-Ortiz Jr, Benjamin Kempinski, Daphne Cornelisse, Yoram Bachrach, and Tal Kach-
man. Using cooperative game theory to prune neural networks. arXiv preprint arXiv:2311.10468,
2023.

Xuan Ding, Rui Sun, Yunjian Zhang, Xiu Yan, Yueqi Zhou, Kaihao Huang, Suzhong Fu, Chuanlong
Xie, and Yao Zhu. Dipsvd: Dual-importance protected svd for efficient llm compression. arXiv
preprint arXiv:2506.20353, 2025a.

Xuan Ding, Yao Zhu, Yunjian Zhang, and Chuanlong Xie. A sliding layer merging method for
efficient depth-wise pruning in llms. arXiv preprint arXiv:2502.19159, 2025b.

10

Under review as a conference paper at ICLR 2026

Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias Stengel-
Eskin, Mohit Bansal, Tianlong Chen, and Kaidi Xu. Gtbench: Uncovering the strategic reasoning
limitations of 1lms via game-theoretic evaluations. arXiv preprint arXiv:2402.12348, 2024.

Determine Filters’ Importance. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

E Frantar, S Ashkboos, T Hoefler, and D Alistarh. Optq: Accurate quantization for generative
pre-trained transformers. 2023. In URL https://openreview. net/forum, 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pp. 10323-10337. PMLR, 2023.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. In International Conference on Machine Learning, pp.
10421-10430. PMLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Rat-
ner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperform-
ing larger language models with less training data and smaller model sizes. arXiv preprint
arXiv:2305.02301, 2023.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 11, 2024.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Hector J Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. KR,
2012(13th):3, 2012.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
sarial NLI: A new benchmark for natural language understanding. In Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 4885—4901, Online, July 2020. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2020.acl-main.441. URL https://aclanthology.
org/2020.acl-main.441/.

11

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://aclanthology.org/2020.acl-main.441/
https://aclanthology.org/2020.acl-main.441/

Under review as a conference paper at ICLR 2026

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqgi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456-17472, 2022.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Chuan Sun, Han Yu, Lizhen Cui, and Xiaoxiao Li. Efficient shapley value-based non-uniform
pruning of large language models. arXiv preprint arXiv:2505.01731, 2025.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Peng Sun, Yao Zhu, Yunjian Zhang, Xiu Yan, Zizhe Wang, and Xiangyang Ji. Unleashing the
potential of large language models through spectral modulation. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pp. 3892-3911, 2024a.

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters. arXiv
preprint arXiv:2407.09298, 2024b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Xin Wang, Zhongwei Wan, Arvin Hekmati, Mingyu Zong, Samiul Alam, Mi Zhang, and Bhaskar
Krishnamachari. ot in the era of generative ai: Vision and challenges. IEEE Internet Computing,
2024a.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38—45, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. Investigating layer importance in large language
models. arXiv preprint arXiv:2409.14381, 2024.

Yao Zhu, Yunjian Zhang, Zizhe Wang, Xiu Yan, Peng Sun, and Xiangyang Ji. Patchwise cooper-
ative game-based interpretability method for large vision-language models. Transactions of the
Association for Computational Linguistics, 13:744-759, 2025.

Yukun Zhu. Aligning books and movies: Towards story-like visual explanations by watching movies
and reading books. arXiv preprint arXiv:1506.06724, 2015.

12

Under review as a conference paper at ICLR 2026

A USAGE OF LARGE LANGUAGE MODELS

We employed a large language model to assist in polishing the language of this paper. Its use
was restricted to improving linguistic fluency and reducing grammatical inaccuracies, with the goal
of providing a clearer and more accessible reading experience. All research ideas, experimental
designs, and conclusions were conceived and validated solely by the authors.

B METHOD DETAILS

B.1 SURROGATE MODEL

As shown in Fig. [6| we propose using a lightweight surrogate network to estimate layer-wise
marginal contributions. The surrogate network takes binary mask as input, projects it into a hid-
den dimension twice as large (input dimension = number of layers, hidden width = 2 X input),
applies a CELU activation, and finally outputs a single scalar through a sigmoid activation.

Performance Score

| nn.Sigmoid() |

=

| Fully Connected Layer |

o

| nn.CELU() |

>

| Fully Connected Layer |

=

Binary Sequence

Figure 6: Framework of our surrogate network.

We use stochastic gradient descent with momentum 0.9, an initial learning rate of 0.008, and a step-
decay scheduler that reduces the learning rate by a factor of 0.1 every 100 epochs in the training
process. The model is optimized with mean squared error loss, trained with a batch size of 300, and
produces both the learned parameters and the training loss curve as outputs (see Tab. [7)).

Setting Value Setting Value

Input Dim 32 Hidden Dim 64 (CELU)

Output 1 (Sigmoid) Optimizer SGD + Momentum 0.9
Learning Rate 0.008 (decay x0.1 every 100 epochs) | Loss MSE

Table 7: Summary of hyperparameters used for our surrogate network.

We tested the surrogate model’s performance using the LLaMA-2-7B-hf model as an example (see
Tab[8). By calculating error metrics and R? values, we found that the surrogate model performs
stably when changing the random seed or the number of test samples. For different mask configura-
tions, the model maintains high predictive accuracy when the test mask closely matches the training
mask. However, if the test mask differs significantly from the training mask, the model’s predictive
ability declines, which is expected. In practical experiments, the training mask is adjusted according
to the desired pruning ratio, meaning that the test mask is similar to the training mask. This ensures
the usefulness of the surrogate model’s predictions.

13

Under review as a conference paper at ICLR 2026

Case Test Samples Seed Test Mask R?
Same Seed 200 42 ks=(30,27,24,21,18) 0.9360
e Mol 500 42 ks=(30,27,24,21,18) 0.9492

1000 42 ks=(30,27,24,21,18) 0.9464

. 500 500 ks = (30,27, 24,21,18) 0.9359
D‘éfrf;;fffss’ 500 1234 ks =(30,27,24,21,18) 0.9402
500 99999 ks = (30,27, 24,21, 18) 0.9400

Same Seed 500 42 ks=(16,27,24,21,18) 09230
Ditfermt Macks 500 42 ks=(16,14,24,21,18) 0.8658
500 42 ks=(16,14,12,21,18) 0.2466

Table 8: Surrogate Model Performance on LLaMA-2-7B-hf Model.

B.2 HYPERPARAMETERS SETTING

We use BookCorpus as the calibration dataset, sampling 10 prompts of up to 128 tokens, and com-
pute baseline perplexity as the normalization reference for evaluating masked models. All mod-
els are run in floatl6 precision with a fixed random seed of 42. The pruning pipeline follows
three stages: Step 1 evaluates 8,000 randomly masked sub-networks, Step 2 trains the surrogate
for 200 epochs, and Step 3 scores 80,000 masks via the surrogate. Batch sizes are set to 45 for
mask evaluation and 300 for surrogate training. While in principle different architectures may
adopt distinct configurations, our experiments follow the unified settings summarized in Tab. [0
The only variation lies in the predefined Hamming weight sets, which are scaled to match model
depth, e.g., {30,27,24, 21,18} for 32-layer models, {36, 32, 28,24, 20} for 40-layer models, and
{60, 56, 52, 48,42, 38, 34} for 64-layer models. This design ensures fair comparison across models
while preserving flexibility for adaptation to other architectures.

Component Setting Value Setting Value
Dataset BookCorpus (10 samples, 128 tokens) Random Seed 42
Batch size of Mask Evaluation 45 Batch size of training 300

Number of Layers 32 Precision float16

LLaMA-2-7B-hf Hamming Weights {30, 27, 24,21, 18} Step 1 Samples 8,000
Step 2 Epochs 200 Step 3 Samples 80,000

Number of Layers 32 Precision float16

Vicuna-7B-v1.3 Hamming Weights {30, 27, 24, 21, 18} Step 1 Samples 8,000
Step 2 Epochs 200 Step 3 Samples 80,000

Number of Layers 32 Precision float16

Meta-LLaMA-3-8B Hamming Weights {30, 27, 24, 21, 18} Step 1 Samples 8,000
Step 2 Epochs 200 Step 3 Samples 80,000

Number of Layers 40 Precision float16

LLaMA-2-13B-hf Hamming Weights {36, 32, 28, 24, 20} Step 1 Samples 8,000
Step 2 Epochs 200 Step 3 Samples 80,000

Number of Layers 32 Precision float16

RWKV-4-World-7B Hamming Weights {30, 27, 24,21} Step 1 Samples 12,000
Step 2 Epochs 200 Step 3 Samples 80,000

Number of Layers 64 Precision float16

Mamba-2.8B Hamming Weights {60, 56, 52, 48, 42, 38, 34} Step 1 Samples 8,000
Step 2 Epochs 200 Step 3 Samples 80,000

Table 9: Summary of hyperparameters used in our experiments.

14

Under review as a conference paper at ICLR 2026

B.3 ALGORITHM PSEUDOCODE

Algorithm [T] provides the main procedure of our method, where layer contributions are estimated
through mask perturbation, surrogate training, and Monte Carlo approximation. To support this
process, Algorithm 2] describes the auxiliary strategy used to generate binary masks with predefined
Hamming weights, ensuring sufficient diversity of pruning patterns for stable surrogate learning.
Together, these components form the backbone of our pruning framework.

Algorithm 1 Layer Contribution Estimation via Mask Perturbation and Surrogate Learning

Require: Pretrained model M with L layers; validation set D; number of masks /V; Monte Carlo
samples M.
Ensure: Estimated layer contribution scores C' € R”.
1: Stage 1: Data Generation (Mask Evaluation)
2: for each mask m; sampled by stratified Hamming weight do
3: Apply mask m; to M and compute masked model perplexity PPLasked (M)
4 Compute performance score:

s(m;) = _ PPLbascline
I PPL jhasked (mj)
5: end for
6: Stage 2: Surrogate Training and Layer Contribution Estimation
7: Train surrogate network fy to predict mask scores with MSE loss:
2
L3 (ot~ omy)
j:].
8: for { =1to L do > Estimate contribution for each layer
9: A« 0
10: for m = 1to M do > Monte Carlo approximation over random masks
11: Sample a base mask m
12: Compute marginal contribution:
A= fo(myg) — fo(m_y)
13: A—A+A

14: end for

15: Cy + A/M

16: end for

17: return C = (C1,Cs,...,CL)

C EXPERIMENTAL SETTING

C.1 BASELINE METHODS

We primarily consider the width-wise pruning methods and depth-wise pruning methods as our
baseline methods in our analysis. The specific information of baseline methods are described below,
where we use their official code for implementation. To ensure a fair comparison, we employ the
same calibration dataset across all methods.

C.1.1 WIDTH-WISE METHOD

The width-wise pruning baselines considered include Wanda-sp, FLAP, and LLM-Pruner. Wanda-
sp is a structured variant of Wanda (Sun et al, 2024b), where the original metric—based on the
product of weight magnitudes and input activation norms—is extended to exploit shared dimensions
across modules (An et al.| [2024). FLAP (An et al. |2024) is a retraining-free structured pruning
framework that evaluates the recoverability of feature maps via the fluctuation pruning index. It
adaptively determines the compressed structure using normalized importance scores and introduces

15

Under review as a conference paper at ICLR 2026

Algorithm 2 Stratified Mask Sampling by Hamming Weight

Require: Number of layers L, total samples M, predefined Hamming weights K
Ensure: A set of binary masks M
1: if per_k is not given then
2 q+ |M/|K|],r + M mod |K]|
3 per_k < [¢ + 1 for first r values, ¢ for others]
4: end if
5 M« 0
6
7
8

: for each (k, ¢) in (K, perk) do
: for i = 1tocdo

: idx < randomly select k distinct indices from {1, ..., L}
9: m < binary vector of length L with m[idx] = 1, others = 0
10: M~ MU {m}
11: end for
12: end for
13: return M

bias correction to pruned feature maps to mitigate accuracy loss. As in the original paper, we adopt
the default configuration: pruning metric = WIFV (among [IFV, WIFV, WIFN, N/A]) and global
structure = AL-AM (among [UL-UM, UL-MM, AL-MM, AL-AM]). LLM-Pruner (Ma et al., 2023)
employs a Taylor-based importance metric to prune attention heads in MHA and neurons in FFN,
operating locally within modules while preserving dimension consistency across blocks; we follow
the original setting of keeping the first four and last two layers intact. The specific pruning ratios
applied to LLaMA-2-7B-hf are detailed in Tab.

Method Remove 3 layers Remove 6 layers Remove 9 layers Remove 12 layers
Pruned Ratio Params Pruned Ratio Params Pruned Ratio Params Pruned Ratio Params
Wanda-sp 0.1 6104813568 0.19 5513809920 0.29 4879552512 0.38 4288548864
FLAP 0.1 6091898880 0.19 5509578752 0.28 4924891136 0.38 4279099392
LLM_Pruner 0.12 6152794112 0.24 5512646656 0.35 4907642880 0.46 4357165056

Table 10: Pruned ratio settings of width-wise method on LLaMA-2-7B-hf.

C.1.2 DEPTH-WISE METHOD

Depth pruning methods adopt the Transformer block as the basic pruning unit. We evaluate four
representative approaches: SliceGPT, SLEB, ShortGPT, and Shortened-LLaMA. SliceGPT (Ashk-
boos et al.| [2024) is a post-training sparsification technique that replaces each weight matrix with
a smaller dense matrix, thereby reducing the embedding dimension; the pruning ratios used in our
experiments are summarized in Tab.[TT} SLEB (Song et al.,[2024) employs a logit-based criterion to
identify redundant blocks and iteratively updates importance scores after block removal. Although
designed for a no-retraining scenario, SLEB suffers from noticeable performance degradation at
higher pruning rates. ShortGPT (Men et al., 2024) introduces the Block Influence (BI) metric,
which quantifies the contribution of each block by measuring the similarity between its input and
output representations. Shortened-LLaMA (Kim et al.;[2024) determines block importance based on
perplexity (PPL) sensitivity and removes low-importance layers accordingly. The specific pruned
layer indices for SLEB, ShortGPT, and Shortened-LLaMA across four different model architectures

are provided in Tab. [12] Tab.[13] Tab.[14] and Tab.

Method Remove 3 layers Remove 6 layers Remove 9 layers Remove 12 layers
Pruned Ratio Params Pruned Ratio Params Pruned Ratio Params Pruned Ratio Params
LLaMA-2-7B-hf 0.2 6105940928 0.3 5292914432 0.35 4886502400 0.4 4500862400
Vicuna-7b-v1.3 0.2 6105940928 0.3 5292914432 0.35 4886502400 0.4 4500862400
Meta-Llama-3-8B 0.19 7309430528 0.25 6775635968 0.33 6057853888 0.33 6057853888

Table 11: Pruned ratio settings of SliceGPT.

16

Under review as a conference paper at ICLR 2026

Params Method Remove Layers Index
SLEB [15, 14, 24]
Shortened_llama [28, 27, 25]
Remove 3 layers 6.1B (6131265536) ShoriGPT (25,27, 26]
Ours [21, 23, 11]
SLEB [15, 14, 24, 13, 25, 22]
. Shortened_llama [28, 27, 25, 29, 26, 24]
Remove 6 layers 5.5B (5524115456) ShoriGPT (25,27, 26, 24. 28, 29]
Ours [21, 23, 11, 12, 18, 24]
SLEB [15, 14, 24, 13, 25, 22, 8, 23, 12]
Shortened_llama [28, 27, 25, 29, 26, 24, 23, 21, 22]
Remove 9 layers | 4.9B (4916965376) ShortGPT [25.27. 26, 24. 28, 29. 23.22. 21]
Ours [21, 23,11, 12, 18, 24, 10, 27, 25]
SLEB [15, 14, 24, 13, 25, 22, 8, 23, 12, 29, 21, 7]
Shortened llama [28, 27, 25, 29, 26, 24, 23, 21, 22, 20, 19, 18]
Remove 12 layers | 4.38 (4309815296) ¢} Gpr (25,27, 26, 24, 28, 29, 23, 22, 21, 19, 30, 20]
Ours [21, 23, 11, 12, 18, 24, 10, 27, 25, 14, 8, 9]

Table 12: Pruned layer index of depth-wise method on LLaMA-2-7B-hf.

Params Method Remove Layers Index
SLEB 17,27, 24]
Shortened_llama [27, 26, 24]
Remove 3 layers 6.1B (6131265536) ShoriGPT (27,28, 26]
Ours [26, 24, 29]
SLEB [7,27,24,17, 22, 10]
Shortened_llama [27, 26, 24, 25, 29, 28]
Remove 6 layers | 5.5B (5524115456) ShortGPT (27,28, 26.29. 25, 24]
Ours [26, 24,29, 27, 11, 10]
SLEB [7,27,24,17,22, 10, 26, 13, 14]
Shortened_llama [27, 26, 24, 25, 29, 28, 23, 21, 22]
Remove 9 layers 4.9B (4916965376) ShortGPT [27.28.26.29. 25. 24,23, 22. 21]
Ours [26, 27, 24,29, 11, 12, 10, 22, 25]
SLEB [7,27,24,17, 22, 10, 26, 13, 14, 8, 9, 25]
- Shortened_llama [27, 26, 24, 25, 29, 28, 23, 21, 22, 20, 19, 18]
Remove 12 layers | 4.38 (4309815296) g} gpr (27, 28, 26, 29, 25, 24, 23, 22, 21, 30, 20, 19]
Ours [26,24,29,27,11,10,25,12,22,9,20,8]

Table 13: Pruned layer index of depth-wise method on Vicuna-7B-v1.3.

C.2 SELECTED LAYERS OF NON-TRANSFORMER MODELS

We evaluate our method on non-Transformer architectures, including RWKV-4-World-7B and
Mamba-2.8B. Tab. [I6]reports the specific layer indices removed by our approach.

C.3 SELECTED LAYERS OF QUANTIZED MODEL

Our pruning method can be combined with quantization to further decrease memory usage. To
validate this aspect, we apply 4-bit GPTQ to our pruned models, using 128 randomly sampled
sequences with 2048 tokens from the C4 dataset as calibration data. The specific layer indices
removed under different integration orders of pruning and quantization are summarized in Tab. [T7]

D DETAILED RESULTS OF ZERO-SHOT EVALUATION

In the main text, we reported the average performance of our method on eight zero-shot tasks for
different model architectures. To provide a more comprehensive view, we include the detailed per-
task results in Tab.[T8] and Tab.

17

Under review as a conference paper at ICLR 2026

Params Method Remove Layers Index
SLEB [7, 25, 18]
. Shortened llama [24, 25, 26]
Remove 3 layers 7.4B (7375925248) ShortGPT (25, 27. 26]
Ours [8, 25, 26]
SLEB [7,25, 18, 23, 28, 26]
Shortened_llama [24, 25, 26, 28, 29, 23]
Remove 6 layers 6.7B (6721589248) ShoriGPT [25.27. 26, 24. 28, 23]
Ours [8, 25,26, 10, 11, 19]
SLEB [7, 25, 18, 23, 28, 26, 14, 13, 22]
Shortened_llama [24, 25, 26, 28, 29, 23, 27, 22, 20]
Remove 9 layers 6.1B (6067253248) ShortGPT [25.27. 26, 24. 28, 23. 22, 29. 21
Ours [8, 25, 26, 10, 11, 19, 24, 9, 12]
SLEB [7,25, 18, 23, 28, 26, 14, 13, 22, 10, 8, 21]
. Shortened llama [24, 25, 26, 28, 29, 23, 27, 22, 20, 19, 21, 18]
Remove 12 layers | 54B (S412917248) 1 ipr (25, 27,26, 24, 28,23, 22, 29, 21,20, 19, 18]
Ours [8,25,26,10,11,19,24,9, 12,23, 21, 22]

Table 14: Pruned layer index of depth-wise method on Meta-LLaMA-3-8B.

Params Method Remove Layers Index
SLEB [15,28, 31, 29]
Shortened_llama [35, 33, 34, 36]
Remove 4 layers 11.7B (11747046400) ShortGPT (33, 31, 32, 30]
Ours [31, 27, 26, 29]
SLEB [15,28, 31,29, 22, 13, 18, 8]

Remove 8 layers

10.5B (10478228480)

Shortened_llama

[35, 33, 34, 36, 37, 31, 32, 30]

ShortGPT [33, 31, 32, 30, 34, 35, 29, 28]
Ours [31,27, 26, 29, 25, 28, 10, 24]
SLEB [15, 28, 31, 29, 22, 13, 18, 8, 30, 27, 19, 33]
Shortened llama [35, 33, 34, 36, 37, 31, 32, 30, 28, 27, 29, 26]
Remove 12 layers | 9.2B (9209410560) o ' spp [33, 31, 32, 30, 34, 35, 29, 28, 27, 36, 37, 26]
Ours [31,27, 26, 29, 25, 28, 10, 24, 15, 22, 23, 30]

Table 15: Pruned layer index of depth-wise method on LLaMA-2-13B-hf.

E FURTHER RESULTS OF LORA RETRAINING

LoRA provides an efficient approach to refining large language models (LLMs) with significantly
reduced computational overhead. In our experiments, we follow the setup in|Ma et al.| (2023)) and
insert LoRA adapters into every projection weight matrix of the Transformer blocks. Specifically,
we adopt a LoRA rank of 8, train with a learning rate of le-4, a batch size of 64, and run for 2
epochs. The entire fine-tuning process is lightweight: it requires only a single GPU and incurs
negligible retraining cost compared to full model fine-tuning.

As shown in Fig. [/ LoRA fine-tuning consistently lowers perplexity across different pruning ra-
tios, and the benefit becomes more pronounced as pruning intensifies. When compared at the 4.3B
scale, our method not only maintains the lowest perplexity prior to fine-tuning but also preserves
this advantage after LoRA is applied, underscoring both its robustness and its compatibility with
lightweight adaptation strategies.

F ABLATION STUDY

F.1 CALIBRATION DATASET

We analyze the effect of calibration settings on pruning robustness in Table 20} With mild prun-
ing, different datasets lead to comparable outcomes, but discrepancies become evident under more
aggressive pruning: WikiText2 calibration degrades PTB perplexity more severely, while C4 shows
less stability on its own domain. Increasing the number of calibration samples (from 10 to 50 or
100) delays degradation in the moderate pruning, yet once more than ten layers are removed, all

18

Under review as a conference paper at ICLR 2026

Model Params Remove Layers Index
Remove 6 layers 6.2B (6208757760) 12, 20, 13, 29, 23, 5]
RWKV-4-World-7B Remove 9 layers | 5.6B (5554311168) [12, 20, 13, 29, 23, 5, 17, 25, 15]
Remove 12 layers | 4.9B (4899864576) [12,20, 13, 29, 23, 5, 17, 25, 15, 22, 18, 3]
Remove 6 layers | 2.5B (2520880640) [8,5,3,7,4, 13]
Mamba-2.8B Remove 12 layers | 2.3B (2273415680) [8,5,3,7,4, 13, 10,9, 31, 6, 32, 21]
Remove 18 layers | 2.0B (2025950720) [8,5,3,7,4,13,10,9, 31, 6, 32, 21, 14, 22, 12, 35, 34, 27]

Table 16: Pruned layer index of our pruning method on non-Transformer model.

Scheme Pruned layer index
Remove 3 layers by ours then 4-bit quantization [21, 23, 11]

4-bit quantization then remove 3 layers by ours [21, 11, 12]
Remove 6 layers by ours then 4-bit quantization [21, 23, 11, 12, 18, 24]
Remove 3 layers by ours then 4-bit quantization then remove 3 layers by ours | [21, 23, 11] +[11, 10, §]
4-bit quantization then remove 6 layers by ours [21, 11, 12, 25, 23, 10]

Table 17: Perplexity results on LLaMA-2-7B-hf under different integration orders of our pruning
strategy and 4-bit quantization.

settings deteriorate similarly. We attribute this to distributional biases across datasets, as well as the
surrogate model’s tendency to overfit noisy calibration signals when exposed to larger and more het-
erogeneous sets. These results indicate that pruning robustness depends little dataset choice, benefits
only marginally from sample size, and is fundamentally limited by the depth of pruning.

F.2 SIMULATION NUMBER FOR LAYER PRUNING

To examine the effect of the number of Monte Carlo simulations (Simu_Num) on pruning per-
formance, we conduct an ablation study on LLaMA-2-7B-hf with simulation counts ranging from
3,000 to 15,000, as shown in Tab. [21] In the lightly pruned regime, all settings yield similar perplex-
ity across WikiText2, PTB, and C4, indicating robustness to simulation count. As pruning deepens,
schemes with larger Simu_Num achieve slightly lower perplexity, reflecting more accurate estima-
tion of layer importance. For example, Scheme 9 (Simu_Num=15,000) consistently outperforms
Scheme 7 (Simu_Num=3,000) when 12 layers are pruned. Although perplexity increases with prun-
ing depth across all settings, the relative ranking of masks remains stable, suggesting that our method
reliably identifies critical layers even with fewer simulations.

F.3 HAMMING WEIGHT CONSTRAINT FOR MASK GENERATION

We analyze the effect of incorporating a Hamming Weight constraint in Step 1 during mask gen-
eration. Tab. [22] compares Scheme 1, which adopts stratified sampling over predefined Hamming
Weights ks = (30,27, 24,21, 18), with Scheme 13, which generates masks fully at random. The
results show a clear advantage of using the Hamming Weight constraint. In the lightly pruned
regime (first pruning step), both approaches achieve similar PPL, but as pruning proceeds, random
mask generation in Scheme 10 quickly leads to sharp performance degradation. For instance, af-
ter pruning 9 layers, Scheme 1 yields PPLs of 24.6, 77.0, and 20.7 on WikiText2, PTB, and C4,
respectively, while Scheme 10 under the same pruning depth reaches much higher values of 60.0,
190.6, and 43.9. The gap further widens when pruning 12 layers, where random sampling results in
catastrophic degradation (PPL >100 on WikiText2).

To further explore the impact of the Hamming weight constraint, we tested several additional weight
constraints (Schemes 10-12). The results show that different Hamming weight ranges lead to vary-
ing performance. In the case of light pruning (e.g., pruning 3 layers), the differences are minimal.
However, as pruning depth increases, the effects become more pronounced. As we intervene more
with the Hamming weights (from Scheme 10 to Scheme 12), the pruning performance progressively
worsens, and this effect becomes more pronounced as the pruning depth increases.

The optimal performance of Scheme 1 further highlights that the choice of Hamming weight range
should be tailored to the desired pruning ratio. A balanced Hamming weight range that matches

19

Under review as a conference paper at ICLR 2026

Params | Method PIQA HeSw ARC-e ARC-c OBQA Race WSC237 LAMBADA
SliceGPT 0.6371 0.5076 0.4512 0.2841 0.2980 0.3273 0.7436 0.3227
SLEB 0.7726 0.6993 0.7643 0.4556 0.4160 0.3818 0.7949 0.6026
7.4B | Shortened_llama 0.7726 0.7569 0.7584 0.4761 0.4020 0.3837 0.8425 0.6472
ShortGPT 0.7644 0.7566 0.7517 0.4863 0.4220 0.3990 0.8095 0.4535
Ours 0.7797 0.7399 0.7466 0.4710 0.4240 0.3914 0.8315 0.6994
SliceGPT 0.6034 0.4440 0.3830 0.2585 0.2740 0.3110 0.7106 0.2827
SLEB 0.7394 0.6352 0.6856 0.4215 0.3660 0.3770 0.7143 0.5447
6.7B | Shortened_llama 0.7155 0.6419 0.6557 0.4411 03760 0.3627 0.7399 0.3776
ShortGPT 0.7247 0.6815 0.6263 0.4352 0.3700 0.3569 0.7399 0.3433
Ours 0.7459 0.6473 0.6662 0.3840 0.3560 0.3292 0.7582 0.5581
SliceGPT 0.5773 0.3612 0.3249 0.2381 0.2540 0.2756 0.6593 0.2057
SLEB 0.6768 0.5218 0.5362 0.3268 0.3280 0.2900 0.6484 0.2930
6.1B | Shortened llama 0.5881 0.2912 0.3746 0.3038 0.2800 0.2536 0.5385 0.0287
ShortGPT 0.6143 03159 0.3994 0.3183 0.3000 0.2440 0.6374 0.0487
Ours 0.7138 0.5561 0.5934 0.3242 0.3140 0.2995 0.6447 0.2952
SliceGPT 0.5571 03106 0.3114 0.2312 0.2560 0.2584 0.5897 0.1225
SLEB 0.6246 0.4063 0.4125 0.2884 0.2780 0.2766 0.5934 0.0768
5.4B | Shortened_llama 0.5876 0.3774 0.3737 0.3038 0.2800 0.2699 0.6337 0.0349
ShortGPT 0.5876 03774 03737 0.3038 0.2800 0.2699 0.6337 0.0349
Ours 0.6474 0.4530 0.4583 0.2807 0.2940 0.2842 0.5971 0.1149

Table 18: Detailed Zero-shot Downstream Task Performance of Meta-LLaMA-3-8B.

Params | Method PIQA HeSw ARC-e ARC-c OBQA Race WSC237 LAMBADA
SLEB 0.7709 0.7593 0.7567 0.4608 0.4360 0.4038 0.8352 0.6918
Shortened llama 0.7709 0.7694 0.7563 0.4727 0.4420 0.4048 0.8278 0.6350

11.7B | ShortGPT 0.7726 0.7662 0.7614 0.4770 0.4460 0.4029 0.8645 0.6738
SliceGPT 0.6801 0.5654 0.5189 0.3328 0.3380 0.3435 0.8535 0.3350
Ours 0.7731 0.7733 0.7567 0.4667 0.4280 0.3971 0.8535 0.7279
SLEB 0.7470 0.6851 0.6902 0.4070 0.3840 0.3636 0.7729 0.5595
Shortened llama 0.7291 0.6536 0.6246 0.3857 0.4320 0.3455 0.7949 0.3062

10.5B | ShortGPT 0.7399 0.7240 0.6852 0.4377 0.4120 0.3828 0.7985 0.5224
SliceGPT 0.6219 0.4525 0.4015 0.2910 0.2960 0.3177 0.7875 0.2608
Ours 0.7443 0.7257 0.6890 0.4155 0.3840 0.3694 0.8095 0.6389
SLEB 0.7193 0.6295 0.6132 03643 0.3580 0.3445 0.7289 0.4735
Shortened_llama 0.6801 0.5793 0.5535 0.3575 0.3780 0.3062 0.7839 0.2212

9.2B | ShortGPT 0.6801 0.5793 0.5535 0.3575 0.3780 0.3062 0.7839 0.2212
SliceGPT 0.5963 0.4096 0.3561 0.2790 0.2960 0.2852 0.7253 0.2123
Ours 0.7013 0.6399 0.5930 0.3567 0.3740 0.3636 0.7289 0.5044
SLEB 0.6823 0.5485 0.5311 0.3328 0.3300 0.3081 0.6557 0.3569
Shortened llama 0.6230 0.4718 0.4524 0.3174 03560 0.2775 0.6630 0.1304

79B | ShortGPT 0.6230 0.4718 0.4524 0.3174 0.3560 0.2775 0.6630 0.1304
SliceGPT 0.5642 0.3309 0.2976 0.2585 0.2500 0.2612 0.6520 0.1285
Ours 0.6567 0.5265 0.4566 0.3046 0.3220 0.3263 0.6520 0.3419

Table 19: Detailed Zero-shot Downstream Task Performance of LLaMA-2-13B-hf.

the pruning requirements is essential to maintain performance while ensuring diverse and effective
pruning patterns.

Overall, all constrained sampling schemes (Schemes 1, 10, 11, and 12) outperform random sampling
(Scheme 13), underscoring the advantages of Hamming-weight-guided pruning. These findings sug-
gest that stratified sampling by Hamming Weight stabilizes the Monte Carlo estimation of layer con-
tributions, ensuring that sampled masks cover diverse pruning patterns in a more balanced manner.
Without this constraint, random sampling can generate unbalanced or extreme masks, which may
bias importance estimation and lead to suboptimal pruning. Ultimately, Hamming Weight-guided
sampling significantly improves the robustness and effectiveness of our framework, particularly un-
der deep pruning.

20

Under review as a conference paper at ICLR 2026

w0 (a) PPL before/after LoRA under different pruning ratios (b) PPL before/after LoRA with different methods at 4.3B
38.12 304.52
Before LoRA 300 Before LoRA
= After LORA B After LORA
35
250
30
25 24.61 24.61 200 196.62
4 20.09 4 157.99
2 20 18.87 T
16.91 150
15 14.69 14.47
100
10
512 51.29
50 38.12
5 27.89 24.61
. , i .
6.18 5.5B 4.98 4.38 SLEB Shortened_LLaMA ShortGPT ours

Figure 7: Effect of LoRA fine-tuning on pruned models. (a) PPL before and after LoRA fine-
tuning under different pruning ratios using our method. (b) PPL before and after LoRA fine-tuning
with different pruning methods at 4.3B parameters.

Scheme | Calibration Dataset Pruned Layer Index PPL_WikiText2 PPL_PTB PPL_C4 | Other Setting
121,23, 11] 14.6949 537517 12.9682
Scheme! | Bookcorpus, numeto 2123 1112.18,241 18.8686 618678 16.1392
[21,23, 11, 12, 18, 24, 10, 27, 25] 24.6093 769957 20.7231
[21,23, 11, 12, 18, 24, 10, 27, 25, 14,8, 9] 38.1157 1052407 287712
[11, 21, 24] 14.4671 537517 127671
Scheme? | C4. nume10 [11,21, 24, 14, 25, 23] 18.8686 61.8678 16.1392
[11,21, 24, 14,25, 23,9, 12, 8] 24.9969 79.4398 20.4018
[11,21,24, 14,25, 23,9, 12, 8, 13,27, 10] 38.1157 1484132 26.1965
24, 11, 12] 13.5906 52.0070 12.1825 | simu_num=8000
. 124, 11, 12,27, 23, 8] 17.7254 61.8678 15.1614 | epoch=300
Scheme3 | Wikitext2, num=10
chemes | WIKIextS, num [24,11,12,27,23, 8,21, 10, 14] 25.3905 79.4398 20.4018 | mc=8000
[24, 11, 12,27, 23,8, 21, 10, 14, 22, 25, 18] 52,0079 1394213 363702 | ks=(30,27,24.21,18)
22,21, 12] 14.9263 520183 12.9682
122,21, 12, 24, 11, 23] 19.7741 61.8678 15.8890
Scheme4 | Bookcorpus, num=50
chemes | Bookeorpus, nurm 122,21, 12,24, 11, 23, 14, 25, 10] 25.7903 769957 207231
122,21, 12, 24, 11, 23, 14, 25, 10, 18, 17, 8] 52,0079 139.4213 37.5247
23, 11, 21] 12.6949 537517 12.9682
123, 11,21, 12, 24, 25] 18.2881 61.8678 15.8890
Scheme5 | Bookcorpus, num=100
chemes: | Bookeorpus, num [23, 11, 21, 12, 24, 25, 14, 18, 10] 24.9969 769957 207231
123, 11,21, 12, 24, 25, 14, 18, 10, 22, 8, 13] 61.8678 2687415 34.1666

Table 20: Ablation study on calibration dataset for layer pruning in LLaMA-2-7B-hf.

G COMPUTATIONAL COST AND PRACTICAL OVERHEAD

We provide an overview of the computational cost of our pruning framework to give readers a sense
of its efficiency in Tab.[23] Our method consists of two stages:

Stage 1: Mask Evaluation. In this stage, we evaluate the contribution of each layer by generating
and scoring a set of pruning masks. For the LLaMA-2-7B-hf model, evaluating 8,000 randomly
generated masks requires approximately 15 minutes on a single NVIDIA V100 GPU with 32GB of
memory. This step establishes the performance landscape needed to estimate layer importance.

Stage 2: Surrogate Model Training and Contribution Estimation. Once the evaluation data
is collected, we train a lightweight surrogate model to predict the performance of unseen masks.
Training the surrogate model is extremely fast, taking less than one minute. Using the surrogate
model to score 80,000 masks and estimate Shapley-based importance values for all layers requires
around 15 minutes on the same V100 GPU.

Without the surrogate model (i.e., directly estimating Shapley values by evaluating each of the
80,000 masks across all 32 layers), the computation would require roughly 80,000 x 32 forward
passes, taking about 320 hours on the same hardware. Furthermore, computing exact Shapley values
without Monte Carlo approximation would require evaluating all possible combinations of layers,
i.e., 232 masks for a 32-layer model, which is computationally infeasible. This highlights the ne-

21

Under review as a conference paper at ICLR 2026

Scheme | Simu_Num Pruned Layer Index PPL_WikiText2 PPL_PTB PPL_C4 | Other Setting
21,23, 1] 14.6949 537517 12.9682
sehemel | goo0 [21:2311,12.18,24) 18.8686 61.8678 16.1392
121,23, 11, 12, 18, 24, 10, 27, 25] 24.6093 769957 20.7231
121,23, 11, 12, 18, 24, 10, 27, 25, 14, 8, 9] 38.1157 1052407 287712
[11,23,21] 14.6949 537517 12.9682
[11,23,21, 12,25, 27] 18.5761 61.8678 15.8890
Scheme6 | 5000
cheme [11,23,21, 12, 25,27, 18, 10, 24] 24.6093 769957 20.7231
[11,23,21, 12,25, 27, 18, 10, 24, 13, 22, 14] 54.5982 229.8668 35.8063
121, 11, 24] 14.4671 S3ISIT TG | o
sehemer | 3000 [2111,24,10,8,27] 18.0046 63.8317 156426 | POo
121, 11,24, 10, 8,27, 18, 12, 23] 25.3905 769957 204018 | MUY 1s)
121, 11,24, 10, 8,27, 18, 12,23, 25, 7, 14] 45.9763 112.0281 31,5990 | 0o hebat
[11,21, 23] 14.6949 537517 12.9682
[11,21,23, 12,27, 18] 18.0046 61.8678 15.8890
Scheme8 | 10000
cheme [11,21,23, 12,27, 18,25, 10, 24] 24.6093 76.9957 207231
[11,21,23, 12,27, 18, 25, 10, 24,9, 14, 17] 43.8708 126.9445 32.0966
[11,23,21] 14.6949 537517 12.9682
[11,23,21, 12, 10, 27] 17.1801 61.8678 15.1614
Scheme9 | 15000
cheme [11,23,21, 12, 10, 27, 18, 24, 25] 24.6093 76.9957 207231
[11,23,21, 12, 10,27, 18, 24, 25,9, 7, 14] 43.8708 126.9445 32.0966

Table 21: Ablation study on the number of Monte Carlo simulations (Simu_Num) for layer pruning
in LLaMA-2-7B-hf.

Scheme Hamming Weight Pruned Layer Index PPL_WikiText2 PPL_PTB PPL_C4 | Other Setting
121,23, 11] 14.6949 537517 129682
Schemel | ks=(30.2724.21.18) [21,23, 11, 12, 18, 24] 18.8686 618678 161392
[21,23, 11, 12, 18, 24, 10,27, 25] 246093 769957 207231
[21,23, 11, 12, 18, 24, 10,27, 25, 14, 8, 9] 38.1157 1052407 28.7712
[11, 24, 12] 13.6874 519857 122754
[11,24, 12, 23, 10, 20] 18.4794 60.9857 155452
hemel0 | ks=(30,27,24.21,1
Schemel0 | ks=(30,27,2421,10) [11,24, 12,23, 10, 20, 25, 21, 7] 257113 775073 204523
[11,24, 12,23, 10,20, 25, 21,7, 14,8, 27] 48.6813 114.6653 33.0519
{11, 12, 23] 13.8152 524852 123442 | . 5000
simu_num=
[11, 12,23, 21, 24, 14] 18.4125 614412 157563
chemell | ks=(30,27,14,12,1 h=
Schemell | ks=(30.27,14.12,10) [11,12, 23,21, 24, 14,20, 18, 25] 30.7862 847057 24.0289 epf’fgoggg
[11,12,23,21,24, 14,20, 18,25, 10,22,7] 555611 1592974 377783 | ™%
6, 14, 20] 15455 556454 13.1504
6, 14, 20, 8, 9, 21] 21,5396 714415 168722
Schemel?2 | ks=(30,16,14,12,10
chemel2 | ks=(30.16.) 6. 14, 20, 8, 9, 21, 10, 25, 26] 32214 88.0215 22203
6. 14, 20, 8, 9, 21, 10, 25, 26, 15, 29, 23] 743637 1497612 48.9448
119, 8, 16] 16.3933 590643 14.0220
119, 8, 16, 17, 28, 30] 29,6845 95.8227 234824
Schemel3 | Generate Mask Random
cheme enerate Mask Randomiy 19,8, 16, 17, 28, 30, 3, 12, 15] 59.9643 1905663 43.8708
[19,8, 16, 17,28, 30, 3, 12, 15, 23, 25, 7] 1155843 3344542 76.9957

Table 22: Ablation study on Hamming weight constraint for mask generation in LLaMA-2-7B-hf.

cessity of our two-stage approximation method, combining stratified Monte Carlo sampling with a
lightweight surrogate model, to estimate layer importance efficiently.

Scheme Method Computation Approx. Time
Scheme 1 | Stage 1 + Stage 2 (Our method) 8,000 + surrogate for 80,000 15 minutes + 15 minutes
Scheme 2 | Direct evaluation (Monte Carlo Shapley) 80,000 x 32 forward passes ~ 5 x 32 hours
Scheme 3 | Exact Shapley computation 232 forward passes Infeasible

Table 23: Computational overhead for estimating layer importance on LLaMA-2-7B-hf using 32GB

V100 GPU.

H INTEGRATION OF STRUCTURED PRUNING AND UNSTRUCTURED PRUNING

Here we demonstrate the effectiveness of combining structured and unstructured pruning methods,
which leverages the strengths of both approaches. Specifically, unstructured pruning, as exemplified
by SparseGPT, excels in maintaining high post-pruning accuracy but results in irregular sparse ma-
trices, making it more suited for storage compression than inference acceleration. On the other hand,

22

Under review as a conference paper at ICLR 2026

structured pruning—such as depth pruning—provides a more regular sparsity pattern that can signif-
icantly accelerate inference. Our results in Tab[24]show that integrating these two methods strikes a
balance between model performance and computational efficiency. Specifically, using LLaMA2-7B
model as an example, we divide the pruning process into unstructure pruning and structure prun-
ing. In the first stage, we use the SparseGPT method to prune weights. In the second stage, we
compress the model obtained in the first stage by our proposed method. The experiment controlled
the total pruning ratio at 37.5%, with the proportion of structure and non-structure being adjusted.
The results show that increasing SparseGPT’s pruning ratio while reducing our deep pruning ratio
decreases perplexity (PPL) but reduces efficiency. Conversely, reducing PPL typically enhances
efficiency.

Integrated Method PPL Efficiency
Unstructured Ratio ~ Structured Ratio | WikiText2 PTB C4 Latency(sec) Throughout(tokens/s)
0% 100% 38.1157 105.2407 28.7712 2.2141 57.8891
28% 72% 24.7917 76.1376 20.0237 2.4163 52.9739
50% 50% 18.2917 66.1394 16.1004 2.7269 46.9398
72% 28% 14.4598 53.9301 12.9936 3.044 42.1448
100% 0% 13.5921 50.4833 11.8936 3.3142 38.6315

Table 24: Integration of structured pruning and unstructured pruning. Key metrics such as Perplexity
(PPL), Latency (sec), Throughput (tokens/s), and Number of Parameters (nparam) are analyzed
across different pruning configurations.

It is worth noting that during our experiments, we also discovered that, while ensuring approximate
performance and efficiency requirements, a combined approach can achieve a higher compression
rate compared to using a single pruning method. For instance, when we prune the model using 100%
structured pruning (without any unstructured pruning), the resulting model with approximately 5.5B
parameters achieves perplexity (PPL) values of 18.8686, 61.8678, and 16.1392 on the WikiText2,
PTB, and C4 datasets, respectively, with inference latency of 2.7554 seconds and throughput of
46.455 tokens/s. However, when we apply a combination of 26% unstructured pruning and 74%
structured pruning, reducing the model to 4.6B parameters, we are able to maintain similar PPL
values and inference efficiency.

Params Integrated Prune PPL Efficiency
Unstructured Ratio ~ Structured Ratio | PPL_WikiText2 PPL_PTB PPL_C4 | Latency(sec) Throughout(tokens/s)
5.5B 0% 100% 18.8686 61.8678 16.1392 2.7554 46.455
5.0B 14% 86% 18.3585 64.8451 15.6334 2.7678 46.249
4.6B 26% 74% 18.2917 66.1394 16.1004 2.7269 46.9398
4.1B 44% 56% 19.6860 63.9139 16.2838 2.7237 46.9953

Table 25: Integration of structured pruning and unstructured pruning. Key metrics such as Perplexity
(PPL), Latency (sec), Throughput (tokens/s), and Number of Parameters (nparam) are analyzed
across different pruning configurations.

We have added a comparison with the SLEB method in Tab26] Specifically, using the LLaMA2-7B
model as an example, we first sparsified the model using SparseGPT and then performed further
depth-wise pruning on the sparsified model using both our method and SLEB. To ensure the robust-
ness of the experimental results, we used four models with sparse ratios of 0.1, 0.18, 0.27, and 0.36,
and performed depth pruning with 6, 9, and 12 layers pruned. For a fair comparison, the experiments
were conducted under the same settings. The experimental results in the table below show that our
method outperforms SLEB when integrated with the unstructured pruning approach.

23

Under review as a conference paper at ICLR 2026

Unstructured Method Structured Method PPL_WikiText2 PPL_C4
Sparse Rate Remove layer counts Ours SLEB Ours SLEB
6 18.3585 19.4312 15.6334 16.3469
0.1 9 247917 27.3805 20.0237 21.5788
12 52.8705 589879 32.1339 44.3139
6 18.2917 19.7478 16.1004 16.5431
0.18 9 27.1824 27.8619 21.8909 21.9230
12 53.7073 59.6368 37.2207 44.6520
6 19.6860 23.8295 16.2838 18.8977
0.27 9 26.6423 59.7167 21.5267 43.5821
12 41.7826 189.4915 30.9364 135.0492
6 20.6773 229696 17.472 18.6676
0.36 9 30.6545 33.6778 23.3234 25.4039
12 59.6735 75.7457 37.5587 55.5516

Table 26: Integration of structured pruning and unstructured pruning. Key metrics such as Perplexity
(PPL), Latency (sec), Throughput (tokens/s), and Number of Parameters (nparam) are analyzed
across different pruning configurations.

24

	Introduction
	Related Work
	Pruning Methods for Large Language Models
	Measuring Layer Contributions

	Method
	Layer Pruning as a Cooperative Game
	Algorithm Overview
	Stage One: Mask Generation and Performance Evaluation
	Stage Two: Surrogate Training and Shapley Value Estimation

	Experiments
	Experimental Setup
	Language Modeling
	Inference Performance
	Comparison with Width-wise pruning method
	performance in non-transformer LLM
	Compatibility with Post-Training Quantization

	Conclusion
	Usage of Large Language Models
	Method Details
	Surrogate Model
	Hyperparameters Setting
	Algorithm Pseudocode

	Experimental Setting
	Baseline Methods
	Width-wise method
	Depth-wise method

	Selected Layers of non-Transformer Models
	Selected Layers of Quantized Model

	Detailed Results of Zero-shot Evaluation
	Further Results of LoRA Retraining
	Ablation Study
	Calibration Dataset
	Simulation Number for Layer Pruning
	Hamming Weight Constraint for Mask Generation

	Computational Cost and Practical Overhead
	Integration of structured pruning and unstructured pruning

