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ABSTRACT

Training Large Language Models (LLMs) presents significant memory chal-
lenges, predominantly due to the growing size of weights and optimizer states.
Common memory-reduction approaches, such as low-rank adaptation (LoRA),
add a trainable low-rank matrix to the frozen pre-trained weight in each layer,
reducing trainable parameters and optimizer states. However, such approaches
typically underperform training with full-rank weights in both pre-training and
fine-tuning stages since they limit the parameter search to a low-rank subspace
and alter the training dynamics, and further, may require full-rank warm start. In
this work, we propose Gradient Low-Rank Projection (GaLore), a training strat-
egy that allows full-parameter learning but is more memory-efficient than com-
mon low-rank adaptation methods such as LoRA. Our approach reduces memory
usage by up to 65.5% in optimizer states while maintaining both efficiency and
performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset
with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-
bit GaLore further reduces optimizer memory by up to 82.5% and total training
memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for
the first time, the feasibility of pre-training a 7B model on consumer GPUs with
24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing,
or offloading strategies.

1 INTRODUCTION

Memory Cost (GB)
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8-bit GaLore RTX 4090

Figure 1: Memory consumption of pre-training a
LLaMA 7B model with a token batch size of 256
on a single device, without activation checkpoint-
ing and memory offloading.

Large Language models (LLMs) have shown
impressive performance across multiple disci-
plines, including conversational AI and lan-
guage translation. However, pre-training and
fine-tuning LLMs require not only a huge
amount of computation but is also memory in-
tensive. The memory requirements include not
only billions of trainable parameters, but also
their gradients and optimizer states (e.g., gra-
dient momentum and variance in Adam) that
can be larger than parameter storage them-
selves (Raffel et al., 2023; Touvron et al., 2023;
Chowdhery et al., 2022). For example, pre-
training a LLaMA 7B model from scratch with
a single batch size requires at least 58 GB mem-
ory (14GB for trainable parameters, 42GB for Adam optimizer states and weight gradients, and 2GB
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for activations1). This makes the training not feasible on consumer-level GPUs such as NVIDIA
RTX 4090 with 24GB memory.

In addition to engineering and system efforts, such as gradient checkpointing Chen et al. (2016),
memory offloading Rajbhandari et al. (2020), etc., to achieve faster and more efficient distributed
training, researchers also seek to develop various optimization techniques to reduce the memory
usage during pre-training and fine-tuning.

Parameter-efficient fine-tuning (PEFT) techniques allow for the efficient adaptation of pre-trained
language models (PLMs) to different downstream applications without the need to fine-tune all
of the model’s parameters (Ding et al., 2022). Among them, the popular Low-Rank Adaptation
(LoRA Hu et al. (2021)) reparameterizes weight matrix W ∈ Rm×n into W = W0 + BA, where
W0 is a frozen full-rank matrix and B ∈ Rm×r, A ∈ Rr×n are additive low-rank adaptors to be
learned. Since the rank r � min(m,n), A and B contain fewer number of trainable parameters and
thus smaller optimizer states. LoRA has been used extensively to reduce memory usage for fine-
tuning in whichW0 is the frozen pre-trained weight. Its variant ReLoRA is also used in pre-training,
by periodically updating W0 using previously learned low-rank adaptors (Lialin et al., 2023).

However, many recent works demonstrate the limitation
of such a low-rank reparameterization. For fine-tuning,
LoRA is not shown to reach a comparable performance
as full-rank fine-tuning Xia et al. (2024). For pre-training
from scratch, it is shown to require a full-rank model
training as a warmup (Lialin et al., 2023), before opti-
mizing in the low-rank subspace. There are two possible
reasons: (1) the optimal weight matrices may not be low-
rank, and (2) the reparameterization changes the gradient
training dynamics.

Our approach: To address the above challenge, we propose Gradient Low-rank Projection
(GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than
common low-rank adaptation methods, such as LoRA. Our key idea is to leverage the slow-changing
low-rank structure of the gradient G ∈ Rm×n of the weight matrix W , rather than trying to approx-
imate the weight matrix itself as low rank.

Motivated by the fact that the gradient matrix G becomes low-rank during training. Then, we pro-
pose GaLore that computes two projection matrices P ∈ Rm×r and Q ∈ Rn×r to project the
gradient matrix G into a low-rank form P>GQ. In this case, the memory cost of optimizer states,
which rely on component-wise gradient statistics, can be substantially reduced. Occasional updates
of P and Q (e.g., every 200 iterations) incur minimal amortized additional computational cost. Ga-
Lore is more memory-efficient than LoRA as shown in Table 1. In practice, this yields up to 30%
memory reduction compared to LoRA during pre-training.

We demonstrate that GaLore works well in both LLM pre-training and fine-tuning. When pre-
training LLaMA 7B on C4 dataset, 8-bit GaLore, combined with 8-bit optimizers and layer-wise
weight updates techniques, achieves comparable performance to its full-rank counterpart, with less
than 10% memory cost of optimizer states.

Notably, for pre-training, GaLore keeps low memory throughout the entire training, without requir-
ing full-rank training warmup like ReLoRA. Thanks to GaLore’s memory efficiency, for the first
time it is possible to train LLaMA 7B from scratch on a single GPU with 24GB memory (e.g., on
NVIDIA RTX 4090), without any costly memory offloading techniques (Fig. 1).

GaLore is also used to fine-tune pre-trained LLMs on GLUE benchmarks with comparable or better
results than existing low-rank methods. When fine-tuning RoBERTa-Base on GLUE tasks with a
rank of 4, GaLore achieves an average score of 85.89, outperforming LoRA, which achieves a score
of 85.61.

1The calculation is based on LLaMA architecture, BF16 numerical format, and maximum sequence length
of 2048.
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As a gradient projection method, GaLore is independent of the choice of optimizers and can be
easily plugged into existing ones with only two lines of code, as shown in Algorithm 1. In addition,
its performance is insensitive to very few hyper-parameters it introduces.

2 GALORE: GRADIENT LOW-RANK PROJECTION

Regular full-rank training. At time step t, Gt = −∇Wϕt(Wt) ∈ Rm×n is the backpropagated
(negative) gradient matrix. Then the regular pre-training weight update can be written down as
follows (η is the learning rate):

WT = W0 + η

T−1∑
t=0

G̃t = W0 + η

T−1∑
t=0

ρt(Gt) (1)

where G̃t is the final processed gradient to be added to the weight matrix and ρt is an entry-wise
stateful gradient regularizer (e.g., Adam). The state of ρt can be memory-intensive. For example,
for Adam, we need M,V ∈ Rm×n to regularize the gradient Gt into G̃t:

Mt = β1Mt−1 + (1− β1)Gt (2)

Vt = β2Vt−1 + (1− β2)G2
t (3)

G̃t = Mt/
√
Vt + ε (4)

Here G2
t and Mt/

√
Vt + ε means element-wise multiplication and division. η is the learning rate.

Together with W ∈ Rm×n, this takes 3mn memory.

Gradient Low-Rank Projection. Since Gt may have a low-rank structure, if we can keep the
gradient statistics of a small “core” of gradient Gt in optimizer states, rather than G itself, then the
memory consumption can be reduced substantially. This leads to our proposed GaLore strategy:
Definition 2.1 (Gradient Low-rank Projection (GaLore)). Gradient low-rank projection (GaLore)
denotes the following gradient update rules:

WT = W0 + η

T−1∑
t=0

G̃t, G̃t = Ptρt(P
>
t GtQt)Q

>
t , (5)

where Pt ∈ Rm×r and Qt ∈ Rn×r are projection matrices.

Setting P andQ. It is straightforward that P andQ should project into the subspaces corresponding
to the first few largest eigenvectors in G for faster convergence. We find these largest eigenvectors
by performing Singular Value Decomposition (SVD) on Gt:

Gt = USV > ≈
r∑

i=1

siuiv
>
i (6)

Pt = [u1, u2, ..., ur], Qt = [v1, v2, ..., vr] (7)

Composition of low-rank subspaces. For a complex optimization problem such as LLM pre-
training, it may be difficult to capture the entire gradient trajectory with a single low-rank subspace
determined by a fixed P and Q. One reason is that the principal subspaces may change over time.
In fact, if we keep the same projection P andQ, then the learned weights will only grow along these
subspaces, which is not longer full-parameter training. Fortunately, for this, GaLore can switch
subspaces during training and learn full-rank weights without increasing the memory footprint.

We allow GaLore to switch across low-rank subspaces:

Wt = W0 + ∆WT1
+ ∆WT2

+ . . .+ ∆WTn
, (8)

where t ∈
[∑n−1

i=1 Ti,
∑n

i=1 Ti

]
and ∆WTi

= η
∑Ti−1

t=0 G̃t is the summation of all Ti updates within
the i-th subspace. When switching to i-th subspace at step t = Ti, we re-initialize the projector Pt

and Qt by performing SVD on the current gradient Gt by Equation 6.
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Table 2: Comparison with low-rank algorithms on pre-training various sizes of LLaMA models on C4 dataset.
Validation perplexity is reported, along with a memory estimate of the total of parameters and optimizer states
based on BF16 format. The actual memory footprint of GaLore is reported in Fig. 1 and Fig. 2.

60M 130M 350M 1B
Full-Rank 34.06 (0.36G) 25.08 (0.76G) 18.80 (2.06G) 15.03 (7.80G)

GaLore 34.88 (0.24G) 25.36 (0.52G) 18.95 (1.22G) 14.57 (5.78G)
Low-Rank 78.18 (0.26G) 45.51 (0.54G) 37.41 (1.08G) 135.23 (6.37G)
LoRA 34.99 (0.36G) 33.92 (0.80G) 25.58 (1.76G) 18.92 (8.96G)
ReLoRA 37.04 (0.36G) 29.37 (0.80G) 29.08 (1.76G) 17.64 (8.96G)
r/dmodel 128 / 256 256 / 768 256 / 1024 1024 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

Reducing memory footprint of gradient statistics. GaLore significantly reduces the memory cost
of optimizer that heavily rely on component-wise gradient statistics, such as Adam (Kingma & Ba,
2014). When ρt ≡ Adam, by projectingGt into its low-rank formRt = P>t GtQt, Adam’s gradient
regularizer ρt(Rt) only needs to track low-rank gradient statistics. where Mt and Vt are the first-
order and second-order momentum, respectively. GaLore requires less memory than LoRA during
training. As GaLore can always merge ∆Wt to W0 during weight updates, it does not need to store
a separate low-rank factorization BA. In total, GaLore requires (mn + mr + 2nr) memory, while
LoRA requires (mn + 3mr + 3nr) memory. A comparison between GaLore and LoRA is shown
in Table 1.

Table 1: Comparison between GaLore and LoRA. As-
sume W ∈ Rm×n (m ≤ n), rank r.

GaLore LoRA

Weights mn mn+mr + nr
Optim States mr + 2nr 2mr + 2nr

Multi-Subspace 3 7
Pre-Training 3 7
Fine-Tuning 3 3

Per-layer weight updates. In practice, the op-
timizer typically performs a single weight up-
date for all layers after backpropagation. This
is done by storing the entire weight gradients
in memory. To further reduce the memory foot-
print during training, we adopt per-layer weight
updates technique to GaLore, which performs
the weight update during backpropagation (Lv
et al., 2023).

3 EXPERIMENTS

We evaluate GaLore on both pre-training and
fine-tuning of LLMs. To evaluate its performance, we apply GaLore to train LLaMA-based large
language models on the C4 dataset. C4 dataset is a colossal, cleaned version of Common Crawl’s
web crawl corpus, which is mainly intended to pre-train language models and word representations
(Raffel et al., 2023). To best simulate the practical pre-training scenario, we train without data repeti-
tion over a sufficiently large amount of data, across a range of model sizes up to 7 Billion parameters.
We also evaluate GaLore on fine-tuning LLMs on GLUE tasks to demonstrate its memory-efficient
fine-tuning capability.

Comparison with low-rank methods We first compare GaLore with existing low-rank methods
using Adam optimizer across a range of model sizes. Full-Rank: our baseline method that applies
Adam optimizer with full-rank weights and optimizer states. Low-Rank: we also evaluate a tradi-
tional low-rank approach that represents the weights by learnable low-rank factorization: W = BA
(Kamalakara et al., 2022). LoRA: Hu et al. (2021) proposed LoRA to fine-tune pre-trained models
with low-rank adaptors: W = W0 + BA, where W0 is fixed initial weights and BA is a learnable
low-rank adaptor. ReLoRA: Lialin et al. (2023) is a variant of LoRA designed for pre-training,
which periodically merges BA into W , and initializes new BA with a reset on optimizer states and
learning rate.

For GaLore, we set subspace frequency T to 200 and scale factor α to 0.25 across all model sizes in
Table 2. For each model size, we pick the same rank r for all low-rank methods, and we apply them
to all multi-head attention layers and feed-forward layers in the models. We train all models using
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Table 3: Evaluating GaLore for memory-efficient fine-tuning on GLUE benchmark using pre-trained
RoBERTa-Base. We report the average score of all tasks.

CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg

Full Fine-Tuning 62.24 90.92 91.30 79.42 94.57 87.18 92.33 92.28 86.28

GaLore (rank=4) 60.35 90.73 92.25 79.42 94.04 87.00 92.24 91.06 85.89
LoRA (rank=4) 61.38 90.57 91.07 78.70 92.89 86.82 92.18 91.29 85.61

GaLore (rank=8) 60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94
LoRA (rank=8) 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93

Adam optimizer with the default hyperparameters (e.g., β1 = 0.9, β2 = 0.999, ε = 10−8). We also
estimate the memory usage based on BF16 format, including the memory for weight parameters and
optimizer states. As shown in Table 2, GaLore outperforms other low-rank methods and achieves
comparable performance to full-rank training. It even outperforms full-rank training on 1B model
size with a validation perplexity of 14.57. Compared to LoRA and ReLoRA, GaLore requires less
memory for storing model parameters and optimizer states. A detailed training setting of each model
and our memory estimation for each method are provided in the appendix.

Scaling up to LLaMA 7B architecture. Scaling ability to 7B models is a key factor for demon-
strating if GaLore is effective for practical LLM pre-training scenarios. We evaluate GaLore on an
LLaMA 7B architecture with an embedding size of 4096 and total layers of 32. We train the model
for 150K steps, using 8-node training in parallel with a total of 64 A100 GPUs. Due to computa-
tional constraints, we only compare 8-bit GaLore (r = 1024) with 8-bit Adam with a single trial
without tuning the hyperparameters. After 150K steps, 8-bit GaLore achieves a perplexity of 14.65,
which is comparable to 8-bit Adam with a perplexity of 14.48.

Memory-efficient fine-tuning GaLore not only achieves memory-efficient pre-training but also
can be used for memory-efficient fine-tuning. We fine-tune pre-trained RoBERTa models on GLUE
tasks using GaLore and compare its performance with a full fine-tuning baseline and LoRA. As
shown in Table 3, GaLore achieves better performance than LoRA on most tasks with less memory
footprint. This demonstrates that GaLore can serve as a full-stack memory-efficient training strategy
for both LLM pre-training and fine-tuning.

350M 1B 3B 7B
Model Size

0

10

20

30

40

50

60

M
em

or
y 

co
st

 (G
B

)

RTX 4090

Memory Comparsion

BF16
Adafactor
8-bit Adam
8-bit GaLore (retaining grad)
8-bit GaLore

Figure 2: Memory usage for different methods at var-
ious model sizes, evaluated with a token batch size of
256. 8-bit GaLore (retaining grad) disables per-layer
weight updates but stores weight gradients during train-
ing.

Training 7B models on consumer GPUs with
24G memory. We measure the actual memory
footprint of training LLaMA 7B models by var-
ious methods, with a token batch size of 256.
As shown in Fig. 2, 8-bit GaLore requires sig-
nificantly less memory than BF16 baseline and
8-bit Adam, and only requires 22.0G memory
to pre-train LLaMA 7B with a small per-GPU
token batch size (up to 500 tokens). This mem-
ory footprint is within 24GB VRAM capacity
of a single GPU such as NVIDIA RTX 4090.
While the batch size is small per GPU, it can be
scaled up with data parallelism, which requires
much lower bandwidth for inter-GPU com-
munication, compared to model parallelism.
Therefore, it is possible that GaLore can be
used for elastic training Lin et al. 7B models on
consumer GPUs such as RTX 4090s. Specif-
ically, we present the memory breakdown in
Fig. 1. It shows that 8-bit GaLore reduces 37.92G (63.3%) and 24.5G (52.3%) total memory com-
pared to BF16 Adam baseline and 8-bit Adam, respectively. Compared to 8-bit Adam, 8-bit GaLore
mainly reduces the memory in two parts: (1) low-rank gradient projection reduces 9.6G (65.5%)
memory of storing optimizer states, and (2) using per-layer weight updates reduces 13.5G memory
of storing weight gradients.
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4 CONCLUSION

We propose GaLore, a memory-efficient pre-training and fine-tuning strategy for large language
models. GaLore significantly reduces memory usage by up to 65.5% in optimizer states while
maintaining both efficiency and performance for large-scale LLM pre-training and fine-tuning. We
hope that our work will inspire future research on memory-efficient LLM training strategies from the
perspective of low-rank gradient projection. We believe that GaLore will be a valuable tool for the
community to train large language models with consumer-grade hardware and limited resources.
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A RELATED WORKS

Low-Rank Adaptation Hu et al. (2021) proposed Low-Rank Adaptation (LoRA) to fine-tune pre-
trained models with low-rank adaptors. This method reduces the memory footprint by maintaining
a low-rank weight adaptor for each layer. There are a few variants of LoRA proposed to enhance its
performance (Renduchintala et al., 2023; Sheng et al., 2023; Xia et al., 2024), supporting multi-task
learning (Wang et al., 2023), and further reducing the memory footprint (Dettmers et al., 2023).
Lialin et al. (2023) proposed ReLoRA, a variant of LoRA designed for pre-training, but requires a
full-rank training warmup to achieve comparable performance as the standard baseline.

Subspace Learning Recent studies have demonstrated that the learning primarily occurs within a
significantly low-dimensional parameter subspace (Larsen et al., 2022; Gur-Ari et al., 2018). These
findings promote a special type of learning called subspace learning, where the model weights are
optimized within a low-rank subspace. This notion has been widely used in different domains of
machine learning, including meta-learning and continual learning (Lee & Choi, 2018; Chaudhry
et al., 2020).

Projected Gradient Descent GaLore is closely related to the traditional topic of projected gradi-
ent descent (PGD) (Chen & Wainwright, 2015; Chen et al., 2019). A key difference is that, GaLore
considers the specific gradient form that naturally appears in training multi-layer neural networks
(e.g., it is a matrix with specific structures). In contrast, traditional PGD mostly treats the objective
as a general blackbox nonlinear function, and study the gradients in the vector space only.

Memory-Efficient Optimization There have been some works trying to reduce the memory cost
of gradient statistics for adaptive optimization algorithms (Shazeer & Stern; Anil et al.; Dettmers
et al., 2021). Adafactor (Shazeer & Stern) achieves sub-linear memory cost by factorizing the
second-order statistics by a row-column outer product. GaLore shares similarities with Adafac-
tor in terms of utilizing low-rank factorization to reduce memory cost, but GaLore focuses on the
low-rank structure of the gradients, while Adafactor focuses on the low-rank structure of the second-
order statistics. GaLore can reduce the memory cost for both first-order and second-order statistics,
and can be combined with Adafactor to achieve further memory reduction. Quantization is also
widely used to reduce the memory cost of optimizer states (Dettmers et al., 2021; Li et al., 2023).
Furthermore, Lv et al. (2023) proposed fused gradient computation to reduce the memory cost of
storing weight gradients during training.

In contrast to the previous memory-efficient optimization methods, GaLore operates independently
as the optimizers directly receive the low-rank gradients without knowing their full-rank counter-
parts.
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B DETAILS OF GALORE

Algorithm 1: Adam with GaLore
Input: A layer weight matrix W ∈ Rm×n with m ≤ n. Step size η, scale factor α, decay rates
β1, β2, rank r, subspace change frequency T .
Initialize first-order moment M0 ∈ Rn×r ← 0
Initialize second-order moment V0 ∈ Rn×r ← 0
Initialize step t← 0
repeat
Gt ∈ Rm×n ← −∇Wϕt(Wt)
if t mod T = 0 then
U, S, V ← SVD(Gt)
Pt ← U [:, : r] {Initialize left projector as m ≤ n}

else
Pt ← Pt−1 {Reuse the previous projector}

end if
Rt ← P>t Gt {Project gradient into compact space}

UPDATE(Rt) by Adam
Mt ← β1 ·Mt−1 + (1− β1) ·Rt

Vt ← β2 · Vt−1 + (1− β2) ·R2
t

Mt ←Mt/(1− βt
1)

Vt ← Vt/(1− βt
2)

Nt ←Mt/(
√
Vt + ε)

G̃t ← α · PNt {Project back to original space}
Wt ←Wt−1 + η · G̃t

t← t+ 1
until convergence criteria met
return Wt

We present the details of applying GaLore to Adam optimizer in Algorithm 1. The algorithm is
similar to the original Adam optimizer, but with the gradient and update steps projected into a low-
rank subspace. The low-rank subspace is updated every T steps, and the gradients are projected into
the subspace determined by the left projector Pt and right projectorQt. The update is then projected
back to the original space using the same projectors.

C DETAILS OF PRE-TRAINING EXPERIMENT

C.1 ARCHITECTURE AND HYPERPARAMETERS

We introduce details of the LLaMA architecture and hyperparameters used for pre-training. Table 4
shows the most hyperparameters of LLaMA models across model sizes. We use a max sequence
length of 256 for all models, with a batch size of 131K tokens. For all experiments, we adopt
learning rate warmup for the first 10% of the training steps, and use cosine annealing for the learning
rate schedule, decaying to 10% of the initial learning rate.

For all methods on each size of models (from 60M to 1B), we tune their favorite learning rate
from a set of {0.01, 0.005, 0.001, 0.0005, 0.0001}, and the best learning rate is chosen based on
the validation perplexity. We find GaLore is insensitive to hyperparameters and tends to be stable
with the same learning rate across different model sizes. For all models, GaLore use the same
hyperparameters, including the learning rate of 0.01, scale factor α of 0.25, and the subspace change
frequency of T of 200. We note that since α can be viewed as a fractional learning rate, most of
the modules (e.g., multi-head attention and feed-forward layers) in LLaMA models have the actual
learning rate of 0.0025. This is, still, a relatively large stable learning rate compared to the full-rank
baseline, which usually uses a learning rate ≤ 0.001 to avoid spikes in the training loss.
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Table 4: Hyperparameters of LLaMA models for evaluation. Data amount are specified in tokens.

Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 10K 1.3 B
130M 768 2048 12 12 20K 2.6 B
350M 1024 2736 16 24 60K 7.8 B
1 B 2048 5461 24 32 100K 13.1 B
7 B 4096 11008 32 32 80K 10.5 B

C.2 MEMORY ESTIMATES

As the GPU memory usage for a specific component is hard to measure directly, we estimate the
memory usage of the weight parameters and optimizer states for each method on different model
sizes. The estimation is based on the number of original parameters and the number of low-rank
parameters, trained by BF16 format. For example, for a 60M model, LoRA (r = 128) requires
42.7M parameters on low-rank adaptors and 60M parameters on the original weights, resulting in
a memory cost of 0.20G for weight parameters and 0.17G for optimizer states. Table 5 shows the
memory estimates for weight parameters and optimizer states for different methods on different
model sizes, as a compliment to the total memory reported in the main text.

Table 5: Memory estimates for weight parameters and optimizer states.

(a) Memory estimate of weight parameters.

60M 130M 350M 1B
Full-Rank 0.12G 0.25G 0.68G 2.60G

GaLore 0.12G 0.25G 0.68G 2.60G
Low-Rank 0.08G 0.18G 0.36G 2.12G
LoRA 0.20G 0.44G 1.04G 4.74G
ReLoRA 0.20G 0.44G 1.04G 4.74G

(b) Memory estimate of optimizer states.

60M 130M 350M 1B
Full-Rank 0.23G 0.51G 1.37G 5.20G

GaLore 0.13G 0.28G 0.54G 3.18G
Low-Rank 0.17G 0.37G 0.72G 4.25G
LoRA 0.17G 0.37G 0.72G 4.25G
ReLoRA 0.17G 0.37G 0.72G 4.25G

D DETAILS OF FINE-TUNING EXPERIMENT

We fine-tune the pre-trained RoBERTa-Base model on the GLUE benchmark using the model pro-
vided by the Hugging Face1. We trained the model for 30 epochs with a batch size of 16 for all tasks
except for CoLA, which uses a batch size of 32. We use hyperparameters from Hu et al. (2021) for
LoRA and tune the learning rate and scale factor for GaLore. Table 6 shows the hyperparameters
used for fine-tuning RoBERTa-Base for GaLore.

E ADDITIONAL MEMORY MEASUREMENTS

We empirically measure the memory usage of different methods for pre-training LLaMA 1B model
on C4 dataset with a token batch size of 256, as shown in Table 7.

1https://huggingface.co/transformers/model_doc/roberta.html
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Table 6: Hyperparameters of fine-tuning RoBERTa base for GaLore.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 1E-05 3E-05 3E-05 1E-05 1E-05 1E-05 1E-05
Rank Config. r = 4

GaLore α 4
Max Seq. Len. 512

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 2E-05 2E-05 1E-05 1E-05 2E-05 2E-05 3E-05
Rank Config. r = 8

GaLore α 2
Max Seq. Len. 512

Table 7: Measuring memory and throughput on LLaMA 1B model.

Model Size Layer Wise Methods Token Batch Size Memory Cost Throughput
#Tokens / s #Samples / s

1B 8

AdamW 256 13.60 1256.98 6.33
Adafactor 256 13.15 581.02 2.92
Adam8bit 256 9.54 1569.89 7.90

8-bit GaLore 256 7.95 1109.38 5.59

1B 4

AdamW 256 9.63 1354.37 6.81
Adafactor 256 10.32 613.90 3.09
Adam8bit 256 6.93 1205.31 6.07

8-bit GaLore 256 5.63 1019.63 5.13

11


	Introduction
	GaLore: Gradient Low-Rank Projection
	Experiments
	Conclusion
	Related Works
	Details of GaLore
	Details of Pre-Training Experiment
	Architecture and Hyperparameters
	Memory Estimates

	Details of Fine-Tuning Experiment
	Additional Memory Measurements

