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ABSTRACT

Achieving certified data erasure in machine unlearning faces a fundamental trade-
off: preserving model utility requires less noise, but formal privacy guarantees
demand more. This tension typically degrades model performance. In this work,
we study this challenge in Langevin Unlearning, a noisy variant of SGD that is
uniquely amenable to theoretical analysis. We introduce an asymmetric unlearn-
ing setting assuming that datasets contain both private data (subject to unlearning)
and public data (permanently retained). Our framework demonstrates that incor-
porating public data enables better unlearning-utility trade-offs without additional
noise or restrictive differential privacy assumptions. We prove that public data
volume quadratically reduces the Rényi divergence between unlearning and re-
training distributions, allowing control over unlearning guarantees through data
composition rather than noise amplification. The framework also provides a fine-
grained analysis of how distributional alignment between public and private data
affects performance preservation. Empirical validation using variational Rényi di-
vergence estimation confirms our theoretical predictions, showing that strategic
public data injection achieves comparable unlearning efficacy while significantly
improving model performance and computational efficiency.

1 INTRODUCTION

The widespread adoption of machine learning across diverse applications has prompted regulatory
responses aimed at protecting user privacy and data rights. Legislative frameworks such as the
European Union’s Al Act (Parliament & of the European Union, 2024) and Canada’s Artificial
Intelligence and Data Act (AIDA) (Parliament of Canadal [2022) establish fundamental principles
including the “right to be forgotten”, which mandates that individuals can request removal of their
personal data from trained systems. This requirement presents significant technical challenges for
modern machine learning paradigms, particularly deep learning and generative AI models that de-
pend on large-scale datasets collected from public sources, often without explicit individual consent.
Compounding this challenge, recent research demonstrates that neural networks exhibit a propensity
to memorize training examples while maintaining generalization performance (Attias et al., 2024;
Carlini et al.} 2022; Nasr et al., 2023 |Zhang et al., 2016).

The most straightforward approach to addressing data removal requests would be to retrain mod-
els from scratch after excluding the specified data points. However, this naive solution becomes
prohibitively expensive for contemporary large-scale models, where training can require substantial
computational resources. Moreover, the frequency of such requests in production systems would
render this approach operationally impractical. This reality necessitates the development of ma-
chine unlearning techniques that can selectively remove specific data points from trained models
while preserving overall performance. For certain applications, such removal should be certifiable
through formal guarantees, ensuring that the unlearned model is statistically indistinguishable from
one that was never trained on the removed data. Thus, effective unlearning algorithms must satisfy
three fundamental requirements: provable erasure of target data, preservation of model utility, and
computational efficiency that outperforms full retraining.
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Most existing machine unlearning approaches operate under the assumption that any data point
in the training set may require removal. While this assumption holds when working exclusively
with sensitive datasets, it proves overly restrictive for real-world scenarios. Modern data collection
pipelines aggregate information from heterogeneous sources, combining both sensitive private data
and publicly available content. CommonCrawl (Common Crawl Foundation, 2024) and ImageNet
(Deng et al [2009) are examples of publicly available data used to train large language models
and vision models. To our knowledge, the only prior work exploring mixed-privacy unlearning is
Golatkar et al.| (2021), who introduced Mixed-Linear Forgetting for computer vision tasks. Their
approach requires architectural modifications to achieve forgetting through network linearization,
limiting its general applicability. In the privacy-preserving machine learning literature, several works
have shown that having access to a set of public data points allows for the design of algorithms
with better privacy guarantees for the same amount of noise introduced into the model. When the
public data distribution is close enough to the sensitive data distribution, these public data-assisted
algorithms often offer a better privacy-utility trade-off than their conventional counterparts (Alon
et al.,|2019b; |/Amid et al.l 2022; |Ganesh et al., 2023a; [Lowy et al., [ 2024)).

In this work, we study the effect of considering that a portion of the training dataset is public
and never subject to unlearning. We study this setting under Langevin Unlearning (Chien et al.,
2024a)), showing that restricting unlearning to private data improves guarantees. We ask the ques-
tions: (1) Does adding public data improve Langevin Unlearning performance? (2) How does
public-private distribution mismatch affect post-unlearning performance? Our theoretical analy-
sis provides clear answers. We first prove that injecting public data creates a more favorable initial-
ization for the unlearning process (Theorems [3.1and [3.2). We then provide a fine-grained analysis
of the unlearning-utility trade-off, with our main contribution stated in Theorem 3.3] explaining how
the distributional alignment between public and private data impacts the model’s final performance.
Finally, building on a variational representation of Rényi divergence (Birrell et al., 2023), we de-
velop in Section .1 a framework for numerical evaluation of our bounds, showing that they capture
some of the key dynamics of private-public learning and unlearning in practical settings.

2 BACKGROUND AND NOTATION

2.1 MACHINE UNLEARNING

Machine unlearning algorithms eliminate the influence of designated training data (the forget ser)
while balancing unlearning efficacy, model utility, and computational efficiency. Three canonical
strategies illustrate the trade-offs: random re-initialization achieves perfect unlearning but destroys
utility; retraining from scratch provides optimal guarantees but incurs prohibitive costs; no interven-
tion preserves utility but achieves no unlearning. This motivates two paradigms: Exact unlearning
replicates the retraining baseline through specialized architectures like SISA (Bourtoule et al., 2020)
or Arcane (Yan et al.,2022)), which enable targeted retraining but increase complexity. Approximate
unlearning tolerates bounded discrepancies from retraining for practicality, including Newton-step
updates (Golatkar et al.,2020) and noisy fine-tuning schemes like Langevin Unlearning (Chien et al.},
2024aib)).

2.2 NOTATION

We consider probability distributions defined over a compact parameter space ©, where stochasticity
arises from three sources: the weight initialization distribution 7, the training data distribution, and
the inherent randomness of the optimization procedure. Our analysis focuses on three parameter
distributions: 7% (the learning distribution after T iterations of training on the full dataset), 71'{](
(the unlearning distribution after K iterations of the unlearning procedure), and 7% (the retraining
distribution after T iterations of training only on the retain set). A key quantity in our analysis is the
Rényi divergence of order o between distributions P and @), denoted D, (P||Q), which we define
rigorously in subsequent sections. We use Pp,1, and P,y to represent the distributions of public
and private data, respectively.
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2.3 LANGEVIN UNLEARNING

A common approach to machine unlearning is to run a noisy projected gradient method starting
from the trained weights, targeting a distribution close to retraining. Formally, at iteration ,

Or11 = Ta[0; — nVoL(0:) + &), €))

where L is a surrogate loss (e.g., empirical loss on a retain set), 7 is the step size, and &, is injected
noise (often Gaussian) controlling distributional closeness.

Langevin Unlearning (LU) (Chien et al.||20244) instantiates this scheme with £ = Lp_, the loss on
the retain set, and &; ~ N (0, 2no?1;). This reduces to projected noisy gradient descent (PNGD):

f01 = Tlo [9t VoL, (6;) + /2002 Wt] Wy ~ N0, 1) )

LU provides certifiable approximate unlearning guarantees by bounding the Rényi divergence be-
tween post-unlearning and post-retraining weight distributions (Chien et al., [2024ajb). However,
these guarantees require that the entire original training process satisfies differential privacy (DP),
necessitating PNGD with substantial noise injection from initialization. This requirement often lim-
its practical applicability, as it degrades model performance both before and after unlearning.

LU provides certifiable approximate unlearning guarantees by minimizing the Rényi divergence
between post-unlearning and post-retraining weight distributions (Chien et al., [2024a3b). However,
these guarantees require that the entire original training process satisfies differential privacy (DP),
necessitating PNGD with substantial noise injection from initialization. This requirement limits
practical applicability, as it degrades model performance both before and after unlearning.

3 ASYMMETRIC LANGEVIN UNLEARNING

Motivation. Our approach is motivated by a realistic data setting, well-established in the privacy-
preserving machine learning literature, that leverages public data to improve the privacy-utility trade-
off (Alon et al.| [2019a} (Ganesh et al., [2023b; |Lowy et al.| 2024} |Amid et al., 2022)). We introduce
this asymmetric data model to Langevin Unlearning, which allows us to relax the restrictive Dif-
ferential Privacy (DP) assumption over the entire dataset. By explicitly modeling this asymmetry,
we can leverage public data to enhance the unlearning process to improve both efficacy and model
performance without compromising privacy guarantees.

Problem Setting. We consider empirical risk minimization over a dataset D = Dpyup U Dpyriv
comprising two components: a public set Dy, with np,;, samples from a distribution P, and
a private set D,y With npri, samples from a distribution Ppy4,. The training loss is Lp(0) =

nb# > wep l(8,). Only the private data is subject to unlearning requests, while public data

remains permanently available. We employ 7" PNGD iterations with projections onto © C R?
(radius R) to obtain fp. Since PNGD injects Gaussian noise at each step, it induces probability
distributions over parameters rather than deterministic iterates. In order to ensure that everything is
well-behaved, one has to impose a regularity assumption on the initialization probability distribution.

Definition 3.1. (Log-Sobolev inequality (Gross, |1975)) A probability measure P € P(RY) satisfies
a Log-Sobolev inequality with constant C' if

vQ € P(RY), Dk1(Q|P) < 1(Q, P), 3)

| Q

where D, denotes the KL divergence and 1(Q,P) = Eg [HV]ogSHﬂ is the relative Fisher

information.

Our analysis compares two such distributions: the unlearning distribution 7y, (obtained by applying
LU on the retain set from the trained model), and the retraining distribution 7, (obtained by training
from scratch on the retain set). Following |Chien et al.| (2024a), we measure unlearning quality via
Rényi divergence.
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Definition 3.2. For probability measures P, Q) with P < Q, their Rényi divergence of order o €

(0. +00)\ {1} i
Du(PIQ) =~ oso [ (5) .

where % is the Radon-Nikodym derivative. This generalizes KL divergence (o« — 1), reverse-KL
(o« = 0), and connects to e-differential privacy in the limit « — oo (Mironov,|2017).

Our Contribution. Our main contribution is showing that incorporating public data improves the
unlearning-utility trade-off. While prior work proved that Langevin Unlearning’s efficacy increases
with noise magnitude (Chien et al., 2024ajb), this approach often degrades model performance. We
break this dependency by introducing a new lever: the volume of public data. We demonstrate
that increasing the amount of public data improves unlearning guarantees, i.e., lowers the Rényi
divergence D, (7y||mr), without requiring additional noise injection or a global DP assumption.
This allows for a fine-grained control over unlearning by adjusting data composition rather than
simply amplifying noise.

3.1 DEFINING THE WEIGHT DISTRIBUTIONS

Consider the PNGD learning algorithm .A applied to dataset D = Dy, U Dypyiy, Where an unlearning
request targets a subset Dyoreer € Dpriy. Our analysis describes the relationship between three weight

distributions arising from different training scenarios:

Learning distribution 77 : The weight distribution after 7 PNGD iterations on the complete dataset
D, starting from initialization 8y ~ 7. This represents the original trained model before any
unlearning requests.

Unlearning distribution 7/5: The weight distribution after X' PNGD iterations on the retain set
D \ Dyorget, initialized from 6y ~ ﬂ'f. This captures the model state after applying our unlearning
procedure to the originally trained model.

Retraining distribution 7%5: The weight distribution after 7 PNGD iterations on the retain set

D\ Drorget, starting from the original initialization 8y ~ .
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Figure 1: Training pipelines showing the relationship between learning, unlearning, and retraining
with public data injection. The divergence D, (75|77 ) quantifies how public data helps maintain
similarity between retraining and original learning distributions, facilitating subsequent unlearning.

The effectiveness of unlearning is measured by D, (/5 |75 ), while the presence of public data

helps control D, (n%||7¥), creating favorable conditions for the unlearning process.

3.2 UNLEARNING PERFORMANCE

We now present theoretical guarantees for asymmetric Langevin unlearning that demonstrate how
public data fundamentally improves unlearning efficiency. Our analysis adapts the prior work of
Chien et al.| (2024a)) by removing restrictive differential privacy assumptions, and providing explicit
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characterization of how public and private data contributions differ in the unlearning bounds. We
also provide minor corrections to the bounds presented in |Chien et al.| (2024a); note, however, that
these corrections do not change the key contributions and messages in (Chien et al.| 2024a).

The following result explains how public data reduces reliance on differential privacy constraints,
decoupling unlearning efficacy from model performance and enabling fine-grained analysis of this
trade-off across different public-private distribution regimes (Section [3.3).

Theorem 3.1. Suppose that the loss is L-smooth and M -Lipschitz, and that the initialization distri-
bution satsifies a Cy-log Sobolev inequality. Moreover, suppose that the PNGD updates project onto
a compact set © of radius R.

Then at learning iteration T, we have the following upper bound on the Renyi divergence between
the retraining ﬂ% and learning 7% distributions:

T-1T-1 -1
Da(ﬂ-gnﬂ-%) 2M2n%orget < 2 )
< SIT 1+ :

no
« o (npub +npriv)202 t—1 t/—t Ct’,l

where 0 < Cp 1 < (1+ nL)*KCy +2no? % are log Sobolev constants of the distributions

of the intermediate PNGD updates. Using the support’s radius allows to loosely upper bound those
AT
constants ((Chien et al., 2024a): Cy 1 < 6e7o” (472 + no?) with T = R + nM.

Proof sketch. The proof follows the analytical framework of |Chien et al|(2024a)) and |Ye & Shokri
(2022), adapted to leverage the presence of public data in the training set. By distinguishing be-
tween public and private data contributions in the gradient updates, we reduce the privacy erosion
((Chourasia et al., |2021) of each PNGD update.

This bound reveals that we can fix noise magnitude o to be arbitrarily small to preserve performance
while controlling the divergence through public data volume. When npup > Niforget, the learning
and retraining distributions remain close regardless of noise level, providing favorable initial condi-
tions for unlearning (Fig. [2b). Geometrically, for any fixed forget set size, the retraining distribution
stays within a divergence ball whose radius shrinks quadratically with the number of public points.

Theorem 3.2 (Convergence guarantee of Langevin unlearning (Chien et al.l 2024a)). Suppose that
the loss is L-smooth and M -Lipschitz, and that the learning distribution of weights at time T' satisfies
a C log-Sobolev inequality. Then, the Rényi divergence between 7'('5{ (the unlearning distribution
after K iterations) and the retraining distribution after T' + K iterations is upper bounded by

K =1
) 2to? B 2Ko2n
Da(ﬂngK”ﬂ'[IJ() < Da(ﬂ'gllﬂ'g) min (H (1 + (1+T}L)2C'Uk) , exp (— oC )) ,
k=1 v

where 0 < Cp, < (1 + T]L)QKC—FQ?]O'Q%, and C <6 (472+27702)exp (2‘%,:;2).

Moreover, if the loss function is m-strongly convex and the initial log-Sobolev constant satisfies C' >

2
T e get the following exponential decay of the Rényi divergence with respect to the unlearning
iteration:

2K o2
Da(n 5 ) < Da(a T |75) exp (— o ”) .

Ca

This theorem establishes the convergence guarantee for Langevin unlearning by showing that
the Rényi divergence between the unlearning and retraining distributions decreases exponen-
tially with unlearning iterations K, with the convergence rate controlled by the initial divergence
Do (ng ™| 7k). When combined with Theorem this reveals the mechanism by which public
data improves unlearning: the quadratic reduction in initial divergence from public data injection
translates directly into tighter convergence bounds.

3.3 PERFORMANCE WITHOUT NOISE: THE ROLE OF DISTRIBUTION ALIGNMENT

LU faces a fundamental dilemma: increasing noise improves unlearning guarantees but degrades
model performance. Our asymmetric approach breaks this trade-off by leveraging public data abun-
dance rather than noise amplification. However, the effectiveness of this strategy depends on the
relationship between public and private data distributions.
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We now analyze when public data injection preserves performance, and when it introduces new
challenges. Our results reveal that performance preservation is not automatic — it depends on the
distributional alignment between public and private data. When these distributions are similar, pub-
lic data acts as a performance stabilizer, allowing effective unlearning without quality degradation.
Conversely, when distributions differ significantly, performance impacts emerge, though they remain
more controlled than noise-based approaches.

We evaluate post-unlearning performance on the private data distribution only, reflecting realistic
deployment scenarios where the primary concern is maintaining model quality on the sensitive data
that remains after unlearning. Performance analysis on the full mixture of public and private distri-
butions is provided in Appendix [A.4.1|for completeness.

Theorem 3.3. Assuming the data generating distributions share the same support, that the weight
space © is compact and that the loss is M -Lipschitz wrt 0, we have the following upper bound on the
generalization error on the private data after performing K iterations of unlearning, and initializing
a weight 0 from 7¥:

Npu
Bomas [Eomr £C0,0)] < 050 (=22 D (Bl o)) By (B[00,

Npub + Nretain

distribution mismatch penalty

1
0 x diam(©) x \/ 1Dl K )

unlearning approximation error

where Do (P||Q) = log (ess SUP,.Q %) is the infinite Rényi divergence (worst case regret (|Er-

ven & Harremoés, |2014))) and piyain denotes the mixture of distributions Dy, and Do,y used for
training the model.

Proof sketch. The proof uses the Kantorovitch-Rubinstein duality Theorem[A.1|to bound the perfor-
mance gap by the dual of the Wasserstein distance between 7r{]< and W%JFK , then relates this to Rényi
divergence via standard inequalities leveraging the compactness of the weight space ©. For private
data evaluation, importance weighting introduces a mismatch penalty controlled by the worst case

regret, Doo (Ppriv|| Pyun), weighted by the public data fraction.

This proposition enables a fine-grained analysis of the unlearning-performance trade-off. In the
regime where np,, — oo (optimal for unlearning efficacy):

1. Aligned distributions (D (Ppyiv||Ppub) =~ 0): The distribution mismatch penalty van-
ishes, and the unlearned model’s performance on unseen private data is guaranteed to be at
least as good as the retrained model’s performance on the training mixture. This represents
the ideal scenario where public data injection preserves performance.

2. Misaligned distributions (D (Ppyiv||Ppub) > 0): The exponential penalty term domi-
nates, causing the upper bound to become vacuous. While this confirms that performance
degradation will occur, the bound’s looseness prevents us from quantifying the actual ex-
tent of this degradation. The true performance impact may be better than this worst-case
guarantee suggests.

Retraining performance bound (E,_,r [Ex-p.,.;,[£(, x)]]): Standard generalization bounds for
Langevin dynamics (Raginsky et al.l 2017; Xu et al., [2018) do not directly apply to our setting
due to the projection operator IIg in the PNGD updates. These classical results focus on uncon-
strained non-convex optimization, whereas our bounded domain introduces additional complexity.
The most relevant analysis we are aware of is|Lamperski|(2020), who study generalization properties
of projected Stochastic Gradient Langevin Dynamics, though their work considers the infinite-data
regime.

4 EXPERIMENTS

Our theoretical analysis provides upper bounds on the Rényi divergence D, (75 ||7{) that gov-

erns unlearning performance. However, these bounds involve iteration-dependent log-Sobolev con-
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stants that are difficult to estimate in practice, making it unclear how tight our theoretical guarantees
actually are. To gain empirical insight into the behavior of this divergence, we estimate its value
using samples from the weight distributions. To our knowledge, this is the first attempt to evaluate
unlearning performance through direct estimation of the Rényi divergence between the parameter
distributions—moving beyond output-based unlearning evaluations to directly examine the parame-
ter distributions. Building on Birrell et al.[ (2021} 2023)), we leverage the variational representation
of the Rényi divergence for numerical estimation.

Theorem 4.1. (Convex conjugate variational approximation of the Rényi divergence (Birrell et al.|
2023)) Let P,Q two probability distributions supported on ), such that P < Q, and let My, be the
space of bounded measurable functions on §). Then, Vo € (0, +00) \ {1},

D, (P 1 a=1 _
w: sup /ng%—i/\g\ a dP +a 1(10g0‘+1)' “4)
o GEM,(),9<0 a-—1

This variational representation of Rényi divergence allows us to obtain estimates of D,, (75" ||7f)
using trained models as samples — to our knowledge, the first such attempt in the unlearning liter-
ature. We emphasize that this is not intended as a practical evaluation methodology for machine
unlearning, as it requires training numerous models to obtain sufficient samples for reliable estima-
tion. Standard approaches like membership inference attacks (MIAs) (Shokri et al., 2017} |Carlin1
et al., |2021; |[Hayes et al, 2024) remain more suitable for practical evaluation. Our goal is purely
investigative: to understand how the Rényi divergence behaves empirically and assess whether our
theoretical bounds, despite containing hard-to-estimate constants, provide meaningful guidance in
realistic scenarios.

We present our findings in two parts: Section [4.1| reports the Rényi divergence estimation results
to validate our theoretical predictions, while Section provides standard membership inference
attack evaluations to contextualize our approach within existing unlearning assessment practices.

4.1 EVALUATING THE RENYI DIVERGENCE

Experimental Setup. We evaluate our approach on a multi-class image classification task using two
domains from the DomainNet dataset (Peng et al., 2019): Quickdraw (sketches) and Clipart (stylized
images), each containing 24 classes. We select these visually distinct domains to investigate how
public-private data alignment affects unlearning and performance (Fig. [).

The experimental configuration treats Clipart images as private data (subject to unlearning) and
Quickdraw images as public data (permanently retained). For a training set of size n = npup +Npriv,
we train models using cross-entropy loss and PNGD updates. To obtain samples from the weight
distributions 7 and 7%, we train N models in parallel: one set undergoes unlearning (fine-tuning
on the retain set after initial training), while another set trains from scratch on the retain set only.
This procedure yields N weight samples from each distribution, enabling empirical estimation of
D, (nff||=%) through the variational formulation (Theorem [4.1).

Estimation Method. =~ We approximate the variational Rényi representation (Eq. () us-
ing neural network discriminators to parameterize the function space M(2).  This ap-
proach follows established practices in divergence estimation (Birrell et al., 2021; [2023
Belghazi et al| [2021). To reduce estimation variance, we apply spectral normaliza-
tion (Miyato et al., 2018) to regularize the discriminator networks. Complete details
on discriminator architecture and training procedures are provided in Appendix
Results. Fig. [2a] presents our Rényi

estimation results, demonstrating the  Table 1: Unlearning vs Retraining Performance, K = 5
effectiveness of public data injection

for improving unlearning efficiency. Public Private Forget Unlearn Retrain Diff
The experiments are conducted using Points  Points Set  Acc(%) Acc(%) (%)
N = 30,000 models for each distri- 10K 20K 12K 0.486 0486  0.05
bution and averaged across 5 discrim- 15K 20K 7K 0.487 0.487 0.01
inator trainings with spectral normal- 20K 20K 2K 0.487 0.487 0.00

ization. The PNGD noise scale is
o = 0.01 and o = 2. The results

show that increasing public data volume reduces D, (75 ||7f)

, with the divergence decreasing
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both as a function of unlearning iterations and public data proportion. To understand the mechanism
driving these improvements, we conduct an ablation study examining the initial conditions after a
single unlearning iteration. Fig.[2b|solates the effect of public data on the starting distributions by
measuring D, (75 !||7};) as a function of public data volume. Rather than directly improving the
unlearning procedure itself, public data creates more favorable initial conditions by ensuring the
learning and retraining weight distributions begin in closer proximity. This mechanistic understand-
ing validates our theoretical framework: public data primarily controls the initial gap between distri-
butions (Theorem [3.1]), which then propagates through the unlearning iterations to produce the final
performance gains. Table[I|reports test accuracy for unlearned and retrained models across different
public/forget splits. Surprisingly, despite the public and private data distributions being markedly
different, the two procedures yield nearly identical accuracy (differences < 0.05). This observation
indicates that the excess-risk bound in Proposition [3.3|can be overly conservative. Hence, Langevin
unlearning empirically achieves retraining-level generalization even under unfavorable distribution
shifts for this task. Identifying the structural conditions under which this distributional term becomes
negligible remains an important direction for future work.

—
Da(mf* Y Ing)
©

5~ 20K public pos
2 4

6 8 10 12 14 10000 12000 14000 16000 18000 20000
Unlearning Iteration (K) Number of Public Points

(a) Variational Rényi divergence estimation as a func- (b) Ablation study: Initial distribution alignment as
tion of public data proportion in the training set. The  a function of public data volume. The Rényi di-
results demonstrate that increasing public data vol- vergence Dy (7r£+1 ||7&) between retraining and un-
ume reduces Do (5 ||7f), confirming improved ~ learning distributions after a single unlearning iter-
unlearning efficacy. This divergence also decreases  ation decreases as the number of public data points
with the unlearning iterations. increases.

Figure 2: Rényi divergence estimation for a different number of clipart images (public set)

4.2 MEMBERSHIP INFERENCE ATTACKS

We now adopt standard evaluation methodology from the unlearning literature [Hayes et al.| (2024),
introducing easily reproducible experiments which highlight that public data can benefit machine
unlearning (LU). We provide an overview here and defer details to Appendix

Evaluation Method. This evaluation is based on the U-LiRA membership inference attack for
unlearning (Hayes et al.l [2024; |Carlini et al [2021). Given a training set, forget set, and specified
learning and unlearning algorithms, the adversary’s goal is to infer whether a model’s weights 6 were
drawn from the unlearning distribution ﬂ'{f or the retraining distribution 7T£+K . Intuitively, lower
attack accuracy indicates that the unlearning and retraining distributions are harder to distinguish,
i.e., better unlearning.

In its most basic form, U-LiRA can be formalized via Bayes’ rule under a uniform prior on whether
the forget set was included during training. Letting P(6 | -) denote the likelihood of observing
model parameters 6 under a given distribution, and P(- | #) as the posterior probability that 6§ was
drawn from that distribution, we have

PO | i)
P(x{; | 0) = I R o
P(On;) + PO | 75" ")
By selecting a one-dimensional representation of the models f : © — R and as-
suming that the induced distributions fnT({]{ and fu7r£+K are Gaussian, we can es-

timate the likelihood terms P(6]|-) from a tractable number of model samples.
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Experimental Setup. For the sake of com-
pleteness, we focus this next set of experiments
on a completely different task, namely senti-
ment analysis on the IMDB dataset of movie
reviews (Maas et al., 2011). This is a sim-
ple binary classification task, where an LSTM
(Hochreiter & Schmidhuber, [1997) learns to
recognize if a review is either negative or posi-
tive. We use the Amazon reviews dataset from
Zhang et al.[(2015)) as the public data source. To
highlight the robustness of LU, with and with-
out public data injection, in adversarial settings,
we slightly deviate from our theoretical setting
and experiment with a forget set comprised of
distributional outliers. Specifically, the forget
set consists of a single example uniformly sam-
pled from the private dataset, with its label de-
liberately flipped. For both experiments, i.e.,
with and without public data injection, we gen-
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Figure 3: U-LiRA confidence scores after K un-
learning iterations. It is clear that without public
data injection, U-LiRA is able to identify a large
proportion of models confidently and correctly,
even after a number of unlearning steps. This ob-
served discriminative power is heavily impacted
by public data injection, for which most of the

erate N = 300 models to estimate each likeli-
hood density, and report the empirical distribu-
tion of probabilities assigned to the right origin
distribution by U-LiRA (confidence scores) for
200 models test (100 from 7r{f , and 100 from

7R, where T = 50 and K = 1 — 5).

confidence score density is centered around 0.5,
meaning low discriminative power. We can also
observe that modes of the confidence scores de-
crease with the number of unlearning steps, high-
lighting the unlearning ability of LU.

5 FUTURE WORK

Our analysis of Langevin unlearning with asymmetric data sources provides deeper insights into the
unlearning-utility trade-off and raises interesting research questions, particularly regarding appro-
priate unlearning assumptions for different problem settings. A natural extension involves studying
Langevin unlearning in fine-tuning contexts, where public data is learned prior to incorporating pri-
vate data. We also propose developing adaptive unlearning algorithms that optimally balance data
alignment with unlearning efficiency by leveraging techniques from domain adaptation and differ-
ential privacy. Another promising direction is a constrained optimization approach to asymmetric
machine unlearning that extends beyond retain set fine-tuning, where the objective minimizes loss
on the retain set subject to the constraint that the unlearning weight distribution remains sufficiently
close to a distribution trained exclusively on public data.

From a theoretical perspective, existing Langevin unlearning analysis in both mini-batch and full
batch settings (Chien et al., 2024a) still suffers from intractable log-Sobolev constants. Alternative
isoperimetric assumptions (Chewi et al., [2021}; [Mousavi-Hosseini et al., [2023} |Altschuler & Chewil,
2024) or adopting weaker divergence measures could yield more tractable bounds. While Rényi
divergence provides natural connections to differential privacy, machine unlearning presents distinct
challenges that may benefit from relaxed theoretical assumptions. Finally, extending our analysis
from weight distributions to output distributions would facilitate both evaluation and analysis, while
staying relevant for black-box commercial models.

6 CONCLUSION

We have studied Langevin unlearning under the assumption of asymmetric data sources, where
datasets contain both private and public data. Our theoretical analysis demonstrates that this frame-
work fundamentally improves the unlearning-utility trade-off by enabling control over unlearning
guarantees through data supplementation rather than noise amplification. The framework provides
fine-grained analysis of how distributional alignment between public and private data affects this
trade-off: when distributions are well-aligned, public data injection preserves utility while maintain-
ing unlearning guarantees, while misaligned distributions introduce controlled performance penal-
ties that remain more manageable than traditional noise-based approaches.
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7 REPRODUCIBILITY STATEMENT

All theoretical results are supported by complete proofs in the Appendix (Theorems [3.1]
to in Appendices and respectively). Our anonymized codebase, includ-
ing experimental scripts and configurations, is available at https://anonymous.4open.
science/r/asymmetric_langevin_unlearning—-34A3jand https://anonymous.
4open.science/r/U-LiRAexperiments—-EC08/. All experiments settings are detailed in

Appendix [A.6|and Appendix
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A APPENDIX

A.1 PROOF OF THEOREM [3.2]
Theorem. (Chien et al.| | 20244d) Suppose that the loss is L-smooth and M -Lipschitz, and that the

learning distribution of weights at time T satisfies a C' log-Sobolev inequality. Then, the Rényi di-
vergence between 7r{]( (the unlearning distribution after K iterations) and the retraining distribution
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after T' + K iterations is upper bounded by:

K—1
1
(e 1ot < Dutolehyesn (-1 3 )

* =0
where Ry, > 0 depend on the problem setting ((Chien et al.l |2024al). Moreover, if the loss function
is m-strongly convex and the initial log-Sobolev constant satisfies C > %2 we get the following
exponential decay of the Rényi divergence with respect to the unlearning iteration:

2Ko%n

Ca

Da(n 5K ) < Da(aT|7E) exp (—

We provide the proof of (Chien et al.|[20244), Theorem 3.2, slightly modified to our setting. Specif-
ically, we relax the assumption that the learning and retraining processes have converged to their
stationary distribution (infinite training). In order to prove this theorem, we will use the following
lemmas:

Lemma A.1 (Characterizing the log-Sobolev constants of the PNGD updates (Chewi, |2023)). Con-
sider the PNGD update:

gE+1 — Ilg {Gk — 7]V£D(9k) —+ v/ 2770’2Wk:| ,00 ~ T
where 1 satisfies a C-Log Sobolev inequality. Then, we have the following:

* If L is L-smooth, then for the gradient update h(0) = 0 — VoL(0), we have that the

distribution of hym satisfies a (1 + nL)? x C log-Sobolev inequality. Moreover, if L is
m-strongly convex and n < % then hym satisfies a (1 — nm)? x C log Sobolev inequality
(Altschuler & Talwar |2022).

o 7+ N(0,0%1,) satisfies a a C + o2 log-Sobolev inequality
* llgym satisfies a C log-Sobolev inequality

By composing the aforementioned statements, we get that 1 satisfies a (1 +nL)? x C + 2no?-log
Sobolev inequality. Moreover, if L is m-strongly convex and n < %, we have that 7, satisfies a
(1 —nm)? x C + 2no?

Lemma A.2 (Data Processing inequality for the Rényi divergence (Erven & Harremoés, |[2014)). For
any o > 1, any function h : R® — R¢ and distributions P, Q supported on R?, we have:

Do (hy P||hyQ) < Do (P Q)
with equality if h is bijective
Lemma A.3 ((Vempala & Wibisonol |[2019; [Chien et al.,2024a) characterizing the Rényi divergence

between two distributions convoluted with Gaussians). Let P, = P x N(0,2to?1;) and Q; =
Q * N(0,2t0%1,). Then, Yo > 0:

ODu(PIQ) _ _ 2Ga(PQ0)

ot Fo(Pi]|@r)

with Go(P||Q) = Eg {(%) [V log £ ||2] denoting the relative Rényi information and F,,(P||Q) =

Eq[(2)"] = expl(a — 1)Du(PQ)

Lemma A4. Lower bound of the G-F ratio (Vempala & Wibisono, 2019) If Q € P(O) satisfies a
C log Sobolev inequality, then VP € P(O):

Ga(PQ) _ 2Da(P]Q)
Fa(PlQ) = o?C
Lemma A.5. Gronwall’s inequality (Gronwall| |1919) Let I = [a, b] denote an interval on the real
line. Let $ and u be real-valued continuous functions defined on 1. If w is differentiable in the
interior of 1 and satisfies for all t in the interior of 1:
Ou(t)

5 S BOu()
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then we have:
t
u(t) < u(a)exp </ ﬂ(s)ds)
forallt € I

Lemma A.6. Universal upper bound on the log Sobolev constant for measures with compact support
((Chen et al., 2021) Let P a probability measure supported on a compact set with radius R. Then,
for each o > 0, P x N(0,0l,) satisfy a log Sobolev inequality with constant upper bounded by

6(4R? + o) exp (%)

Proof. Using these results, we have:
Do (hym i P ||yl ) < Do (ny | 7f) (LemmalA.2)

The PNGD updates preserve the log-Sobolev inequality for the resulting distributions: let
it = byl % N(0,2t0%1,) and wg TN = hyrk « N(0,2t021,). Since 77 and 7% sat-
isfy a lo -Sobolev inequality (1n1t1a11zat10n dlstrlbutions) and the loss function is L-smooth, then by
Lemma the distributions 7/}, wf*K satisty respectively Cy k, Cr 17+ log Sobolev inequal-
ities. Usmg Lemma on the distributions Wg ’Lt, 7T£+K’1’t yields that they respectively satisfy
(14+nL)?Cy.k + 2no? and (1 + nL)2Cp vy x + 2no? log Sobolev inequalities for all ¢ € [0, 7).
Upper bounding the distributions convolved with Gaussian distributions: Using Lemma [A.3]
we have that, Voo > 0:

THK, 1t K1t THK, 1t K1t
0Dy (g lmy) _ _o2Galmr |m™")
Z Rl <)

and since 7" satisfies a Cuxt = (1 +nL)2Cyx + 2to? log-Sobolev inequality, we can use
Lemma |A.4|to upper bound the derivative of the Rényi divergence with respect to t € [0, n]:

aD ( TJrKlt” Klt) 20_2 KL Kot
S _ D (TI.R 54y || 54y )
ot OéCU7K7t

Thus, by Gronwall’s inequality (LemmalA.5)), we have V¢ € [0, 7)]:

t 2
2
Dl M) < Do g exo ([ =27 —as)
0 aLy K, s

t 2

20
< Dy (hynTHE | hyr K /_ d
< Da(hym™" ||y ) exp s al(l+nL)2Cyx +2s502) "

t 2
K 20
< Da T+ K / _ d
- (ﬂ—R H’lTU)eXp 0 Oé((1+77L)2CU7K+230'2) 5
(Lemma [A.2))

Computing the integral yields:

/t— 20° ds——l/t 20° ds
o a((l+nL)2Cyx +2s02) afy (1+nL)2Cyx + 2502
1
= [log (1 +nL)*Cy,k + 2to?) —log ((1 +nL)*Cy k)]

1 [1 < N 2to? )]
= —_ O _—
a |8 (1+nL)>2Cyx

Thus, by setting ¢t = 7, we get:
—1

2to? =
T+K 1 K1,
Dulr ) < (14 (o) Datak i)
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Finally, using the data processing inequality for the projection of PNGD and iterating over the num-
ber of unlearning iterations, we get:

Da(mg 5wl ) < Dol M )

= _
< (1+ 1+WOUK) D5 )

2to? =
< Do (ng|I77) H I+ T+ n0)2Cun

A.2 TRACKING THE LOG-SOBOLEV CONSTANTS

For a generic, L-smooth non-convex loss function £, one can derive the following recurrence rela-
tion, Vk > 1 upper bounding the log-Sobolev constants:

Cy < (14+nL)*Cy + 2no? (Lemma [AT))
Cy < (1+nL)*Co + (1 +nL)*2n0? + (1 4+ nL)?

K—1

Cx < (1+nL)* Co+2n0® Y (1+nL)?
k=0
(1+nL)* —
(1+nL)* -

If we add the assumption that the loss is convex, then the map h(0) = 6 — nVyL(0) is 1-Lipschitz

forn < % (Hardt et al., 2016) and we can reduce (1 + nL) to 1 in the aforementioned bounds:

< (1+nL)** Co + 20” )

Cx < Cy + 2Kno? (6)

Finally, assuming m-strong convexity yields that the map h(#) is 1 — nm-Lipschitz, which allows
for the following contractive recurrence on the log-Sobolev constants V& > 1 by setting n <

2 (1 — -22-) (Chien et al.| 2024a):

Ci < (1 —1nm)*Cr_1 + 2n0* < Cy

— 2K _
(L=npm)™™ =1 _

O (R

Thus, we have that V¢ € [0,7], = K’l’ satisfies a C log-Sobolev inequality thus we have by
Lemma[A.4}
aDa(w£+K’1’t| Wg’l’t) < _ 20 2 Da(nk THE L KLt
ot - aC o
Thus, by Gronwall’s inequality (LemmalA.5)), we have V¢ € [0, 7]:
aD ( T+K1t|| Klt) t 20_2
En < Do(hyng ™ || byl ) exp /0 —@ds
2to
< Do(hymi 75 |h
< Dahr g exp (- 227 )

Thus, by setting ¢ = 1 and using similar steps as the non convex proof above, we get the following
result:

2Kno?
aC

The message conveyed by the strongly convex proof is that if we have a universal iteration inde-
pendent upper bound on the log Sobolev constants at each timestep of the PNGD updates, then we

Do (w55 ) < D7) exp (
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could have a more meaningful upper bound on the Rényi divergence. The non convex Eq. (3) and
convex Eq. (6) recurrence bounds are non contractive and iteration dependent, so they do not allow
to establish a convergence rate for Theorem [3.2] This is where the projection step of PNGD comes
in handy, as it allows to leverage the geometry of the set © to get a more informative bound:

Lemma A.7 (Log Sobolev inequality on measures supported on a compact set (Chen et al.,|[2021),
Corollary 1). Let 7 be a probability measure on R? supported on a compact set © with radius
R > 0. Then, for each t > 0, u* N(0,t1;) satisfy a log sobolev inequality with constant C
controlled by:

4R?
C <6 (4R* +t)exp (t)
Proposition A.1 (Universal bound on the log Sobolev constants of distributions induced by PNGD
updates (Chien et al,2024a)). Suppose that L is M Lipschitz. Let 0y ~ 7y € P(O) where O is a
compact set of radius R and denote by Ty, the distribution Oy, the k-th iterate of PNGD (Eq. @2)).
Then, Vk > 0, 7y, satisfies a log-Sobolev inequality with constant Cy, controlled by:

2
C <6 (4(R+nM)* + 2n0?) exp (W)

We can thus derive a similar bound to the strongly convex setting, for the non convex/convex
settings:

Using Proposition we have Vk > 0 that =¥ satisfies a C =
6 (4(R+nM)? + 2no?) exp (%) log Sobolev inequality. Thus, using Lemma
we have:

THE 1ty K1,
ODo (™ ™) 207 (r L
ot = a0 R

Thus, by Gronwall’s inequality (LemmalA.5)), we have V¢ € [0, 7]:

K1t
)

OD. (I Lt KLt t 942
) <y S oo ([ -2 as)
ot 0 aC

2to?
< Do (hymfy ™| hymefy ) exp (— g )
aC

Finally, similarly to the strongly convex proofs, we can deduce that:

2Kno?
Dl ¥ If) < Du(rElf) exo (- 2227 )

A.3 PROOF OF THEOREM [3.1]

Theorem. Suppose that the loss is L-smooth and M -Lipschitz, and that the initialization distribu-
tion satsifies a C-log Sobolev inequality. Moreover, suppose that the PNGD updates project onto a
compact set © of radius R.

Then at learning iteration T, we have the following upper bound on the Renyi divergence between
the retraining 7% and learning ¥ distributions:

Do(mg|I7T) 2MP1g, TlTl( no? -t
o) ¢ e ST (14

« - (npub+npriv)202 =1 t/—t Ot’,l

where C 1 > 0 are log Sobolev constants of the distributions of the intermediate PNGD updates.
Using the support’s radius allows to loosely upper bound those constants (Chien et al.|, |2024a):
Cyp 1 < 6e*7 (472 + no?) withT = R+ nM

Proof. The following proof is an adaptation of the proof of Theorem 3.2 in|Chien et al.[(2024a)) to
the asymmetric data setting.
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Consider the following updates done during training. Recall that we are using full batch projected
noisy gradient descent:

01" =l [92 + 1V LDy, UDp, (07) + \/27702Wt} (Wi ~ N(0, 1))
0 = Tlo [0 + VLD, (O) + v/2007W;] Wy ~ N (0, 1))

Let’s divide each optimization step into the following:

921 = efL + nV[’DpubUDpriv (etL) + v 7]02Wt
05 = 0% + VLD, (0%) + V/1o® W,

Therefore, we can write

0! = Tle {921 i \/7702Wt} %
0 = T {92} n \/na2wt] . ®)

" t1 ¢ t,1 o . . . t t,1 gt t,1
Let mpp, w5, 7r, ™, be the distributions of respectively 0%, 67" ,07,60,

The main question we try to tackle here is: what is D, (7% ||7},) ?

We first compare the distributions 71'3%1 and ﬂ'tL’l. By composition theorem of the Gaussian mecha-
nism for Rényi Differential privacy (Mironov, 2017), and equivalently for the Rényi divergence, we
have:

Do (mi'llmp!) _ Dal(mhllry) | A%

o - o 202

€))

where A is the [, sensitivity of the gradient update. For the next computations, let np,,, denote
the number of public points, nsrget denote the number of points to forget, and n,_p.iy denote the
number of remaining private points in the retain set. Computing the sensitivity in the asymmetric
setting yields:

Ap =max |[VLp, ..., (0) = VLD, uupp, (0)]
1 1
= max || ——— > Vi(0,d;) — > Vi, di)|

6 'n T —pri n Nr—priv + 7
pub 1 Mr—priv d; 10Tl pub + Nr—priv 1 Nforget d; €IUTIUIIT

(- ! ) ¥ Iwie.al

n Ny —pri n Ny —pri n
pub+ r—priv pub+ r pr1v+ forget d; ETUTT

IN

1

N pub + Ty —priv + Nforget

VIO, ds)|

d; eIUlluIl

< M(npub + nr—priv) (

2]\4”7/forget

o Npub + Ny —priv + Nforget

1 1 > + Nforget M

N pub + Ty —priv Mpub + Ty —priv + Nforget Npub + Ty —priv + Nforget

S

Lemma A.8. (Ye & Shokri, [2022) For any distributions &, &, both satisfying Cy 1-LSI, we have:

Da (& N (0,10° D), & + N(0,00°D)) _ Do (&) (|, no®\ ™
a - a(t) Cia
where a(t) = 1;)‘;”12
Ce1
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By combining the data processing inequality (projection) and Lemma [A.8] we get the following
recurrence inequality:

Dao(mp ™) _ (Dary(@hllrr) -\ () no? -
o - Cra

a(T) 202
2 2\ p T\.-T 2N\ —1
_ & 1+ no n a(r) (TRII7L) 1+ no
202 CTJ OZ(T) CT,l

-1 T\ 2T 2 2\ 7! 2
Dyr—
+( G AN )(H ) 1

IN
[0
[ V]
7 N\
—
3
3
[\v]

a(T-1) 202

£2 Dor—2)(mgling) | &
< —[B(T) + B(T — 1)] + B(T — 2 202
< 5o [BT) + BT~ 1)+ B )< o2 "2
T o2\
(where B(t) = [],_, (1 + g‘“) )
, T D THT 2
c ) a(o)(WR”WL) €
<552 B)+B0) | — ot 55
< 02; (1) + (0)< a(0) t o5
2 &
< 572 2 50) ine Dol ) =)
i=0
y T T 2\ —
€ no
X157
t=0 t/=t 1

The upper bound on the log Sobolev constants can be tracked in a similar fashion as in Proposi-
tion[A.T| because of the projection onto the compact set ©. O

A.4 PROOF OF THEOREM [3.3]

Proposition. Assuming the data generating distributions share the same support, that the weight
space © is compact and that the loss is M -Lipschitz wrt 0, we have the following upper bound on the
generalization error on the private data after performing K iterations of unlearning, and initializing
a weight 6y from 7k :

Npu
Egmrpy [Bon Py [£(0,2)]] < exp (MDm(Ppriv|Ppub)) Eonrnp [Edn Py [£(6, d)]] +

Npub + Nretain

distribution mismatch penalty

1
M x diam(©) x =Do(7r|Tv)

2
—_————
unlearning approximation error
where Do (P||Q) = log (ess SUP,.Q %) is the infinite Rényi divergence (worst case regret (Er-

ven & Harremoés| |2014)) and pirain denotes the mixture of distributions Dyyy, and Dy used for
training the model.

In order to prove Theorem [3.3] we will use the following quantities to define a set of preliminary
lemmas.

A.4.1 PERFORMANCE ON THE TRAINING DISTRIBUTION MIXTURE

Definition A.1 (Wasserstein distance). The Wasserstein-1 distance is defined as

Wiluv) = inf / d(z.y) dy(x.y),
YE(1,v) Jxxx

where:
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* wand v are probability measures on a metric space (X, d),
* d(z,vy) is the distance between points x,y € X,

o T, v) is the set of all couplings of  and v, i.e., the set of joint distributions v on X x X
such that the marginals of v are p and v:

/ (@, y) dy = p(o), / () dz = v(y).
X X

Definition A.2 (Total Variation Distance). Let P and Q) be two probability measures on a measur-
able space (2, F). The total variation distance between P and Q) is defined as

TV(P,Q) = ilell;\P(A) —Q(A)] (10)
. 1/ AP — dQ| (11)
2 Jo
1
= §||P— Qllrv- (12)

Theorem A.l. (Kantorovich Rubinstein’s duality, (Villani et al.| [ 2009), Theorem 5.10) If i, v have
a bounded support €, then

Wi (p,v) = \|hs||up<1]E$N“[h(x)] —Ey [h(y)], (13)

where ||h||L < 1 denotes the set of 1-Lipschitz functions on )

Let f : © — R such that f(0) = Ep.p,,...[Lp(0)], where Pi,i, denotes the training data dis-
tribution (a mixture of Py and Py, Since L(., D) is M —Lipschitz, so is f. Then, we have
that:

E onmy [L(0,D)] = E onmp [L£(0, D)] = Egry, [f(6)] = Egnrpe[f(0)]  (Fubini’s theorem)
DNPtrain DNPtrain

<M x Wy(ny,7R) (By Theorem [A.T])

Now, we need to find an upper bound on the 1-Wasserstein distance in terms of the Rényi divergence
between mr and 7my. The following results will be useful in deriving it:

Proposition A.2. (Pinsker’s inequality) For two probability distributions P, Q), we have
2TV (P,Q)* < KL(P||Q). (14)

Proposition A.3. (Monotonicity of Rényi divergence, (Erven & Harremoés, |2014)) For 1 < a; <
«g and probability measures P, Q),

KL(P||Q) < Do, (P[|Q) < Da, (P[|Q).
The KL lower bounds any Rényi divergence since it is obtained by the limit o« — 1.

Proposition A.4. (Upper bounding W1 with TV ((Gibbs & Su,2002)) If the distributions P, Q) share
a support Y and diam(§) = sup(, ) coxq (@, y) is finite, then we have

W1 (P,Q) < diam(Q)TV (P, Q). (15)

Using the results above, we have

Egmry [f(0)] = Egnrp[f(0)] < MW (70, 7R)
< M x diam(©) x TV (ry,7R)
(By Proposition[A.4land compactness of ©)

1
< M x diam(©) x \/iKL(’]TU,’]TR) (By Proposition [A.3)

1
< M x diam(©) x §DQ(7TU,7TR) (By Proposition [A.3)

Thus, we obtain that the generalization error of learning + unlearning is upper bounded by:
Proposition A.5. Assuming that L is M-Lipschitz, we have

1
Egnny [EDnPosain [L(0: D)]] < Eonrp [EpnPyrain [L(9, D)]] + M x diam(©) x [ 5 Da(mv||7r)
(16)
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A.4.2 ADAPTING THE BOUND TO THEOREM [3.3]

We would like to evaluate the performance of the model obtained after unlearning. Proposition
provides a generalization bound on a mixture of distributions, namely on public data + pri-
vate data. In most practical scenarios, one would want to quantify the “lost” performance on
private data after forgetting one of its subsets. Thus, we would like to upper bound the quantity
Exy [Ep~p,.., [LD(0)]]. The training data distribution used for either retraining or unlearning can
be considered as generated from a mixture of the distributions I and /. Assuming the sampling
proportions for training are consistent, one can write that the data distribution used in retraining is

Ny —priv
Pirain = Ppub + L Ppriv~
Npub + Ny —priv Npub + Ny —priv

Npub

Fix any § € ©. We have that

Npu Ny —priv
EDNPtrain [ﬁ(@, D)] = Noub —’_pnb ; EDNPpub [‘C(ev D)] + Noub _,’_2 ; EDNPpriv [ﬁ(@, D)]
pu r—priv pu r—priv

Bowry o [£6.D)] = [ b (@)C(0,2)do
= /ptraln( )p;::l((z)) (9,x)dx
_ pprlv(x)
- EINPtmin |:ptr'un( )’C’( ):|

pppriv (:23)

Ptrain(\T

L£(6,d)]

< EdNPtrain [ess SupajeSupp(Ppub)USupp(Pp,.iv)

Ppriv ()
< ess SupxeSupp(Ppub)USupp(Ppriv) mﬂzdmﬂmm [£(97 d)}

< eXp(Doo (Pprivu Ptrain))EdNPtmin [£(97 d)] .
Moreover, we have by convexity of the Rényi divergence (Erven & Harremoés, 2014) in its second
argument that

Npub
D P!‘iVPI‘iH<$PT1VPU'
00( p || tra )_ npub'i‘nr—priv( p || pb)
Thus we also have
n
By [£00,0) < 050 (20D (P ) ) Baer [00). 17
Tpub + Ty —priv

Thus, we can adapt proposition to evaluate the risk only on private data. Note that so far, the
only assumption made on the difference between the data generating distributions I and II is that
they share the same support. The following bound might be refined with additional assumptions,
such as covariate shift or conditional shift.

We can thus take the expectation of 6 with respect to 7y to get
n ub
o [Bavy [0, )] < 030 (02D (P | o) ) B [ [£00, )]
M pub + Ny —priv
and using proposition to upper bound Eg.~,, [Eq~p,.... [£(0, d)]], we prove proposition
Npu
Eg~ry, [EﬂmPpriv [ﬁ(@, w)]] < exp (prOO(PpriV|Ppub)) Eonrp []EdNPtrain [£(97 d)“ +
Npub + Mretain
1

§Da(7TRH7TU)-

M x diam(©) x
A.5 DOMAINNET DATA
The following is a snippet of samples from the DomainNet dataset, where we extracted two domains,

Clipart and Quickdraw. The classes are aggregated into 24 meta-classes Table 2] following (Peng
et al.,[2019).
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Domain Adaptation: Sample Images from Clipart and Quickdraw

Clipart
flashlight Chparg(u

stons of.com  #1170106 ww clpanot com
Quickdraw Quickdraw Quickdraw
flashlight flamingo knee

Figure 4: The two domains of public and private data used for Section (Peng et al., [2019).
Both datasets share the same number of classes, with Clipart being a collection of stylized images
representing the private data, and Quickdraw representing a collection of hand-draw sketches.

A.6 DETAILS ABOUT THE RENYI ESTIMATION
A.6.1 NEURAL RENYI ESTIMATION

Following the works of Birrell et al.| (2021} 2023), two variational representations of the Rényi
divergence between two distributions P, () have been proposed. The first draws inspiration from the
Donsker—Varadhan dual representation (Donsker & Varadhan, |1975) of the KL divergence:

Theorem A.2 (Donsker—Varadhan Rényi divergence (Birrell et al.,2021)). Let P, Q be two distribu-
tions on (1, M) and o € R, a # 0, 1. Then, for any set of functions ® with M, () C & C M(Q),

w = sup {1log/e(a_1)¢ dP — élog/e"d’ dQ}. (18)

« PED a—1

If in addition (2, M) is a metric space with the Borel o-algebra, then Eq. holds for all ®
satisfying Lip, C ® C M(Q), where Lip, denotes the set of bounded Lipschitz functions.

Here, M(2) denotes the space of measurable real-valued functions on €2, and M,,(2) the subspace
of bounded functions.

While this representation allows sample-based estimation, it involves exponential terms that yield
high-variance estimates in practice. To mitigate this issue, Birrell et al.| (2023)) proposed a convex
conjugate formulation:

Theorem A.3 (Convex conjugate Rényi divergence (Birrell et al.| 2023)). Let P, Q) be probability
distributions supported on ), with P < Q), and let M,(£2) denote the space of bounded measurable
functions. Then, for all o € (0, +00) \ {1},

Da P 1 a—1 1
Da(PIQ) _ /ng+7/|g\ AP+ —(loga+1). (19
« gEM,H(Q), g<0 a—1 a

This convex conjugate formulation removes the exponential dependence and provides more stable
numerical estimates, making it preferable for our setting.

Neural network parameterization. To approximate ® = {g € M(©) : g < 0} we use the class
gp of two-layer MLPs with spectral normalization (Miyato et al., |2018)), LeakyReLU activations,
and a polysoftplus output activation as in [Birrell et al.|(2023). The polysoftplus activation offers
superior numerical stability compared to ReLU. It is defined as

1
polysoftplus(z) = — <l—xlz<0 +(1+ x)1m>0> . (20)
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Table 2: Class aggregation for experimental dataset. Individual classes are grouped into 24 super-

classes.

Superclass Individual Classes

Furniture bathtub, bed, bench, ceiling fan, chair, chandelier, couch, door, dresser, fence, fireplace, floor lamp, hot tub, ladder, lantern,
mailbox, picture frame, pillow, postcard, see saw, sink, sleeping bag, stairs, stove, streetlight, suitcase, swing set, table,
teapot, toilet, toothbrush, toothpaste, umbrella, vase, wine glass

Mammal bat, bear, camel, cat, cow, dog, dolphin, elephant, giraffe, hedgehog, horse, kangaroo, lion, monkey, mouse, panda, pig,
rabbit, raccoon, rhinoceros, sheep, squirrel, tiger, whale, zebra

Tool anvil, axe, bandage, basket, boomerang, bottlecap, broom, bucket, compass, drill, dumbbell, hammer, key, nail, paint can,
passport, pliers, rake, rifle, saw, screwdriver, shovel, skateboard, stethoscope, stitches, sword, syringe, wheel

Cloth belt, bowtie, bracelet, camouflage, crown, diamond, eyeglasses, flip flops, hat, helmet, jacket, lipstick, necklace, pants,
purse, rollerskates, shoe, shorts, sock, sweater, t-shirt, underwear, wristwatch

Electricity calculator, camera, cell phone, computer, cooler, dishwasher, fan, flashlight, headphones, keyboard, laptop, light bulb,
megaphone, microphone, microwave, oven, power outlet, radio, remote control, spreadsheet, stereo, telephone, television,
toaster, washing machine

Building The Eiffel Tower, The Great Wall, barn, bridge, castle, church, diving board, garden, garden hose, golf club, hospital,
house, jail, lighthouse, pond, pool, skyscraper, square, tent, waterslide, windmill

Office alarm clock, backpack, binoculars, book, calendar, candle, clock, coffee cup, crayon, cup, envelope, eraser, map, marker,
mug, paintbrush, paper clip, pencil, scissors

Human Body arm, beard, brain, ear, elbow, eye, face, finger, foot, goatee, hand, knee, leg, moustache, mouth, nose, skull, smiley face,

toe, tooth

Road Transportation

ambulance, bicycle, bulldozer, bus, car, firetruck, motorbike, pickup truck, police car, roller coaster, school bus, tractor,
train, truck, van

Food birthday cake, bread, cake, cookie, donut, hamburger, hot dog, ice cream, lollipop, peanut, pizza, popsicle, sandwich, steak
Nature beach, cloud, hurricane, lightning, moon, mountain, ocean, rain, rainbow, river, snowflake, star, sun, tornado

Cold Blooded crab, crocodile, fish, frog, lobster, octopus, scorpion, sea turtle, shark, snail, snake, spider

Music cello, clarinet, drums, guitar, harp, piano, saxophone, trombone, trumpet, violin

Fruit apple, banana, blackberry, blueberry, grapes, pear, pineapple, strawberry, watermelon

Sport baseball, baseball bat, basketball, flying saucer, hockey puck, hockey stick, snorkel, soccer ball, tennis racquet, yoga

Tree bush, cactus, flower, grass, house plant, leaf, palm tree, tree

Bird bird, duck, flamingo, owl, parrot, penguin, swan

Vegetable asparagus, broccoli, carrot, mushroom, onion, peas, potato, string bean

Shape circle, hexagon, line, octagon, squiggle, triangle, zigzag

Kitchen fork, frying pan, hourglass, knife, lighter, matches, spoon, wine bottle

Water Transportation aircraft carrier, canoe, cruise ship, sailboat, speedboat, submarine

Sky Transportation airplane, helicopter, hot air balloon, parachute

Insect ant, bee, butterfly, mosquito

Others The Mona Lisa, angel, animal migration, campfire, cannon, dragon, feather, fire hydrant, mermaid, snowman, stop sign,

teddy-bear, traffic light

The discriminator network gy is trained to maximize the variational bound in Eq. @) using samples
{09}, ~ «f and {67} ~ 7™, The optimization objective becomes:

1N 1 1 X N

R Uy et
E Ry L = E N +=(loga+1
max szl QG(HJ ) N — lgo(0;)] (log )

21

To reduce estimator variance, we repeat the discriminator training five times with different random
initializations and report the average. We use a learning rate of value 0.0001 with Adam optimizer
(Kingma & Ba,[2017), and train the discriminators for 30000 epochs with batch size b = 6000.

This procedure used N = 30,000 model samples, which makes it computationally intensive and
better suited for theoretical validation than for large-scale empirical benchmarking. Although reg-
ularization and repeated runs alleviate variance, Rényi divergence estimation remains a statistically
challenging task. Developing scalable and lower-variance estimators is therefore an important di-
rection for future work.
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A.6.2 SAMPLING FROM 7ff AND w5

We conduct experiments on the DomainNet dataset (24-class image classification) Fig. ] We
choose the domain Clipart as the private data domain, which are stylized images, and Quick-
draw, a collection of hand-drawn sketches as the public domain. Image embeddings are extracted
using DinoV2 (Oquab et al., [2024), a self-supervised vision transformer. We specifically use
vit_small_patch16_224 _dino (Caron et al.,2021). All images are resized to 224 x 224 prior to feature
extraction.

On these embeddings, we train 30,000 linear classifiers on the full dataset D = Dy, U Dy
for T = 20 iterations, and subsequently fine-tune them on the retain set D, = D \ Djopget for
K € {1,5,10,15} additional iterations. This procedure yields 30,000 samples from the unlearning
distribution 7.

For comparison, we train another 30,000 linear classifiers directly on the retain set D, for T' + K

iterations, producing samples from the retraining distribution 7r£+K . All models are trained using
the same projected noisy gradient descent (PNGD) update with noise scale ¢ = 0.01, learning rate
n = 0.001, batch size b = 1024, and radius R = 1.0 using SGD.

To assess robustness across dataset splits, we fix the total training set size to Nip,in, = 42,000, and
vary the public and forget set sizes as (| Dpub|, | Diorget|) € {(10,000, 12,000), (15,000, 7,000), and
(20,000,2,000)}. The remaining private data in the retain set is fixed to have size 20,000. The
resulting divergence estimates are reported in Figs. [2a]and [2b]

A.7 EVALUATION WITH U-LIRA

A.7.1 U-LIRA DETAILS

U-LiRA, introduced by Hayes et al.| (2025) as an adaptation of the LiRA membership inference
attack (Carlini et al., 2021)) to the unlearning setting, formalizes unlearning evaluation as a binary
hypothesis test. The goal is to distinguish between two distributions over model parameters: the
unlearning distribution W[I]( , obtained by training on the full dataset and subsequently applying the
target unlearning algorithm to remove the influence of the forget set, and the retraining distribution
7 ¥, obtained by training from scratch without the forget set. Letting P(¢ | -) denote the like-
lihood of observing model parameters € under a given distribution, the Neyman—Pearson lemma
(Neyman & Pearson, [1933) implies that the most powerful test for this discrimination problem is
achieved by thresholding the likelihood ratio

P(0)r(;)
POl ™)
for model parameters 6.
Since directly computing P(f | 7f5) and P(0 | 75 %) is infeasible in practice, U-LiRA employs
a series of approximations. First, the two distributions are approximated empirically by sampling:
the adversary trains N models under 7 (full training followed by unlearning) and N models under

7T£+K (training from scratch without the forget set).

To reduce the sample complexity required for a low-variance estimate, U-LiRA projects models into
a one-dimensional representation space via a statistic f : © — R (since we only run the attack on
forget sets of size 1, we follow Hayes et al.[(2025)) and choose f to be the model’s confidence score

on the forget example, rescaled by the logit function ¢(w) = In (ﬁ) ). The test is then conducted
on the surrogate likelihood ratio
P(f(O)|f(r())
P(f(0)|f (w5 ™))
As a final simplifying approximation, U-LiRA models the projected distributions as Gaussians
fng) = Nuo,otr),  f(rg™) = N(ugrot),

where the parameters (ugr, 07) and (ug,0%) are estimated directly from the N sample models of
each distribution.
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In4.2] we presented the attack through the lens of Bayes’ rule (following Algorithm 1 of [Hayes
et al.[(2025)), providing a more intuitive explanation for readers less familiar with hypothesis testing
concepts.

A.7.2 EXPERIMENTAL SETUP

We evaluate unlearning in binary sentiment classification of IMDB reviews (Maas et al.} 2011}, with
Amazon product reviews (Zhang et al.,|2015) as public data. Models are 2-layer LSTMs (Hochreiter
& Schmidhuber, [1997), trained to minimize cross-entropy loss with projected noisy gradient descent
(Gaussian noise variance o2 = 0.01, projection onto an £ ball of radius 100).

For each trial, the adversarial forget set consists of a single datapoint sampled uniformly at random
from the IMDB reviews dataset. Following the U-LiRA framework, we generate 300 model samples
from two distributions:

« Unlearning distribution 75 : models trained on 1,000 private datapoints plus the forget

set for T" epochs, then finetuned without the forget set for K epochs.

+ Retraining distribution 75 "*: models trained from scratch on the same 1,000 private

datapoints (excluding the forget set) for 7'+ K epochs.

We repeat this sampling process both with and without the inclusion of the 1,000 public datapoints
during training and unlearning.
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