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ABSTRACT

The growing demand for high-quality 3D mesh models has fueled the need for
efficient 3D mesh compression techniques. However, existing methods often ex-
hibit suboptimal compression performance due to the inefficient representation
of mesh data. To address this issue, we propose a novel neural mesh compres-
sion method based on Sparse Implicit Representation (SIR). Specifically, SIR
records signed distance field (SDF) values only on regular grids near the sur-
face, enabling high-resolution structured representation of arbitrary geometric
data with a significantly lower memory cost, while still supporting precise sur-
face recovery. Building on this representation, we construct a lightweight Sparse
Neural Compression (SNC) network to extract compact embedded features from
the SIR and encode them into a bitstream. Extensive experiments and ablation
studies demonstrate that our method outperforms state-of-the-art mesh and point
cloud compression approaches in both compression performance and computa-
tional efficiency across a variety of mesh models. The source code is available at
https://github.com/yydlmzyzl/SIR-SNC.

1 INTRODUCTION

With the rapid advancement of applications such as virtual reality, robotics, and autonomous driving,
the demand for more detailed and diverse 3D mesh models is growing rapidly. However, due to in-
herent limitations in network bandwidth, the development of efficient and robust 3D mesh compres-
sion techniques has become increasingly urgent. Existing mesh compression methods (Maglo et al.,
2015), such as Draco (Google, 2025) and Video-based Dynamic Mesh Coding (V-DMC) (MPEG,
2025; Zou et al., 2025), all compress mesh vertices and their connectivity directly, often leading to
substantial geometric distortion at low bitrates. Point cloud compression (PCC) techniques (Schwarz
et al., 2019) offer an alternative to 3D mesh compression according to the transformation between
point clouds and meshes, but there are severe distortions during the transformation between these
two representation formats due to the discontinuous and unstructured nature of point clouds.

The suboptimal performance of existing representative geometry compression methods is primar-
ily constrained by the inherently irregular structure of the explicit mesh representations themselves.
Recently, widely used implicit fields, such as the signed distance field (SDF), can convert irregular
meshes into tensors by sampling uniformly distributed grids in 3D space. However, such a repre-
sentation suffers from redundant dense sampling, leading to an explosive growth of data volume as
resolution increases. Since only sparse grid cells near the surface carry critical information, while
most distant cells are useless, a more efficient representation of the implicit distance field is imper-
ative. Motivated by this insight, we propose a Sparse Implicit Representation (SIR) that leverages
the strengths of implicit distance fields, which offer continuous geometric precision, and sparse rep-
resentations, which provide data efficiency, for compact, accurate mesh surface representation. We
further propose a lightweight Sparse Neural Compression (SNC) module to efficiently extract the
sparse latent features and encode them into the bitstream.

Fig. 1 illustrates the proposed compression pipeline. The original mesh is first converted into a sparse
SDF tensor. Then, in the compression stage, the sparse SDF tensor is embedded into a compact
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Figure 1: The pipeline of proposed SIR-based neural mesh coding. It first represents irregular 3D
meshes into a regular Sparse SDF Tensor, a new implicit representation, and then an auto-encoder
network is utilized to compress these tensors, obtaining Compact Sparse Features of each mesh,
which is then converted into bitstreams through an entropy codec.

latent feature with lower resolution through a sparse convolutional autoencoder (AE) network. The
feature is quantized and encoded with entropy into the bitstream. The encoder and decoder of AE
correspond to the compression and decompression processes, respectively.

We perform extensive experiments across diverse datasets, demonstrating that the proposed neural
mesh coding framework based on SIR and SNC achieves significant improvements over state-of-
the-art alternatives, including mesh coding algorithms Draco (Google, 2025) and V-DMC (MPEG,
2025; Zou et al., 2025); PCC methods G-PCC (MPEG, 2025) and SparsePCGC (Wang et al., 2023);
and another SDF-based approach, NeCGS (Ren et al., 2025). Furthermore, our method exhibits fast
encoding and decoding speeds, a compact model size of only several hundred kilobytes (KB), and
robust performance across different types of meshes.

‘We summarize our main contributions as follows.

* We propose sparse implicit representation (SIR), enabling structured and accurate representa-
tion for 3D meshes, while achieving computationally and memory-efficient processing through
sparse operations.

* We further develop a sparse neural compression (SNC) method leveraging SIR, which demon-
strates substantial improvements over state-of-the-art mesh compression methods while main-
taining a fast encoding/decoding speed and a lightweight model size.

* We offer a fresh perspective to 3D mesh compression and elevate the compression performance
to a new level, with extensive experiments across diverse mesh models for validation.

2 RELATED WORK

3D mesh is among the most common 3D geometry representations, yet geometry representation ex-
tends beyond this explicit format. In this section, we review representative and recent methods in 3D
representation and compression, focusing on the accurate and efficient modeling and compression
of geometric surfaces.

Implicit Geometry Representations. Different from widely used explicit representations, such as
point clouds and triangle meshes, where the surfaces are represented as sampled points or triangles,
implicit representations characterize surfaces via isosurfaces of continuous fields. Binary Occu-
pancy Fields (BOFs) (Kazhdan & Hoppe, 2013; Mescheder et al., 2019) and Signed Distance Fields
(SDFs) (Park et al., 2019; Atzmon & Lipman, 2020) are two most widely used implicit fields and
the surface can be easily extracted from them through Marching Cubes (WE, 1987). However, BOF
and SDF divide the whole space into two parts, inside and outside the surface, and they can only
represent watertight meshes, limiting their applications to more general meshes. Unsigned Distance
Fields (UDFs) (Chibane et al., 2020; Ren et al., 2023) can represent more general meshes; however,
it is extremely challenging to extract a surface from them.

3D Mesh Compression. Extensive research on mesh compression has been conducted since the
1990s, with comprehensive reviews available in (Peng et al., 2005; Maglo et al., 2015). Mesh com-



pression typically involves both vertex coordinates and topological connectivity compression. The
widely adopted Draco (Google, 2025) library orders vertices using Morton codes for predictive
coding and employs the EdgeBreaker algorithm (Rossignac, 2002) to compress the topological rela-
tionships. In the developing MPEG mesh coding standard V-DMC (MPEG, 2025; Zou et al., 2025),
the original mesh is decomposed into a base mesh and a set of displacement vectors via subdivision
and deformation for separate compression, achieving superior performance. Additionally, some al-
ternative approaches convert the mesh to 2D geometry images (Gu et al., 2002; Hou et al., 2014a;b;
Zhang et al., 2022; 2023; Zeng et al., 2024), where 2D image/video encoders are applied for com-
pression. These mesh coding approaches relying on explicit topological representations often suffer
from serious quantization distortion and topological breakage in complex geometries, leading to a
diminishing compression efficiency at higher compression ratios.

3D Point Cloud Compression. An alternative approach to compressing 3D meshes involves first
converting them into point clouds and subsequently applying point cloud compression (PCC) tech-
niques. PCC encompasses a diverse range of methods leveraging various representations, including
3D voxelization, 2D projected depth images, 1D ordered point sequences, efc (Schwarz et al., 2019;
Graziosi et al., 2020; Cao et al., 2021). Most PCC methods exploit 3D voxel structures and employ
the octree structure to encode occupied voxels. A representative example is G-PCC (MPEG, 2025),
standardized by MPEG. Another PCC method, e.g. MPEG V-PCC (Graziosi et al., 2020), utilizes
a 3D-to-2D projection and encodes the projected depth maps, and other data using video codecs.
Recently, learning-based approaches (Gao et al., 2025), such as SparsePCGC (Wang et al., 2023),
leverage neural networks to compress sparse voxels, have reported superior performance. However,
reconstructing meshes from point clouds often introduces severe distortions, which significantly
restricts the practical applicability of these methods.

Implicit Field-based Geometry Compression. Implicit representations, such as signed distance
functions (SDFs), can convert 3D meshes into structured tensors by uniformly sampling volumetric
grids in 3D space, facilitating seamless processing with neural networks. Building on this, several
prior works have attempted to compress SDFs. Tang et al. (Tang et al., 2020) employed 3D convolu-
tional neural networks to encode TSDF voxel grids. Their method divided the original TSDF volume
into non-overlapping occupied blocks of size 8 x 8 x 8 and then independently compressed each
block using a small autoencoder network trained in an end-to-end manner. To prevent reconstruc-
tion errors, they losslessly compressed the signs of the TSDF. NeCGS (Ren et al., 2025) introduced
a learned deformation field on the TSDF volume to improve its capacity to represent fine geometric
details. It constructed an auto-decoder network that was optimized on the entire dataset and in-
cluded in the bitstream. However, the dense volumetric representation used in these prior methods
inherently confines them to low-resolution SDF, limiting their ability to accurately capture detailed
geometric structures. Although techniques like block partitioning or deformation partially alleviate
the problem of representation efficiency, they incur new costs in compression: partitioning limits
the use of spatial correlations, while deformation entails extra encoding overhead. These inherent
trade-offs ultimately hinder efficient compression.

3 PROPOSED METHOD

Given a mesh model, our objective is to efficiently compress it into a compact bitstream while
minimizing distortion in the decompressed models. This process consists of two key stages: 1) Ge-
ometry Representation and 2) Data Compression. The geometry representation stage transforms
unstructured meshes into structured tensors, and the data compression stage encodes this structured
data into a compact bitstream, ensuring minimal reconstruction distortion.

To this end, we propose SIR-SNC, a novel geometry compression framework. As shown in Fig. 1,
it comprises two key components, a sparse implicit representation (SIR) module and a sparse neural
compression (SNC) module. The SIR module efficiently converts unstructured geometry into sparse
SDF tensors, from which the original surfaces can be accurately recovered. The SNC module then
leverages sparse convolutional neural networks to compress these SIR tensors into the final compact
bitstream, achieving high compression efficiency. Next, we will sequentially present these modules.

3.1 SPARSE IMPLICIT REPRESENTATION

Unlike 2D images, which consist of uniformly distributed pixels on regular grids, raw geometry
data is inherently unstructured and irregular, posing challenges for direct processing with neural



networks. Recently, widely used implicit geometry representations, such as SDF, can convert the raw
geometry data into regular tensors by sampling on regularly distributed grids in 3D space. However,
such a dense representation requires large memory when processed, restricting their practical usage
to relatively low resolutions (e.g., 64 or 128%) limiting the representation accuracy.

Sparse SDF Tensor. During surface extraction from implicit fields (e.g., SDF) using Marching
Cubes (WE, 1987), we notice that we only concentrate on the cubes near the surface while ignor-
ing those farther away, as shown in Fig. 2. Motivated by this observation, a natural solution is to
store only the grids near the surface at high resolution, ensuring detailed structural fidelity during
surface extraction. Based on this, we propose sparse SDF Tensor. This sparse tensor representation
enables efficient and effective representation of 3D meshes, significantly reducing memory usage
and facilitating seamless integration with neural networks. At the same resolution, our sparse rep-
resentation can achieve the same geometric precision as traditional SDF, while its data volume is
significantly reduced by an order of magnitude. From another perspective, our method can be seen
as incorporating extra surface distance information alongside discrete point positions, while provid-
ing higher precision for continuous surface geometry. Thus, it combines the efficiency of explicit
discrete points and the accuracy of implicit distance fields.

Given a 3D mesh S, we first sample regularly distributed grids throughout the space and get a set
of grids Vgepse € REXEXEX3 ‘where K is the resolution of the grids. We then select the grids
whose distance to the surface is less than a predefined threshold 7 (with a default value of one voxel
diagonal length), calculate their corresponding SDF according to the 3D mesh, and thereby obtain
the sparse SDF tensor to implicitly represent the surface,

V= {(V7 S(V))|V € Vdensea d(V) < T}ﬂ (1)

where d(v) represents the distance from the grid point v to the surface, and s denotes the SDF
value of v. The sign of s(v), indicating inside or outside status, is determined via a ray casting
algorithm, i.e., a ray from v results in —1 for odd intersections and +1 for even ones. However,
when the resolution K is extremely large, computing V becomes computationally expensive both
in time and memory. To address this, we design a coarse-to-fine sampling strategy that accelerates
the calculation of SDFs for the preserved grids. Further details are provided in the Appendix.

Surface Extraction. To recover the surface from the CET

proposed sparse implicit representation, we leverage an 7 = [ Ft3
adapted version of the Marching Cubes (WE, 1987), de- b o L] L
noted as Sparse Marching Cubes (SMC). Specifically, for m ® a8 -

any cube whose eight vertices are present in the Sparse 'T\' / 1]

SDF Tensor V, we extract the corresponding triangles *I[ II II 4 0 o o
following the standard Marching Cubes procedure. Com- '

pared to the traditional Marching Cubes algorithm, our (a) Watertight (b) Non-watertight
method is significantly more efficient as it performs trian-  Fjgyre 2: Visual illustration of the sur-
gle extraction only in the cubes near the surface. face extraction process. The gray cubes

are ignored in this process within our

Remark. Since our SIR only focuses on the grids near the .
sparse representation.

surface and explicitly stores their spatial positions, this lo-
calized focus enables it to robustly represent more general
meshes including non-watertight meshes, without suffering from representation collapse. The cor-
responding surface extraction process is illustrated in Fig. 2b. While non-watertight surfaces lack
global inside/outside consistency, the signed distances encode meaningful local geometric relation-
ships that are sufficient to guide marching cubes in extracting the zero isosurface.

3.2 SPARSE NEURAL COMPRESSION

SIR effectively reduces memory and computation costs for geometry representation. To further
reduce storage and transmission costs, we design a Sparse Neural Compression (SNC) module to
encode it. As shown in Fig. 3, a neural network extracts compact latent features from the sparse
SDF tensor via downscaling; these features are then encoded into a bitstream using entropy coding.
This entire process is learned end-to-end via a compressive AutoEncoder (AE) architecture.

Learning Latent Representation using Autoencoder. We construct a sparse convolutional autoen-
coder framework to learn a compact latent feature of the original sparse SDF tensor, as shown in
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Figure 3: Sparse Neural Compression of SIR. During encoding, the Encoder £, downscales the
original SDF tensors V into embedded latent features ), whose coordinates C'yy and attributes Fy
are separately encoded into the bitstream. During decoding, the Decoder Dy progressively recon-
structs occupancy information and sparse SDFs V from ). The Encoder and Decoder networks
mainly consist of sparse convolutions (SConv). Lasag, Lpcg, and L. denote the loss functions
used in training.
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Fig. 3. The encoder processes the input sparse SDF tensor through several downscaling blocks. Each
block comprises stacked sparse convolution (SConv) layers with residual connections designed to
fully exploit spatial correlations, followed by a voxel downscaling layer that halves spatial resolu-
tion via strided sparse convolutions. Through these downscaling blocks, features are progressively
extracted and embedded into a lower-resolution sparse tensor, yielding a compact latent feature )
that represents the original data with fewer data. The attributes of ) are quantized to integers and
encoded into a bitstream via entropy coding, while its coordinates are compressed separately using
the G-PCC codec (MPEG, 2025).

Correspondingly, the decoder reconstructs the sparse SDF tensor from ) via symmetric upscaling
blocks. Each block contains stacked SConv layers and a voxel upscaling layer that doubles the
spatial resolution using transposed sparse convolution. To enhance computational efficiency, the
decoder will prune redundant voxels after each upscaling operation: An occupancy prediction layer
estimates the probability p of voxel occupancy, discarding voxels below a threshold probability. This
leverages the inherent sparsity of 3D data to reduce computational overhead. Finally, the sparse
tensor is upsampled to the original resolution to output the reconstructed Sparse SDF tensor.

End-to-End Rate-Distortion Optimization. During training, we employ the Mean Absolute Error
(MAE) between the reconstructed and original sparse SDF tensors as the primary loss function,
ie., Lyag = ||V — V|1, and use the Binary Cross-Entropy (BCE) between predicted occupancy
probabilities and ground truth states as a complement, i.e, Lgcg. These two losses are combined to
supervise reconstruction quality, i.e.,

Lgec = Lmak + @ - Lpce, (2)
where o is empirically set to 0.01. To minimize the bitrate of latent features, we approximate

the quantization with additive noise to preserve backpropagation differentiability, and employ a
factorized entropy model (Ballé et al., 2018) to estimate the probability p of latent features, from

which the bitrate is calculated via the cross-entropy loss. i.e., Lrae = — > ;1085(pi). Lrae i8
incorporated as a constraint in the overall loss, i.e.,
L= LRec + A LRalm (3)

where )\ controls the rate-distortion trade-off.

Remark. The proposed SNC module adopts a lightweight network architecture to meet practical
complexity constraints, featuring 16-channel convolutional layers with all parameters quantized to
8-bit precision. This design enables deployment with merely around 0.42 MB in storage, while
sparse computation optimizations facilitate near-real-time encoding/decoding and resource-efficient
training.

Notably, the lightweight and compact network architecture of SNC further enables the efficient com-
pression of dynamic mesh sequences by leveraging the idea of implicit neural representation (Chen
et al., 2021). Specifically, it is feasible to overfit the decoder network parameters of SNC to a dy-
namic mesh sequence and encode the overfitted network parameters into a bitstream. In this way, we
can implicitly exploit inter-frame correlations by the network parameters, avoiding complex inter-
frame motion estimation on meshes.



4 EXPERIMENTS

In this section, we validate the effectiveness of our method through extensive experiments and com-
parative analyses.

4.1 EXPERIMENTAL SETTINGS

Datasets. Due to the absence of standardized neural mesh compression datasets, we follow (Ren
et al., 2025) to construct a multi-source mixed dataset. The training set combines 1,000 meshes
each from AMA (Vlasic et al., 2008) (human models), DT4D (Li et al., 2021) (animal models), and
Thingi10K (Zhou & Jacobson, 2016) (CAD models), totaling 3,000 samples. For testing, we use:
(1) a core Mixed set of 600 meshes (200 per source dataset), (2) 100 diverse CAD models from
ShapeNet (Chang et al., 2015), and (3) 1,200 frames across 4 dynamic sequences in the MPEG test
set (MPEG, 2023).

Evaluation Metrics. Following common practices in 3D reconstruction (Mescheder et al., 2019;
Peng et al., 2020), We primarily use Chamfer Distance (CD) as the distortion metric, with F-Score
results also reported. Additionally, we report Normal Consistency results in the Appendix. Com-
pression bitrate is quantified by bitstream size. The Rate Distortion (RD) curves plot the distortion
against the bitrate, with the Bjntegaard Delta Bit Rate (BD-BR) (Bjgntegaard, 2001) measuring the
relative efficiency. Encoding/decoding times (seconds) assess computational complexity.

Methods under Comparison. In the performance evaluation, we compare with the following rep-
resentative 3D geometry compression methods, and more details of the comparison methods are
provided in the Appendix.

* Mesh Coding: General-purpose Draco (Google, 2025) and the latest V-DMC standard (MPEG,
2025; Zou et al., 2025). V-DMC comparisons are confined to MPEG sequences since its Common
Test Conditions (CTC) (MPEG, 2023) only provide configurations for this dataset.

e PCC: Standardized G-PCC (MPEG, 2025) and learning-based SparsePCGC (marked as
S.PCGC) (Wang et al., 2023). We sample points from the original mesh for compression; af-
ter decoding, we reconstruct the mesh via Poisson surface reconstruction (Kazhdan & Hoppe,
2013), and remove degenerate vertices distant from the decoded point cloud for rectification.

* SDF Compression: The latest work in this field, NeCGS (Ren et al., 2025); we utilize its reported
test results on the Mixed dataset and validate its performance on the ShapeNet and MPEG test
sets following its open-source code. A comparison with an earlier work (Tang et al., 2020) is not
feasible due to the lack of its open-source implementation and test conditions.

Training and Variable-Rate Inference. In the experiments, the SNC models are trained on sparse
SDF tensors at a base resolution of 256. To obtain models with different rate-distortion (RD) trade-
offs, we use different A values, e.g., 0.01, 0.005, for the loss term Lg,.. Each model is optimized
with Adam (Kingma & Ba, 2015) with a learning rate of 0.0001 for 50 epochs, and training is
completed in one day on a single GPU. All training and testing are examined on a computer with an
Intel Xeon 4309Y CPU and an NVIDIA RTX A6000 GPU.

During inference, variable-rate compression is achieved by applying a single trained model to
different resolutions. Specifically, we set the resolution of the input sparse SDF tensors as
{192, 256, 384, 512} to obtain a coarse rate control. Then within the bitrate range of each resolution,
fine-grained rate adjustment is achieved by selecting alternative pre-trained models corresponding
to different A values. The proposed variable-rate method leverages the model’s resolution-agnostic
property to provide efficient rate adaptation without requiring model retraining. Moreover, it shows
potential for achieving scalable coding, providing a direction for future research.

Table 1: BD-BR gains measured using CD for our method against the other methods.
BD-BR Gain | Category Verts/Faces | G-PCC S.PCGC | Draco V-DMC | NeCGS

Mixed mixed 11k/21k -55.8% -14.8% | -57.4% - -39.2%
ShapeNet objects 82k/162k -58.0% -91.0% -92.0% - -50.8%
MPEG humans 24k/37k -61.3% 31.7% | -93.8%  -30.5% | -46.7%
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Figure 4: Quantitative comparisons of different methods on various test datasets using (a) CD, (b)
F-Score as distortion metrics. Note that Draco’s rate segments on ShapeNet and MPEG are plotted

on a logarithmic scale for clarity, given its much higher bitrate than those of others.

4.2 PERFORMANCE EVALUATION

Rate-Distortion Performance. As shown in Fig. 4, our method achieves significant improvements
in compression performance across a wide range of bitrates when evaluated on extensive test sets.
The BD-BR values in Table 1 further quantify these bitrate savings, specifically, our method achieves
substantial reductions: 50%-60% compared to G-PCC, 30%-90% compared to SparsePCGC, 50%-
90% compared to Draco, 40%-50% compared to NeCGS, and 30% compared to V-DMC (on the
MPEQG dataset). These results demonstrate consistent superiority across various test scenarios.

In particular, our method maintains strong performance across all bitrates, while compared methods
exhibit specific limitations: PCC methods, i.e., G-PCC and S.PCGC, struggle to achieve low distor-
tion in the high bitrate range. This limitation stems from their discrete point-based representations,
which inherently fail to capture continuous surface details, and thus, surface reconstruction from
points is constrained, with unavoidable artifacts arising in the process. Mesh compression methods,
Draco and V-DMC, suffer from significant low-bitrate distortion. This is because vertex quanti-
zation and topological simplification inevitably result in noticeable geometric deformations, with
Draco showing the worst performance due to simplistic strategies, Even advanced V-DMC remains
constrained by this fundamental limitation. The SDF-based method NeCGS underperforms at high
bitrates, mainly due to resolution constraints: its traditional dense representation caps resolution at
128, even lower than our minimum 192, directly hindering fine geometric detail capture. Beyond
this, it lacks end-to-end rate-distortion optimization, further limiting compression performance.

Our method demonstrates robust generalization Table 2: Per-Category Evaluation on the

across diverse categories, including objects and hu-  Mixed Dataset.

mans, as further evidenced by the per-category Mixed AMA DT4D | Thing

comparison on the Mixed test dataset (Table 2). C tlxer A e 3Dmgl't
This robustness stems from both the mixed train- ategory umans | ammas prin

. . . . Verts/Faces | 10k/10k | 18k/36k | 3.5k/7k
ing dataset and the concise algorithm design. A key Vs Draco =570 | 33% | 23.9%
finding is the positive correlation between compres- Vs GPCC 1 670% | 736% | 29.1%
sion performance gain and mesh complexity: our —SPEGC [ 352% | 792% | 57.5%

method achieves more significant improvements on

high-fidelity meshes with abundant vertices and faces (such as those from MPEG and ShapeNet),
particularly against Draco. This advantage originates from a fundamental divergence in representa-
tion. While Draco directly encodes vertices and connectivity, it is suitable for simpler models. Our
approach more effectively represents and compresses complex 3D spatial structures.
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Figure 5: Visual comparisons of different compression methods on the test sets. Zoom in for details.

Visual Comparison. Fig. 5 visualizes the reconstructed meshes across methods; Zooming is rec-
ommended for detailed inspection. Our method consistently generates high-quality reconstructions.
By contrast, PCC methods, i.e., G-PCC and SparsePCGC, struggle to capture fine surface details
even at high bitrates. Draco exhibits severe block artifacts, while V-DMC shows significant defor-
mation at low bitrates. NeCGS yields blurred details and artifacts owing to its limited resolution and
redundant representation. Notably, our method tends to produce smoother surfaces with preserved
geometric fidelity.

Computational Complexity. We evaluate the computational complexity of various methods by
measuring their runtimes on the MPEG test set at medium bitrate points, as summarized in Table 3.
For a comprehensive and fair comparison, we account for both the core encoding/decoding time and
the pre-encoding conversion, e.g., SDF calculation, as well as the post-decoding conversion, e.g.,
surface reconstruction. All methods are tested on the same platform. Such a runtime comparison
only gives an intuitive reference as Ours, NeCGS and SparsePCGC are prototyped using Python and
run on GPU, while G-PCC and Draco are implemented using C/C++ and run on CPU.

Our method achieves highly competitive processing speeds. The core encoding/decoding times
require only around 0.1s. When considering the complete pipeline, the total encoding time is slightly
slower than that of Draco, while the total decoding and reconstruction time is only 0.12 s. The mesh-
to-SDF conversion requires approximately 0.4 s, as it is currently implemented on the CPU, but is

Table 3: Efficiency analysis of different methods.

Complexity G-PCC S.PCGC | Draco V-DMC | NeCGS Ours
Pre-Enc. 0.53 0.53 - - 20 0.40

Time Enc. 1.64 0.40 0.22 3.42 60 0.10
(s) Dec. 0.26 0.68 0.19 0.42 0.11 0.10
Post-Dec. 5.54 5.22 - - 0.15 0.02

Model Size (MB) - 6.63 - - 0.77 0.42
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Figure 6: Reconstruction results on non-watertight surfaces. The top two rows are samples from our
test set, while the bottom row is ScanNet sample. Zoom in for details.

amenable to GPU acceleration in future work. The surface extraction from SDF adds merely 0.02s.
Among the comparison methods, Draco encodes/decodes in around 0.2s. V-DMC suffers from
prolonged encoding that exceeds 3 s due to its complex operations. The PCC-based approaches,
i.e., G-PCC and SparsePCGC, require over 5 seconds for surface reconstruction from points. The
SDF-based NeCGS requires over 1 minute for encoding due to its network optimization procedure.
The results underscore the computational efficiency of our approach. Our superior efficiency stems
from the compact SIR and the lightweight SNC network, which is only 0.42 MB. This enables our
method to be suitable for practical deployment. With further engineering optimizations, especially
the migration of pre-processing to GPU, real-time performance can be readily achieved.

Performance on Non-Watertight Surfaces. Our method generalizes well to diverse meshes, in-
cluding non-watertight surfaces. As shown in Fig. 6, we select some complex non-watertight meshes
from the test dataset for validation, and conduct extended evaluations on the commonly used Scan-
Net (Dai et al., 2017) datasets. In addition, we evaluated the MGN (Bhatnagar et al., 2019) open
surface mesh datasets, which are shown in the Appendix. Notably, we used the same compression
models as before without fine-tuning them on these datasets. The results confirm that our method
effectively captures complex geometric features and outperforms other methods, demonstrating its
robust generalization across various meshes. In theory, the intrinsic sparsity of our SIR enables a
localized geometric representation restricted near the surface and governed by local geometric co-
herence. This, in turn, prevents reconstruction collapse that would otherwise depend on having full
global topological completeness. However, while the overall reconstruction quality is preserved,
minor reconstruction artifacts may appear at the boundaries of open surfaces, which is a common
challenge in surface modeling. Investigating UDFs as a means of further refinement is a promising
avenue for future work.

. . . MPEG
Performance on Dynamic Mesh Sequences. We achieve efficient com- 3.6 ——

pression of dynamic sequences by implicitly embedding the inter-frame 3.5/% \ "~ Ours (dynamic)
shared characteristics into the overfitted decoder network parameters and
encoding them into the bitstream. During training, we optimize the net-
work parameters on the target dynamic sequence until overfitting. Con-
sequently, during compression, the decoder parameters (e.g., weights, bi-
ases) are quantized and entropy-coded alongside the per-frame latent fea-
tures. Thus, the total bitrate comprises these individual latents and the
shared network parameters. The proposed dynamic compression method
achieves significant performance gains on the MPEG sequences. As the
RD curves in Fig. 7, “Our (dynamic)” achieves around >28% bitrate re-
duction compared to “Ours” using feed-forward autoencoder. The de-
coding requires around 0.1 s per frame due to the lightweight architecture, which aligns with the
low-latency requirement of dynamic sequence applications. However, the encoding requires a much
longer time due to the training process, making it suitable for offline encoding scenarios. It is worth-
while to investigate accelerating the encoding process in future work.

1 2 3 4 5
Size per frame (KB)
Figure 7: R-D compar-
ison of dynamic mesh
sequence compression.



4.3 ABLATION STUDY

We conducted systematic ablation studies to demonstrate the effectiveness of key choices and their
configurations.

Sparsity Threshold. In the proposed SIR, we Thres. vs. Points 3.0, Thres. vs. Distortion
extract grid points with distance to the surface 1= (=7 Minimim Dist
less than a threshold 7 as in Eq. 1, and organize | — f=-2 2.9

the selected points using a sparse tensor for effi- 206 2

ciept handli.ng. Conseguent}y, T determines the £,, / S28

point quantity. As depicted in Fig. 8 left, at var- < / ©

ious resolutions, adjusting the threshold leads to %% _——+— | *’

a linear change in the number of points. In Fig. 095 150 135 095 160 135

8 right, we examine hOW T inﬂuences diStOI'tiOl’l Threshold (voxel diag. len.) Threshold (voxel diag. len.)

and note that the distortion reduces to a minimum
as the threshold surpasses approximately 0.75 of
the voxel diagonal length. For our experiments, we typically set this threshold to 1.0, which offers
a sufficient buffer to maintain quality while allowing users the flexibility to adjust according to their
specific needs.

Figure 8: Ablation study of sparsity threshold.

Selection of Network Hyper-parameters. Our  Table 4: Ablation studies of residual blocks.
compression architecture is built upon stacked

SConv layers to exploit spatial correlations. We _ # ResNets 1 3 5 7
primarily investigate the impact of the number of ~_ BDBR(%) | anchor | -18% | -25% | -28%
residual network blocks, as summarized in Table Params 100K | 260K | 430K | 970K
4. Increasing the blocks enhances performance

by expanding the receptive field; based on a balance between performance and complexity, we
adopt 5 ResNet blocks. In contrast, increasing the number of feature channels beyond the default 16
(e.g., to 32) significantly raises model complexity without yielding significant performance gains.

Contribution of Occupancy Loss. Our distortion loss combines an occupancy loss with the SDF
loss (Eq. 2) to predict voxel occupancy after upscaling. This enables pruning of unoccupied voxels,
maintaining sparsity throughout the decoding process. Ablation studies confirm its necessity: omit-
ting this loss forces the retention of all voxels, which inevitably increases computational cost and
introduces fragmented artifacts. In contrast, incorporating the occupancy loss improves reconstruc-
tion quality by approximately 47%. The loss weight « is set to 0.01 in the experiments; nevertheless,
the method is robust, as values like 0.1 result in only a 2% variation.

5 CONCLUSION AND FUTURE WORK

We have proposed SIR-SNC, a novel framework for high-efficiency 3D mesh compression. SIR em-
ploys sparse SDF tensors to accurately represent continuous surfaces with low memory cost, while
SNC utilizes a lightweight neural network to embed these sparse tensors into lower-resolution latent
features, which are further compressed into bitstream via entropy coding. Our method demonstrates
superior compression performance, achieving at least a 30% bitrate reduction compared to state-
of-the-art mesh compression methods across diverse meshes. Additionally, and it adapts well to
complex non-watertight surfaces and dynamic mesh sequences. Notably, it maintains near-real-time
efficiency, with both core encoding and decoding completed in around 0.1 s using a compact 0.42
MB model, making it highly practical for deployment. Future extensions will continue to investigate
efficient compression techniques for high-fidelity and large-volume meshes and incorporate texture
compression capabilities.
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A APPENDIX

A.1 COARSE-TO-FINE CALCULATION OF SPARSE IMPLICIT REPRESENTATION

During the calculation of the Sparse SDF Tensor of Initial_Grids Target Grids
a given mesh, we first sample uniformly distributed /

grids in 3D space and obtain a set of initial grids, ffrmu'n’:'n“;& TE‘;"?:‘“‘::'”“; S
Vipiy € REwmi0x KinitxXKinit X3 where [y is the ini- / = =,

tial resolution. Then we select the initial grids with J:h
a distance to the surface of less than a pre-defined
threshold Tipit, V = {v|d(V) < Tinit }- Based on V,
we can obtain grids of higher resolution through upsampling, as illustrated in Fig. 9, from which
we can select the grids near the surface until we achieve the required resolution. Such a sampling
strategy can accelerate the calculation of Sparse SDF Tensors.

Figure 9: Coarse-to-fine Calculation of SIR.

A.2 EFFICIENCY COMPARISON OF DIFFERENT 3D REPRESENTATIONS

The memory and computational efficiency of a 3D representation are primarily determined by its
sparsity, which is quantified by the number of points or voxels required. We quantitatively compare
this efficiency across resolutions for various representations in Fig. 10a. TSDF volumes scale cubi-
cally with resolution, incurring substantial costs. A strategy to mitigate this is to partition the volume
into &% occupied blocks (Tang et al., 2020) for independent processing. However, small block sizes
(e.g., k=8) disrupt inter-block continuity and hinder the exploitation of spatial correlations vital for
compression. In contrast, TSDF-Def in NeCGS(Ren et al., 2025) applies an extra deformation field
to the TSDF volume to improve representation accuracy; however, this deformation relies on itera-
tive optimization and is computationally expensive. The sparse point cloud is efficient; however, it
struggles to represent surfaces with high accuracy.

Our sparse implicit representation combines the strengths of both TSDF and point cloud. It ex-
plicitly samples points near the surface, organizing them into memory-efficient sparse tensors via
[N, 3] coordinates, ensuring inherent sparsity and continuity. Fig. 10a shows our method requires
significantly fewer points than a dense TSDF and about 4.3 times fewer than an 82 blocked TSDF.
Notably, this sparsity does not compromise accuracy. Compared to point clouds (Figs. 10a and
10b), our method uses only about 2.3 times as many points yet achieves a significant reduction in
distortion. This optimal trade-off, summarized in Fig. 10c, underscores the superior efficiency of
our representation, which effectively bridges the accuracy of TSDF with the sparsity of point clouds.
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Figure 10: Comparison of efficiency and distortion across resolutions for different representations.
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Figure 11: Visual comparison under different resolutions of SIR.



A.3 ANALYSIS OF RECEPTIVE FIELD IMPACT ON COMPRESSION PERFORMANCE

We investigate how the receptive field influences compression perfor- o7 o T Remer
mance. As indicated by the RD curve in Fig. 12, increasing the depth > Lo S foaer

R X . =36 ' osNe
of the residual network to enlarge the receptive field (for instance, us- 3., \\* Za_5 oaNt i Pactiton

ing a 5-resnet-block architecture instead of a single resnet block leads =5,
to a 25% improvement. While dividing the data into independent 30
8x8x8 blocks causes a performance drop of more than 80% even after 28
retraining on the partition data. These results show that a large re-
ceptive field is essential for effectively modeling spatial correlations
during compression. By comparison, block-based compression re-
stricts the receptive field to small, isolated regions, which severely
limits achievable performance.
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Size per frame (KB)

Figure 12: Ablation study
of network receptive filed.

A.4 DETAILS OF COMPARISON METHODS

MPEG

34 A\ —— G-PCC

v ¥ G-PCC (Trisoup)
3\\10\":

12

For fair comparison, we used the open-source code .4
of other methods and adhered to their respective .*
test conditions. For PCC algorithms, we densely
sampled point clouds from mesh surfaces, voxelized s
them to 10 bits for compression, and employed Pois- ¢ T
son surface reconstruction with post-processing to

reconstruct meshes from point clouds.

2 4 6 8 10
Size per frame (KB)

Figure 13: Comparisons with G-PCC in
trisoup mode.

The configuration and bitrate settings of each

method are as follows: For Draco, we adjust QP from 6 to 11 to obtain different bitrates. For
V-DMC, we use all-intra mode, set QP from 22 to 44 and adjust “target” parameters to obtain op-
timal bitrates following its common test conditions. For G-PCC, we used octree mode and adjust
positionQuantizationScale” from 0.5 to 0.125 to obtain different bitrates. Comparisons with G-PCC
in trisoup mode are provided in Fig. 13. For SparsePCGC, we use its open-source pretrained models
to generate various bitrates. For NeCGS, we use its reported results on the Mixed dataset and test
its performance on other test sets following its open-source code.

A.5 EVALUATION USING NORMAL CONSISTENCY

In addition to the Chamfer Distance and F-Score metrics, we also report Normal Consistency results
following common practice, as shown in Fig. 14. This further demonstrates the performance of our
method.
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Figure 14: Quantitative comparisons of different methods on various dataset using Normal Consis-
tency.
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A.6 MORE VISUAL RESULTS

Fig. 15 presents additional visual comparisons on the test dataset. It is evident that the reconstructed
models generated by our method exhibit less distortion compared to those from the baseline meth-
ods. Fig. 16 shows results of meshes from the MGN dataset, demonstrating the effectiveness of our
method in compressing open-surface meshes. Fig. 17 showcases the results of meshes with complex
structures, illustrating that our method can effectively preserve detailed structures.
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Figure 15: Visual comparisons of different compression methods. From top to bottom, the examples
correspond to those from AMA, DT4D, and ShapeNet.
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Figure 16: Visualization of decompressed results for non-watertight meshes from MGN dataset.
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Figure 17: Visualization of decompressed results for meshes with detailed structures.
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