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Abstract

Traffic prediction is a core challenge of Intelli-
gent Transportation Systems (ITS). The devel-
opment of deep learning has driven significant
advancements in traffic prediction models; how-
ever, the increased complexity of these models
has led to higher demands for data scale. Ex-
isting models have encountered performance
bottlenecks due to an imbalance between ex-
cessive complexity and data sparsity. This pa-
per proposes LLM4ST-Traffic, a traffic predic-
tion framework based on Large Language Mod-
els (LLMs), aimed at addressing data scarcity
through cross-modal semantic alignment and
lightweight fine-tuning. The core innovations
include: the Cross-Modal Alignment (CMA)
module, which utilizes cross-attention to es-
tablish deep connections between traffic fea-
tures (such as flow trends and periodicity) and
textual concepts, thereby overcoming the se-
mantic disjunction caused by traditional linear
projections, and Prefix Adapter Fine-Tuning
(PAFT), which implements learnable prefix
prompts for lightweight training, optimizing
predictive performance while retaining pre-
trained knowledge. Experimental results in-
dicate that LLM4ST-Traffic demonstrates ex-
ceptional performance in prediction accuracy
and robustness, exhibiting outstanding perfor-
mance in low-sample scenarios. Interpretability
analysis validates the effectiveness of semantic
alignment.

1 Introduction

Traffic prediction, as a core component of intelli-
gent urban perception systems, aims to infer fu-
ture road network states from historical traffic data
(such as traffic volume and speed). Its accuracy
directly impacts the effectiveness of downstream
tasks such as traffic signal control and route plan-
ning. Despite significant advancements in traffic
prediction models (Yu et al., 2017; Wu et al., 2019)
due to developments in deep learning, the result-
ing model complexity has intensified the depen-

dence on large-scale data. However, the traffic
domain often faces the challenge of data sparsity:
hardware costs limit sensor deployment, leading
to insufficient spatial coverage, and sudden events
cause temporal distribution shifts. Existing models,
which rely on predefined road network biases and
massive training data, are prone to overfitting in
low-resource scenarios, exposing the fundamental
contradiction between data scale and model perfor-
mance.

The recent open-domain generalization capabil-
ities of large language models (LLMs) provide
new insights for addressing this issue (Lu et al.,
2022), but their transferability in traffic prediction
faces critical bottlenecks. Existing methods, such
as TPLLM (Ren et al., 2024) and STLLM (Liu
et al., 2024a), employ static linear projections to
map traffic data into text space, achieving only nu-
merical and formal alignment without establish-
ing semantic-level associations. Moreover, the
fine-tuning strategies exhibit severe imbalances:
STLLM risks knowledge forgetting by adjusting
50% of the parameters, while conservative fine-
tuning limits performance improvements.

To tackle these challenges, this paper proposes
the LLM4ST-Traffic framework, with its core in-
novation being the construction of a semantics-
driven cross-modal collaborative paradigm. First,
we design the Cross-Modal Alignment (CMA)
module, which utilizes a cross-attention mech-
anism to achieve interactive mapping between
traffic features and text concepts, replacing tra-
ditional static projections to address the modal-
ity gap. Second, we introduce the Prefix Adapter
Fine-Tuning (PAFT) strategy, which designs a hi-
erarchical, learnable prefix adaptation module that
fine-tunes only 1.31% of the LLM parameters, op-
timizing prediction performance while retaining
pre-trained knowledge. Experimental results show
that this framework reduces the Mean Absolute Er-
ror (MAE) by an average of 11.7% compared to



TPLLM, STLLM, and GATGPT across four real-
world datasets, demonstrating a 5.5% performance
advantage in low-sample scenarios (10% training
data). Visualization of the attention module further
validates the effectiveness of semantic alignment.
The main contributions of this paper include:

* This paper proposes LLM4ST-Traffic, the first
LLM-based ’decoupling-semantic alignment-
adaptation’ technical system for traffic pre-
diction, which provides a new solution for
data-sparse scenarios.

* The design of the CMA module, which
overcomes the limitations of static mapping,
and the introduction of the PAFT strategy,
achieves a balance between performance and
retention of pre-trained knowledge.

» Experiments conducted on real traffic datasets
demonstrate the outstanding performance of
LLM4ST-Traffic, and it also shows excellent
performance in few-shot learning scenarios.
Additionally, an interpretability analysis was
performed.

2 Related Work

In this section, we will discuss traffic prediction
from three aspects: Traffic Prediction, LLMs for
Traffic Prediction, and LLMs for Spatio-Temporal
Traffic Prediction.

2.1 Traffic Prediction

The core challenge in traffic prediction lies in the
strong coupling of spatio-temporal features: the
road network topology forms rigid spatial con-
straints, and the dynamic changes of traffic flow
increase the difficulty of temporal modeling. Early
statistical models (e.g., ARIMA) (Hamed et al.,
1995) and traditional machine learning methods
(e.g., SVM, KNN) (Ding et al., 2002; Zheng and
Su, 2014) rely on handcrafted features and linear
assumptions, making it difficult to capture complex
nonlinear relationships. Deep learning approaches
break through traditional limitations by decoupling
spatio-temporal modules. They utilize Graph Con-
volutional Networks (GCN) (Kipf and Welling,
2016) to model the spatial structure of the road
network and combine Recurrent Neural Networks.
(e.g., GRU, LSTM) (Graves and Graves, 2012; Cho
et al., 2014) or Temporal Convolutional Networks
(TCN) (Bai et al., 2018) to capture the dynamic
evolution of traffic flow. Typical examples are two-
stream architectures such as STGCN (Yu et al.,

2017) and T-GCN (Zhao et al., 2019). Attention
mechanism models (e.g., ASTGCN, GMAN) (Guo
et al., 2019; Zheng et al., 2020) further enhance
the ability to model spatiotemporal dependencies
through dynamic weight allocation. However, with
the increase in model complexity, their demand for
data scale also increases significantly. The current
contradiction is that complex models are prone to
overfitting in low-resource scenarios with sparse
sensors and frequent unexpected events (Emmert-
Streib et al., 2020), highlighting the fundamental
bottleneck between the limitations of data scale
and the improvement of model performance in tra-
ditional paradigms.

2.2 LLMs For Time Series Analysis

In recent years, large language models (LLMs)
have transferred open-domain knowledge to the
field of time series analysis through parameter-
efficient fine-tuning (PEFT) (Han et al., 2024), giv-
ing rise to two types of solutions for data sparsity.
Feature extraction methods such as GPT4TS (Zhou
et al., 2023) directly map time series into the text
embedding space, while TIME-LLM (Jin et al.,
2023) innovatively converts numerical segments
into pseudo-text tokens such as ’rising trend” and
uses the attention mechanism of frozen LLMs to
improve few-shot reasoning capabilities; CALF
(Liu et al., 2024b) takes another approach by en-
hancing cross-modal representations through text-
time series contrastive learning. In the direction of
Prompt engineering (Zhang et al., 2024), TEMPO-
GPT (Cao et al., 2023) encodes time series patterns
into natural language templates, and PromptCast
(Xue and Salim, 2023) automatically generates
prompts suitable for complex scenarios through
dynamic instructions.

2.3 LLMs For Traffic Perdition

In the field of spatiotemporal traffic prediction,
when attempting to integrate large language models
(LLMs) (Devlin, 2018; Radford et al., 2019; Brown
et al., 2020; Touvron et al., 2023), challenges of
cross-modal alignment and imbalance in knowl-
edge transfer arise. GATGPT (Chen et al., 2023)
integrates graph attention networks to extract road
network topologies, yet it neglects the dynamic
evolution over time. TPLLM (Ren et al., 2024) al-
leviates data sparsity through spatio-temporal dual
embeddings and LoRA (Hu et al., 2021) fine-tuning
but is constrained by the static representations of
linear mappings. STLLM (Liu et al., 2024a) adopts



node sequence tokenization and frozen attention
fine-tuning. Although it improves long-term pre-
diction capabilities, the strong fine-tuning strat-
egy leads to changes in 50 % of the pre-trained
model’s parameters, posing the risk of semantic
knowledge forgetting. The common limitations of
existing methods lie in that cross-modal interac-
tions rely on one-way concatenation or static map-
ping, lack semantic-level fusion; and fine-tuning
strategies struggle to strike a balance between over-
adjustment (damaging generalization) and under-
adjustment (limiting performance). Based on this,
this paper constructs a novel LLM-based traffic
prediction framework.

3 Problem Definition

This section describes the characteristics of traffic
data and defines the problem.

Traffic Features: We represent the traffic fea-
ture data as a tensor X € RT*N*C \where T de-
notes the number of time steps, /V is the number of
nodes, and C represents the feature dimensions.

Traffic Prediction: Given historical traffic
data Xp = {Xt_p+1,Xt_p+2, ce ,Xt} €
X € RPXNXC on P time steps, the goal
is to learn a function f(-) with parameters 6
to predict the subsequent S time steps Yg =
{Yi11,Yero,..., Yips}) € REVXC Formally,
this can be expressed as:

[X¢—py1, Xs—pyo,- .- .

ey

where each X; € RV*S,

4 Methodology

In this section, the details and components of
LLM4ST-Traffic are described.

4.1 Overview

As illustrated in Figure 1, the LLM4ST-Traffic
framework performs traffic prediction in data-
sparse scenarios through four distinct stages. First,
the multi-granularity spatio-temporal embedding
layer extracts temporal patterns, periodic trends,
and spatial topology features, integrating them
into a unified representation. Next, the Cross-
Modal Alignment (CMA) module employs a cross-
attention mechanism to map traffic feature data
into the semantic space of a pre-trained language

7Xt] & [Yt+17 . 7Yt+S]

model, thereby achieving alignment between dif-
ferent modalities. Subsequently, the framework
utilizes a Prefix Adapter Fine-Tuning (PAFT) strat-
egy to fine-tune the pre-trained LLM, adapting it to
the specific requirements of traffic prediction tasks.
Finally, the regression layer projects the seman-
tic features into the prediction space to generate
multi-step future traffic states.

4.2 Spatio-Temporal Embedding

To ensure semantic compatibility between traffic
data and pre-trained language models, we have
designed a multi-granularity spatial-temporal em-
bedding architecture comprising three core compo-
nents: Patch Embedding, Time Embedding, and
Node Embedding. To accommodate the input
shape required by LLMs, we collapse the time step
dimension into the feature dimension within the
embedding module.

Patch Embedding To resolve the conflict be-
tween the discreteness of single time-step data and
the semantic continuity required by language mod-
els, we propose a sliding window-based temporal
semantic aggregation method. Given an input se-
quence X € RT*N*C (where T is the number of
time steps, IV is the number of nodes, and C' is the
feature dimension), we construct temporal patches
for each node as follows:

P; = Concat(X[s444),i) € RF*C ()

Here, k denotes the patch size (default k£ = 3),
i € {1,..., N}. These patches are then mapped to
the semantic space aligned with LLM word embed-
dings through a linear projection:

EP = fpatch(P) = PWp + bp c RNXD (3)

In this equation, W, € REC)XD represents the
learnable parameters, and D is one-third of the
LLM’s word embedding dimensionality.

Time Embedding To explicitly model the peri-
odic characteristics of traffic flow, we design a dual-
scale time encoding that captures both daily and
weekly patterns. Specifically, daily patterns are en-
coded using a learnable matrix Eq,i, € R24%D o
represent hourly variations, while weekly patterns
are captured through Eyeeky € R7™*P to represent
weekly cycles. For an input timestamp ¢, the time
embedding is computed as:

Er = Eqaity[0(t)] + Eeeny[d(t)] € RP  (4)
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Figure 1: The model framework of LLM4ST-Traffic. The upper section features an overall architecture diagram,
while the lower section provides detailed specifics. CMA refers to the Cross-Modality Alignment module, and

PAFT refers to the Prefix Adapter Fine-Tuning module.

where h(t) € {0, ..., 23} denotes the hour index
and d(t) € {0, ..., 6} denotes the day of the week
index. After broadcasting to all nodes, the resulting
time embedding is Ep € RV*P,

Node Embedding To capture the spatial depen-
dencies of the road network, we design an adaptive
node embedding matrix:

ES = Enode € RNXD (5)

where E, 4 is a learnable parameter initialized
uniformly.

Fusion Feature The fusion feature concatenates
the three sets of embeddings along the feature di-
mension to generate a joint representation compati-
ble with LLMs:

Egna = Concat(Ep, Ep, Eg) € RV3D (6)

4.3 Cross-Model Alignment

To achieve dynamic alignment between traffic
spatio-temporal features and the semantic space
of pre-trained language models (LLMs), we pro-
pose the Cross-Modal Alignment (CMA) module.

Feature Enhancement The input spatiotempo-
ral embeddings Eg,. € REXNX3D (where B is
the batch size, N is the number of nodes, and 3D
the feature dimension) are processed through a
TransformerEncoder layer to enhance the context-

aware capabilities of the spatiotemporal features:
E.tx = TransformerEncoder(Egna1)  (7)

Here,Enorm c RBXNX?)D’ Ectx c RBXNXDHH,,
Dy, = 768. denotes the dimension of the LLM
word vectors. The encoder consists of 2 Trans-
former layers with a default of 8 attention heads.

Semantic Clustering Considering that the se-
mantic information of traffic data is relatively sim-
ple and that the vocabulary of large language mod-
els (LLMs) typically contains tens of thousands
of tokens, directly aligning them would lead to a
waste of computational resources. Therefore, we
employ the K-Means clustering method to perform
dimensionality reduction on the pre-trained word
embedding matrix Wscat, € RVI*Diim,

Woocab = KMeans(Wyocan, d) € RIVIxd 8)

where d = 500. By identifying semantically
similar word groups to form "synonym clusters,"
we significantly reduce the computational complex-
ity from O(N - |V| to O(N - d) while preserving
key semantics through the aggregation of synonym
clusters.

Dynamic Attention Alignment Using a multi-
head cross-attention mechanism, we establish a
soft alignment between spatiotemporal features and



semantic terms:

Here, Q is derived from the enhanced spatiotem-
poral features, and both K, V are obtained from the
vocabulary embeddings clustered by the Kmeans
method.

Residual Feature Fusion To fully leverage the
information from the original spatiotemporal fea-
tures, we introduce residual connections and a
Multi-Layer Perceptron (MLP) to enhance the
model’s non-linearity:

Zow = MLP(Z) + E¢ix € RVPum — (10)

This design ensures that important spatio-
temporal information is not lost during the align-
ment process.

4.4 Prefix Adapter Fine-Tuning

To address the challenging trade-off between im-
proving model performance and mitigating knowl-
edge forgetting, we propose the Prefix-based Effi-
cient Tuning method. The core idea is to prepend
learnable prefix prompts to the input data, guiding
the pre-trained model to adapt effectively to the pre-
diction task. Trainable prefixes are concatenated
to the input of each layer of the LLM, generated
through the following steps: First, perform embed-
ding initialization with trainable prompt vectors
for each layer P() € R™*Pum | where the default
m = 30 is the prefix length and Dy, = 768.
Then, add trainable positional encoding E;.s €
R™*Pimto enhance sequence position awareness,

formulated as: Hgﬁompt = P 4 E . Finally, ap-
ply a lightweight MLP for non-linear projection to
further enhance the expressiveness of the prefixes,
resulting in PO) = MLP(HU) | ).

The generated prefix prompts are concatenated
with the input data as H®) = Concat(P®, H®),
and then fed into the TransformerLayer of the LLM.
During the output phase, the original input seg-
ment is extracted as (H® = HO[:;m :,:]), en-
suring that subsequent layers are not affected by
the prefix. From an implementation perspective,
we employ an adaptation prompt module to inde-
pendently generate prefixes for each layer, thereby
enabling lightweight fine-tuning of the LLM. Con-
sidering that the aligned token embeddings differ
from those in the original LLM, we intentionally
retain the trainability of the normalization layers.

4.5 Regression Layer

Use a linear layer to map high-dimensional seman-
tic features into the prediction space to forecast
traffic conditions for the next 7" time steps:

-~

Y =H, W, + b, € RVXT (11)
where H,,; € RY*Pum represents the output of
the LLM, W, € RPum*T i the learnable weight
matrix and b, € R7 is the bias term.

S Experiments

In this section, we aim to validate the superiority
of our LLM4ST-Traffic model through a series of
comprehensive experimental evaluations.

5.1 Experimental Setup

Datasets Our approach is extensively evaluated
on four real-world spatio-temporal benchmark
datasets: METR-LA, PEMS-BAY, PEMS04, and
PEMSO08. The first two datasets, METR-LA and
PEMS-BAY, were introduced in the DCRNN (Li
et al., 2017), while PEMS04 and PEMSO08 were
proposed in the STSGCN (Song et al., 2020). All
four datasets have a temporal resolution of five min-
utes, resulting in 12 timesteps per hour. Table 1
provides further details of these datasets.

Dataset Sensors Timesteps Time Range

METR-LA 207 34,272 03/2012 - 06/2012
PEMS-BAY 325 52,116 01/2017 - 05/2017
PEMS04 307 16,992 01/2018 - 02/2018
PEMS08 170 17,856 07/2016 - 08/2016

Table 1: Summary of Datasets.

Implementation: For dataset splitting, we em-
ployed different ratios: the METR - LA and PEMS -
BAY datasets were divided into training, validation,
and test sets in a 7:1:2 ratio, respectively, while the
PEMSO04 and PEMSO08 datasets were split using a
6:2:2 ratio. In addition, regarding model configura-
tion, both the input sequence length and prediction
sequence length were set to one hour (T =T =12
timesteps). The model was trained using the Adam
optimizer with an initial learning rate of 0.001 and
a learning rate decay strategy. During training, the
batch size was set to 64. For the LLM component,
we selected GPT-2 as the base model, utilizing
its first three transformer layers. All experiments
were conducted and evaluated on a Linux server
equipped with an NVIDIA RTX 4090 GPU.



Datasets Metric ‘ HI DCRNN AGCRN STGCN MTGNN STNorm GMAN PDFormer GATGPT STLLM  ours
Horigons  MAE | 6.80 267 2.85 275 2.69 2.81 2.80 2.83 2.89 202 2.64
(;’;‘Z‘.’“) RMSE | 1421 5.16 5.53 529 5.16 5.57 5.55 5.45 5.49 555  5.09

« ™ MAPE | 1672%  6.86%  7.63%  7.10%  6.89%  7.40% 741%  7.77% 745%  153% 6.76%
= Horisong  MAE | 680 3.12 3.20 3.15 3.05 3.18 312 3.20 3.8 324 2.99
& (%00 ° ) RMSE | 1421 627 6.52 6.35 6.13 6.59 6.49 6.46 6.53 649 610
C M MAPE | 1672%  8.42%  9.00%  8.62%  8.16%  847%  873%  9.19% 8.94%  8.86% 8.13%

Horiponly  MAE | 6:80 3.54 3.59 3.60 347 3.57 3.44 3.62 373 361 337
28“’?‘ RMSE | 1420  7.47 7.45 743 721 751 735 7.49 7.65 745 117
O0min) AR | 10.15%  1032% 1047% 1035%  9.70%  1024% 1007%  1091%  10.62%  10.37% 9.82%
Horigon  MAE | 3.06 131 1.35 1.36 1.33 1.33 1.35 1.32 1.35 135 129
(;’;lz‘.’“)* RMSE | 7.05 2.76 2.88 2.88 2.80 2.82 2.90 2.83 2.82 284 276

« ™ MAPE | 6.85%  273%  291%  2.86%  2.81%  276% 2.87% = 2.78% 285%  279% 2.68%
2 Horigons MAE | 3.06 1.65 1.67 1.70 1.66 1.65 1.65 1.64 1.69 166  1.60
g‘ (30(;‘2‘?“) RMSE | 7.04 3.75 3.82 3.84 377 377 3.82 379 3.82 376 371
=] M MAPE | 6.84%  371%  3.81%  3.79%  375%  3.66%  3.74%  3.71% 379%  3.67% 3.54%
& origonly  MAE | 305 1.97 1.94 2.02 1.95 192 1.92 1.91 2.00 196 187
(281‘)?1) RMSE | 7.03 4.60 4.50 4.63 4.50 4.45 4.49 443 4.58 447 435
M MAPE | 6.83%  4.68%  4.55%  472%  462% @ 446%  452%  451%  462%  450% 431%
Table 2: Performance on METR-LA and PEMS-BAY.
b PEMSO04 PEMSO08 monly used metrics to assess the performance of
ataset
MAE RMSE MAPE |MAE RMSE MAPE the proposed framework: Mean Absolute Error
HI  [42.35 61.66 29.92 %|36.66 50.45 21.63 % (MAE), Root Mean Squared Error (RMSE), and
DCRNN |19.63 31.26 13.59 %|15.22 24.17 1021 %  Mean Absolute Percentage Error (MAPE). For all
AGCRN [19.38 31.25 13.40 %|15.32 24.41 10.03% metrics, lower values indicate superior predictive
STGCN |(19.57 31.38 13.44 %|16.08 25.39 10.60% performance. The computation processes for the
MTGCN 1917 3170 1337 % 1518 2424 1020 % evaluation metrics are as follows:
STNorm |18.96 30.98 12.69 %|15.41 2477 9.76%
GMAN [19.14 31.60 13.19 %|15.31 24.92 10.13 % 1 m
ASTGCN |21.83 34.48 14.25%|18.33 2830 11.64% MAE = — Z ‘Yi -Y;
GATGPT |22.77 34.65 19.22 %|18.33 27.38 17.72% m i=1
TPLLM |19.53 3191 12.81 %|15.45 25.35 9.88 % m |-G
100% < | Y — Y,
STLLM [21.41 32.39 18.41 %|17.98 26.82 15.26 % MAPE = Z (12)
ours 18.49 30.01 12.20 %|14.09 23.65 9.15 % m =1 Yi
m
Table 3: Performance on PEMS04 and PEMSO0S. 1 I 2
RMSE =, | — > (Yi _ YZ-)
m =
1=

Baselines In this study, we compare our pro-
posed method with several widely used baseline
models in the field. Among these, HI is a clas-
sic traditional model (Cui et al., 2021). We also
consider DCRNN (Li et al., 2017), AGCRN (Bai
et al., 2020), STGCN (Yu et al., 2017), and MT-
GNN (Wu et al., 2020), all of which leverage graph-
related information for modeling. Additionally,
we examine STNorm (Deng et al., 2021), which
focuses on the decomposition of traffic time se-
ries. For mainstream attention-based architectures,
we include ASTGCN (Guo et al., 2019), GMAN
(Zheng et al., 2020), and PDFormer (Jiang et al.,
2023). In the context of integrating Large Lan-
guage Models (LLMs) into traffic prediction, we
evaluate GATGPT (Chen et al., 2023), STLLM
(Liu et al., 2024a), and TPLLM (Ren et al., 2024).

Evaluation Metrics We employ three com-

where m is the number of all predicted values.

5.2 Overall Performance

We investigated the predictive capabilities of the
LLM4ST-Traffic model.Table 2 and Table 3 present
the comparative results with baseline models on
the METR-LA and PEMS-BAY datasets, as well
as the PEMS04 and PEMSO08 datasets, respectively.
Bolded results indicate the best performance. It is
important to note that the TP-LLM code was not
publicly available; therefore, we directly utilized
the results provided in its original paper. In Table
III, we present the mean of the predictions over
12 time steps as the final displayed results. The
findings clearly show that LLM4ST-Traffic exhibits
superior performance across all datasets. A detailed
analysis is provided in the appendix A.



5.3 Ablation Study

Component Ablation Figure 2 presents an ab-
lation study on the METR-LA and PEMS-BAY
datasets, aiming to evaluate the impact of differ-
ent components within the LLM4ST-Traffic model.
LLMA4ST-Traffic comprises several key compo-
nents, each playing a crucial role in the overall
effectiveness of traffic forecasting. This section
examines the effectiveness of each component by
comparing the following variants:

¢ w/o CMA: Variant without the Cross-Modal
Alignment Module.

* w/o LLM: Variant without the pretrained
Large Language Model.

* w/o Patch: Variant without patch embedding,
using a simple linear mapping instead.

Figure 2: Ablation experiments on METR-LA and
PEMS-BAY.

Main Observations: Removing the pre-trained
model (w/o LLM) and using only the multi-
granular embedding layer and alignment module
results in a significant decline in model perfor-
mance. This indicates that the LLM plays a key
role in enhancing predictive performance by lever-
aging its strengths in semantic understanding and
feature extraction. Similarly, removing the CMA
module (w/o CMA) leads to a notable decrease
in performance, demonstrating that this module is
essential for aligning the semantics between traf-
fic data and the pre-trained language model, ef-
fectively handling the alignment between different
data modalities. When the patch embedding com-
ponent is removed (w/o Patch), the model’s predic-
tion metrics increase, suggesting that the model’s
predictive capability relies on the temporal seman-
tic aggregation method within the patch embedding.
Overall, when all components (patch embedding,
alignment module, and LLM) are integrated, the
model achieves the lowest error rates across all
metrics. This further validates the effectiveness
of these components in handling traffic forecasting
tasks and demonstrates the superior performance of

um | METRLA PEMSBAY
| MAE RMSE WAPE | MAE RMSE WAPE
GATGPT | 348 694 955% | 1.84 407 4.14%
STLLM | 344 689 10.04% | 1.83 410 4.12%
LLM4ST | 334 688 937% | 1.77 402 395%

Table 4: Few-shot Experiments on METR-LA and
PEMS-BAY.

um | PEMS04 \ PEMS08

| MAE RMSE WAPE | MAE RMSE WAPE

GATGPT | 24.81 3762 22.18% | 20.61 31.64 17.36%

STLLM | 2505 3822 2096% |20.67 31.36 19.50%

TPLLM | 23.68 3738 15.57% | 18.09 2851 11.63%

LLM4ST | 23.35 3622 17.97% | 17.94 2817 1237%

Table 5: Few-shot Experiments on PEMS04 and
PEMSO08.

LLMA4ST-Traffic through the synergistic interaction
of its components.

5.4 Few-shot Prediction

As shown in Table 4 and Table 5, LLM4ST-Traffic
demonstrates significant advantages in few-shot
scenarios. In the few-shot experiments on the
METR-LA dataset (a scenario with high traffic
flow fluctuations), its Weighted Average Percent-
age Error (WAPE) is 9.37%, which is 6.7% lower
than that of STLLM (10.04%), proving that the
model can still maintain prediction stability under
extremely scarce data conditions. In the PEMS -
BAY dataset (for short-term prediction tasks), the
MAE of LLM4ST-Traffic is 1.77, which is 3.8%
and 3.3% lower than that of GATGPT (1.84) and
STLLM (1.83) respectively, indicating that it still
performs excellently compared to other models
when data is limited.

5.5 Visual Analysis of Semantic Alignment

To verify the alignment effect between traffic data
and the semantic space, we conducted a visual anal-
ysis of the weights of the correlation matrices in
the cross-attention mechanism, as shown in Fig-
ure 3. In this figure, the rows represent traffic data
instances, the columns correspond to text words,
and the color intensity reflects the strength of the
association. To enhance the contrast, for each traf-
fic data instance, we extracted the top 10 relevant
words with the highest attention weights and the
top 10 non-relevant words with the lowest atten-
tion weights for display. The results show that
the highly relevant words include terms describ-

ing trends (such as "stable", "dropt", "+++", and
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Figure 3: Cross-attention Maps in the Cross-modal Mod-
ules of PEMS-BAY (left) and METR-LA (right).

epoch 5 epoch 60

Figure 4: Cross-attention maps for different numbers of

epoch 160
epochs

epoch 120

"peak") and periodic time-related words (such as
"weekly"), indicating that the cross-modal module
can effectively capture the correlation between the
dynamic change patterns of traffic data and text se-
mantics. Figure 4 shows the evolution of semantic
alignment during the training process. In the initial
training stage (epoch 5), the attention distribution
is in a disordered state, and the correlation mapping
is blurred. As the training progresses, the attention
gradually focuses on domain-related words. The
above visual results verify the model’s ability to
deeply align the spatio-temporal features of traffic
data with text semantics.

6 Conclusion

This paper proposes LLM4ST-Traffic, a cross-
modal traffic prediction framework based on Large
Language Models, which addresses the challenge
of data sparsity through semantic alignment and
lightweight fine-tuning. The core contributions
are: 1) the Cross-Modal Alignment (CMA) mod-
ule, which dynamically associates spatiotemporal
traffic features with textual semantics, overcoming

the static nature and semantic disjunction of tradi-
tional linear mappings; and 2) Prefix Adapter Fine-
Tuning (PAFT), which achieves a balance between
performance and knowledge retention with mini-
mal parameter adjustments. Experimental results
demonstrate that this framework significantly out-
performs mainstream methods across four bench-
mark datasets, excelling in low-sample scenarios,
and includes an interpretability analysis. Future
work will explore energy-efficient fine-tuning tech-
niques to enhance the generalization ability of pre-
trained models in downstream tasks.

7 Limitations

Although LLM4ST-Traffic demonstrates signifi-
cant advantages in experiments, the following tech-
nical challenges still remain:

1. Information Loss in Cross-Modal Mapping:
The current framework maps the entire traffic
data into the discrete vocabulary space. Al-
though it can utilize the text reasoning ability
of the pre-trained model, the semantic-level
representation has insufficient coverage of the
high-order spatiotemporal patterns of traffic
data (such as dynamic road network topology
and the spread of unexpected events), limiting
the model’s fine-grained modeling ability for
complex traffic scenarios.

2. Domain Adaptation Defects in Vocabulary
Compression: Although the vocabulary com-
pression strategy based on K-means (500
words) improves computational efficiency,
only a part of the representative words gener-
ated are strongly related to the traffic scene,
and the remaining words lack domain dis-
crimination. This makes it difficult for the
semantic alignment module to establish accu-
rate traffic-text associations, and further explo-
ration of domain knowledge-guided clustering
optimization methods is required.

3. Dimension Conflict Caused by Spatiotem-
poral Structure Collapse: To adapt to the
sequence input paradigm of the language
model, it is necessary to compress the high-
dimensional spatiotemporal structure of traffic
data (batch x node x time step x dimension)
into a three-dimensional sequence (batch x
sequence X feature). This process destroys
the local dependence of the spatio-temporal



topology and may weaken the model’s ability
to model the spatial propagation effect.

Future Improvement Directions: For limitation 1,
we can consider using the pre-trained LLM as an
external knowledge base, merely as a supplement
to data sparsity rather than relying entirely on the
LLM for feature extraction. For limitation 2, a
customized compression strategy can be adopted.
Some rules can be set in advance to make the vo-
cabulary tend to generate words strongly related
to the traffic scene when clustering. For limitation
3, contrastive learning can be designed. During
the LLM tuning process, contrastive learning with
traditional language models can be carried out to
reduce the loss of traffic features.
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A Performance Analysis

The main observations are as follows:

Performance Advantages across Multiple
Datasets: As shown in Table 2 and Ta-
ble 3, LLM4ST-Traffic significantly outper-
forms the baseline models in all prediction
tasks (15/30/60 minutes) on the METR-LA
and PEMS-BAY datasets. On the PEMS04
and PEMSO08 datasets, its Mean Absolute
Error (MAE) reaches 18.49 and 14.09 re-
spectively, which is on average 7.4% lower
than that of traditional spatio-temporal mod-
els (such as STGCN, AGCRN). This advan-
tage stems from the efficient feature map-
ping ability of the cross-modal semantic align-
ment mechanism (CMA) and the design of the
prefix-adapted fine-tuning strategy (PAFT).
This enables it to not only lead in comparisons
with traditional models but also maintain the
optimal performance among LLM-integrated
models.

Comparative  Advantages over LLM-
Integrated Models: LLM4ST-Traffic reduces
the average MAE by 12% compared to
GATGPT and STLLM on the four datasets.
Among them, the Maximum Absolute Per-
centage Error (MAPE) metric has a maximum
improvement of 9.3% in the 15-minute
prediction task on the PEMS-BAY dataset.
In the comparison with LLM baselines, it
improves the MAE by 5.3% and 8.8% on
PEMSO04/PEMS08 compared to TPLLM.
The performance gap is due to the fact that
the static linear projections relied on by
GATGPT/STLLM make it difficult to achieve
semantic-level alignment, resulting in weak
associations between traffic patterns and
text concepts. Thus, the capabilities of the
pre-trained LLM cannot be fully exploited.

Breakthrough in the Efficiency of Traditional
Attention Models: Compared with attention-
mechanism models, LLM4ST-Traffic demon-
strates significant advantages in short-term
prediction tasks: the MAE in 15-minute pre-
dictions is on average reduced by 5.71%
(GMAN: 2.80 — 2.64). In complex scenar-
ios (such as high traffic flow fluctuations in
PEMSO08), its MAE is significantly reduced
by 23.13% compared to ASTGCN (18.33 —
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Figure 5: The proportion of LLM’s own training param-
eters under different fine-tuning strategies.

14.09), verifying its strong adaptability to un-
expected events.

Experiments show that LLM-based methods
demonstrate significant advantages in traffic predic-
tion tasks through open-domain knowledge trans-
fer. LLM4ST-Traffic comprehensively surpasses
existing models (including traditional spatiotem-
poral models and LLM-integrated methods) in the
four benchmarks through semantic-driven align-
ment and lightweight knowledge transfer, provid-
ing an efficient solution for data-sparse scenarios.
Its performance advantages and scalability mark a
technological breakthrough of LLM in the field of
spatio-temporal prediction.

B Different Fine-Tuning Strategies

Regarding the prediction effects under different
fine-tuning schemes, we selected three schemes for
comparison, namely the FPA method in STLLM,
the LoORA method in TPLLM, and the Full Freeze
method, as shown in Table 6. The effects of dif-
ferent schemes were verified on the METR-LA
and PEMS-BAY datasets. The results indicate that
LLMA4ST-Traffic outperforms other models in all
evaluation metrics (including MAE, RMSE, and
WAPE), proving that the fine-tuning strategy we
designed can effectively enhance the model perfor-
mance.

In terms of the computational cost of fine-tuning,
as shown in Figure 5, we compared the FPA method
in STLLM with the LoRA method in TPLLM. On
the premise of only considering the parameters of
the LLM itself, the number of our trainable parame-
ters is much lower than that of the FPA fine-tuning
strategy in STLLM. The number of trainable pa-
rameters of our fine-tuning strategy is similar to
that of the LoRA fine-tuning strategy, but our effect
is better than that of the LoRA fine-tuning. This is



Full Freeze | LORA \ PFA | LLM4-Traffic
Datasets

MAE RMSE WAPE ‘MAE RMSE WAPE ‘MAE RMSE WAPE ‘ MAE RMSE WAPE

METR-LA |3.10 625 834 |3.14 639 9.01 |3.06 620 849 |295 6.06 7.96%
PEMS-BAY | 1.61 3.66 3.54 |157 3.69 354 |1.60 3.67 359 |1.55 3.62 3.44%

Table 6: Performance comparison of different methods on METR-LA and PEMS-BAY.

because we designed a learnable prefix lightweight
adaptation module. By adding an additional pre-
fix prompt, the adaptability of the LLM to traffic
tasks is enhanced. Meanwhile, only a very small
number of LLM parameters need to be trained,
which greatly reduces the computational cost of
model training, maximally preserves the general
prior knowledge of the LLM, and avoids the prob-
lem of knowledge forgetting.
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