
LLM4ST-Traffic: Leveraging Large Language Models for Cross-modal
Knowledge Transfer to Overcome Data Sparsity in Traffic Prediction

Anonymous ACL submission

Abstract

Traffic prediction is a core challenge of Intelli-001
gent Transportation Systems (ITS). The devel-002
opment of deep learning has driven significant003
advancements in traffic prediction models; how-004
ever, the increased complexity of these models005
has led to higher demands for data scale. Ex-006
isting models have encountered performance007
bottlenecks due to an imbalance between ex-008
cessive complexity and data sparsity. This pa-009
per proposes LLM4ST-Traffic, a traffic predic-010
tion framework based on Large Language Mod-011
els (LLMs), aimed at addressing data scarcity012
through cross-modal semantic alignment and013
lightweight fine-tuning. The core innovations014
include: the Cross-Modal Alignment (CMA)015
module, which utilizes cross-attention to es-016
tablish deep connections between traffic fea-017
tures (such as flow trends and periodicity) and018
textual concepts, thereby overcoming the se-019
mantic disjunction caused by traditional linear020
projections, and Prefix Adapter Fine-Tuning021
(PAFT), which implements learnable prefix022
prompts for lightweight training, optimizing023
predictive performance while retaining pre-024
trained knowledge. Experimental results in-025
dicate that LLM4ST-Traffic demonstrates ex-026
ceptional performance in prediction accuracy027
and robustness, exhibiting outstanding perfor-028
mance in low-sample scenarios. Interpretability029
analysis validates the effectiveness of semantic030
alignment.031

1 Introduction032

Traffic prediction, as a core component of intelli-033

gent urban perception systems, aims to infer fu-034

ture road network states from historical traffic data035

(such as traffic volume and speed). Its accuracy036

directly impacts the effectiveness of downstream037

tasks such as traffic signal control and route plan-038

ning. Despite significant advancements in traffic039

prediction models (Yu et al., 2017; Wu et al., 2019)040

due to developments in deep learning, the result-041

ing model complexity has intensified the depen-042

dence on large-scale data. However, the traffic 043

domain often faces the challenge of data sparsity: 044

hardware costs limit sensor deployment, leading 045

to insufficient spatial coverage, and sudden events 046

cause temporal distribution shifts. Existing models, 047

which rely on predefined road network biases and 048

massive training data, are prone to overfitting in 049

low-resource scenarios, exposing the fundamental 050

contradiction between data scale and model perfor- 051

mance. 052

The recent open-domain generalization capabil- 053

ities of large language models (LLMs) provide 054

new insights for addressing this issue (Lu et al., 055

2022), but their transferability in traffic prediction 056

faces critical bottlenecks. Existing methods, such 057

as TPLLM (Ren et al., 2024) and STLLM (Liu 058

et al., 2024a), employ static linear projections to 059

map traffic data into text space, achieving only nu- 060

merical and formal alignment without establish- 061

ing semantic-level associations. Moreover, the 062

fine-tuning strategies exhibit severe imbalances: 063

STLLM risks knowledge forgetting by adjusting 064

50% of the parameters, while conservative fine- 065

tuning limits performance improvements. 066

To tackle these challenges, this paper proposes 067

the LLM4ST-Traffic framework, with its core in- 068

novation being the construction of a semantics- 069

driven cross-modal collaborative paradigm. First, 070

we design the Cross-Modal Alignment (CMA) 071

module, which utilizes a cross-attention mech- 072

anism to achieve interactive mapping between 073

traffic features and text concepts, replacing tra- 074

ditional static projections to address the modal- 075

ity gap. Second, we introduce the Prefix Adapter 076

Fine-Tuning (PAFT) strategy, which designs a hi- 077

erarchical, learnable prefix adaptation module that 078

fine-tunes only 1.31% of the LLM parameters, op- 079

timizing prediction performance while retaining 080

pre-trained knowledge. Experimental results show 081

that this framework reduces the Mean Absolute Er- 082

ror (MAE) by an average of 11.7% compared to 083
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TPLLM, STLLM, and GATGPT across four real-084

world datasets, demonstrating a 5.5% performance085

advantage in low-sample scenarios (10% training086

data). Visualization of the attention module further087

validates the effectiveness of semantic alignment.088

The main contributions of this paper include:089

• This paper proposes LLM4ST-Traffic, the first090

LLM-based ’decoupling-semantic alignment-091

adaptation’ technical system for traffic pre-092

diction, which provides a new solution for093

data-sparse scenarios.094

• The design of the CMA module, which095

overcomes the limitations of static mapping,096

and the introduction of the PAFT strategy,097

achieves a balance between performance and098

retention of pre-trained knowledge.099

• Experiments conducted on real traffic datasets100

demonstrate the outstanding performance of101

LLM4ST-Traffic, and it also shows excellent102

performance in few-shot learning scenarios.103

Additionally, an interpretability analysis was104

performed.105

2 Related Work106

In this section, we will discuss traffic prediction107

from three aspects: Traffic Prediction, LLMs for108

Traffic Prediction, and LLMs for Spatio-Temporal109

Traffic Prediction.110

2.1 Traffic Prediction111

The core challenge in traffic prediction lies in the112

strong coupling of spatio-temporal features: the113

road network topology forms rigid spatial con-114

straints, and the dynamic changes of traffic flow115

increase the difficulty of temporal modeling. Early116

statistical models (e.g., ARIMA) (Hamed et al.,117

1995) and traditional machine learning methods118

(e.g., SVM, KNN) (Ding et al., 2002; Zheng and119

Su, 2014) rely on handcrafted features and linear120

assumptions, making it difficult to capture complex121

nonlinear relationships. Deep learning approaches122

break through traditional limitations by decoupling123

spatio-temporal modules. They utilize Graph Con-124

volutional Networks (GCN) (Kipf and Welling,125

2016) to model the spatial structure of the road126

network and combine Recurrent Neural Networks.127

(e.g., GRU, LSTM) (Graves and Graves, 2012; Cho128

et al., 2014) or Temporal Convolutional Networks129

(TCN) (Bai et al., 2018) to capture the dynamic130

evolution of traffic flow. Typical examples are two-131

stream architectures such as STGCN (Yu et al.,132

2017) and T-GCN (Zhao et al., 2019). Attention 133

mechanism models (e.g., ASTGCN, GMAN) (Guo 134

et al., 2019; Zheng et al., 2020) further enhance 135

the ability to model spatiotemporal dependencies 136

through dynamic weight allocation. However, with 137

the increase in model complexity, their demand for 138

data scale also increases significantly. The current 139

contradiction is that complex models are prone to 140

overfitting in low-resource scenarios with sparse 141

sensors and frequent unexpected events (Emmert- 142

Streib et al., 2020), highlighting the fundamental 143

bottleneck between the limitations of data scale 144

and the improvement of model performance in tra- 145

ditional paradigms. 146

2.2 LLMs For Time Series Analysis 147

In recent years, large language models (LLMs) 148

have transferred open-domain knowledge to the 149

field of time series analysis through parameter- 150

efficient fine-tuning (PEFT) (Han et al., 2024), giv- 151

ing rise to two types of solutions for data sparsity. 152

Feature extraction methods such as GPT4TS (Zhou 153

et al., 2023) directly map time series into the text 154

embedding space, while TIME-LLM (Jin et al., 155

2023) innovatively converts numerical segments 156

into pseudo-text tokens such as ’rising trend’ and 157

uses the attention mechanism of frozen LLMs to 158

improve few-shot reasoning capabilities; CALF 159

(Liu et al., 2024b) takes another approach by en- 160

hancing cross-modal representations through text- 161

time series contrastive learning. In the direction of 162

Prompt engineering (Zhang et al., 2024), TEMPO- 163

GPT (Cao et al., 2023) encodes time series patterns 164

into natural language templates, and PromptCast 165

(Xue and Salim, 2023) automatically generates 166

prompts suitable for complex scenarios through 167

dynamic instructions. 168

2.3 LLMs For Traffic Perdition 169

In the field of spatiotemporal traffic prediction, 170

when attempting to integrate large language models 171

(LLMs) (Devlin, 2018; Radford et al., 2019; Brown 172

et al., 2020; Touvron et al., 2023), challenges of 173

cross-modal alignment and imbalance in knowl- 174

edge transfer arise. GATGPT (Chen et al., 2023) 175

integrates graph attention networks to extract road 176

network topologies, yet it neglects the dynamic 177

evolution over time. TPLLM (Ren et al., 2024) al- 178

leviates data sparsity through spatio-temporal dual 179

embeddings and LoRA (Hu et al., 2021) fine-tuning 180

but is constrained by the static representations of 181

linear mappings. STLLM (Liu et al., 2024a) adopts 182
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node sequence tokenization and frozen attention183

fine-tuning. Although it improves long-term pre-184

diction capabilities, the strong fine-tuning strat-185

egy leads to changes in 50 % of the pre-trained186

model’s parameters, posing the risk of semantic187

knowledge forgetting. The common limitations of188

existing methods lie in that cross-modal interac-189

tions rely on one-way concatenation or static map-190

ping, lack semantic-level fusion; and fine-tuning191

strategies struggle to strike a balance between over-192

adjustment (damaging generalization) and under-193

adjustment (limiting performance). Based on this,194

this paper constructs a novel LLM-based traffic195

prediction framework.196

3 Problem Definition197

This section describes the characteristics of traffic198

data and defines the problem.199

Traffic Features: We represent the traffic fea-200

ture data as a tensor X ∈ RT×N×C , where T de-201

notes the number of time steps, N is the number of202

nodes, and C represents the feature dimensions.203

Traffic Prediction: Given historical traffic204

data XP = {Xt−P+1,Xt−P+2, . . . ,Xt} ∈205

X ∈ RP×N×C on P time steps, the goal206

is to learn a function f(·) with parameters θ207

to predict the subsequent S time steps YS =208

{Yt+1,Yt+2, . . . ,Yt+S} ∈ RS×N×C . Formally,209

this can be expressed as:210

[Xt−P+1,Xt−P+2, . . . ,Xt]
f(·)−−→
θ

[Yt+1, . . . ,Yt+S ]

(1)211

where each Xi ∈ RN×S .212

4 Methodology213

In this section, the details and components of214

LLM4ST-Traffic are described.215

4.1 Overview216

As illustrated in Figure 1, the LLM4ST-Traffic217

framework performs traffic prediction in data-218

sparse scenarios through four distinct stages. First,219

the multi-granularity spatio-temporal embedding220

layer extracts temporal patterns, periodic trends,221

and spatial topology features, integrating them222

into a unified representation. Next, the Cross-223

Modal Alignment (CMA) module employs a cross-224

attention mechanism to map traffic feature data225

into the semantic space of a pre-trained language226

model, thereby achieving alignment between dif- 227

ferent modalities. Subsequently, the framework 228

utilizes a Prefix Adapter Fine-Tuning (PAFT) strat- 229

egy to fine-tune the pre-trained LLM, adapting it to 230

the specific requirements of traffic prediction tasks. 231

Finally, the regression layer projects the seman- 232

tic features into the prediction space to generate 233

multi-step future traffic states. 234

4.2 Spatio-Temporal Embedding 235

To ensure semantic compatibility between traffic 236

data and pre-trained language models, we have 237

designed a multi-granularity spatial-temporal em- 238

bedding architecture comprising three core compo- 239

nents: Patch Embedding, Time Embedding, and 240

Node Embedding. To accommodate the input 241

shape required by LLMs, we collapse the time step 242

dimension into the feature dimension within the 243

embedding module. 244

Patch Embedding To resolve the conflict be- 245

tween the discreteness of single time-step data and 246

the semantic continuity required by language mod- 247

els, we propose a sliding window-based temporal 248

semantic aggregation method. Given an input se- 249

quence X ∈ RT×N×C (where T is the number of 250

time steps, N is the number of nodes, and C is the 251

feature dimension), we construct temporal patches 252

for each node as follows: 253

Pi = Concat(X[t:t+k],i) ∈ Rk×C (2) 254

Here, k denotes the patch size (default k = 3 ), 255

i ∈ {1, ..., N}. These patches are then mapped to 256

the semantic space aligned with LLM word embed- 257

dings through a linear projection: 258

EP = fpatch(P) = PWp + bp ∈ RN×D (3) 259

In this equation, Wp ∈ R(k·C)×D represents the 260

learnable parameters, and D is one-third of the 261

LLM’s word embedding dimensionality. 262

Time Embedding To explicitly model the peri- 263

odic characteristics of traffic flow, we design a dual- 264

scale time encoding that captures both daily and 265

weekly patterns. Specifically, daily patterns are en- 266

coded using a learnable matrix Edaily ∈ R24×D to 267

represent hourly variations, while weekly patterns 268

are captured through Eweekly ∈ R7×D to represent 269

weekly cycles. For an input timestamp t, the time 270

embedding is computed as: 271

ET = Edaily[h(t)] +Eweekly[d(t)] ∈ RD (4) 272
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Figure 1: The model framework of LLM4ST-Traffic. The upper section features an overall architecture diagram,
while the lower section provides detailed specifics. CMA refers to the Cross-Modality Alignment module, and
PAFT refers to the Prefix Adapter Fine-Tuning module.

where h(t) ∈ {0, ..., 23} denotes the hour index273

and d(t) ∈ {0, ..., 6} denotes the day of the week274

index. After broadcasting to all nodes, the resulting275

time embedding is ET ∈ RN×D.276

Node Embedding To capture the spatial depen-277

dencies of the road network, we design an adaptive278

node embedding matrix:279

ES = Enode ∈ RN×D (5)280

where Enode is a learnable parameter initialized281

uniformly.282

Fusion Feature The fusion feature concatenates283

the three sets of embeddings along the feature di-284

mension to generate a joint representation compati-285

ble with LLMs:286

Efinal = Concat(EP ,ET ,ES) ∈ RN×3D (6)287

4.3 Cross-Model Alignment288

To achieve dynamic alignment between traffic289

spatio-temporal features and the semantic space290

of pre-trained language models (LLMs), we pro-291

pose the Cross-Modal Alignment (CMA) module.292

Feature Enhancement The input spatiotempo-293

ral embeddings Efinal ∈ RB×N×3D (where B is294

the batch size, N is the number of nodes, and 3D295

the feature dimension) are processed through a296

TransformerEncoder layer to enhance the context-297

aware capabilities of the spatiotemporal features: 298

Ectx = TransformerEncoder(Efinal) (7) 299

Here,Enorm ∈ RB×N×3D, Ectx ∈ RB×N×Dllm , 300

Dllm = 768. denotes the dimension of the LLM 301

word vectors. The encoder consists of 2 Trans- 302

former layers with a default of 8 attention heads. 303

Semantic Clustering Considering that the se- 304

mantic information of traffic data is relatively sim- 305

ple and that the vocabulary of large language mod- 306

els (LLMs) typically contains tens of thousands 307

of tokens, directly aligning them would lead to a 308

waste of computational resources. Therefore, we 309

employ the K-Means clustering method to perform 310

dimensionality reduction on the pre-trained word 311

embedding matrix Wvocab ∈ R|V|×Dllm : 312

Ŵvocab = KMeans(Wvocab, d) ∈ R|V|×d (8) 313

where d = 500. By identifying semantically 314

similar word groups to form "synonym clusters," 315

we significantly reduce the computational complex- 316

ity from O(N · |V| to O(N · d) while preserving 317

key semantics through the aggregation of synonym 318

clusters. 319

Dynamic Attention Alignment Using a multi- 320

head cross-attention mechanism, we establish a 321

soft alignment between spatiotemporal features and 322
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semantic terms:323

Attention(Q,K,V) = Softmax

(
QK⊤
√
Dllm

)
V

(9)324

Here, Q is derived from the enhanced spatiotem-325

poral features, and both K,V are obtained from the326

vocabulary embeddings clustered by the Kmeans327

method.328

Residual Feature Fusion To fully leverage the329

information from the original spatiotemporal fea-330

tures, we introduce residual connections and a331

Multi-Layer Perceptron (MLP) to enhance the332

model’s non-linearity:333

Zout = MLP(Z) +Ectx ∈ RN×Dllm (10)334

This design ensures that important spatio-335

temporal information is not lost during the align-336

ment process.337

4.4 Prefix Adapter Fine-Tuning338

To address the challenging trade-off between im-339

proving model performance and mitigating knowl-340

edge forgetting, we propose the Prefix-based Effi-341

cient Tuning method. The core idea is to prepend342

learnable prefix prompts to the input data, guiding343

the pre-trained model to adapt effectively to the pre-344

diction task. Trainable prefixes are concatenated345

to the input of each layer of the LLM, generated346

through the following steps: First, perform embed-347

ding initialization with trainable prompt vectors348

for each layer P(l) ∈ Rm×Dllm , where the default349

m = 30 is the prefix length and Dllm = 768.350

Then, add trainable positional encoding Epos ∈351

Rm×Dllm to enhance sequence position awareness,352

formulated as: H(l)
prompt = P(l)+Epos. Finally, ap-353

ply a lightweight MLP for non-linear projection to354

further enhance the expressiveness of the prefixes,355

resulting in P̃(l) = MLP(H
(l)
prompt).356

The generated prefix prompts are concatenated357

with the input data as H̃(l) = Concat(P̃(l),H(l)),358

and then fed into the TransformerLayer of the LLM.359

During the output phase, the original input seg-360

ment is extracted as (H(l) = H(l)[:,m :, :]), en-361

suring that subsequent layers are not affected by362

the prefix. From an implementation perspective,363

we employ an adaptation prompt module to inde-364

pendently generate prefixes for each layer, thereby365

enabling lightweight fine-tuning of the LLM. Con-366

sidering that the aligned token embeddings differ367

from those in the original LLM, we intentionally368

retain the trainability of the normalization layers.369

4.5 Regression Layer 370

Use a linear layer to map high-dimensional seman- 371

tic features into the prediction space to forecast 372

traffic conditions for the next T time steps: 373

Ŷ = HoutWr + br ∈ RN×T (11) 374

where Hout ∈ RN×Dllm represents the output of 375

the LLM, Wr ∈ RDllm×T is the learnable weight 376

matrix and br ∈ RT is the bias term. 377

5 Experiments 378

In this section, we aim to validate the superiority 379

of our LLM4ST-Traffic model through a series of 380

comprehensive experimental evaluations. 381

5.1 Experimental Setup 382

Datasets Our approach is extensively evaluated 383

on four real-world spatio-temporal benchmark 384

datasets: METR-LA, PEMS-BAY, PEMS04, and 385

PEMS08. The first two datasets, METR-LA and 386

PEMS-BAY, were introduced in the DCRNN (Li 387

et al., 2017), while PEMS04 and PEMS08 were 388

proposed in the STSGCN (Song et al., 2020). All 389

four datasets have a temporal resolution of five min- 390

utes, resulting in 12 timesteps per hour. Table 1 391

provides further details of these datasets. 392

Dataset Sensors Timesteps Time Range

METR-LA 207 34,272 03/2012 - 06/2012
PEMS-BAY 325 52,116 01/2017 - 05/2017
PEMS04 307 16,992 01/2018 - 02/2018
PEMS08 170 17,856 07/2016 - 08/2016

Table 1: Summary of Datasets.

Implementation: For dataset splitting, we em- 393

ployed different ratios: the METR - LA and PEMS - 394

BAY datasets were divided into training, validation, 395

and test sets in a 7:1:2 ratio, respectively, while the 396

PEMS04 and PEMS08 datasets were split using a 397

6:2:2 ratio. In addition, regarding model configura- 398

tion, both the input sequence length and prediction 399

sequence length were set to one hour (T = T’ = 12 400

timesteps). The model was trained using the Adam 401

optimizer with an initial learning rate of 0.001 and 402

a learning rate decay strategy. During training, the 403

batch size was set to 64. For the LLM component, 404

we selected GPT-2 as the base model, utilizing 405

its first three transformer layers. All experiments 406

were conducted and evaluated on a Linux server 407

equipped with an NVIDIA RTX 4090 GPU. 408
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Datasets Metric HI DCRNN AGCRN STGCN MTGNN STNorm GMAN PDFormer GATGPT STLLM ours
M

E
T

R
-L

A

Horizon3
(15min)

MAE 6.80 2.67 2.85 2.75 2.69 2.81 2.80 2.83 2.89 2.92 2.64
RMSE 14.21 5.16 5.53 5.29 5.16 5.57 5.55 5.45 5.49 5.55 5.09
MAPE 16.72% 6.86% 7.63% 7.10% 6.89% 7.40% 7.41% 7.77% 7.45% 7.53% 6.76%

Horizon6
(30 min)

MAE 6.80 3.12 3.20 3.15 3.05 3.18 3.12 3.20 3.28 3.24 2.99
RMSE 14.21 6.27 6.52 6.35 6.13 6.59 6.49 6.46 6.53 6.49 6.10
MAPE 16.72% 8.42% 9.00% 8.62% 8.16% 8.47% 8.73% 9.19% 8.94% 8.86% 8.13%

Horizon12
(60 min)

MAE 6.80 3.54 3.59 3.60 3.47 3.57 3.44 3.62 3.73 3.61 3.37
RMSE 14.20 7.47 7.45 7.43 7.21 7.51 7.35 7.49 7.65 7.45 7.17
MAPE 10.15% 10.32% 10.47% 10.35% 9.70% 10.24% 10.07% 10.91% 10.62% 10.37% 9.82%

PE
M

S-
B

YA

Horizon3
(15min)

MAE 3.06 1.31 1.35 1.36 1.33 1.33 1.35 1.32 1.35 1.35 1.29
RMSE 7.05 2.76 2.88 2.88 2.80 2.82 2.90 2.83 2.82 2.84 2.76
MAPE 6.85% 2.73% 2.91% 2.86% 2.81% 2.76% 2.87% 2.78% 2.85% 2.79% 2.68%

Horizon6
(30 min)

MAE 3.06 1.65 1.67 1.70 1.66 1.65 1.65 1.64 1.69 1.66 1.60
RMSE 7.04 3.75 3.82 3.84 3.77 3.77 3.82 3.79 3.82 3.76 3.71
MAPE 6.84% 3.71% 3.81% 3.79% 3.75% 3.66% 3.74% 3.71% 3.79% 3.67% 3.54%

Horizon12
(60 min)

MAE 3.05 1.97 1.94 2.02 1.95 1.92 1.92 1.91 2.00 1.96 1.87
RMSE 7.03 4.60 4.50 4.63 4.50 4.45 4.49 4.43 4.58 4.47 4.35
MAPE 6.83% 4.68% 4.55% 4.72% 4.62% 4.46% 4.52% 4.51% 4.62% 4.50% 4.31%

Table 2: Performance on METR-LA and PEMS-BAY.

Dataset
PEMS04 PEMS08

MAE RMSE MAPE MAE RMSE MAPE

HI 42.35 61.66 29.92 % 36.66 50.45 21.63 %
DCRNN 19.63 31.26 13.59 % 15.22 24.17 10.21 %
AGCRN 19.38 31.25 13.40 % 15.32 24.41 10.03%
STGCN 19.57 31.38 13.44 % 16.08 25.39 10.60%
MTGCN 19.17 31.70 13.37 % 15.18 24.24 10.20 %
STNorm 18.96 30.98 12.69 % 15.41 24.77 9.76%
GMAN 19.14 31.60 13.19 % 15.31 24.92 10.13 %

ASTGCN 21.83 34.48 14.25 % 18.33 28.30 11.64%
GATGPT 22.77 34.65 19.22 % 18.33 27.38 17.72%
TPLLM 19.53 31.91 12.81 % 15.45 25.35 9.88 %
STLLM 21.41 32.39 18.41 % 17.98 26.82 15.26 %

ours 18.49 30.01 12.20 % 14.09 23.65 9.15 %

Table 3: Performance on PEMS04 and PEMS08.

Baselines In this study, we compare our pro-409

posed method with several widely used baseline410

models in the field. Among these, HI is a clas-411

sic traditional model (Cui et al., 2021). We also412

consider DCRNN (Li et al., 2017), AGCRN (Bai413

et al., 2020), STGCN (Yu et al., 2017), and MT-414

GNN (Wu et al., 2020), all of which leverage graph-415

related information for modeling. Additionally,416

we examine STNorm (Deng et al., 2021), which417

focuses on the decomposition of traffic time se-418

ries. For mainstream attention-based architectures,419

we include ASTGCN (Guo et al., 2019), GMAN420

(Zheng et al., 2020), and PDFormer (Jiang et al.,421

2023). In the context of integrating Large Lan-422

guage Models (LLMs) into traffic prediction, we423

evaluate GATGPT (Chen et al., 2023), STLLM424

(Liu et al., 2024a), and TPLLM (Ren et al., 2024).425

Evaluation Metrics We employ three com-426

monly used metrics to assess the performance of 427

the proposed framework: Mean Absolute Error 428

(MAE), Root Mean Squared Error (RMSE), and 429

Mean Absolute Percentage Error (MAPE). For all 430

metrics, lower values indicate superior predictive 431

performance. The computation processes for the 432

evaluation metrics are as follows: 433

MAE =
1

m

m∑
i=1

∣∣∣Ŷi −Yi

∣∣∣
MAPE =

100%

m

m∑
i=1

∣∣∣∣∣Ŷi −Yi

Yi

∣∣∣∣∣
RMSE =

√√√√ 1

m

m∑
i=1

(
Ŷi −Yi

)2

(12) 434

where m is the number of all predicted values. 435

5.2 Overall Performance 436

We investigated the predictive capabilities of the 437

LLM4ST-Traffic model.Table 2 and Table 3 present 438

the comparative results with baseline models on 439

the METR-LA and PEMS-BAY datasets, as well 440

as the PEMS04 and PEMS08 datasets, respectively. 441

Bolded results indicate the best performance. It is 442

important to note that the TP-LLM code was not 443

publicly available; therefore, we directly utilized 444

the results provided in its original paper. In Table 445

III, we present the mean of the predictions over 446

12 time steps as the final displayed results. The 447

findings clearly show that LLM4ST-Traffic exhibits 448

superior performance across all datasets. A detailed 449

analysis is provided in the appendix A. 450

6



5.3 Ablation Study451

Component Ablation Figure 2 presents an ab-452

lation study on the METR-LA and PEMS-BAY453

datasets, aiming to evaluate the impact of differ-454

ent components within the LLM4ST-Traffic model.455

LLM4ST-Traffic comprises several key compo-456

nents, each playing a crucial role in the overall457

effectiveness of traffic forecasting. This section458

examines the effectiveness of each component by459

comparing the following variants:460

• w/o CMA: Variant without the Cross-Modal461

Alignment Module.462

• w/o LLM: Variant without the pretrained463

Large Language Model.464

• w/o Patch: Variant without patch embedding,465

using a simple linear mapping instead.466

Figure 2: Ablation experiments on METR-LA and
PEMS-BAY.

Main Observations: Removing the pre-trained467

model (w/o LLM) and using only the multi-468

granular embedding layer and alignment module469

results in a significant decline in model perfor-470

mance. This indicates that the LLM plays a key471

role in enhancing predictive performance by lever-472

aging its strengths in semantic understanding and473

feature extraction. Similarly, removing the CMA474

module (w/o CMA) leads to a notable decrease475

in performance, demonstrating that this module is476

essential for aligning the semantics between traf-477

fic data and the pre-trained language model, ef-478

fectively handling the alignment between different479

data modalities. When the patch embedding com-480

ponent is removed (w/o Patch), the model’s predic-481

tion metrics increase, suggesting that the model’s482

predictive capability relies on the temporal seman-483

tic aggregation method within the patch embedding.484

Overall, when all components (patch embedding,485

alignment module, and LLM) are integrated, the486

model achieves the lowest error rates across all487

metrics. This further validates the effectiveness488

of these components in handling traffic forecasting489

tasks and demonstrates the superior performance of490

LLM
METRLA PEMSBAY

MAE RMSE WAPE MAE RMSE WAPE

GATGPT 3.48 6.94 9.55% 1.84 4.07 4.14%
STLLM 3.44 6.89 10.04% 1.83 4.10 4.12%
LLM4ST 3.34 6.88 9.37% 1.77 4.02 3.95%

Table 4: Few-shot Experiments on METR-LA and
PEMS-BAY.

LLM
PEMS04 PEMS08

MAE RMSE WAPE MAE RMSE WAPE

GATGPT 24.81 37.62 22.18% 20.61 31.64 17.36%
STLLM 25.05 38.22 20.96% 20.67 31.36 19.50%
TPLLM 23.68 37.38 15.57% 18.09 28.51 11.63%
LLM4ST 23.35 36.22 17.97% 17.94 28.17 12.37%

Table 5: Few-shot Experiments on PEMS04 and
PEMS08.

LLM4ST-Traffic through the synergistic interaction 491

of its components. 492

5.4 Few-shot Prediction 493

As shown in Table 4 and Table 5, LLM4ST-Traffic 494

demonstrates significant advantages in few-shot 495

scenarios. In the few-shot experiments on the 496

METR-LA dataset (a scenario with high traffic 497

flow fluctuations), its Weighted Average Percent- 498

age Error (WAPE) is 9.37%, which is 6.7% lower 499

than that of STLLM (10.04%), proving that the 500

model can still maintain prediction stability under 501

extremely scarce data conditions. In the PEMS - 502

BAY dataset (for short-term prediction tasks), the 503

MAE of LLM4ST-Traffic is 1.77, which is 3.8% 504

and 3.3% lower than that of GATGPT (1.84) and 505

STLLM (1.83) respectively, indicating that it still 506

performs excellently compared to other models 507

when data is limited. 508

5.5 Visual Analysis of Semantic Alignment 509

To verify the alignment effect between traffic data 510

and the semantic space, we conducted a visual anal- 511

ysis of the weights of the correlation matrices in 512

the cross-attention mechanism, as shown in Fig- 513

ure 3. In this figure, the rows represent traffic data 514

instances, the columns correspond to text words, 515

and the color intensity reflects the strength of the 516

association. To enhance the contrast, for each traf- 517

fic data instance, we extracted the top 10 relevant 518

words with the highest attention weights and the 519

top 10 non-relevant words with the lowest atten- 520

tion weights for display. The results show that 521

the highly relevant words include terms describ- 522

ing trends (such as "stable", "dropt", "+++", and 523

7



Figure 3: Cross-attention Maps in the Cross-modal Mod-
ules of PEMS-BAY (left) and METR-LA (right).

Figure 4: Cross-attention maps for different numbers of
epochs

"peak") and periodic time-related words (such as524

"weekly"), indicating that the cross-modal module525

can effectively capture the correlation between the526

dynamic change patterns of traffic data and text se-527

mantics. Figure 4 shows the evolution of semantic528

alignment during the training process. In the initial529

training stage (epoch 5), the attention distribution530

is in a disordered state, and the correlation mapping531

is blurred. As the training progresses, the attention532

gradually focuses on domain-related words. The533

above visual results verify the model’s ability to534

deeply align the spatio-temporal features of traffic535

data with text semantics.536

6 Conclusion537

This paper proposes LLM4ST-Traffic, a cross-538

modal traffic prediction framework based on Large539

Language Models, which addresses the challenge540

of data sparsity through semantic alignment and541

lightweight fine-tuning. The core contributions542

are: 1) the Cross-Modal Alignment (CMA) mod-543

ule, which dynamically associates spatiotemporal544

traffic features with textual semantics, overcoming545

the static nature and semantic disjunction of tradi- 546

tional linear mappings; and 2) Prefix Adapter Fine- 547

Tuning (PAFT), which achieves a balance between 548

performance and knowledge retention with mini- 549

mal parameter adjustments. Experimental results 550

demonstrate that this framework significantly out- 551

performs mainstream methods across four bench- 552

mark datasets, excelling in low-sample scenarios, 553

and includes an interpretability analysis. Future 554

work will explore energy-efficient fine-tuning tech- 555

niques to enhance the generalization ability of pre- 556

trained models in downstream tasks. 557

7 Limitations 558

Although LLM4ST-Traffic demonstrates signifi- 559

cant advantages in experiments, the following tech- 560

nical challenges still remain: 561

1. Information Loss in Cross-Modal Mapping: 562

The current framework maps the entire traffic 563

data into the discrete vocabulary space. Al- 564

though it can utilize the text reasoning ability 565

of the pre-trained model, the semantic-level 566

representation has insufficient coverage of the 567

high-order spatiotemporal patterns of traffic 568

data (such as dynamic road network topology 569

and the spread of unexpected events), limiting 570

the model’s fine-grained modeling ability for 571

complex traffic scenarios. 572

2. Domain Adaptation Defects in Vocabulary 573

Compression: Although the vocabulary com- 574

pression strategy based on K-means (500 575

words) improves computational efficiency, 576

only a part of the representative words gener- 577

ated are strongly related to the traffic scene, 578

and the remaining words lack domain dis- 579

crimination. This makes it difficult for the 580

semantic alignment module to establish accu- 581

rate traffic-text associations, and further explo- 582

ration of domain knowledge-guided clustering 583

optimization methods is required. 584

3. Dimension Conflict Caused by Spatiotem- 585

poral Structure Collapse: To adapt to the 586

sequence input paradigm of the language 587

model, it is necessary to compress the high- 588

dimensional spatiotemporal structure of traffic 589

data (batch × node × time step × dimension) 590

into a three-dimensional sequence (batch × 591

sequence × feature). This process destroys 592

the local dependence of the spatio-temporal 593
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topology and may weaken the model’s ability594

to model the spatial propagation effect.595

Future Improvement Directions: For limitation 1,596

we can consider using the pre-trained LLM as an597

external knowledge base, merely as a supplement598

to data sparsity rather than relying entirely on the599

LLM for feature extraction. For limitation 2, a600

customized compression strategy can be adopted.601

Some rules can be set in advance to make the vo-602

cabulary tend to generate words strongly related603

to the traffic scene when clustering. For limitation604

3, contrastive learning can be designed. During605

the LLM tuning process, contrastive learning with606

traditional language models can be carried out to607

reduce the loss of traffic features.608
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A Performance Analysis775

The main observations are as follows:776

• Performance Advantages across Multiple777

Datasets: As shown in Table 2 and Ta-778

ble 3, LLM4ST-Traffic significantly outper-779

forms the baseline models in all prediction780

tasks (15/30/60 minutes) on the METR-LA781

and PEMS-BAY datasets. On the PEMS04782

and PEMS08 datasets, its Mean Absolute783

Error (MAE) reaches 18.49 and 14.09 re-784

spectively, which is on average 7.4% lower785

than that of traditional spatio-temporal mod-786

els (such as STGCN, AGCRN). This advan-787

tage stems from the efficient feature map-788

ping ability of the cross-modal semantic align-789

ment mechanism (CMA) and the design of the790

prefix-adapted fine-tuning strategy (PAFT).791

This enables it to not only lead in comparisons792

with traditional models but also maintain the793

optimal performance among LLM-integrated794

models.795

• Comparative Advantages over LLM-796

Integrated Models: LLM4ST-Traffic reduces797

the average MAE by 12% compared to798

GATGPT and STLLM on the four datasets.799

Among them, the Maximum Absolute Per-800

centage Error (MAPE) metric has a maximum801

improvement of 9.3% in the 15-minute802

prediction task on the PEMS-BAY dataset.803

In the comparison with LLM baselines, it804

improves the MAE by 5.3% and 8.8% on805

PEMS04/PEMS08 compared to TPLLM.806

The performance gap is due to the fact that807

the static linear projections relied on by808

GATGPT/STLLM make it difficult to achieve809

semantic-level alignment, resulting in weak810

associations between traffic patterns and811

text concepts. Thus, the capabilities of the812

pre-trained LLM cannot be fully exploited.813

• Breakthrough in the Efficiency of Traditional814

Attention Models: Compared with attention-815

mechanism models, LLM4ST-Traffic demon-816

strates significant advantages in short-term817

prediction tasks: the MAE in 15-minute pre-818

dictions is on average reduced by 5.71%819

(GMAN: 2.80 → 2.64). In complex scenar-820

ios (such as high traffic flow fluctuations in821

PEMS08), its MAE is significantly reduced822

by 23.13% compared to ASTGCN (18.33 →823

Figure 5: The proportion of LLM’s own training param-
eters under different fine-tuning strategies.

14.09), verifying its strong adaptability to un- 824

expected events. 825

Experiments show that LLM-based methods 826

demonstrate significant advantages in traffic predic- 827

tion tasks through open-domain knowledge trans- 828

fer. LLM4ST-Traffic comprehensively surpasses 829

existing models (including traditional spatiotem- 830

poral models and LLM-integrated methods) in the 831

four benchmarks through semantic-driven align- 832

ment and lightweight knowledge transfer, provid- 833

ing an efficient solution for data-sparse scenarios. 834

Its performance advantages and scalability mark a 835

technological breakthrough of LLM in the field of 836

spatio-temporal prediction. 837

B Different Fine-Tuning Strategies 838

Regarding the prediction effects under different 839

fine-tuning schemes, we selected three schemes for 840

comparison, namely the FPA method in STLLM, 841

the LoRA method in TPLLM, and the Full Freeze 842

method, as shown in Table 6. The effects of dif- 843

ferent schemes were verified on the METR-LA 844

and PEMS-BAY datasets. The results indicate that 845

LLM4ST-Traffic outperforms other models in all 846

evaluation metrics (including MAE, RMSE, and 847

WAPE), proving that the fine-tuning strategy we 848

designed can effectively enhance the model perfor- 849

mance. 850

In terms of the computational cost of fine-tuning, 851

as shown in Figure 5, we compared the FPA method 852

in STLLM with the LoRA method in TPLLM. On 853

the premise of only considering the parameters of 854

the LLM itself, the number of our trainable parame- 855

ters is much lower than that of the FPA fine-tuning 856

strategy in STLLM. The number of trainable pa- 857

rameters of our fine-tuning strategy is similar to 858

that of the LoRA fine-tuning strategy, but our effect 859

is better than that of the LoRA fine-tuning. This is 860
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Datasets
Full Freeze LORA PFA LLM4-Traffic

MAE RMSE WAPE MAE RMSE WAPE MAE RMSE WAPE MAE RMSE WAPE

METR-LA 3.10 6.25 8.34 3.14 6.39 9.01 3.06 6.20 8.49 2.95 6.06 7.96%
PEMS-BAY 1.61 3.66 3.54 1.57 3.69 3.54 1.60 3.67 3.59 1.55 3.62 3.44%

Table 6: Performance comparison of different methods on METR-LA and PEMS-BAY.

because we designed a learnable prefix lightweight861

adaptation module. By adding an additional pre-862

fix prompt, the adaptability of the LLM to traffic863

tasks is enhanced. Meanwhile, only a very small864

number of LLM parameters need to be trained,865

which greatly reduces the computational cost of866

model training, maximally preserves the general867

prior knowledge of the LLM, and avoids the prob-868

lem of knowledge forgetting.869
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