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ABSTRACT

Achieving certified data erasure in machine unlearning faces a fundamental trade-
off: preserving model utility requires less noise, but formal privacy guarantees
demand more. This tension typically degrades model performance. In this work,
we study this challenge in Langevin Unlearning, a noisy variant of SGD that is
uniquely amenable to theoretical analysis. We introduce an asymmetric unlearn-
ing setting assuming that datasets contain both private data (subject to unlearning)
and public data (permanently retained). Our framework demonstrates that incor-
porating public data enables better unlearning-utility trade-offs without additional
noise or restrictive differential privacy assumptions. We prove that public data
volume quadratically reduces the Rényi divergence between unlearning and re-
training distributions, allowing control over unlearning guarantees through data
composition rather than noise amplification. The framework also provides a fine-
grained analysis of how distributional alignment between public and private data
affects performance preservation. Empirical validation using variational Rényi di-
vergence estimation confirms our theoretical predictions, showing that strategic
public data injection achieves comparable unlearning efficacy while significantly
improving model performance and computational efficiency.

1 INTRODUCTION

The widespread adoption of machine learning across diverse applications has prompted regulatory
responses aimed at protecting user privacy and data rights. Legislative frameworks such as the
European Union’s AI Act (Parliament & of the European Union, 2024) and Canada’s Artificial
Intelligence and Data Act (AIDA) (Parliament of Canada, 2022) establish fundamental principles
including the “right to be forgotten”, which mandates that individuals can request removal of their
personal data from trained systems. This requirement presents significant technical challenges for
modern machine learning paradigms, particularly deep learning and generative AI models that de-
pend on large-scale datasets collected from public sources, often without explicit individual consent.
Compounding this challenge, recent research demonstrates that neural networks exhibit a propensity
to memorize training examples while maintaining generalization performance (Attias et al., 2024;
Carlini et al., 2022; Nasr et al., 2023; Zhang et al., 2016).

The most straightforward approach to addressing data removal requests would be to retrain mod-
els from scratch after excluding the specified data points. However, this naive solution becomes
prohibitively expensive for contemporary large-scale models, where training can require substantial
computational resources. Moreover, the frequency of such requests in production systems would
render this approach operationally impractical. This reality necessitates the development of ma-
chine unlearning techniques that can selectively remove specific data points from trained models
while preserving overall performance. For certain applications, such removal should be certifiable
through formal guarantees, ensuring that the unlearned model is statistically indistinguishable from
one that was never trained on the removed data. Thus, effective unlearning algorithms must satisfy
three fundamental requirements: provable erasure of target data, preservation of model utility, and
computational efficiency that outperforms full retraining.
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Most existing machine unlearning approaches operate under the assumption that any data point
in the training set may require removal. While this assumption holds when working exclusively
with sensitive datasets, it proves overly restrictive for real-world scenarios. Modern data collection
pipelines aggregate information from heterogeneous sources, combining both sensitive private data
and publicly available content. CommonCrawl (Common Crawl Foundation, 2024) and ImageNet
(Deng et al., 2009) are examples of publicly available data used to train large language models
and vision models. To our knowledge, the only prior work exploring mixed-privacy unlearning is
Golatkar et al. (2021), who introduced Mixed-Linear Forgetting for computer vision tasks. Their
approach requires architectural modifications to achieve forgetting through network linearization,
limiting its general applicability. In the privacy-preserving machine learning literature, several works
have shown that having access to a set of public data points allows for the design of algorithms
with better privacy guarantees for the same amount of noise introduced into the model. When the
public data distribution is close enough to the sensitive data distribution, these public data-assisted
algorithms often offer a better privacy-utility trade-off than their conventional counterparts (Alon
et al., 2019b; Amid et al., 2022; Ganesh et al., 2023a; Lowy et al., 2024).

In this work, we study the effect of considering that a portion of the training dataset is public
and never subject to unlearning. We study this setting under Langevin Unlearning (Chien et al.,
2024a), showing that restricting unlearning to private data improves guarantees. We ask the ques-
tions: (1) Does adding public data improve Langevin Unlearning performance? (2) How does
public-private distribution mismatch affect post-unlearning performance? Our theoretical analy-
sis provides clear answers. We first prove that injecting public data creates a more favorable initial-
ization for the unlearning process (Theorems 3.1 and 3.2). We then provide a fine-grained analysis
of the unlearning-utility trade-off, with our main contribution stated in Theorem 3.3, explaining how
the distributional alignment between public and private data impacts the model’s final performance.
Finally, building on a variational representation of Rényi divergence (Birrell et al., 2023), we de-
velop in Section 4.1 a framework for numerical evaluation of our bounds, showing that they capture
some of the key dynamics of private-public learning and unlearning in practical settings.

2 BACKGROUND AND NOTATION

2.1 MACHINE UNLEARNING

Machine unlearning algorithms eliminate the influence of designated training data (the forget set)
while balancing unlearning efficacy, model utility, and computational efficiency. Three canonical
strategies illustrate the trade-offs: random re-initialization achieves perfect unlearning but destroys
utility; retraining from scratch provides optimal guarantees but incurs prohibitive costs; no interven-
tion preserves utility but achieves no unlearning. This motivates two paradigms: Exact unlearning
replicates the retraining baseline through specialized architectures like SISA (Bourtoule et al., 2020)
or Arcane (Yan et al., 2022), which enable targeted retraining but increase complexity. Approximate
unlearning tolerates bounded discrepancies from retraining for practicality, including Newton-step
updates (Golatkar et al., 2020) and noisy fine-tuning schemes like Langevin Unlearning (Chien et al.,
2024a;b).

2.2 NOTATION

We consider probability distributions defined over a compact parameter space Θ, where stochastic-
ity arises from three sources: the weight initialization distribution π0, the training data distribution
Ptrain, and the inherent randomness of the optimization procedure. We denote by P(Θ) the set of
probability distributions supported on Θ. Our analysis focuses on three parameter distributions: πT

L

(the learning distribution after T iterations of training on the full dataset), πK
U (the unlearning dis-

tribution after K iterations of the unlearning procedure), and πT
R (the retraining distribution after T

iterations of training only on the retain set). A key quantity in our analysis is the Rényi divergence
of order α between distributions P and Q, denoted Dα(P∥Q), which we define rigorously in sub-
sequent sections. We use Ppub and Ppriv to represent the distributions of public and private data,
respectively.
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2.3 LANGEVIN UNLEARNING

A common approach to machine unlearning is to run a noisy projected gradient method starting
from the trained weights, targeting a distribution close to retraining. Formally, at iteration t,

θt+1 = ΠΘ[θt − η∇θL(θt) + ξt] , (1)

where L is a surrogate loss (e.g., empirical loss on a retain set), η is the step size, and ξt is injected
noise (often Gaussian) controlling distributional closeness.

Langevin Unlearning (LU) (Chien et al., 2024a) instantiates this scheme with L = LDr , the loss on
the retain set, and ξt ∼ N (0, 2ησ2Id). This reduces to projected noisy gradient descent (PNGD)
(pseudocode in Appendix A.5):

θt+1 = ΠΘ

[
θt − η∇θLDr

(θt) +
√

2ησ2 Wt

]
,Wt ∼ N (0, Id) (2)

LU provides certifiable approximate unlearning guarantees by minimizing the Rényi divergence be-
tween post-unlearning and post-retraining weight distributions (Chien et al., 2024a;b). However,
these guarantees require that the entire original training process satisfies differential privacy (DP),
necessitating PNGD with substantial noise injection from initialization. This requirement limits
practical applicability, as it degrades model performance both before and after unlearning. In this
work, we improve upon Chien et al. by relaxing the global DP assumption. Rather than requiring
the entire learning process to satisfy DP, we assume only that the initialization distribution satisfies
a log-Sobolev inequality—a mild condition naturally satisfied by standard Gaussian initialization.
This property is preserved through PNGD iterations by Lemma A.1 due to loss smoothness. This
relaxation enables us to derive data-dependent bounds that quantify how public data abundance
improves unlearning without noise amplification, a key contribution unavailable in prior work. Con-
current approaches like (Koloskova et al., 2025) require only smoothness assumptions, but such
data-agnostic bounds depend primarily on projection set geometry rather than training data struc-
ture.

3 ASYMMETRIC LANGEVIN UNLEARNING

Motivation. Our approach is motivated by a realistic data setting, well-established in the privacy-
preserving machine learning literature, that leverages public data to improve the privacy-utility trade-
off (Alon et al., 2019a; Ganesh et al., 2023b; Lowy et al., 2024; Amid et al., 2022). We introduce
this asymmetric data model to Langevin Unlearning, which allows us to relax the restrictive Dif-
ferential Privacy (DP) assumption over the entire dataset. By explicitly modeling this asymmetry,
we can leverage public data to enhance the unlearning process to improve both efficacy and model
performance without compromising privacy guarantees.

Problem Setting. We consider empirical risk minimization over a dataset D = Dpub ∪ Dpriv

comprising two components: a public set Dpub with npub samples from a distribution Ppub, and
a private set Dpriv with npriv samples from a distribution Ppriv. The training loss is LD(θ) =

1
npub+npriv

∑
x∈D l(θ, x). Only the private data is subject to unlearning requests, while public data

remains permanently available. We employ T PNGD iterations with projections onto Θ ⊂ Rd

(radius R) to obtain θT . Since PNGD injects Gaussian noise at each step, it induces probability
distributions over parameters rather than deterministic iterates. In order to ensure that everything is
well-behaved, one has to impose a regularity assumption on the initialization probability distribution.
Definition 3.1. (Log-Sobolev inequality (Gross, 1975)) A probability measure P ∈ P(Rd) satisfies
a Log-Sobolev inequality with constant C if

∀Q ∈ P(Rd), DKL(Q∥P ) ≤ C

2
I(Q,P ), (3)

where DKL denotes the KL divergence and I(Q,P ) = EQ

[
∥∇ log q

p∥
2
]

is the relative Fisher
information.

Our analysis compares two such distributions: the unlearning distribution πU (obtained by applying
LU on the retain set from the trained model), and the retraining distribution πR (obtained by training

3
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from scratch on the retain set). Following Chien et al. (2024a), we measure unlearning quality via
Rényi divergence.

Definition 3.2. For probability measures P,Q with P ≪ Q, their Rényi divergence of order α ∈
(0,+∞) \ {1} is

Dα(P∥Q) =
1

α− 1
logEQ

[(
dP

dQ

)α]
,

where dP
dQ is the Radon-Nikodym derivative. This generalizes KL divergence (α → 1), reverse-KL

(α→ 0), and connects to ε-differential privacy in the limit α→∞ (Mironov, 2017).

Our Contribution. Our main contribution is showing that incorporating public data improves the
unlearning-utility trade-off. While prior work proved that Langevin Unlearning’s efficacy increases
with noise magnitude (Chien et al., 2024a;b), this approach often degrades model performance. We
break this dependency by introducing a new lever: the volume of public data. We demonstrate
that increasing the amount of public data improves unlearning guarantees, i.e., lowers the Rényi
divergence Dα(πU∥πR), without requiring additional noise injection or a global DP assumption.
This allows for a fine-grained control over unlearning by adjusting data composition rather than
simply amplifying noise.

3.1 DEFINING THE WEIGHT DISTRIBUTIONS

Consider the PNGD learning algorithmA applied to dataset D = Dpub∪Dpriv, where an unlearning
request targets a subset Dforget ⊆ Dpriv. Our analysis describes the relationship between three weight
distributions arising from different training scenarios:

Learning distribution πT
L : The weight distribution after T PNGD iterations on the complete dataset

D, starting from θ0 ∼ π0, a sample from the initialization distribution π0. This represents the
original trained model before any unlearning requests.

Unlearning distribution πK
U : The weight distribution after K PNGD iterations on the retain set

D \ Dforget, initialized from θ0 ∼ πT
L . This captures the model state after applying our unlearning

procedure to the originally trained model.

Retraining distribution πT
R: The weight distribution after T PNGD iterations on the retain set

D \Dforget, starting from the original initialization θ0 ∼ π0.

 

Unlearning Procedure
(K iterations)

Learning procedure
(T iterations)

as
as

Figure 1: Training pipelines showing the relationship between learning, unlearning, and retraining
with public data injection. The divergence Dα(π

T
R∥πT

L ) quantifies how public data helps maintain
similarity between retraining and original learning distributions, facilitating subsequent unlearning.

The effectiveness of unlearning is measured by Dα(π
K
U ∥π

T+K
R ), while the presence of public data

helps control Dα(π
T
R∥πT

L ), creating favorable conditions for the unlearning process.

4
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3.2 UNLEARNING PERFORMANCE

We now present theoretical guarantees for asymmetric Langevin unlearning that demonstrate how
public data fundamentally improves unlearning efficiency. Our analysis adapts the prior work of
Chien et al. (2024a) by removing restrictive differential privacy assumptions, and providing explicit
characterization of how public and private data contributions differ in the unlearning bounds. We
also provide minor corrections to the bounds presented in Chien et al. (2024a); note, however, that
these corrections do not change the key contributions and messages in (Chien et al., 2024a).

The following result explains how public data reduces reliance on differential privacy constraints,
decoupling unlearning efficacy from model performance and enabling fine-grained analysis of this
trade-off across different public-private distribution regimes (Section 3.3).
Theorem 3.1 (The role of public data in shrinking the learning / retraining mismatch. ). Suppose
that the loss is L-smooth and M -Lipschitz, and that the initialization distribution satsifies a C0-log
Sobolev inequality. Moreover, suppose that the PNGD updates project onto a compact set Θ of
radius R.
Then at learning iteration T, we have the following upper bound on the Renyi divergence between
the retraining πT

R and learning πT
L distributions:

Dα(π
T
R∥πT

L )

α
≤

2M2η2n2
forget

(npub + npriv)2σ2

T−1∑
t=1

T−1∏
t′=t

(
1 +

ησ2

Ct′,1

)−1

,

where 0 < Ct′,1 ≤ (1+ηL)2KC0+2ησ2 (1+ηL)2K−1
(1+ηL)2−1 are log Sobolev constants of the distributions

of the intermediate PNGD updates. Using the support’s radius allows to loosely upper bound those
constants (Chien et al., 2024a): Ct′,1 ≤ 6e

4τ
ησ2 (4τ2 + ησ2) with τ = R+ ηM .

Proof sketch. The proof follows the analytical framework of Chien et al. (2024a, Theorem 3.3),
adapted to leverage the presence of public data in the training set. By distinguishing between public
and private data contributions in the gradient updates, we reduce the privacy erosion (Chourasia
et al., 2021) of each PNGD update.

This bound reveals that we can fix noise magnitude σ to be arbitrarily small to preserve performance
while controlling the divergence through public data volume. When npub ≫ nforget, the learning
and retraining distributions remain close regardless of noise level, providing favorable initial condi-
tions for unlearning (Fig. 2b). Geometrically, for any fixed forget set size, the retraining distribution
stays within a divergence ball whose radius shrinks quadratically with the number of public points.
Theorem 3.2 (Convergence guarantee of Langevin unlearning (Chien et al., 2024a, Theorem 3.2)).
Suppose that the loss is L-smooth and M -Lipschitz, and that the learning distribution of weights at
time T satisfies a C log-Sobolev inequality. Then, the Rényi divergence between πK

U (the unlearn-
ing distribution after K iterations) and the retraining distribution after T + K iterations is upper
bounded by

Dα(π
T+K
R ∥πK

U ) ≤ Dα(π
T
L∥πT

R)min

(
K∏

k=1

(
1 +

2tσ2

(1 + ηL)2CU,k

)−1
α

, exp

(
−2Kσ2η

αC̃

))
,

where 0 < Ck≤(1 + ηL)2KC+2ησ2(1+ηL)2K−1
(1+ηL)2−1 , and C̃≤6

(
4τ2+2ησ2

)
exp

(
4τ2

2ησ2

)
.

Moreover, if the loss function is m-strongly convex and the initial log-Sobolev constant satisfies C >
σ2

m , we get the following exponential decay of the Rényi divergence with respect to the unlearning
iteration:

Dα(π
T+K
R ∥πK

U ) ≤ Dα(π
T
L∥πT

R) exp

(
−2Kσ2η

Cα

)
.

This theorem establishes the convergence guarantee for Langevin unlearning by showing that
the Rényi divergence between the unlearning and retraining distributions decreases exponen-
tially with unlearning iterations K, with the convergence rate controlled by the initial divergence
Dα(π

T+K
R ∥πK

U ). When combined with Theorem 3.1, this reveals the mechanism by which public
data improves unlearning: the quadratic reduction in initial divergence from public data injection
translates directly into tighter convergence bounds.
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3.3 PERFORMANCE WITHOUT NOISE: THE ROLE OF DISTRIBUTION ALIGNMENT

LU faces a fundamental dilemma: increasing noise improves unlearning guarantees but degrades
model performance. Our asymmetric approach breaks this trade-off by leveraging public data abun-
dance rather than noise amplification. However, the effectiveness of this strategy depends on the
relationship between public and private data distributions.

We now analyze when public data injection preserves performance, and when it introduces new
challenges. Our results reveal that performance preservation is not automatic – it depends on the
distributional alignment between public and private data. When these distributions are similar, pub-
lic data acts as a performance stabilizer, allowing effective unlearning without quality degradation.
Conversely, when distributions differ significantly, performance impacts emerge, though they remain
more controlled than noise-based approaches.

We evaluate post-unlearning performance on the private data distribution only, reflecting realistic
deployment scenarios where the primary concern is maintaining model quality on the sensitive data
that remains after unlearning. Performance analysis on the full mixture of public and private distri-
butions is provided in Appendix A.4.1 for completeness.

Theorem 3.3. Assuming the data generating distributions share the same support, that the weight
space Θ is compact and that the loss is M -Lipschitz wrt θ, we have the following upper bound on the
generalization error on the private data after performing K iterations of unlearning, and initializing
a weight θ0 from πT

L :

Eθ∼πK
U

[
Ex∼Ppriv

[L(θ, x)]
]
≤ exp

(
npub

npub + nretain
D∞(Ppriv∥Ppub)

)
︸ ︷︷ ︸

distribution mismatch penalty

Eθ∼πT+K
R

[Ed∼Ptrain
[L(θ, d)]]

+M × diam(Θ)×
√

1

2
Dα(π

T+K
R ∥πK

U )︸ ︷︷ ︸
unlearning approximation error

,

where D∞(P∥Q) = log
(
ess supx∼Q

p(x)
q(x)

)
is the infinite Rényi divergence (worst case regret (Er-

ven & Harremoës, 2014)) and Ptrain denotes the mixture of distributions Dpub and Dpriv used for
training the model.

Proof sketch. The proof uses the Kantorovitch-Rubinstein duality Theorem A.1 to bound the perfor-
mance gap by the dual of the Wasserstein distance between πK

U and πT+K
L , then relates this to Rényi

divergence via standard inequalities leveraging the compactness of the weight space Θ. For private
data evaluation, importance weighting introduces a mismatch penalty controlled by the worst case
regret, D∞(Ppriv∥Ppub), weighted by the public data fraction.

This proposition enables a fine-grained analysis of the unlearning-performance trade-off. In the
regime where npub →∞ (optimal for unlearning efficacy):

1. Aligned distributions (D∞(Ppriv∥Ppub) ≈ 0): The distribution mismatch penalty van-
ishes, and the unlearned model’s performance on unseen private data is guaranteed to be at
least as good as the retrained model’s performance on the training mixture. This represents
the ideal scenario where public data injection preserves performance.

2. Misaligned distributions (D∞(Ppriv∥Ppub) ≫ 0): The exponential penalty term domi-
nates, causing the upper bound to become vacuous. While this confirms that performance
degradation will occur, the bound’s looseness prevents us from quantifying the actual ex-
tent of this degradation. The true performance impact may be better than this worst-case
guarantee suggests.

Retraining performance bound (Eθ∼πT
R
[Ex∼ptrain

[L(θ,x)]]): The upper bound could be fur-
ther improved to include the optimal distribution, i.e by linking Eθ∼πT

R
[Ex∼ptrain

[L(θ,x)]] to
argminπ∈P(Rd) Eθ∼π [Ex∼ptrain

[L(θ,x)]]. However, standard generalization bounds for Langevin
dynamics (Raginsky et al., 2017; Xu et al., 2018) do not directly apply to our setting due to the

6
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projection operator ΠΘ in the PNGD updates. These classical results focus on unconstrained non-
convex optimization, whereas our bounded domain introduces additional complexity. The most rele-
vant analysis we are aware of is Lamperski (2020), who study generalization properties of projected
Stochastic Gradient Langevin Dynamics, though their work considers the infinite-data regime.

4 EXPERIMENTS

Our theoretical analysis provides upper bounds on the Rényi divergence Dα(π
T+K
R ∥πK

U ) that gov-
erns unlearning performance. However, these bounds involve iteration-dependent log-Sobolev con-
stants that are difficult to estimate in practice, making it unclear how tight our theoretical guarantees
actually are. To gain empirical insight into the behavior of this divergence, we estimate its value
using samples from the weight distributions. To our knowledge, this is the first attempt to evaluate
unlearning performance through direct estimation of the Rényi divergence between the parameter
distributions—moving beyond output-based unlearning evaluations to directly examine the parame-
ter distributions. Building on Birrell et al. (2021; 2023), we leverage the variational representation
of the Rényi divergence for numerical estimation.
Theorem 4.1. (Convex conjugate variational approximation of the Rényi divergence (Birrell et al.,
2023)) Let P,Q two probability distributions supported on Ω, such that P ≪ Q, and letMb be the
space of bounded measurable functions on Ω. Then, ∀α ∈ (0,+∞) \ {1},

Dα(P∥Q)

α
= sup

g∈Mb(Ω),g<0

∫
gdQ+

1

α− 1

∫
|g|

α−1
α dP + α−1 (logα+ 1) . (4)

This variational representation of Rényi divergence allows us to obtain estimates of Dα(π
T+K
R ∥πK

U )
using trained models as samples – to our knowledge, the first such attempt in the unlearning liter-
ature. We emphasize that this is not intended as a practical evaluation methodology for machine
unlearning, as it requires training numerous models to obtain sufficient samples for reliable estima-
tion. Standard approaches like membership inference attacks (MIAs) (Shokri et al., 2017; Carlini
et al., 2021; Hayes et al., 2024) remain more suitable for practical evaluation. Our goal is purely
investigative: to understand how the Rényi divergence behaves empirically and assess whether our
theoretical bounds, despite containing hard-to-estimate constants, provide meaningful guidance in
realistic scenarios.

We present our findings in two parts: Sections 4.1 and 4.2 investigate the behaviour of the upper
bounds provided respectively in Theorem 3.2 and Theorem 3.3, while Section 4.3 provides standard
membership inference attack and utility evaluations to contextualize our approach within existing
unlearning assessment practices.

4.1 EVALUATING THE RÉNYI DIVERGENCE

Experimental Setup. We evaluate our approach on a multi-class image classification task using two
domains from the DomainNet dataset (Peng et al., 2019): Quickdraw (sketches) and Clipart (stylized
images), each containing 24 classes. We select these visually distinct domains to investigate how
public-private data alignment affects unlearning and performance (Fig. 4).

The experimental configuration treats Clipart images as private data (subject to unlearning) and
Quickdraw images as public data (permanently retained). For a training set of size n = npub+npriv,
we train models using cross-entropy loss and PNGD updates. To obtain samples from the weight
distributions πK

U and πT
R, we train N models in parallel: one set undergoes unlearning (fine-tuning

on the retain set after initial training), while another set trains from scratch on the retain set only.
This procedure yields N weight samples from each distribution, enabling empirical estimation of
Dα(π

K
U ∥πT

R) through the variational formulation (Theorem 4.1).

Estimation Method. We approximate the variational Rényi representation (Eq. (4)) using neural
network discriminators to parameterize the function space Mb(Ω). This approach follows estab-
lished practices in divergence estimation (Birrell et al., 2021; 2023; Belghazi et al., 2021) (pseudo-
code in Appendix A.7.3) . To reduce estimation variance, we apply spectral normalization (Miyato
et al., 2018) to regularize the discriminator networks. Complete details on discriminator architec-
ture and training procedures are provided in Appendix A.7. Results. Fig. 2a presents our Rényi
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estimation results, demonstrating the effectiveness of public data injection for improving unlearning
efficiency. The experiments are conducted using N = 30, 000 models for each distribution and
averaged across 5 discriminator trainings with spectral normalization. The PNGD noise scale is
σ = 0.01 and α = 2. The results show that increasing public data volume reduces Dα(π

T+K
R ∥πK

U ),
with the divergence decreasing both as a function of unlearning iterations and public data proportion.
To understand the mechanism driving these improvements, we conduct an ablation study examining
the initial conditions after a single unlearning iteration. Fig. 2b solates the effect of public data on
the starting distributions by measuring Dα(π

T+1
R ∥π1

U ) as a function of public data volume. Rather
than directly improving the unlearning procedure itself, public data creates more favorable initial
conditions by ensuring the learning and retraining weight distributions begin in closer proximity.
This mechanistic understanding validates our theoretical framework: public data primarily controls
the initial gap between distributions (Theorem 3.1), which then propagates through the unlearning
iterations to produce the final performance gains. Table 1 reports test accuracy for unlearned and
retrained models across different public/forget splits. Surprisingly, despite the public and private
data distributions being markedly different, the two procedures yield nearly identical accuracy (dif-
ferences ≤ 0.05). This observation indicates that the excess-risk bound in Proposition 3.3 can be
overly conservative. Hence, Langevin unlearning empirically achieves retraining-level generaliza-
tion even under unfavorable distribution shifts for this task. Identifying the structural conditions
under which this distributional term becomes negligible remains an important direction for future
work.
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(a) Variational Rényi divergence estimation as a func-
tion of public data proportion in the training set. The
results demonstrate that increasing public data vol-
ume reduces Dα(π

T+K
R ∥πK

U ), confirming improved
unlearning efficacy. This divergence also decreases
with the unlearning iterations.
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(b) Ablation study: Initial distribution alignment as
a function of public data volume. The Rényi di-
vergence Dα(π

T+1
R ∥π1

U ) between retraining and un-
learning distributions after a single unlearning iter-
ation decreases as the number of public data points
increases.

Figure 2: Rényi divergence estimation for a different number of clipart images (public set)

4.2 DISTRIBUTION ALIGNMENT AND THE UNLEARNING-UTILITY TRADE-OFF

Theorem 3.3 characterizes a trade-off caused by public data injection: as we increase public data
volume, the unlearning approximation error decreases, yet the distribution mismatch penalty si-
multaneously grows. The balance between these competing terms determines whether public data
injection preserves or degrades model performance. To empirically investigate this trade-off, we
conduct experiments across two distinct distributional regimes: one where the public and private
domains exhibit moderate visual alignment, and another where they are substantially misaligned.

We fix K = 5 unlearning iterations and evaluate performance using the DomainNet dataset across
two domain pairs. The aligned regime pairs Quickdraw (public) and Clipart (private), which despite
visual stylistic differences share semantic structure. The misaligned regime pairs Infograph (public)
and Real (private), which exhibit greater distributional divergence. We measure model performance
via loss on the private data distribution Ppriv after unlearning, comparing against the retraining
baseline on the training mixture. Results are summarized in Table 1.

The results reveal a contrast between the two regimes. In the aligned setting, the relative perfor-
mance gap remains modest (3.68–4.62%) across varying public data volumes, suggesting that the
mismatch penalty remains manageable and the approximation error reduction dominates. In con-
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Table 1: Unlearning vs Retraining Performance Across Distribution Alignments, K = 5

Public Private Public Private Forget Unlearn Retrain Rel.
Domain Domain Points Points Set Avg. Loss Avg. Loss Diff (%)

Quickdraw Clipart 10000 20000 10000 3.102 2.976 4.23
Quickdraw Clipart 30000 20000 10000 3.102 2.965 4.62
Quickdraw Clipart 40000 20000 10000 3.099 2.989 3.68

Infograph Real 10000 20000 10000 2.233 2.495 10.53
Infograph Real 30000 20000 10000 2.238 2.496 10.34
Infograph Real 40000 20000 10000 2.233 2.504 10.81

trast, the misaligned setting exhibits a persistent performance gap (10.34–10.81%), with minimal
sensitivity to public data volume. This indicates that when distributional divergence is large, increas-
ing public data fails to overcome the mismatch penalty, rendering the approximation error reduction
insufficient to improve generalization.

4.3 PRACTICAL EVALUATION OF LU IN THE ASYMMETRIC SETTING

We now adopt standard evaluation methodology from the unlearning literature Hayes et al. (2024),
introducing easily reproducible experiments which highlight that public data can benefit machine
unlearning (LU). We provide an overview here and defer details to Appendix A.8.

Evaluation Method. This evaluation is based on the U-LiRA membership inference attack for
unlearning (Hayes et al., 2024; Carlini et al., 2021). Given a training set, forget set, and specified
learning and unlearning algorithms, the adversary’s goal is to infer whether a model’s weights θ were
drawn from the unlearning distribution πK

U or the retraining distribution πT+K
R . Intuitively, lower

attack accuracy indicates that the unlearning and retraining distributions are harder to distinguish,
i.e., better unlearning.

In its most basic form, U-LiRA can be formalized via Bayes’ rule under a uniform prior on whether
the forget set was included during training. Letting P (θ | ·) denote the likelihood of observing
model parameters θ under a given distribution, and P (· | θ) as the posterior probability that θ was
drawn from that distribution, we have

P (πK
U | θ) =

P (θ | πK
U )

P (θ|πK
U ) + P (θ | πT+K

R )
.

By selecting a one-dimensional representation of the models f : Θ → R and as-
suming that the induced distributions f♯π

K
U and f♯π

T+K
R are Gaussian, we can es-

timate the likelihood terms P (θ | ·) from a tractable number of model samples.

0 5 10 15
Unlearning Steps (K)

0.0

0.2

0.4

0.6

0.8

1.0

U-
LiR

A 
Co

nf
id

en
ce

25 000 private points, 0 public points
25 000 private points, 50 000 public points

Figure 3: U-LiRA confidence scores after K un-
learning iterations as violin plots with quartiles.

Experimental Setup. For the sake of complete-
ness, we focus this next set of experiments on a
completely different task, namely sentiment anal-
ysis on the IMDB dataset of movie reviews (Maas
et al., 2011). This is a simple binary classification
task, where an LSTM (Hochreiter & Schmidhu-
ber, 1997) learns to recognize if a review is either
negative or positive. We use the Amazon reviews
dataset from Zhang et al. (2015) as the public data
source. We use a forget set of 100 uniformly sam-
pled examples from the IMDB dataset. For both
experiments, i.e., with and without public data in-
jection, we generate N = 50 models to estimate
each likelihood density, and report the empirical
distribution of probabilities assigned to the right
origin distribution by U-LiRA (confidence scores) for 50 models test (25 from πK

U , and 25 from
πT+K
R , where T = 50 and K = 1 → 15). Fig. 3 highlights that without public data injection, U-

LiRA is able to identify a large proportion of models confidently and correctly, even after a number
of unlearning steps. This observed discriminative power is heavily impacted by public data injec-
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tion. We can also observe that modes of the confidence scores generally decrease with the number
of unlearning steps, highlighting the unlearning effectiveness of LU.

Now that we’ve observed the effect of public data injection on the unlearning effectiveness of LU,
we change our focus towards its impact on model utility. To this end, we report in Table 2 the
average model accuracies over the 75 models we trained for each model distribution, on a test set of
10, 000 unseen samples from the IMDB dataset. As the Amazon reviews dataset appears to be a good
auxiliary public data source for the IMDB review classification problem (close data distributions),
we also include an experiment in which a uniformly sampled 40% of its labels are flipped, thus
increasing distribution mismatch between public and private sources.

Table 2: Unlearned and Retrained Model Test Accuracies for Different Scenarios

Private Private Public Public Flipped Unlearned Retrained
Dataset Points Dataset Points Public Labels Accuracy (%) Accuracy (%)

None 0 0% 82.59 82.54
IMDB 25,000 Amazon Reviews 50,000 0% 81.42 82.15

Amazon Reviews 50,000 40% 80.40 80.80

From Table 2, we can observe that model accuracy does decrease from the injection of public data.
However, this drop in accuracy is rather negligible compared to the extent to which public data
injection improves the unlearning effectiveness of LU, which is highlighted by Fig. 3. As expected,
the drop in accuracy is proportionately much lower when the quality of auxiliary public data is high
(1.17% for unlearned and 0.39% for retrained) than when it is low (2.19% for unlearned, an ≈ 1.87
times increase, and 1.74% for retrained, an ≈ 4.46 times increase).

5 FUTURE WORK

Our analysis of Langevin unlearning with asymmetric data sources provides deeper insights into the
unlearning-utility trade-off and raises interesting research questions, particularly regarding appro-
priate unlearning assumptions for different problem settings. A natural extension involves studying
Langevin unlearning in fine-tuning contexts, where public data is learned prior to incorporating pri-
vate data. We also propose developing adaptive unlearning algorithms that optimally balance data
alignment with unlearning efficiency by leveraging techniques from domain adaptation and differ-
ential privacy. Another promising direction is a constrained optimization approach to asymmetric
machine unlearning that extends beyond retain set fine-tuning, where the objective minimizes loss
on the retain set subject to the constraint that the unlearning weight distribution remains sufficiently
close to a distribution trained exclusively on public data.

From a theoretical perspective, existing Langevin unlearning analysis in both mini-batch and full
batch settings (Chien et al., 2024a) still suffers from intractable log-Sobolev constants. Alternative
isoperimetric assumptions (Chewi et al., 2021; Mousavi-Hosseini et al., 2023; Altschuler & Chewi,
2024) or adopting weaker divergence measures could yield more tractable bounds. While Rényi
divergence provides natural connections to differential privacy, machine unlearning presents distinct
challenges that may benefit from relaxed theoretical assumptions. Finally, extending our analysis
from weight distributions to output distributions would facilitate both evaluation and analysis, while
staying relevant for black-box commercial models.

6 CONCLUSION

We have studied Langevin unlearning under the assumption of asymmetric data sources, where
datasets contain both private and public data. Our theoretical analysis demonstrates that this frame-
work fundamentally improves the unlearning-utility trade-off by enabling control over unlearning
guarantees through data supplementation rather than noise amplification. The framework provides
fine-grained analysis of how distributional alignment between public and private data affects this
trade-off: when distributions are well-aligned, public data injection preserves utility while maintain-
ing unlearning guarantees, while misaligned distributions introduce controlled performance penal-
ties that remain more manageable than traditional noise-based approaches.
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7 REPRODUCIBILITY STATEMENT

All theoretical results are supported by complete proofs in the Appendix (Theorems 3.1
to 3.3 in Appendices A.1, A.3 and A.4, respectively). Our anonymized codebase, includ-
ing experimental scripts and configurations, is available at https://anonymous.4open.
science/r/asymmetric_langevin_unlearning-34A3 and https://anonymous.
4open.science/r/U-LiRAexperiments-EC08/. All experiments settings are detailed in
Appendix A.7 and Appendix A.8
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//arxiv.org/abs/2007.03814. arXiv:2007.03814 [stat].

Jeremiah Birrell, Yannis Pantazis, Paul Dupuis, Markos A. Katsoulakis, and Luc Rey-Bellet.
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Tim van Erven and Peter Harremoës. Rényi Divergence and Kullback-Leibler Divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, July 2014. ISSN 0018-9448, 1557-
9654. doi: 10.1109/TIT.2014.2320500. URL http://arxiv.org/abs/1206.2459.
arXiv:1206.2459 [cs].

Arun Ganesh, Mahdi Haghifam, Milad Nasr, Sewoong Oh, Thomas Steinke, Om Thakkar,
Abhradeep Guha Thakurta, and Lun Wang. Why is public pretraining necessary for private
model training? In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 10611–
10627. PMLR, 23–29 Jul 2023a. URL https://proceedings.mlr.press/v202/
ganesh23a.html.

Arun Ganesh, Mahdi Haghifam, Milad Nasr, Sewoong Oh, Thomas Steinke, Om Thakkar,
Abhradeep Thakurta, and Lun Wang. Why Is Public Pretraining Necessary for Private Model
Training?, 2023b. URL https://arxiv.org/abs/2302.09483. eprint: 2302.09483.

Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics, September
2002. URL http://arxiv.org/abs/math/0209021. arXiv:math/0209021.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal Sunshine of the Spotless Net:
Selective Forgetting in Deep Networks, 2020. URL https://arxiv.org/abs/1911.
04933. eprint: 1911.04933.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
Mixed-Privacy Forgetting in Deep Networks, 2021. URL https://arxiv.org/abs/
2012.13431. eprint: 2012.13431.

Thomas Hakon Gronwall. Note on the derivatives with respect to a parameter of the solutions of a
system of differential equations. Annals of Mathematics, 20(4):292–296, 1919.

12

http://arxiv.org/abs/2112.12662
http://arxiv.org/abs/2112.12662
https://arxiv.org/abs/2102.05855v5
https://arxiv.org/abs/2102.05855v5
https://commoncrawl.org/
http://arxiv.org/abs/1206.2459
https://proceedings.mlr.press/v202/ganesh23a.html
https://proceedings.mlr.press/v202/ganesh23a.html
https://arxiv.org/abs/2302.09483
http://arxiv.org/abs/math/0209021
https://arxiv.org/abs/1911.04933
https://arxiv.org/abs/1911.04933
https://arxiv.org/abs/2012.13431
https://arxiv.org/abs/2012.13431


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Leonard Gross. Logarithmic sobolev inequalities. American Journal of Mathematics, 97(4):1061–
1083, 1975.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact Un-
learning Needs More Careful Evaluations to Avoid a False Sense of Privacy, May 2024. URL
http://arxiv.org/abs/2403.01218. arXiv:2403.01218 [cs].

Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact
unlearning needs more careful evaluations to avoid a false sense of privacy. In 2025 IEEE
Conference on Secure and Trustworthy Machine Learning (SaTML), pp. 497–519, 2025. doi:
10.1109/SaTML64287.2025.00034.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Anastasia Koloskova, Youssef Allouah, Animesh Jha, Rachid Guerraoui, and Sanmi Koyejo. Cer-
tified Unlearning for Neural Networks, June 2025. URL http://arxiv.org/abs/2506.
06985. arXiv:2506.06985 [cs].

Andrew G. Lamperski. Projected Stochastic Gradient Langevin Algo-
rithms for Constrained Sampling and Non-Convex Learning. ArXiv, De-
cember 2020. URL https://www.semanticscholar.org/paper/
ede5a9ae87c1dee98098c243f6b44c30804acbdf.

Andrew Lowy, Zeman Li, Tianjian Huang, and Meisam Razaviyayn. Optimal differentially private
model training with public data. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Ilya Mironov. Renyi Differential Privacy. In 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pp. 263–275, August 2017. doi: 10.1109/CSF.2017.11. URL http://
arxiv.org/abs/1702.07476. arXiv:1702.07476 [cs].

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normalization for
Generative Adversarial Networks, February 2018. URL http://arxiv.org/abs/1802.
05957. arXiv:1802.05957 [cs].

Alireza Mousavi-Hosseini, Tyler K. Farghly, Ye He, Krishna Balasubramanian, and Murat A. Er-
dogdu. Towards a complete analysis of langevin monte carlo: Beyond poincaré inequality.
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A APPENDIX

A.1 PROOF OF THEOREM 3.2

Theorem. (Chien et al., 2024a) Suppose that the loss is L-smooth and M -Lipschitz, and that the
learning distribution of weights at time T satisfies a C log-Sobolev inequality. Then, the Rényi di-
vergence between πK

U (the unlearning distribution after K iterations) and the retraining distribution
after T +K iterations is upper bounded by:

Dα(π
T+K
R ∥πK

U ) ≤ Dα(π
T
L∥πT

R) exp

(
− 1

α

K−1∑
k=0

Rk

)
where Rk > 0 depend on the problem setting (Chien et al., 2024a). Moreover, if the loss function
is m-strongly convex and the initial log-Sobolev constant satisfies C > σ2

m , we get the following
exponential decay of the Rényi divergence with respect to the unlearning iteration:

Dα(π
T+K
R ∥πK

U ) ≤ Dα(π
T
L∥πT

R) exp

(
−2Kσ2η

Cα

)
We provide the proof of (Chien et al., 2024a), Theorem 3.2, slightly modified to our setting. Specif-
ically, we relax the assumption that the learning and retraining processes have converged to their
stationary distribution (infinite training). In order to prove this theorem, we will use the following
lemmas:

Lemma A.1 (Characterizing the log-Sobolev constants of the PNGD updates (Chewi, 2023)). Con-
sider the PNGD update:

θk+1 = ΠΘ

[
θk − η∇LD(θk) +

√
2ησ2Wk

]
, θ0 ∼ π

where π satisfies a C-Log Sobolev inequality. Then, we have the following:

• If L is L-smooth, then for the gradient update h(θ) = θ − ∇θL(θ), we have that the
distribution of h♯π satisfies a (1 + ηL)2 × C log-Sobolev inequality. Moreover, if L is
m-strongly convex and η < 1

L , then h♯π satisfies a (1− ηm)2 × C log Sobolev inequality
(Altschuler & Talwar, 2022).

• π ∗ N (0, σ2Id) satisfies a a C + σ2 log-Sobolev inequality

• ΠΘ♯π satisfies a C log-Sobolev inequality

By composing the aforementioned statements, we get that π1 satisfies a (1 + ηL)2 × C + 2ησ2-log
Sobolev inequality. Moreover, if L is m-strongly convex and η < 1

L , we have that π1 satisfies a
(1− ηm)2 × C + 2ησ2

Lemma A.2 (Data Processing inequality for the Rényi divergence (Erven & Harremoës, 2014)). For
any α ≥ 1, any function h : Rd → Rd and distributions P,Q supported on Rd, we have:

Dα(h♯P∥h♯Q) ≤ Dα(P∥Q)

with equality if h is bijective

Lemma A.3 ((Vempala & Wibisono, 2019; Chien et al., 2024a) characterizing the Rényi divergence
between two distributions convoluted with Gaussians). Let Pt = P ∗ N (0, 2tσ2Id) and Qt =
Q ∗ N (0, 2tσ2Id). Then, ∀α > 0:

∂Dα(Pt∥Qt)

∂t
= −ασ2Gα(Pt∥Qt)

Fα(Pt∥Qt)

with Gα(P∥Q) = EQ

[(
p
q

)α
∥∇ log p

q ∥
2
]

denoting the relative Rényi information and Fα(P∥Q) =

EQ

[(
p
q

)α]
= exp((α− 1)Dα(P∥Q)
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Lemma A.4. Lower bound of the G-F ratio (Vempala & Wibisono, 2019) If Q ∈ P(Θ) satisfies a
C log Sobolev inequality, then ∀P ∈ P(Θ):

Gα(P∥Q)

Fα(P∥Q)
≥ 2Dα(P∥Q)

α2C

Lemma A.5. Grönwall’s inequality (Gronwall, 1919) Let I = [a, b] denote an interval on the real
line. Let β and u be real-valued continuous functions defined on I. If u is differentiable in the
interior of I and satisfies for all t in the interior of I:

∂u(t)

dt
≤ β(t)u(t)

then we have:

u(t) ≤ u(a) exp

(∫ t

a

β(s)ds

)
for all t ∈ I

Lemma A.6. Universal upper bound on the log Sobolev constant for measures with compact support
(Chen et al., 2021) Let P a probability measure supported on a compact set with radius R. Then,
for each σ > 0, P ∗ N (0, σId) satisfy a log Sobolev inequality with constant upper bounded by

6(4R2 + σ) exp
(

4R2

σ

)
Proof. Using these results, we have:

Dα(h♯π
T+K
R ∥h♯π

K
U ) ≤ Dα(π

T+K
R ∥πK

U ) ( Lemma A.2)
The PNGD updates preserve the log-Sobolev inequality for the resulting distributions: let
πK,1,t
U = h♯π

K
U ∗ N (0, 2tσ2Id) and πT+K,1,t

R = h♯π
K
U ∗ N (0, 2tσ2Id). Since πT

L and πT
R sat-

isfy a log-Sobolev inequality (initialization distributions) and the loss function is L-smooth, then by
Lemma A.1 the distributions πK

U , πT+K
L satisfy respectively CU,K , CL,T+K log Sobolev inequal-

ities. Using Lemma A.1 on the distributions πK,1,t
U , πT+K,1,t

R yields that they respectively satisfy
(1 + ηL)2CU,K + 2ησ2 and (1 + ηL)2CL,T+K + 2ησ2 log Sobolev inequalities for all t ∈ [0, η].
Upper bounding the distributions convolved with Gaussian distributions: Using Lemma A.3,
we have that, ∀α > 0:

∂Dα(π
T+K,1,t
R ∥πK,1,t

U )

∂t
= −ασ2Gα(π

T+K,1,t
R ∥πK,1,t

U )

Fα(π
T+K,1,t
R ∥πK,1,t

U )

and since πK,1,t
U satisfies a CU,K,t = (1 + ηL)2CU,K + 2tσ2 log-Sobolev inequality, we can use

Lemma A.4 to upper bound the derivative of the Rényi divergence with respect to t ∈ [0, η]:

∂Dα(π
T+K,1,t
R ∥πK,1,t

U )

∂t
≤ − 2σ2

αCU,K,t
Dα(π

T+K,1,t
R ∥πK,1,t

U )

Thus, by Grönwall’s inequality (Lemma A.5), we have ∀t ∈ [0, η]:

Dα(π
T+K,1,t
R ∥πK,1,t

U ) ≤ Dα(h♯π
T+K
R ∥h♯π

K
U ) exp

(∫ t

0

− 2σ2

αCU,K,s
ds

)
≤ Dα(h♯π

T+K
R ∥h♯π

K
U ) exp

(∫ t

0

− 2σ2

α ((1 + ηL)2CU,K + 2sσ2)
ds

)
≤ Dα(π

T+K
R ∥πK

U ) exp

(∫ t

0

− 2σ2

α ((1 + ηL)2CU,K + 2sσ2)
ds

)
(Lemma A.2)

Computing the integral yields:∫ t

0

− 2σ2

α ((1 + ηL)2CU,K + 2sσ2)
ds = − 1

α

∫ t

0

2σ2

(1 + ηL)2CU,K + 2sσ2
ds

= − 1

α

[
log
(
(1 + ηL)2CU,K + 2tσ2

)
− log

(
(1 + ηL)2CU,K

)]
= − 1

α

[
log

(
1 +

2tσ2

(1 + ηL)2CU,K

)]
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Thus, by setting t = η, we get:

Dα(π
T+K,1,η
R ∥πK,1,η

U ) ≤
(
1 +

2tσ2

(1 + ηL)2CU,K

)−1
α

Dα(π
T+K
R ∥πK

U )

Finally, using the data processing inequality for the projection of PNGD and iterating over the num-
ber of unlearning iterations, we get:

Dα(π
T+K+1
R ∥πK+1

U ) ≤ Dα(π
T+K,1,η
R ∥πK,1,η

U )

≤
(
1 +

2tσ2

(1 + ηL)2CU,K

)−1
α

Dα(π
T+K
R ∥πK

U )

≤ Dα(π
T
R∥πT

L )

K∏
k=1

(
1 +

2tσ2

(1 + ηL)2CU,k

)−1
α

A.2 TRACKING THE LOG-SOBOLEV CONSTANTS

For a generic, L-smooth non-convex loss function L, one can derive the following recurrence rela-
tion, ∀k ≥ 1 upper bounding the log-Sobolev constants:

C1 ≤ (1 + ηL)2C0 + 2ησ2 (Lemma A.1)

C2 ≤ (1 + ηL)4C0 + (1 + ηL)22ησ2 + (1 + ηL)2

. . .

CK ≤ (1 + ηL)
2K

C0 + 2ησ2
K−1∑
k=0

(1 + ηL)2

≤ (1 + ηL)2KC0 + 2ησ2 (1 + ηL)2K − 1

(1 + ηL)2 − 1
(5)

If we add the assumption that the loss is convex, then the map h(θ) = θ − η∇θL(θ) is 1-Lipschitz
for η < 2

L (Hardt et al., 2016) and we can reduce (1 + ηL) to 1 in the aforementioned bounds:

CK ≤ C0 + 2Kησ2 (6)

Finally, assuming m-strong convexity yields that the map h(θ) is 1 − ηm-Lipschitz, which allows
for the following contractive recurrence on the log-Sobolev constants ∀k ≥ 1 by setting η <
2
m (1− σ2

mC0
) (Chien et al., 2024a):

Ck ≤ (1− ηm)2Ck−1 + 2ησ2 ≤ Ck−1

Ck ≤ (1− ηm)2KC0 + 2ησ2 (1− ηm)2K − 1

(1− ηm)2 − 1
≤ C0

Thus, we have that ∀t ∈ [0, η], πK,1,t
U satisfies a C0 log-Sobolev inequality thus we have by

Lemma A.4:

∂Dα(π
T+K,1,t
R ∥πK,1,t

U )

∂t
≤ −2σ2

αC
Dα(π

T+K,1,t
R ∥πK,1,t

U )

Thus, by Grönwall’s inequality (Lemma A.5), we have ∀t ∈ [0, η]:

∂Dα(π
T+K,1,t
R ∥πK,1,t

U )

∂t
≤ Dα(h♯π

T+K
R ∥h♯π

K
U ) exp

(∫ t

0

−2σ2

αC
ds

)
≤ Dα(h♯π

T+K
R ∥h♯π

K
U ) exp

(
−2tσ2

αC

)
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Thus, by setting t = η and using similar steps as the non convex proof above, we get the following
result:

Dα(π
T+K
R ∥πK

U ) ≤ Dα(π
T
R∥πT

L ) exp

(
−2Kησ2

αC

)
The message conveyed by the strongly convex proof is that if we have a universal iteration inde-
pendent upper bound on the log Sobolev constants at each timestep of the PNGD updates, then we
could have a more meaningful upper bound on the Rényi divergence. The non convex Eq. (5) and
convex Eq. (6) recurrence bounds are non contractive and iteration dependent, so they do not allow
to establish a convergence rate for Theorem 3.2. This is where the projection step of PNGD comes
in handy, as it allows to leverage the geometry of the set Θ to get a more informative bound:
Lemma A.7 (Log Sobolev inequality on measures supported on a compact set (Chen et al., 2021),
Corollary 1). Let π be a probability measure on Rd supported on a compact set Θ with radius
R ≥ 0. Then, for each t ≥ 0, µ ∗ N (0, tId) satisfy a log sobolev inequality with constant C
controlled by:

C ≤ 6
(
4R2 + t

)
exp

(
4R2

t

)
Proposition A.1 (Universal bound on the log Sobolev constants of distributions induced by PNGD
updates (Chien et al., 2024a)). Suppose that L is M Lipschitz. Let θ0 ∼ π0 ∈ P(Θ) where Θ is a
compact set of radius R and denote by πk the distribution θk, the k-th iterate of PNGD (Eq. (2)).
Then, ∀k ≥ 0, πk satisfies a log-Sobolev inequality with constant Ck controlled by:

Ck ≤ 6
(
4(R+ ηM)2 + 2ησ2

)
exp

(
4(R+ ηM)2

2ησ2

)
We can thus derive a similar bound to the strongly convex setting, for the non convex/convex
settings:
Using Proposition A.1, we have ∀k ≥ 0 that πK

U satisfies a C̃ =

6
(
4(R+ ηM)2 + 2ησ2

)
exp

(
4(R+ηM)2

2ησ2

)
log Sobolev inequality. Thus, using Lemma A.4,

we have:
∂Dα(π

T+K,1,t
R ∥πK,1,t

U )

∂t
≤ −2σ2

αC̃
Dα(π

T+K,1,t
R ∥πK,1,t

U )

Thus, by Grönwall’s inequality (Lemma A.5), we have ∀t ∈ [0, η]:

∂Dα(π
T+K,1,t
R ∥πK,1,t

U )

∂t
≤ Dα(h♯π

T+K
R ∥h♯π

K
U ) exp

(∫ t

0

−2σ2

αC̃
ds

)
≤ Dα(h♯π

T+K
R ∥h♯π

K
U ) exp

(
−2tσ2

αC̃

)
Finally, similarly to the strongly convex proofs, we can deduce that:

Dα(π
T+K
R ∥πK

U ) ≤ Dα(π
T
R∥πT

L ) exp

(
−2Kησ2

αC̃

)
A.3 PROOF OF THEOREM 3.1

Theorem. Suppose that the loss is L-smooth and M -Lipschitz, and that the initialization distribu-
tion satsifies a C-log Sobolev inequality. Moreover, suppose that the PNGD updates project onto a
compact set Θ of radius R.
Then at learning iteration T, we have the following upper bound on the Renyi divergence between
the retraining πT

R and learning πT
L distributions:

Dα(π
T
R∥πT

L )

α
≤

2M2η2n2
forget

(npub + npriv)2σ2

T−1∑
t=1

T−1∏
t′=t

(
1 +

ησ2

Ct′,1

)−1

where Ct′,1 > 0 are log Sobolev constants of the distributions of the intermediate PNGD updates.
Using the support’s radius allows to loosely upper bound those constants (Chien et al., 2024a):
Ct′,1 ≤ 6e4τ (4τ2 + ησ2) with τ = R+ ηM

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. The following proof is an adaptation of the proof of Theorem 3.2 in Chien et al. (2024a) to
the asymmetric data setting.

Consider the following updates done during training. Recall that we are using full batch projected
noisy gradient descent:

θt+1
L = ΠΘ

[
θtL + η∇LDpub∪Dpriv(θ

t
L) +

√
2ησ2Wt

]
(Wt ∼ N (0, Id))

θt+1
R = ΠΘ

[
θtR + η∇LDretain(θ

t
R) +

√
2ησ2Wt

]
(Wt ∼ N (0, Id))

Let’s divide each optimization step into the following:

θt,1L = θtL + η∇LDpub∪Dpriv
(θtL) +

√
ησ2Wt

θt,1R = θtR + η∇LDretain
(θtR) +

√
ησ2Wt

Therefore, we can write

θt+1
L = ΠΘ

[
θt,1L +

√
ησ2Wt

]
(7)

θt+1
R = ΠΘ

[
θt,1R +

√
ησ2Wt

]
. (8)

Let πt
R, π

t,1
R , πt

L, π
t,1
L be the distributions of respectively θtR, θ

t,1
R , θtL, θ

t,1
L

The main question we try to tackle here is: what is Dα(π
t
R∥πt

L) ?
We first compare the distributions πt,1

R and πt,1
L . By composition theorem of the Gaussian mecha-

nism for Rényi Differential privacy (Mironov, 2017), and equivalently for the Rényi divergence, we
have:

Dα(π
t,1
R ∥π

t,1
L )

α
≤ Dα(π

t
R∥πt

L)

α
+

∆2
F

2σ2
(9)

where ∆F is the l2 sensitivity of the gradient update. For the next computations, let npub denote
the number of public points, nforget denote the number of points to forget, and nr−priv denote the
number of remaining private points in the retain set. Computing the sensitivity in the asymmetric
setting yields:

∆F = max
θ

η∥∇LDretain(θ)−∇LDpub∪Dpriv(θ)∥

= max
θ

η∥ 1

npub + nr−priv

∑
di∈I∪II

∇l(θ, di)−
1

npub + nr−priv + nforget

∑
di∈I∪II∪III

∇∥l(θ, di)∥

≤ η

(
1

npub + nr−priv
− 1

npub + nr−priv + nforget

) ∑
di∈I∪II

∥∇l(θ, di)∥

+
η

npub + nr−priv + nforget

∑
di∈I∪II∪III

∥∇l(θ, di)∥

≤Mη(npub + nr−priv)

(
1

npub + nr−priv
− 1

npub + nr−priv + nforget

)
+

nforgetMη

npub + nr−priv + nforget

≤ 2Mηnforget

npub + nr−priv + nforget︸ ︷︷ ︸
ε

Lemma A.8. (Ye & Shokri, 2022) For any distributions ξt, ξ′t both satisfying Ct,1-LSI, we have:

Dα(ξt ∗ N (0, ησ2I), ξ′t ∗ N (0, ησ2I))

α
≤

Dα(t)(ξt, ξ
′
t)

α(t)

(
1 +

ησ2

Ct,1

)−1

where α(t) = α−1

1+ ησ2

Ct,1
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By combining the data processing inequality (projection) and Lemma A.8, we get the following
recurrence inequality:

Dα(π
T+1
R ∥πT+1

L )

α
≤

(
Dα(T )(π

T
R∥πT

L )

α(T )
+

ε2

2σ2

)(
1 +

ησ2

CT,1

)−1

=
ε2

2σ2

(
1 +

ησ2

CT,1

)−1

+
Dα(T )(π

T
R∥πT

L )

α(T )

(
1 +

ησ2

CT,1

)−1

≤ ε2

2σ2

(
1 +

ησ2

CT,1

)−1

+

(
Dα(T−1)(π

T
R∥πT

L )

α(T − 1)
+

ε2

2σ2

)(
1 +

ησ2

CT,1

)−1(
1 +

ησ2

CT−1,1

)−1

≤ ε2

2σ2
[B(T ) +B(T − 1)] +B(T − 2)

(
Dα(T−2)(π

T
R∥πT

L )

α(T − 2)
+

ε2

2σ2

)
(where B(t) =

∏T
k=t

(
1 + ησ2

Ck,1

)−1

)

≤ ε2

2σ2

T∑
i=1

B(i) +B(0)

(
Dα(0)(π

T
R∥πT

L )

α(0)
+

ε2

2σ2

)

≤ ε2

2σ2

T∑
i=0

B(i) (since Dα(t)(π0∥π0) = 0)

=
ε2

2σ2

T∑
t=0

T∏
t′=t

(
1 +

ησ2

Ct′,1

)−1

The upper bound on the log Sobolev constants can be tracked in a similar fashion as in Proposi-
tion A.1 because of the projection onto the compact set Θ.

A.4 PROOF OF THEOREM 3.3

Proposition. Assuming the data generating distributions share the same support, that the weight
space Θ is compact and that the loss is M -Lipschitz wrt θ, we have the following upper bound on the
generalization error on the private data after performing K iterations of unlearning, and initializing
a weight θ0 from πT

L :

Eθ∼πU

[
Ex∼Ppriv

[L(θ, x)]
]
≤ exp

(
npub

npub + nretain
D∞(Ppriv∥Ppub)

)
︸ ︷︷ ︸

distribution mismatch penalty

Eθ∼πR
[Ed∼Ptrain

[L(θ, d)]] +

M × diam(Θ)×
√

1

2
Dα(πR∥πU )︸ ︷︷ ︸

unlearning approximation error

where D∞(P∥Q) = log
(
ess supx∼Q

p(x)
q(x)

)
is the infinite Rényi divergence (worst case regret (Er-

ven & Harremoës, 2014)) and ptrain denotes the mixture of distributions Dpub and Dpriv used for
training the model.

In order to prove Theorem 3.3, we will use the following quantities to define a set of preliminary
lemmas.

A.4.1 PERFORMANCE ON THE TRAINING DISTRIBUTION MIXTURE

Definition A.1 (Wasserstein distance). The Wasserstein-1 distance is defined as

W1(µ, ν) = inf
γ∈Π(µ,ν)

∫
X×X

d(x, y) dγ(x, y),

where:
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• µ and ν are probability measures on a metric space (X , d),

• d(x, y) is the distance between points x, y ∈ X ,

• Π(µ, ν) is the set of all couplings of µ and ν, i.e., the set of joint distributions γ on X ×X
such that the marginals of γ are µ and ν:∫

X
γ(x, y) dy = µ(x),

∫
X
γ(x, y) dx = ν(y).

Definition A.2 (Total Variation Distance). Let P and Q be two probability measures on a measur-
able space (Ω,F). The total variation distance between P and Q is defined as

TV (P,Q) = sup
A∈F
|P (A)−Q(A)| (10)

=
1

2

∫
Ω

|dP − dQ| (11)

=
1

2
∥P −Q∥TV . (12)

Theorem A.1. (Kantorovich Rubinstein’s duality, (Villani et al., 2009), Theorem 5.10) If µ, ν have
a bounded support Ω, then

W1(µ, ν) = sup
∥h∥L≤1

Ex∼µ[h(x)]− Ey∼ν [h(y)], (13)

where ∥h∥L ≤ 1 denotes the set of 1-Lipschitz functions on Ω

Let f : Θ → R such that f(θ) = ED∼Ptrain
[LD(θ)], where Ptrain denotes the training data dis-

tribution (a mixture of Ppriv and Ppub. Since L(., D) is M−Lipschitz, so is f . Then, we have
that:

E θ∼πU
D∼Ptrain

[L(θ,D)]− E θ∼πR
D∼Ptrain

[L(θ,D)] = Eθ∼πU
[f(θ)]− Eθ∼πR

[f(θ)] (Fubini’s theorem)

≤M ×W1(πU , πR) (By Theorem A.1)
Now, we need to find an upper bound on the 1-Wasserstein distance in terms of the Rényi divergence
between πR and πU . The following results will be useful in deriving it:
Proposition A.2. (Pinsker’s inequality) For two probability distributions P,Q, we have

2TV (P,Q)2 ≤ KL(P ||Q). (14)
Proposition A.3. (Monotonicity of Rényi divergence, (Erven & Harremoës, 2014)) For 1 ≤ α1 ≤
α2 and probability measures P,Q,

KL(P ||Q) ≤ Dα1
(P ||Q) ≤ Dα2

(P ||Q).

The KL lower bounds any Rényi divergence since it is obtained by the limit α→ 1.
Proposition A.4. (Upper bounding W1 with TV (Gibbs & Su, 2002)) If the distributions P,Q share
a support Ω and diam(Ω) = sup(x,y)∈Ω×Ω d(x, y) is finite, then we have

W1(P,Q) ≤ diam(Ω)TV (P,Q). (15)

Using the results above, we have
Eθ∼πU

[f(θ)]− Eθ∼πR
[f(θ)] ≤MW1(πU , πR)

≤M × diam(Θ)× TV (πU , πR)
(By Proposition A.4 and compactness of Θ)

≤M × diam(Θ)×
√

1

2
KL(πU , πR) (By Proposition A.3)

≤M × diam(Θ)×
√

1

2
Dα(πU , πR) (By Proposition A.3)

Thus, we obtain that the generalization error of learning + unlearning is upper bounded by:
Proposition A.5. Assuming that L is M -Lipschitz, we have

Eθ∼πU
[ED∼Ptrain

[L(θ,D)]] ≤ Eθ∼πR
[ED∼Ptrain

[L(θ,D)]] +M × diam(Θ)×
√

1

2
Dα(πU∥πR)

(16)
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A.4.2 ADAPTING THE BOUND TO THEOREM 3.3

We would like to evaluate the performance of the model obtained after unlearning. Proposition
A.5 provides a generalization bound on a mixture of distributions, namely on public data + pri-
vate data. In most practical scenarios, one would want to quantify the ”lost” performance on
private data after forgetting one of its subsets. Thus, we would like to upper bound the quantity
EπU

[
ED∼Ppriv

[LD(θ)]
]
. The training data distribution used for either retraining or unlearning can

be considered as generated from a mixture of the distributions I and II . Assuming the sampling
proportions for training are consistent, one can write that the data distribution used in retraining is

Ptrain =
npub

npub + nr−priv
Ppub +

nr−priv

npub + nr−priv
Ppriv.

Fix any θ ∈ Θ. We have that

ED∼Ptrain
[L(θ,D)] = npub

npub + nr−priv
ED∼Ppub

[L(θ,D)] + nr−priv

npub + nr−priv
ED∼Ppriv

[L(θ,D)]

ED∼Ppriv
[L(θ,D)] =

∫
ppriv(x)L(θ, x)dx

=

∫
ptrain(x)

ppriv(x)

ptrain(x)
L(θ, x)dx

= Ex∼Ptrain

[
ppriv(x)

ptrain(x)
L(θ, x)

]
≤ Ed∼Ptrain

[ess supx∈Supp(Ppub)∪Supp(Ppriv)

pppriv
(x)

ptrain(x)
L(θ, d)]

≤ ess supx∈Supp(Ppub)∪Supp(Ppriv)

ppriv(x)

ptrain(x)
Ed∼Ptrain

[L(θ, d)]

≤ exp(D∞(Ppriv, Ptrain))Ed∼Ptrain
[L(θ, d)].

Moreover, we have by convexity of the Rényi divergence (Erven & Harremoës, 2014) in its second
argument that

D∞(Ppriv∥Ptrain) ≤
npub

npub + nr−priv
(Ppriv∥Ppub).

Thus we also have

Ed∼Ppriv
[L(θ, d)] ≤ exp

(
npub

npub + nr−priv
D∞(Ppriv∥Ppub)

)
Ed∼Ptrain

[L(θ, d)]. (17)

Thus, we can adapt proposition A.5 to evaluate the risk only on private data. Note that so far, the
only assumption made on the difference between the data generating distributions I and II is that
they share the same support. The following bound might be refined with additional assumptions,
such as covariate shift or conditional shift.

We can thus take the expectation of θ with respect to πU to get

Eθ∼πU

[
Ed∼Ppriv [L(θ, d)]

]
≤ exp

(
npub

npub + nr−priv
D∞(Ppriv∥Ppub)

)
Eθ∼πU

[Ed∼Ptrain [L(θ, d)]] ,

and using proposition A.5 to upper bound Eθ∼πU
[Ed∼Ptrain

[L(θ, d)]], we prove proposition 3.3:

Eθ∼πU

[
Ex∼Ppriv [L(θ, x)]

]
≤ exp

(
npub

npub + nretain
D∞(Ppriv∥Ppub)

)
Eθ∼πR

[Ed∼Ptrain [L(θ, d)]] +

M × diam(Θ)×
√

1

2
Dα(πR∥πU ).
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Algorithm 1 Training with Projected Noisy Gradient Descent (PNGD)

1: θ0 ∼ π0 ▷ Sample from initialization distribution
2: for t = 0 to T − 1 do
3: gt ← ∇θLD(θt) ▷ Compute gradient on full dataset
4: ξt ∼ N (0, 2ησ2Id) ▷ Sample Gaussian noise
5: θt+1 ← ΠΘ[θt − ηgt + ξt] ▷ Update and project
6: end for
7: return θT

Algorithm 2 Langevin Unlearning

1: θU0 ← θT ▷ Initialize from trained model
2: for k = 0 to K − 1 do
3: gk ← ∇θLDretain(θ

U
k ) ▷ Compute gradient on retain set only

4: ξk ∼ N (0, 2ησ2Id) ▷ Sample Gaussian noise
5: θUk+1 ← ΠΘ[θ

U
k − ηgk + ξk] ▷ Update and project

6: end for
7: return θUK

A.5 LANGEVIN UNLEARNING PSEUDO-CODE

A.6 DOMAINNET DATA

The following is a snippet of samples from the DomainNet dataset, where we extracted two domains,
Clipart and Quickdraw. The classes are aggregated into 24 meta-classes Table 3, following (Peng
et al., 2019).

Clipart
face

Clipart
campfire Clipart

toaster
Clipart

flashlight Clipart
flamingo

Clipart
knee

Quickdraw
face

Quickdraw
campfire

Quickdraw
toaster

Quickdraw
flashlight

Quickdraw
flamingo

Quickdraw
knee

Domain Adaptation: Sample Images from Clipart and Quickdraw

Figure 4: The two domains of public and private data used for Sections 4.1 and 4.2 (Peng et al.,
2019). Both datasets share the same number of classes, with Clipart being a collection of styl-
ized images representing the private data, and Quickdraw representing a collection of hand-draw
sketches.

A.7 DETAILS ABOUT THE RÉNYI ESTIMATION

A.7.1 NEURAL RÉNYI ESTIMATION

Following the works of Birrell et al. (2021; 2023), two variational representations of the Rényi
divergence between two distributions P,Q have been proposed. The first draws inspiration from the
Donsker–Varadhan dual representation (Donsker & Varadhan, 1975) of the KL divergence:
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infograph
axe infograph

mushroom

infograph
spider

infograph
stove

infograph
bathtub

infograph
lollipop

real
axe real

mushroom

real
spider

real
stove

real
bathtub

real
lollipop

Domain Adaptation: Sample Images from Clipart and Quickdraw

Figure 5: The two domains of public and private data used for Section 4.2 (Peng et al., 2019). Both
datasets share the same number of classes, with Infograph being a collection of stylized images
representing the public data, and Real representing a collection of real-life images.

Theorem A.2 (Donsker–Varadhan Rényi divergence (Birrell et al., 2021)). Let P,Q be two distribu-
tions on (Ω,M) and α ∈ R, α ̸= 0, 1. Then, for any set of functions Φ withMb(Ω) ⊂ Φ ⊂M(Ω),

Dα(P∥Q)

α
= sup

ϕ∈Φ

{
1

α− 1
log

∫
e(α−1)ϕ dP − 1

α
log

∫
eαϕ dQ

}
. (18)

If in addition (Ω,M) is a metric space with the Borel σ-algebra, then Eq. (18) holds for all Φ
satisfying Lipb ⊂ Φ ⊂M(Ω), where Lipb denotes the set of bounded Lipschitz functions.

Here,M(Ω) denotes the space of measurable real-valued functions on Ω, andMb(Ω) the subspace
of bounded functions.

While this representation allows sample-based estimation, it involves exponential terms that yield
high-variance estimates in practice. To mitigate this issue, Birrell et al. (2023) proposed a convex
conjugate formulation:
Theorem A.3 (Convex conjugate Rényi divergence (Birrell et al., 2023)). Let P,Q be probability
distributions supported on Ω, with P ≪ Q, and letMb(Ω) denote the space of bounded measurable
functions. Then, for all α ∈ (0,+∞) \ {1},

Dα(P∥Q)

α
= sup

g∈Mb(Ω), g<0

∫
g dQ+

1

α− 1

∫
|g|

α−1
α dP +

1

α
(logα+ 1). (19)

This convex conjugate formulation removes the exponential dependence and provides more stable
numerical estimates, making it preferable for our setting.

Neural network parameterization. To approximate Φ = {g ∈ M(Θ) : g < 0} we use the class
gθ of two-layer MLPs with spectral normalization (Miyato et al., 2018), LeakyReLU activations,
and a polysoftplus output activation as in Birrell et al. (2023). The polysoftplus activation offers
superior numerical stability compared to ReLU. It is defined as

polysoftplus(x) = −
(

1

1− x
1x<0 + (1 + x)1x≥0

)
. (20)

The discriminator network gθ is trained to maximize the variational bound in Eq. (4) using samples
{θUi }Ni=1 ∼ πK

U and {θRj }Nj=1 ∼ πT+K
R . The optimization objective becomes:

max
θ

 1

N

N∑
j=1

gθ(θ
R
j ) +

1

α− 1

1

N

N∑
i=1

|gθ(θUi )|
α−1
α +

1

α
(logα+ 1)

 . (21)

To reduce estimator variance, we repeat the discriminator training five times with different random
initializations and report the average. We use a learning rate of value 0.0001 with Adam optimizer
(Kingma & Ba, 2017), and train the discriminators for 30000 epochs with batch size b = 6000.
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Table 3: Class aggregation for experimental dataset. Individual classes are grouped into 24 super-
classes.

Superclass Individual Classes

Furniture bathtub, bed, bench, ceiling fan, chair, chandelier, couch, door, dresser, fence, fireplace, floor lamp, hot tub, ladder, lantern,
mailbox, picture frame, pillow, postcard, see saw, sink, sleeping bag, stairs, stove, streetlight, suitcase, swing set, table,
teapot, toilet, toothbrush, toothpaste, umbrella, vase, wine glass

Mammal bat, bear, camel, cat, cow, dog, dolphin, elephant, giraffe, hedgehog, horse, kangaroo, lion, monkey, mouse, panda, pig,
rabbit, raccoon, rhinoceros, sheep, squirrel, tiger, whale, zebra

Tool anvil, axe, bandage, basket, boomerang, bottlecap, broom, bucket, compass, drill, dumbbell, hammer, key, nail, paint can,
passport, pliers, rake, rifle, saw, screwdriver, shovel, skateboard, stethoscope, stitches, sword, syringe, wheel

Cloth belt, bowtie, bracelet, camouflage, crown, diamond, eyeglasses, flip flops, hat, helmet, jacket, lipstick, necklace, pants,
purse, rollerskates, shoe, shorts, sock, sweater, t-shirt, underwear, wristwatch

Electricity calculator, camera, cell phone, computer, cooler, dishwasher, fan, flashlight, headphones, keyboard, laptop, light bulb,
megaphone, microphone, microwave, oven, power outlet, radio, remote control, spreadsheet, stereo, telephone, television,
toaster, washing machine

Building The Eiffel Tower, The Great Wall, barn, bridge, castle, church, diving board, garden, garden hose, golf club, hospital,
house, jail, lighthouse, pond, pool, skyscraper, square, tent, waterslide, windmill

Office alarm clock, backpack, binoculars, book, calendar, candle, clock, coffee cup, crayon, cup, envelope, eraser, map, marker,
mug, paintbrush, paper clip, pencil, scissors

Human Body arm, beard, brain, ear, elbow, eye, face, finger, foot, goatee, hand, knee, leg, moustache, mouth, nose, skull, smiley face,
toe, tooth

Road Transportation ambulance, bicycle, bulldozer, bus, car, firetruck, motorbike, pickup truck, police car, roller coaster, school bus, tractor,
train, truck, van

Food birthday cake, bread, cake, cookie, donut, hamburger, hot dog, ice cream, lollipop, peanut, pizza, popsicle, sandwich, steak

Nature beach, cloud, hurricane, lightning, moon, mountain, ocean, rain, rainbow, river, snowflake, star, sun, tornado

Cold Blooded crab, crocodile, fish, frog, lobster, octopus, scorpion, sea turtle, shark, snail, snake, spider

Music cello, clarinet, drums, guitar, harp, piano, saxophone, trombone, trumpet, violin

Fruit apple, banana, blackberry, blueberry, grapes, pear, pineapple, strawberry, watermelon

Sport baseball, baseball bat, basketball, flying saucer, hockey puck, hockey stick, snorkel, soccer ball, tennis racquet, yoga

Tree bush, cactus, flower, grass, house plant, leaf, palm tree, tree

Bird bird, duck, flamingo, owl, parrot, penguin, swan

Vegetable asparagus, broccoli, carrot, mushroom, onion, peas, potato, string bean

Shape circle, hexagon, line, octagon, squiggle, triangle, zigzag

Kitchen fork, frying pan, hourglass, knife, lighter, matches, spoon, wine bottle

Water Transportation aircraft carrier, canoe, cruise ship, sailboat, speedboat, submarine

Sky Transportation airplane, helicopter, hot air balloon, parachute

Insect ant, bee, butterfly, mosquito

Others The Mona Lisa, angel, animal migration, campfire, cannon, dragon, feather, fire hydrant, mermaid, snowman, stop sign,
teddy-bear, traffic light

This procedure used N = 30,000 model samples, which makes it computationally intensive and
better suited for theoretical validation than for large-scale empirical benchmarking. Although reg-
ularization and repeated runs alleviate variance, Rényi divergence estimation remains a statistically
challenging task. Developing scalable and lower-variance estimators is therefore an important di-
rection for future work.

A.7.2 SAMPLING FROM πK
U AND πT+K

R

We conduct experiments on the DomainNet dataset (24-class image classification) Fig. 4. We
choose the domain Clipart as the private data domain, which are stylized images, and Quick-
draw, a collection of hand-drawn sketches as the public domain. Image embeddings are extracted
using DinoV2 (Oquab et al., 2024), a self-supervised vision transformer. We specifically use
vit small patch16 224 dino (Caron et al., 2021). All images are resized to 224×224 prior to feature
extraction.
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On these embeddings, we train 30,000 linear classifiers on the full dataset D = Dpub ∪ Dpriv

for T = 20 iterations, and subsequently fine-tune them on the retain set Dr = D \ Dforget for
K ∈ {1, 5, 10, 15} additional iterations. This procedure yields 30,000 samples from the unlearning
distribution πK

U .

For comparison, we train another 30,000 linear classifiers directly on the retain set Dr for T + K
iterations, producing samples from the retraining distribution πT+K

R . All models are trained using
the same projected noisy gradient descent (PNGD) update with noise scale σ = 0.01, learning rate
η = 0.001, batch size b = 1024, and radius R = 1.0 using SGD.

To assess robustness across dataset splits, we fix the total training set size to Ntrain = 42,000, and
vary the public and forget set sizes as (|Dpub|, |Dforget|) ∈ {(10,000, 12,000), (15,000, 7,000), and
(20,000, 2,000)}. The remaining private data in the retain set is fixed to have size 20,000. The
resulting divergence estimates are reported in Figs. 2a and 2b.

A.7.3 PSEUDO-CODE

Algorithm 3 Rényi Divergence Estimation via Variational Representation

1: Input: Samples {θRi }Ni=1 ∼ πT+K
R , {θUj }Nj=1 ∼ πK

U , order α, discriminator architecture
2: Initialize discriminator network gϕ with spectral normalization
3: for epoch = 1 to num epochs do
4: Sample minibatch from retraining samples {θRi }
5: Sample minibatch from unlearning samples {θUj }
6: Compute variational objective:

L =
1

N

N∑
i=1

gϕ(θ
R
i ) +

1

α− 1

1

N

N∑
j=1

|gϕ(θUj )|
α−1
α +

1

α
(logα+ 1) (22)

7: Update ϕ to maximize L via gradient ascent
8: end for
9: Output: Estimated divergence D̂α(π

K
U ∥π

T+K
R ) = L̂1/α

A.8 EVALUATION WITH U-LIRA

A.8.1 U-LIRA DETAILS

U-LiRA, introduced by Hayes et al. (2025) as an adaptation of the LiRA membership inference
attack (Carlini et al., 2021) to the unlearning setting, formalizes unlearning evaluation as a binary
hypothesis test. The goal is to distinguish between two distributions over model parameters: the
unlearning distribution πK

U , obtained by training on the full dataset and subsequently applying the
target unlearning algorithm to remove the influence of the forget set, and the retraining distribution
πT+K
R , obtained by training from scratch without the forget set. Letting P (θ | ·) denote the like-

lihood of observing model parameters θ under a given distribution, the Neyman–Pearson lemma
(Neyman & Pearson, 1933) implies that the most powerful test for this discrimination problem is
achieved by thresholding the likelihood ratio

P (θ|πK
U )

P (θ|πT+K
R )

for model parameters θ.

Since directly computing P (θ | πK
U ) and P (θ | πT+K

R ) is infeasible in practice, U-LiRA employs
a series of approximations. First, the two distributions are approximated empirically by sampling:
the adversary trains N models under πK

U (full training followed by unlearning) and N models under
πT+K
R (training from scratch without the forget set).

To reduce the sample complexity required for a low-variance estimate, U-LiRA projects models into
a one-dimensional representation space via a statistic f : Θ → R (since we only run the attack on
forget sets of size 1, we follow Hayes et al. (2025) and choose f to be the model’s confidence score
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on the forget example, rescaled by the logit function ϕ(ω) = ln
(

ω
1−ω

)
). The test is then conducted

on the surrogate likelihood ratio

P (f(θ)|f(πK
U ))

P (f(θ)|f(πT+K
R ))

.

As a final simplifying approximation, U-LiRA models the projected distributions as Gaussians

f(πK
U ) ≈ N (µU , σ

2
U ), f(πT+K

R ) ≈ N (µRσ
2
R),

where the parameters (µU , σ
2
U ) and (µR, σ

2
R) are estimated directly from the N sample models of

each distribution.

In 4.3, we presented the attack through the lens of Bayes’ rule (following Algorithm 1 of Hayes
et al. (2025)), providing a more intuitive explanation for readers less familiar with hypothesis testing
concepts.

A.8.2 EXPERIMENTAL SETUP

We evaluate unlearning in binary sentiment classification of IMDB reviews (Maas et al., 2011), with
Amazon product reviews (Zhang et al., 2015) as public data. Models are 2-layer LSTMs (Hochreiter
& Schmidhuber, 1997), trained to minimize cross-entropy loss with projected noisy gradient descent
(Gaussian noise variance σ2 = 0.01, projection onto an ℓ2 ball of radius 100).

For each trial, the forget set consists of a 100 datapoints sampled uniformly from the IMDB reviews
dataset. Following the U-LiRA framework, we generate 75 model samples from two distributions:

• Unlearning distribution πK
U : models trained on 25,000 private datapoints plus the forget

set for T epochs, then finetuned without the forget set for K epochs.

• Retraining distribution πT+K
R : models trained from scratch on the same 25,000 private

datapoints (excluding the forget set) for T +K epochs.

We repeat this sampling process both with and without the inclusion of the 50,000 public datapoints
during training and unlearning.
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