

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNLEARNING WITH ASYMMETRIC SOURCES: IMPROVED UNLEARNING-UTILITY TRADE-OFF WITH PUBLIC DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Achieving certified data erasure in machine unlearning faces a fundamental trade-off: preserving model utility requires less noise, but formal privacy guarantees demand more. This tension typically degrades model performance. In this work, we study this challenge in Langevin Unlearning, a noisy variant of SGD that is uniquely amenable to theoretical analysis. We introduce an asymmetric unlearning setting assuming that datasets contain both private data (subject to unlearning) and public data (permanently retained). Our framework demonstrates that incorporating public data enables better unlearning-utility trade-offs without additional noise or restrictive differential privacy assumptions. We prove that public data volume quadratically reduces the Rényi divergence between unlearning and re-training distributions, allowing control over unlearning guarantees through data composition rather than noise amplification. The framework also provides a fine-grained analysis of how distributional alignment between public and private data affects performance preservation. Empirical validation using variational Rényi divergence estimation confirms our theoretical predictions, showing that strategic public data injection achieves comparable unlearning efficacy while significantly improving model performance and computational efficiency.

1 INTRODUCTION

The widespread adoption of machine learning across diverse applications has prompted regulatory responses aimed at protecting user privacy and data rights. Legislative frameworks such as the European Union’s AI Act (Parliament & of the European Union, 2024) and Canada’s Artificial Intelligence and Data Act (AIDA) (Parliament of Canada, 2022) establish fundamental principles including the “right to be forgotten”, which mandates that individuals can request removal of their personal data from trained systems. This requirement presents significant technical challenges for modern machine learning paradigms, particularly deep learning and generative AI models that depend on large-scale datasets collected from public sources, often without explicit individual consent. Compounding this challenge, recent research demonstrates that neural networks exhibit a propensity to memorize training examples while maintaining generalization performance (Attias et al., 2024; Carlini et al., 2022; Nasr et al., 2023; Zhang et al., 2016).

The most straightforward approach to addressing data removal requests would be to retrain models from scratch after excluding the specified data points. However, this naive solution becomes prohibitively expensive for contemporary large-scale models, where training can require substantial computational resources. Moreover, the frequency of such requests in production systems would render this approach operationally impractical. This reality necessitates the development of machine unlearning techniques that can selectively remove specific data points from trained models while preserving overall performance. For certain applications, such removal should be certifiable through formal guarantees, ensuring that the unlearned model is statistically indistinguishable from one that was never trained on the removed data. Thus, effective unlearning algorithms must satisfy three fundamental requirements: provable erasure of target data, preservation of model utility, and computational efficiency that outperforms full retraining.

054 Most existing machine unlearning approaches operate under the assumption that *any* data point
 055 in the training set may require removal. While this assumption holds when working exclusively
 056 with sensitive datasets, it proves overly restrictive for real-world scenarios. Modern data collection
 057 pipelines aggregate information from heterogeneous sources, combining both sensitive private data
 058 and publicly available content. CommonCrawl (Common Crawl Foundation, 2024) and ImageNet
 059 (Deng et al., 2009) are examples of publicly available data used to train large language models
 060 and vision models. To our knowledge, the only prior work exploring mixed-privacy unlearning is
 061 Golatkar et al. (2021), who introduced Mixed-Linear Forgetting for computer vision tasks. Their
 062 approach requires architectural modifications to achieve forgetting through network linearization,
 063 limiting its general applicability. In the privacy-preserving machine learning literature, several works
 064 have shown that having access to a set of public data points allows for the design of algorithms
 065 with better privacy guarantees for the same amount of noise introduced into the model. When the
 066 public data distribution is close enough to the sensitive data distribution, these public data-assisted
 067 algorithms often offer a better privacy-utility trade-off than their conventional counterparts (Alon
 068 et al., 2019b; Amid et al., 2022; Ganesh et al., 2023a; Lowy et al., 2024).

069 In this work, we study the effect of considering that a portion of the training dataset is public
 070 and never subject to unlearning. We study this setting under Langevin Unlearning (Chien et al.,
 071 2024a), showing that restricting unlearning to private data improves guarantees. We ask the ques-
 072 tions: **(1) Does adding public data improve Langevin Unlearning performance?** **(2) How does**
 073 **public-private distribution mismatch affect post-unlearning performance?** Our theoretical analy-
 074 sis provides clear answers. We first prove that injecting public data creates a more favorable initial-
 075 ization for the unlearning process (Theorems 3.1 and 3.2). We then provide a fine-grained analysis
 076 of the unlearning-utility trade-off, with our main contribution stated in Theorem 3.3, explaining how
 077 the distributional alignment between public and private data impacts the model’s final performance.
 078 Finally, building on a variational representation of Rényi divergence (Birrell et al., 2023), we de-
 079 velop in Section 4.1 a framework for numerical evaluation of our bounds, showing that they capture
 080 some of the key dynamics of private-public learning and unlearning in practical settings.

082 2 BACKGROUND AND NOTATION

084 2.1 MACHINE UNLEARNING

086 Machine unlearning algorithms eliminate the influence of designated training data (the *forget set*)
 087 while balancing unlearning efficacy, model utility, and computational efficiency. Three canonical
 088 strategies illustrate the trade-offs: random re-initialization achieves perfect unlearning but destroys
 089 utility; retraining from scratch provides optimal guarantees but incurs prohibitive costs; no intervention
 090 preserves utility but achieves no unlearning. This motivates two paradigms: **Exact unlearning**
 091 replicates the retraining baseline through specialized architectures like SISA (Bourtoule et al., 2020)
 092 or Arcane (Yan et al., 2022), which enable targeted retraining but increase complexity. **Approximate**
 093 **unlearning** tolerates bounded discrepancies from retraining for practicality, including Newton-step
 094 updates (Golatkar et al., 2020) and noisy fine-tuning schemes like Langevin Unlearning (Chien et al.,
 095 2024a;b).

097 2.2 NOTATION

099 We consider probability distributions defined over a compact parameter space Θ , where stochastic-
 100 ity arises from three sources: the weight initialization distribution π_0 , the training data distribution
 101 P_{train} , and the inherent randomness of the optimization procedure. We denote by $\mathcal{P}(\Theta)$ the set of
 102 probability distributions supported on Θ . Our analysis focuses on three parameter distributions: π_L^T
 103 (the learning distribution after T iterations of training on the full dataset), π_U^K (the unlearning dis-
 104 tribution after K iterations of the unlearning procedure), and π_R^T (the retraining distribution after T
 105 iterations of training only on the retain set). A key quantity in our analysis is the Rényi divergence
 106 of order α between distributions P and Q , denoted $D_\alpha(P\|Q)$, which we define rigorously in sub-
 107 sequent sections. We use P_{pub} and P_{priv} to represent the distributions of public and private data,
 108 respectively.

108
109 2.3 LANGEVIN UNLEARNING110 A common approach to machine unlearning is to run a noisy projected gradient method starting
111 from the trained weights, targeting a distribution close to retraining. Formally, at iteration t ,

112
113
$$\theta_{t+1} = \Pi_{\Theta}[\theta_t - \eta \nabla_{\theta} \mathcal{L}(\theta_t) + \xi_t], \quad (1)$$

114 where \mathcal{L} is a surrogate loss (e.g., empirical loss on a retain set), η is the step size, and ξ_t is injected
115 noise (often Gaussian) controlling distributional closeness.116 Langevin Unlearning (LU) (Chien et al., 2024a) instantiates this scheme with $\mathcal{L} = \mathcal{L}_{\mathcal{D}_r}$, the loss on
117 the retain set, and $\xi_t \sim \mathcal{N}(0, 2\eta\sigma^2 I_d)$. This reduces to projected noisy gradient descent (PNGD)
118 (pseudocode in Appendix A.5):

119
120
$$\theta_{t+1} = \Pi_{\Theta} \left[\theta_t - \eta \nabla_{\theta} \mathcal{L}_{\mathcal{D}_r}(\theta_t) + \sqrt{2\eta\sigma^2} W_t \right], W_t \sim \mathcal{N}(0, I_d) \quad (2)$$

121
122 LU provides certifiable approximate unlearning guarantees by minimizing the Rényi divergence be-
123 tween post-unlearning and post-retraining weight distributions (Chien et al., 2024a;b). However,
124 these guarantees require that the *entire original training process* satisfies differential privacy (DP),
125 necessitating PNGD with substantial noise injection from initialization. This requirement limits
126 practical applicability, as it degrades model performance both before and after unlearning. In this
127 work, we improve upon Chien et al. by relaxing the global DP assumption. Rather than requiring
128 the entire learning process to satisfy DP, we assume only that the initialization distribution satisfies
129 a log-Sobolev inequality—a mild condition naturally satisfied by standard Gaussian initialization.
130 This property is preserved through PNGD iterations by Lemma A.1 due to loss smoothness. This
131 relaxation enables us to derive data-dependent bounds that quantify how public data abundance
132 improves unlearning without noise amplification, a key contribution unavailable in prior work. Con-
133 current approaches like (Koloskova et al., 2025) require only smoothness assumptions, but such
134 data-agnostic bounds depend primarily on projection set geometry rather than training data struc-
135 ture.136 3 ASYMMETRIC LANGEVIN UNLEARNING
137138 **Motivation.** Our approach is motivated by a realistic data setting, well-established in the privacy-
139 preserving machine learning literature, that leverages public data to improve the privacy-utility trade-
140 off (Alon et al., 2019a; Ganesh et al., 2023b; Lowy et al., 2024; Amid et al., 2022). We introduce
141 this asymmetric data model to Langevin Unlearning, which allows us to relax the restrictive Dif-
142 fferential Privacy (DP) assumption over the entire dataset. By explicitly modeling this asymmetry,
143 we can leverage public data to enhance the unlearning process to improve both efficacy and model
144 performance without compromising privacy guarantees.145 **Problem Setting.** We consider empirical risk minimization over a dataset $D = D_{\text{pub}} \cup D_{\text{priv}}$
146 comprising two components: a public set D_{pub} with n_{pub} samples from a distribution P_{pub} , and
147 a private set D_{priv} with n_{priv} samples from a distribution P_{priv} . The training loss is $\mathcal{L}_D(\theta) =$
148 $\frac{1}{n_{\text{pub}}+n_{\text{priv}}} \sum_{x \in D} l(\theta, x)$. Only the private data is subject to unlearning requests, while public data
149 remains permanently available. We employ T PNGD iterations with projections onto $\Theta \subset \mathbb{R}^d$
150 (radius R) to obtain θ_T . Since PNGD injects Gaussian noise at each step, it induces probability
151 distributions over parameters rather than deterministic iterates. In order to ensure that everything is
152 well-behaved, one has to impose a regularity assumption on the initialization probability distribution.153 **Definition 3.1.** (Log-Sobolev inequality (Gross, 1975)) A probability measure $P \in \mathcal{P}(\mathbb{R}^d)$ satisfies
154 a Log-Sobolev inequality with constant C if

155
156
$$\forall Q \in \mathcal{P}(\mathbb{R}^d), D_{KL}(Q||P) \leq \frac{C}{2} I(Q, P), \quad (3)$$

157 where D_{KL} denotes the KL divergence and $I(Q, P) = E_Q \left[\|\nabla \log \frac{q}{p}\|^2 \right]$ is the relative Fisher
158 information.159 Our analysis compares two such distributions: the *unlearning distribution* π_U (obtained by applying
160 LU on the retain set from the trained model), and the *retraining distribution* π_R (obtained by training

from scratch on the retain set). Following Chien et al. (2024a), we measure unlearning quality via Rényi divergence.

Definition 3.2. For probability measures P, Q with $P \ll Q$, their Rényi divergence of order $\alpha \in (0, +\infty) \setminus \{1\}$ is

$$D_\alpha(P\|Q) = \frac{1}{\alpha-1} \log \mathbb{E}_Q \left[\left(\frac{dP}{dQ} \right)^\alpha \right],$$

where $\frac{dP}{dQ}$ is the Radon-Nikodym derivative. This generalizes KL divergence ($\alpha \rightarrow 1$), reverse-KL ($\alpha \rightarrow 0$), and connects to ε -differential privacy in the limit $\alpha \rightarrow \infty$ (Mironov, 2017).

Our Contribution. Our main contribution is showing that incorporating public data improves the unlearning-utility trade-off. While prior work proved that Langevin Unlearning’s efficacy increases with noise magnitude (Chien et al., 2024a;b), this approach often degrades model performance. We break this dependency by introducing a new lever: the volume of public data. We demonstrate that increasing the amount of public data improves unlearning guarantees, i.e., lowers the Rényi divergence $D_\alpha(\pi_U\|\pi_R)$, without requiring additional noise injection or a global DP assumption. This allows for a fine-grained control over unlearning by adjusting data composition rather than simply amplifying noise.

3.1 DEFINING THE WEIGHT DISTRIBUTIONS

Consider the PNGD learning algorithm \mathcal{A} applied to dataset $D = D_{\text{pub}} \cup D_{\text{priv}}$, where an unlearning request targets a subset $D_{\text{forget}} \subseteq D_{\text{priv}}$. Our analysis describes the relationship between three weight distributions arising from different training scenarios:

Learning distribution π_L^T : The weight distribution after T PNGD iterations on the complete dataset D , starting from $\theta_0 \sim \pi_0$, a sample from the initialization distribution π_0 . This represents the original trained model before any unlearning requests.

Unlearning distribution π_U^K : The weight distribution after K PNGD iterations on the retain set $D \setminus D_{\text{forget}}$, initialized from $\theta_0 \sim \pi_L^T$. This captures the model state after applying our unlearning procedure to the originally trained model.

Retraining distribution π_R^T : The weight distribution after T PNGD iterations on the retain set $D \setminus D_{\text{forget}}$, starting from the original initialization $\theta_0 \sim \pi_0$.

Figure 1: Training pipelines showing the relationship between learning, unlearning, and retraining with public data injection. The divergence $D_\alpha(\pi_R^T\|\pi_L^T)$ quantifies how public data helps maintain similarity between retraining and original learning distributions, facilitating subsequent unlearning.

The effectiveness of unlearning is measured by $D_\alpha(\pi_U^K\|\pi_R^{T+K})$, while the presence of public data helps control $D_\alpha(\pi_R^T\|\pi_L^T)$, creating favorable conditions for the unlearning process.

216 3.2 UNLEARNING PERFORMANCE
217

218 We now present theoretical guarantees for asymmetric Langevin unlearning that demonstrate how
219 public data fundamentally improves unlearning efficiency. Our analysis adapts the prior work of
220 Chien et al. (2024a) by removing restrictive differential privacy assumptions, and providing explicit
221 characterization of how public and private data contributions differ in the unlearning bounds. We
222 also provide minor corrections to the bounds presented in Chien et al. (2024a); note, however, that
223 these corrections do not change the key contributions and messages in (Chien et al., 2024a).

224 The following result explains how public data reduces reliance on differential privacy constraints,
225 decoupling unlearning efficacy from model performance and enabling fine-grained analysis of this
226 trade-off across different public-private distribution regimes (Section 3.3).

227 **Theorem 3.1** (The role of public data in shrinking the learning / retraining mismatch.). *Suppose
228 that the loss is L -smooth and M -Lipschitz, and that the initialization distribution satisfies a C_0 -log
229 Sobolev inequality. Moreover, suppose that the PNGD updates project onto a compact set Θ of
230 radius R .*

231 *Then at learning iteration T , we have the following upper bound on the Renyi divergence between
232 the retraining π_R^T and learning π_L^T distributions:*

$$233 \frac{D_\alpha(\pi_R^T \| \pi_L^T)}{\alpha} \leq \frac{2M^2\eta^2 n_{\text{forget}}^2}{(n_{\text{pub}} + n_{\text{priv}})^2 \sigma^2} \sum_{t=1}^{T-1} \prod_{t'=t}^{T-1} \left(1 + \frac{\eta\sigma^2}{C_{t',1}}\right)^{-1},$$

236 where $0 < C_{t',1} \leq (1 + \eta L)^{2K} C_0 + 2\eta\sigma^2 \frac{(1 + \eta L)^{2K} - 1}{(1 + \eta L)^2 - 1}$ are log Sobolev constants of the distributions
237 of the intermediate PNGD updates. Using the support's radius allows to loosely upper bound those
238 constants (Chien et al., 2024a): $C_{t',1} \leq 6e^{\frac{4\tau}{\eta\sigma^2}} (4\tau^2 + \eta\sigma^2)$ with $\tau = R + \eta M$.
239

240 *Proof sketch.* The proof follows the analytical framework of Chien et al. (2024a, Theorem 3.3),
241 adapted to leverage the presence of public data in the training set. By distinguishing between public
242 and private data contributions in the gradient updates, we reduce the privacy erosion (Chourasia
243 et al., 2021) of each PNGD update.

244 This bound reveals that we can fix noise magnitude σ to be arbitrarily small to preserve performance
245 while controlling the divergence through public data volume. When $n_{\text{pub}} \gg n_{\text{forget}}$, the learning
246 and retraining distributions remain close regardless of noise level, providing favorable initial conditions
247 for unlearning (Fig. 2b). Geometrically, for any fixed forget set size, the retraining distribution
248 stays within a divergence ball whose radius shrinks quadratically with the number of public points.

249 **Theorem 3.2** (Convergence guarantee of Langevin unlearning (Chien et al., 2024a, Theorem 3.2)).
250 *Suppose that the loss is L -smooth and M -Lipschitz, and that the learning distribution of weights at
251 time T satisfies a C log-Sobolev inequality. Then, the Renyi divergence between π_U^K (the unlearn-
252 ing distribution after K iterations) and the retraining distribution after $T + K$ iterations is upper
253 bounded by*

$$254 D_\alpha(\pi_R^{T+K} \| \pi_U^K) \leq D_\alpha(\pi_L^T \| \pi_R^T) \min \left(\prod_{k=1}^K \left(1 + \frac{2t\sigma^2}{(1 + \eta L)^2 C_{U,k}}\right)^{\frac{-1}{\alpha}}, \exp\left(-\frac{2K\sigma^2\eta}{\alpha\tilde{C}}\right) \right),$$

257 where $0 < C_k \leq (1 + \eta L)^{2K} C + 2\eta\sigma^2 \frac{(1 + \eta L)^{2K} - 1}{(1 + \eta L)^2 - 1}$, and $\tilde{C} \leq 6(4\tau^2 + 2\eta\sigma^2) \exp\left(\frac{4\tau^2}{2\eta\sigma^2}\right)$.
258

259 Moreover, if the loss function is m -strongly convex and the initial log-Sobolev constant satisfies $C >$
260 $\frac{\sigma^2}{m}$, we get the following exponential decay of the Renyi divergence with respect to the unlearning
261 iteration:

$$262 D_\alpha(\pi_R^{T+K} \| \pi_U^K) \leq D_\alpha(\pi_L^T \| \pi_R^T) \exp\left(-\frac{2K\sigma^2\eta}{C\alpha}\right).$$

265 This theorem establishes the convergence guarantee for Langevin unlearning by showing that
266 the Renyi divergence between the unlearning and retraining distributions decreases exponentially
267 with unlearning iterations K , with the convergence rate controlled by the initial divergence
268 $D_\alpha(\pi_R^{T+K} \| \pi_U^K)$. When combined with Theorem 3.1, this reveals the mechanism by which public
269 data improves unlearning: the quadratic reduction in initial divergence from public data injection
translates directly into tighter convergence bounds.

270 3.3 PERFORMANCE WITHOUT NOISE: THE ROLE OF DISTRIBUTION ALIGNMENT
271

272 LU faces a fundamental dilemma: increasing noise improves unlearning guarantees but degrades
273 model performance. Our asymmetric approach breaks this trade-off by leveraging public data abun-
274 dence rather than noise amplification. However, the effectiveness of this strategy depends on the
275 relationship between public and private data distributions.

276 We now analyze when public data injection preserves performance, and when it introduces new
277 challenges. Our results reveal that performance preservation is not automatic – it depends on the
278 distributional alignment between public and private data. When these distributions are similar, pub-
279 lic data acts as a performance stabilizer, allowing effective unlearning without quality degradation.
280 Conversely, when distributions differ significantly, performance impacts emerge, though they remain
281 more controlled than noise-based approaches.

282 We evaluate post-unlearning performance on the private data distribution *only*, reflecting realistic
283 deployment scenarios where the primary concern is maintaining model quality on the sensitive data
284 that remains after unlearning. Performance analysis on the full mixture of public and private distri-
285 butions is provided in Appendix A.4.1 for completeness.

286 **Theorem 3.3.** *Assuming the data generating distributions share the same support, that the weight
287 space Θ is compact and that the loss is M -Lipschitz wrt θ , we have the following upper bound on the
288 generalization error on the private data after performing K iterations of unlearning, and initializing
289 a weight θ_0 from π_L^T :*

$$\begin{aligned} 291 \mathbb{E}_{\theta \sim \pi_U^K} [\mathbb{E}_{x \sim P_{\text{priv}}} [\mathcal{L}(\theta, x)]] &\leq \underbrace{\exp \left(\frac{n_{\text{pub}}}{n_{\text{pub}} + n_{\text{retain}}} D_{\infty}(P_{\text{priv}} \| P_{\text{pub}}) \right)}_{\text{distribution mismatch penalty}} \mathbb{E}_{\theta \sim \pi_R^{T+K}} [\mathbb{E}_{d \sim P_{\text{train}}} [\mathcal{L}(\theta, d)]] \\ 292 \\ 293 &\quad + M \times \text{diam}(\Theta) \times \underbrace{\sqrt{\frac{1}{2} D_{\alpha}(\pi_R^{T+K} \| \pi_U^K)}}_{\text{unlearning approximation error}}, \end{aligned}$$

294 where $D_{\infty}(P \| Q) = \log \left(\text{ess sup}_{x \sim Q} \frac{p(x)}{q(x)} \right)$ is the infinite Rényi divergence (worst case regret (Er-
295 ven & Harremoës, 2014)) and P_{train} denotes the mixture of distributions D_{pub} and D_{priv} used for
296 training the model.

297 *Proof sketch.* The proof uses the Kantorovitch-Rubinstein duality Theorem A.1 to bound the perfor-
298 mance gap by the dual of the Wasserstein distance between π_U^K and π_L^{T+K} , then relates this to Rényi
299 divergence via standard inequalities leveraging the compactness of the weight space Θ . For private
300 data evaluation, importance weighting introduces a mismatch penalty controlled by the worst case
301 regret, $D_{\infty}(P_{\text{priv}} \| P_{\text{pub}})$, weighted by the public data fraction.

302 This proposition enables a fine-grained analysis of the unlearning-performance trade-off. In the
303 regime where $n_{\text{pub}} \rightarrow \infty$ (optimal for unlearning efficacy):

- 311 1. **Aligned distributions** ($D_{\infty}(P_{\text{priv}} \| P_{\text{pub}}) \approx 0$): The distribution mismatch penalty van-
312 ishes, and the unlearned model’s performance on unseen private data is guaranteed to be at
313 least as good as the retrained model’s performance on the training mixture. This represents
314 the ideal scenario where public data injection preserves performance.
- 315 2. **Misaligned distributions** ($D_{\infty}(P_{\text{priv}} \| P_{\text{pub}}) \gg 0$): The exponential penalty term domi-
316 nates, causing the upper bound to become vacuous. While this confirms that performance
317 degradation will occur, the bound’s looseness prevents us from quantifying the actual ex-
318 tent of this degradation. The true performance impact may be better than this worst-case
319 guarantee suggests.

320 **Retraining performance bound** ($\mathbb{E}_{\theta \sim \pi_R^T} [\mathbb{E}_{x \sim P_{\text{train}}} [\mathcal{L}(\theta, x)]]$): The upper bound could be fur-
321 ther improved to include the *optimal* distribution, i.e by linking $\mathbb{E}_{\theta \sim \pi_R^T} [\mathbb{E}_{x \sim P_{\text{train}}} [\mathcal{L}(\theta, x)]]$ to
322 $\arg \min_{\pi \in \mathcal{P}(\mathbb{R}^d)} \mathbb{E}_{\theta \sim \pi} [\mathbb{E}_{x \sim P_{\text{train}}} [\mathcal{L}(\theta, x)]]$. However, standard generalization bounds for Langevin
323 dynamics (Raginsky et al., 2017; Xu et al., 2018) do not directly apply to our setting due to the

324 projection operator Π_Θ in the PNGD updates. These classical results focus on unconstrained non-
 325 convex optimization, whereas our bounded domain introduces additional complexity. The most relevant
 326 analysis we are aware of is Lamperski (2020), who study generalization properties of projected
 327 Stochastic Gradient Langevin Dynamics, though their work considers the infinite-data regime.
 328

329 4 EXPERIMENTS

331 Our theoretical analysis provides upper bounds on the Rényi divergence $D_\alpha(\pi_R^{T+K} \parallel \pi_U^K)$ that governs
 332 unlearning performance. However, these bounds involve iteration-dependent log-Sobolev constants
 333 that are difficult to estimate in practice, making it unclear how tight our theoretical guarantees
 334 actually are. To gain empirical insight into the behavior of this divergence, we estimate its value
 335 using samples from the weight distributions. To our knowledge, this is the first attempt to evaluate
 336 unlearning performance through direct estimation of the Rényi divergence between the parameter
 337 distributions—moving beyond output-based unlearning evaluations to directly examine the parameter
 338 distributions. Building on Birrell et al. (2021; 2023), we leverage the variational representation
 339 of the Rényi divergence for numerical estimation.

340 **Theorem 4.1.** *(Convex conjugate variational approximation of the Rényi divergence (Birrell et al.,
 341 2023)) Let P, Q two probability distributions supported on Ω , such that $P \ll Q$, and let \mathcal{M}_b be the
 342 space of bounded measurable functions on Ω . Then, $\forall \alpha \in (0, +\infty) \setminus \{1\}$,*

$$343 \frac{D_\alpha(P \parallel Q)}{\alpha} = \sup_{g \in \mathcal{M}_b(\Omega), g < 0} \int g dQ + \frac{1}{\alpha - 1} \int |g|^{\frac{\alpha-1}{\alpha}} dP + \alpha^{-1} (\log \alpha + 1). \quad (4)$$

346 This variational representation of Rényi divergence allows us to obtain estimates of $D_\alpha(\pi_R^{T+K} \parallel \pi_U^K)$
 347 using trained models as samples – to our knowledge, the first such attempt in the unlearning literature.
 348 We emphasize that this is not intended as a practical evaluation methodology for machine
 349 unlearning, as it requires training numerous models to obtain sufficient samples for reliable estimation.
 350 Standard approaches like membership inference attacks (MIAs) (Shokri et al., 2017; Carlini et al., 2021; Hayes et al., 2024) remain more suitable for practical evaluation. Our goal is purely
 351 investigative: to understand how the Rényi divergence behaves empirically and assess whether our
 352 theoretical bounds, despite containing hard-to-estimate constants, provide meaningful guidance in
 353 realistic scenarios.
 354

355 We present our findings in two parts: Sections 4.1 and 4.2 investigate the behaviour of the upper
 356 bounds provided respectively in Theorem 3.2 and Theorem 3.3, while Section 4.3 provides standard
 357 membership inference attack and utility evaluations to contextualize our approach within existing
 358 unlearning assessment practices.
 359

360 4.1 EVALUATING THE RÉNYI DIVERGENCE

361 **Experimental Setup.** We evaluate our approach on a multi-class image classification task using two
 362 domains from the DomainNet dataset (Peng et al., 2019): Quickdraw (sketches) and Clipart (stylized
 363 images), each containing 24 classes. We select these visually distinct domains to investigate how
 364 public-private data alignment affects unlearning and performance (Fig. 4).

365 The experimental configuration treats Clipart images as private data (subject to unlearning) and
 366 Quickdraw images as public data (permanently retained). For a training set of size $n = n_{\text{pub}} + n_{\text{priv}}$,
 367 we train models using cross-entropy loss and PNGD updates. To obtain samples from the weight
 368 distributions π_U^K and π_R^T , we train N models in parallel: one set undergoes unlearning (fine-tuning
 369 on the retain set after initial training), while another set trains from scratch on the retain set only.
 370 This procedure yields N weight samples from each distribution, enabling empirical estimation of
 371 $D_\alpha(\pi_U^K \parallel \pi_R^T)$ through the variational formulation (Theorem 4.1).
 372

373 **Estimation Method.** We approximate the variational Rényi representation (Eq. (4)) using neural
 374 network discriminators to parameterize the function space $\mathcal{M}_b(\Omega)$. This approach follows estab-
 375 lished practices in divergence estimation (Birrell et al., 2021; 2023; Belghazi et al., 2021) (pseudo-
 376 code in Appendix A.7.3). To reduce estimation variance, we apply spectral normalization (Miyato
 377 et al., 2018) to regularize the discriminator networks. Complete details on discriminator architec-
 378 ture and training procedures are provided in Appendix A.7. **Results.** Fig. 2a presents our Rényi

378 estimation results, demonstrating the effectiveness of public data injection for improving unlearning
 379 efficiency. The experiments are conducted using $N = 30,000$ models for each distribution and
 380 averaged across 5 discriminator trainings with spectral normalization. The PGND noise scale is
 381 $\sigma = 0.01$ and $\alpha = 2$. The results show that increasing public data volume reduces $D_\alpha(\pi_R^{T+K} \parallel \pi_U^K)$,
 382 with the divergence decreasing both as a function of unlearning iterations and public data proportion.
 383 To understand the mechanism driving these improvements, we conduct an ablation study examining
 384 the initial conditions after a *single* unlearning iteration. Fig. 2b isolates the effect of public data on
 385 the starting distributions by measuring $D_\alpha(\pi_R^{T+1} \parallel \pi_U^1)$ as a function of public data volume. Rather
 386 than directly improving the unlearning procedure itself, public data creates more favorable initial
 387 conditions by ensuring the learning and retraining weight distributions begin in closer proximity.
 388 This mechanistic understanding validates our theoretical framework: public data primarily controls
 389 the initial gap between distributions (Theorem 3.1), which then propagates through the unlearning
 390 iterations to produce the final performance gains. Table 1 reports test accuracy for unlearned and
 391 retrained models across different public/forget splits. Surprisingly, despite the public and private
 392 data distributions being markedly different, the two procedures yield nearly identical accuracy (dif-
 393 ferences ≤ 0.05). This observation indicates that the excess-risk bound in Proposition 3.3 can be
 394 overly conservative. Hence, Langevin unlearning empirically achieves retraining-level generaliza-
 395 tion even under unfavorable distribution shifts for this task. Identifying the structural conditions
 396 under which this distributional term becomes negligible remains an important direction for future
 397 work.

407 (a) Variational Rényi divergence estimation as a function
 408 of public data proportion in the training set. The
 409 results demonstrate that increasing public data volume
 410 reduces $D_\alpha(\pi_R^{T+K} \parallel \pi_U^K)$, confirming improved
 411 unlearning efficacy. This divergence also decreases
 412 with the unlearning iterations.

407 (b) Ablation study: Initial distribution alignment as
 408 a function of public data volume. The Rényi di-
 409 vergence $D_\alpha(\pi_R^{T+1} \parallel \pi_U^1)$ between retraining and un-
 410 learning distributions after a single unlearning iteration
 411 decreases as the number of public data points
 412 increases.

413 Figure 2: Rényi divergence estimation for a different number of clipart images (public set)

416 4.2 DISTRIBUTION ALIGNMENT AND THE UNLEARNING-UTILITY TRADE-OFF

417 Theorem 3.3 characterizes a trade-off caused by public data volume: as we increase public data
 418 volume, the *unlearning approximation error* decreases, yet the *distribution mismatch penalty* si-
 419 multaneously grows. The balance between these competing terms determines whether public data
 420 injection preserves or degrades model performance. To empirically investigate this trade-off, we
 421 conduct experiments across two distinct distributional regimes: one where the public and private
 422 domains exhibit moderate visual alignment, and another where they are substantially misaligned.

423 We fix $K = 5$ unlearning iterations and evaluate performance using the DomainNet dataset across
 424 two domain pairs. The **aligned regime** pairs Quickdraw (public) and Clipart (private), which despite
 425 visual stylistic differences share semantic structure. The **misaligned regime** pairs Infograph (public)
 426 and Real (private), which exhibit greater distributional divergence. We measure model performance
 427 via loss on the private data distribution P_{priv} after unlearning, comparing against the retraining
 428 baseline on the training mixture. Results are summarized in Table 1.

429 The results reveal a contrast between the two regimes. In the **aligned setting**, the relative perfor-
 430 mance gap remains modest (3.68–4.62%) across varying public data volumes, suggesting that the
 431 mismatch penalty remains manageable and the approximation error reduction dominates. In con-

432 Table 1: Unlearning vs Retraining Performance Across Distribution Alignments, $K = 5$
433

434 Public	435 Private	436 Public	437 Private	438 Forget	439 Unlearn	440 Retrain	441 Rel.
434 Domain	435 Domain	436 Points	437 Points	438 Set	439 Avg. Loss	440 Avg. Loss	441 Diff (%)
Quickdraw	Clipart	10000	20000	10000	3.102	2.976	4.23
Quickdraw	Clipart	30000	20000	10000	3.102	2.965	4.62
Quickdraw	Clipart	40000	20000	10000	3.099	2.989	3.68
Infograph	Real	10000	20000	10000	2.233	2.495	10.53
Infograph	Real	30000	20000	10000	2.238	2.496	10.34
Infograph	Real	40000	20000	10000	2.233	2.504	10.81

442
443 trust, the **misaligned setting** exhibits a persistent performance gap (10.34–10.81%), with minimal
444 sensitivity to public data volume. This indicates that when distributional divergence is large, increasing
445 public data fails to overcome the mismatch penalty, rendering the approximation error reduction
446 insufficient to improve generalization.
447

448 4.3 PRACTICAL EVALUATION OF LU IN THE ASYMMETRIC SETTING

450 We now adopt standard evaluation methodology from the unlearning literature Hayes et al. (2024),
451 introducing easily reproducible experiments which highlight that public data can benefit machine
452 unlearning (LU). We provide an overview here and defer details to Appendix A.8.

453 **Evaluation Method.** This evaluation is based on the U-LiRA membership inference attack for
454 unlearning (Hayes et al., 2024; Carlini et al., 2021). Given a training set, forget set, and specified
455 learning and unlearning algorithms, the adversary’s goal is to infer whether a model’s weights θ were
456 drawn from the unlearning distribution π_U^K or the retraining distribution π_R^{T+K} . Intuitively, lower
457 attack accuracy indicates that the unlearning and retraining distributions are harder to distinguish,
458 i.e., better unlearning.

459 In its most basic form, U-LiRA can be formalized via Bayes’ rule under a uniform prior on whether
460 the forget set was included during training. Letting $P(\theta | \cdot)$ denote the likelihood of observing
461 model parameters θ under a given distribution, and $P(\cdot | \theta)$ as the posterior probability that θ was
462 drawn from that distribution, we have

$$463 \quad P(\pi_U^K | \theta) = \frac{P(\theta | \pi_U^K)}{P(\theta | \pi_U^K) + P(\theta | \pi_R^{T+K})}.$$

466 By selecting a one-dimensional representation of the models $f : \Theta \rightarrow \mathbb{R}$ and as-
467 suming that the induced distributions $f_{\#}\pi_U^K$ and $f_{\#}\pi_R^{T+K}$ are Gaussian, we can es-
468 timate the likelihood terms $P(\theta | \cdot)$ from a tractable number of model samples.
469

470 **Experimental Setup.** For the sake of completeness, we focus this next set of experiments on a
471 completely different task, namely sentiment analysis on the IMDB dataset of movie reviews (Maas
472 et al., 2011). This is a simple binary classification
473 task, where an LSTM (Hochreiter & Schmidhuber,
474 1997) learns to recognize if a review is either
475 negative or positive. We use the Amazon reviews
476 dataset from Zhang et al. (2015) as the public data
477 source. We use a forget set of 100 uniformly sam-
478 pled examples from the IMDB dataset. For both
479 experiments, i.e., with and without public data in-
480 jection, we generate $N = 50$ models to estimate
481 each likelihood density, and report the empirical
482 distribution of probabilities assigned to the right
483 origin distribution by U-LiRA (confidence scores) for 50 models test (25 from π_U^K , and 25 from
484 π_R^{T+K} , where $T = 50$ and $K = 1 \rightarrow 15$). Fig. 3 highlights that without public data injection, U-
485 LiRA is able to identify a large proportion of models confidently and correctly, even after a number
486 of unlearning steps. This observed discriminative power is heavily impacted by public data injec-

487 Figure 3: U-LiRA confidence scores after K un-
488 learning iterations as violin plots with quartiles.

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 9999

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
tion. We can also observe that modes of the confidence scores generally decrease with the number of unlearning steps, highlighting the unlearning effectiveness of LU.

Now that we've observed the effect of public data injection on the unlearning effectiveness of LU, we change our focus towards its impact on model utility. To this end, we report in Table 2 the average model accuracies over the 75 models we trained for each model distribution, on a test set of 10,000 unseen samples from the IMDB dataset. As the Amazon reviews dataset appears to be a good auxiliary public data source for the IMDB review classification problem (close data distributions), we also include an experiment in which a uniformly sampled 40% of its labels are flipped, thus increasing distribution mismatch between public and private sources.

Table 2: Unlearned and Retrained Model Test Accuracies for Different Scenarios

Private Dataset	Private Points	Public Dataset	Public Points	Flipped Public Labels	Unlearned Accuracy (%)	Retrained Accuracy (%)
IMDB	25,000	None	0	0%	82.59	82.54
		Amazon Reviews	50,000	0%	81.42	82.15
		Amazon Reviews	50,000	40%	80.40	80.80

From Table 2, we can observe that model accuracy does decrease from the injection of public data. However, this drop in accuracy is rather negligible compared to the extent to which public data injection improves the unlearning effectiveness of LU, which is highlighted by Fig. 3. As expected, the drop in accuracy is proportionately much lower when the quality of auxiliary public data is high (1.17% for unlearned and 0.39% for retrained) than when it is low (2.19% for unlearned, an ≈ 1.87 times increase, and 1.74% for retrained, an ≈ 4.46 times increase).

5 FUTURE WORK

Our analysis of Langevin unlearning with asymmetric data sources provides deeper insights into the unlearning-utility trade-off and raises interesting research questions, particularly regarding appropriate unlearning assumptions for different problem settings. A natural extension involves studying Langevin unlearning in fine-tuning contexts, where public data is learned prior to incorporating private data. We also propose developing adaptive unlearning algorithms that optimally balance data alignment with unlearning efficiency by leveraging techniques from domain adaptation and differential privacy. Another promising direction is a constrained optimization approach to asymmetric machine unlearning that extends beyond retain set fine-tuning, where the objective minimizes loss on the retain set subject to the constraint that the unlearning weight distribution remains sufficiently close to a distribution trained exclusively on public data.

From a theoretical perspective, existing Langevin unlearning analysis in both mini-batch and full batch settings (Chien et al., 2024a) still suffers from intractable log-Sobolev constants. Alternative isoperimetric assumptions (Chewi et al., 2021; Mousavi-Hosseini et al., 2023; Altschuler & Chewi, 2024) or adopting weaker divergence measures could yield more tractable bounds. While Rényi divergence provides natural connections to differential privacy, machine unlearning presents distinct challenges that may benefit from relaxed theoretical assumptions. Finally, extending our analysis from weight distributions to output distributions would facilitate both evaluation and analysis, while staying relevant for black-box commercial models.

6 CONCLUSION

We have studied Langevin unlearning under the assumption of asymmetric data sources, where datasets contain both private and public data. Our theoretical analysis demonstrates that this framework fundamentally improves the unlearning-utility trade-off by enabling control over unlearning guarantees through data supplementation rather than noise amplification. The framework provides fine-grained analysis of how distributional alignment between public and private data affects this trade-off: when distributions are well-aligned, public data injection preserves utility while maintaining unlearning guarantees, while misaligned distributions introduce controlled performance penalties that remain more manageable than traditional noise-based approaches.

540 7 REPRODUCIBILITY STATEMENT
541

542 All theoretical results are supported by complete proofs in the Appendix (Theorems 3.1
543 to 3.3 in Appendices A.1, A.3 and A.4, respectively). Our anonymized codebase, includ-
544 ing experimental scripts and configurations, is available at <https://anonymous.4open.>
545 [science/r/asymmetric_langevin_unlearning-34A3](https://anonymous.4open.) and <https://anonymous.>
546 [4open.science/r/U-LiRAexperiments-EC08/">https://anonymous.4open.4open.science/r/U-LiRAexperiments-EC08/](https://anonymous.4open.). All experiments settings are detailed in
547 Appendix A.7 and Appendix A.8

548
549 REFERENCES
550

551 Noga Alon, Raef Bassily, and Shay Moran. Limits of private learning with access to public data,
552 2019a. URL <https://arxiv.org/abs/1910.11519>.

553 Noga Alon, Raef Bassily, and Shay Moran. Limits of Private Learning with Access to Public Data,
554 2019b. *eprint*: 1910.11519.

555 Jason M. Altschuler and Sinho Chewi. Shifted Composition III: Local Error Framework
556 for KL Divergence, December 2024. URL <http://arxiv.org/abs/2412.17997>.
557 arXiv:2412.17997 [math].

558 Jason M Altschuler and Kunal Talwar. Resolving the mixing time of the langevin algorithm to its
559 stationary distribution for log-concave sampling. *arXiv preprint arXiv:2210.08448*, 2022.

560 Ehsan Amid, Arun Ganesh, Rajiv Mathews, Swaroop Ramaswamy, Shuang Song, Thomas Steinke,
561 Vinith M. Suriyakumar, Om Thakkar, and Abhradeep Thakurta. Public data-assisted mirror de-
562 scent for private model training, 2022. URL <https://arxiv.org/abs/2112.00193>.

563 Idan Attias, Gintare Karolina Dziugaite, Mahdi Haghifam, Roi Livni, and Daniel M. Roy. Informa-
564 tion Complexity of Stochastic Convex Optimization: Applications to Generalization, Memoriza-
565 tion, and Tracing. In *Proceedings of the 41st International Conference on Machine Learning*,
566 pp. 2035–2068. PMLR, July 2024. URL <https://proceedings.mlr.press/v235/attias24a.html>. ISSN: 2640-3498.

567 Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron
568 Courville, and R. Devon Hjelm. MINE: Mutual Information Neural Estimation, August 2021.
569 URL <http://arxiv.org/abs/1801.04062>. arXiv:1801.04062 [cs].

570 Jeremiah Birrell, Paul Dupuis, Markos A. Katsoulakis, Luc Rey-Bellet, and Jie Wang. Variational
571 Representations and Neural Network Estimation of Rényi Divergences, July 2021. URL <http://arxiv.org/abs/2007.03814>. arXiv:2007.03814 [stat].

572 Jeremiah Birrell, Yannis Pantazis, Paul Dupuis, Markos A. Katsoulakis, and Luc Rey-Bellet.
573 Function-space regularized Rényi divergences, February 2023. URL <http://arxiv.org/abs/2210.04974>. arXiv:2210.04974 [stat].

574 Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
575 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine Unlearning, 2020. *eprint*:
576 1912.03817.

577 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, A. Terzis, and Florian Tramèr. Member-
578 ship inference attacks from first principles. *IEEE Symposium on Security and Privacy*, 2021. doi:
579 10.1109/sp46214.2022.9833649.

580 Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
581 Zhang. Quantifying memorization across neural language models. In *The Eleventh International
582 Conference on Learning Representations*, 2022.

583 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
584 Armand Joulin. Emerging properties in self-supervised vision transformers, 2021. URL <https://arxiv.org/abs/2104.14294>.

594 Hong-Bin Chen, Sinho Chewi, and Jonathan Niles-Weed. Dimension-free log-sobolev inequalities
 595 for mixture distributions. *Journal of Functional Analysis*, 281(11):109236, 2021.
 596

597 Sinho Chewi. Log-concave sampling. *Book draft available at <https://chewisinho.github.io>*, 9:
 598 17–18, 2023.

599 Sinho Chewi, Murat A. Erdogdu, Mufan Bill Li, Ruqi Shen, and Matthew Zhang. Analysis of
 600 Langevin Monte Carlo from Poincaré to Log-Sobolev, December 2021. URL <http://arxiv.org/abs/2112.12662>. arXiv:2112.12662 version: 1.
 601

602 Eli Chien, Haoyu Wang, Ziang Chen, and Pan Li. Langevin Unlearning: A New Perspective of
 603 Noisy Gradient Descent for Machine Unlearning, 2024a. *eprint*: 2401.10371.
 604

605 Eli Chien, Haoyu Wang, Ziang Chen, and Pan Li. Stochastic Gradient Langevin Unlearning, 2024b.
 606 *eprint*: 2403.17105.
 607

608 Rishav Chourasia, Jiayuan Ye, and Reza Shokri. Differential Privacy Dynamics of Langevin Diffu-
 609 sion and Noisy Gradient Descent, February 2021. URL <https://arxiv.org/abs/2102.05855v5>.
 610

611 Common Crawl Foundation. Common crawl: Open repository of web crawl data, 2024. URL
 612 <https://commoncrawl.org/>. Multi-petabyte dataset containing over 100 billion web
 613 pages.
 614

615 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 616 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 617 pp. 248–255. Ieee, 2009.

618 Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain markov process
 619 expectations for large time, i. *Communications on pure and applied mathematics*, 28(1):1–47,
 620 1975.

621 Tim van Erven and Peter Harremoës. Rényi Divergence and Kullback-Leibler Divergence. *IEEE
 622 Transactions on Information Theory*, 60(7):3797–3820, July 2014. ISSN 0018-9448, 1557-
 623 9654. doi: 10.1109/TIT.2014.2320500. URL <http://arxiv.org/abs/1206.2459>.
 624 arXiv:1206.2459 [cs].
 625

626 Arun Ganesh, Mahdi Haghifam, Milad Nasr, Sewoong Oh, Thomas Steinke, Om Thakkar,
 627 Abhradeep Guha Thakurta, and Lun Wang. Why is public pretraining necessary for private
 628 model training? In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
 629 Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference
 630 on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 10611–
 631 10627. PMLR, 23–29 Jul 2023a. URL <https://proceedings.mlr.press/v202/ganesh23a.html>.
 632

633 Arun Ganesh, Mahdi Haghifam, Milad Nasr, Sewoong Oh, Thomas Steinke, Om Thakkar,
 634 Abhradeep Thakurta, and Lun Wang. Why Is Public Pretraining Necessary for Private Model
 635 Training?, 2023b. URL <https://arxiv.org/abs/2302.09483>. *eprint*: 2302.09483.
 636

637 Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics, September
 638 2002. URL <http://arxiv.org/abs/math/0209021>. arXiv:math/0209021.
 639

640 Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal Sunshine of the Spotless Net:
 641 Selective Forgetting in Deep Networks, 2020. URL <https://arxiv.org/abs/1911.04933>.
 642 *eprint*: 1911.04933.

643 Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
 644 Mixed-Privacy Forgetting in Deep Networks, 2021. URL <https://arxiv.org/abs/2012.13431>.
 645 *eprint*: 2012.13431.

646 Thomas Hakon Gronwall. Note on the derivatives with respect to a parameter of the solutions of a
 647 system of differential equations. *Annals of Mathematics*, 20(4):292–296, 1919.

648 Leonard Gross. Logarithmic sobolev inequalities. *American Journal of Mathematics*, 97(4):1061–
 649 1083, 1975.

650

651 Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
 652 gradient descent. In *International conference on machine learning*, pp. 1225–1234. PMLR, 2016.

653

654 Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact Un-
 655 learning Needs More Careful Evaluations to Avoid a False Sense of Privacy, May 2024. URL
 656 <http://arxiv.org/abs/2403.01218>. arXiv:2403.01218 [cs].

657

658 Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact Un-
 659 learning needs more careful evaluations to avoid a false sense of privacy. In *2025 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)*, pp. 497–519, 2025. doi:
 660 10.1109/SaTML64287.2025.00034.

661

662 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
 663 1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

664

665 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 666 <https://arxiv.org/abs/1412.6980>.

667

668 Anastasia Koloskova, Youssef Allouah, Animesh Jha, Rachid Guerraoui, and Sanmi Koyejo. Cer-
 669 tified Unlearning for Neural Networks, June 2025. URL <http://arxiv.org/abs/2506.06985>. arXiv:2506.06985 [cs].

670

671 Andrew G. Lamperski. Projected Stochastic Gradient Langevin Algo-
 672 rithms for Constrained Sampling and Non-Convex Learning. *ArXiv*, De-
 673 cember 2020. URL <https://www.semanticscholar.org/paper/ede5a9ae87c1dee98098c243f6b44c30804acbdf>.

674

675 Andrew Lowy, Zeman Li, Tianjian Huang, and Meisam Razaviyayn. Optimal differentially private
 676 model training with public data. In *Proceedings of the 41st International Conference on Machine
 677 Learning*, ICML’24. JMLR.org, 2024.

678

679 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
 680 Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting
 681 of the Association for Computational Linguistics: Human Language Technologies*, pp. 142–150,
 682 Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL <http://www.aclweb.org/anthology/P11-1015>.

683

684 Ilya Mironov. Renyi Differential Privacy. In *2017 IEEE 30th Computer Security Foundations
 685 Symposium (CSF)*, pp. 263–275, August 2017. doi: 10.1109/CSF.2017.11. URL <http://arxiv.org/abs/1702.07476>. arXiv:1702.07476 [cs].

686

687 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normalization for
 688 Generative Adversarial Networks, February 2018. URL <http://arxiv.org/abs/1802.05957>. arXiv:1802.05957 [cs].

689

690 Alireza Mousavi-Hosseini, Tyler K. Farghly, Ye He, Krishna Balasubramanian, and Murat A. Er-
 691 dogdu. Towards a complete analysis of langevin monte carlo: Beyond poincaré inequality.
 692 In *The Thirty Sixth Annual Conference on Learning Theory*, pp. 1–35. PMLR, 2023. URL
 693 <https://proceedings.mlr.press/v195/mousavi-hosseini23a.html>.

694

695 Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ip-
 696 polito, Christopher A Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable
 697 extraction of training data from (production) language models. *arXiv preprint arXiv:2311.17035*,
 698 2023.

699

700 Jerzy Neyman and Egon Sharpe Pearson. Ix. on the problem of the most efficient tests of statistical
 701 hypotheses. *Philosophical Transactions of the Royal Society of London. Series A, Containing
 Papers of a Mathematical or Physical Character*, 231(694-706):289–337, 1933.

702 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 703 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
 704 las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 705 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
 706 mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 707 2024. URL <https://arxiv.org/abs/2304.07193>.

708 European Parliament and Council of the European Union. Regulation (eu) 2024/1689 of the eu-
 709 ropean parliament and of the council of 13 june 2024 laying down harmonised rules on artificial
 710 intelligence and amending regulations (ec) no 300/2008, (eu) no 167/2013, (eu) no 168/2013, (eu)
 711 2018/858, (eu) 2018/1139 and (eu) 2019/2144 and directives 2014/90/eu, (eu) 2016/797 and (eu)
 712 2016/798 (artificial intelligence act). Official Journal of the European Union, July 2024. URL
 713 <https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng>. Entered into force:
 714 1 August 2024.

715 Parliament of Canada. An act to enact the consumer privacy protection act, the personal information
 716 and data protection tribunal act and the artificial intelligence and data act and to make conse-
 717 quential and related amendments to other acts. Bill C-27, 44th Parliament, 1st Session, 2022.
 718 URL <https://www.parl.ca/legisinfo/en/bill/44-1/c-27>. Digital Charter Im-
 719 plementation Act, 2022.

720 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 721 for multi-source domain adaptation. In *Proceedings of the IEEE International Conference on*
 722 *Computer Vision*, pp. 1406–1415, 2019.

723 Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via Stochastic
 724 Gradient Langevin Dynamics: a nonasymptotic analysis, 2017. URL <https://arxiv.org/abs/1702.03849>. eprint: 1702.03849.

725 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
 726 attacks against machine learning models, 2017. URL <https://arxiv.org/abs/1610.05820>.

727 Santosh Vempala and Andre Wibisono. Rapid Convergence of the Unadjusted Langevin Algorithm:
 728 Isoperimetry Suffices. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d' Alché-Buc, E. Fox,
 729 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Cur-
 730 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/65a99bb7a3115fdede20da98b08a370f-Paper.pdf.

731 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2009.

732 Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin dynam-
 733 ics based algorithms for nonconvex optimization. *Advances in Neural Information Processing*
 734 *Systems*, 31, 2018.

735 Haonan Yan, Xiaoguang Li, Ziyao Guo, Hui Li, Fenghua Li, and Xiaodong Lin. ARCANe: An
 736 Efficient Architecture for Exact Machine Unlearning. volume 5, pp. 4006–4013, July 2022. doi:
 737 10.24963/ijcai.2022/556. URL <https://www.ijcai.org/proceedings/2022/556>.
 ISSN: 1045-0823.

738 Jiayuan Ye and Reza Shokri. Differentially Private Learning Needs Hidden State (Or Much Faster
 739 Convergence), March 2022. URL <https://arxiv.org/abs/2203.05363v2>.

740 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 741 deep learning requires rethinking generalization. *arXiv preprint arXiv:1611.03530*, 2016.

742 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classi-
 743 fication. In *Proceedings of the 29th International Conference on Neural Information Processing*
 744 *Systems - Volume 1*, NIPS'15, pp. 649–657, Cambridge, MA, USA, 2015. MIT Press.

756 **A APPENDIX**
 757

758 **A.1 PROOF OF THEOREM 3.2**
 759

760 **Theorem.** (Chien et al., 2024a) Suppose that the loss is L -smooth and M -Lipschitz, and that the
 761 learning distribution of weights at time T satisfies a C log-Sobolev inequality. Then, the Rényi di-
 762 vergence between π_U^K (the unlearning distribution after K iterations) and the retraining distribution
 763 after $T + K$ iterations is upper bounded by:

764
$$D_\alpha(\pi_R^{T+K} \| \pi_U^K) \leq D_\alpha(\pi_L^T \| \pi_R^T) \exp\left(-\frac{1}{\alpha} \sum_{k=0}^{K-1} R_k\right)$$

 765
 766

767 where $R_k > 0$ depend on the problem setting (Chien et al., 2024a). Moreover, if the loss function
 768 is m -strongly convex and the initial log-Sobolev constant satisfies $C > \frac{\sigma^2}{m}$, we get the following
 769 exponential decay of the Rényi divergence with respect to the unlearning iteration:
 770

771
$$D_\alpha(\pi_R^{T+K} \| \pi_U^K) \leq D_\alpha(\pi_L^T \| \pi_R^T) \exp\left(-\frac{2K\sigma^2\eta}{C\alpha}\right)$$

 772
 773

774 We provide the proof of (Chien et al., 2024a), Theorem 3.2, slightly modified to our setting. Specif-
 775 ically, we relax the assumption that the learning and retraining processes have converged to their
 776 stationary distribution (infinite training). In order to prove this theorem, we will use the following
 777 lemmas:

778 **Lemma A.1** (Characterizing the log-Sobolev constants of the PNGD updates (Chewi, 2023)). Con-
 779 sider the PNGD update:
 780

781
$$\theta^{k+1} = \Pi_\Theta \left[\theta_k - \eta \nabla \mathcal{L}_D(\theta^k) + \sqrt{2\eta\sigma^2} W_k \right], \theta^0 \sim \pi$$

 782

783 where π satisfies a C -Log Sobolev inequality. Then, we have the following:
 784

- 785 • If \mathcal{L} is L -smooth, then for the gradient update $h(\theta) = \theta - \nabla_\theta \mathcal{L}(\theta)$, we have that the
 786 distribution of $h_\sharp \pi$ satisfies a $(1 + \eta L)^2 \times C$ log-Sobolev inequality. Moreover, if \mathcal{L} is
 787 m -strongly convex and $\eta < \frac{1}{L}$, then $h_\sharp \pi$ satisfies a $(1 - \eta m)^2 \times C$ log Sobolev inequality
 788 (Altschuler & Talwar, 2022).
- 789 • $\pi * \mathcal{N}(0, \sigma^2 I_d)$ satisfies a $C + \sigma^2$ log-Sobolev inequality
- 790 • $\Pi_{\Theta \sharp} \pi$ satisfies a C log-Sobolev inequality

793 By composing the aforementioned statements, we get that π_1 satisfies a $(1 + \eta L)^2 \times C + 2\eta\sigma^2$ -log
 794 Sobolev inequality. Moreover, if \mathcal{L} is m -strongly convex and $\eta < \frac{1}{L}$, we have that π_1 satisfies a
 795 $(1 - \eta m)^2 \times C + 2\eta\sigma^2$

796 **Lemma A.2** (Data Processing inequality for the Rényi divergence (Erven & Harremoës, 2014)). For
 797 any $\alpha \geq 1$, any function $h : \mathbb{R}^d \rightarrow \mathbb{R}^d$ and distributions P, Q supported on \mathbb{R}^d , we have:
 798

799
$$D_\alpha(h_\sharp P \| h_\sharp Q) \leq D_\alpha(P \| Q)$$

800 with equality if h is bijective

801 **Lemma A.3** ((Vempala & Wibisono, 2019; Chien et al., 2024a) characterizing the Rényi divergence
 802 between two distributions convoluted with Gaussians). Let $P_t = P * \mathcal{N}(0, 2t\sigma^2 I_d)$ and $Q_t =$
 803 $Q * \mathcal{N}(0, 2t\sigma^2 I_d)$. Then, $\forall \alpha > 0$:

804
$$\frac{\partial D_\alpha(P_t \| Q_t)}{\partial t} = -\alpha \sigma^2 \frac{G_\alpha(P_t \| Q_t)}{F_\alpha(P_t \| Q_t)}$$

 805
 806

807 with $G_\alpha(P \| Q) = \mathbb{E}_Q \left[\left(\frac{p}{q} \right)^\alpha \| \nabla \log \frac{p}{q} \|^2 \right]$ denoting the relative Rényi information and $F_\alpha(P \| Q) =$
 808 $\mathbb{E}_Q \left[\left(\frac{p}{q} \right)^\alpha \right] = \exp((\alpha - 1)D_\alpha(P \| Q))$
 809

810
 811 **Lemma A.4.** *Lower bound of the G-F ratio (Vempala & Wibisono, 2019)* If $Q \in \mathcal{P}(\Theta)$ satisfies a
 812 $C \log$ Sobolev inequality, then $\forall P \in \mathcal{P}(\Theta)$:

$$\frac{G_\alpha(P\|Q)}{F_\alpha(P\|Q)} \geq \frac{2D_\alpha(P\|Q)}{\alpha^2 C}$$

813 **Lemma A.5.** *Grönwall's inequality (Gronwall, 1919)* Let $\mathbf{I} = [a, b]$ denote an interval on the real
 814 line. Let β and u be real-valued continuous functions defined on \mathbf{I} . If u is differentiable in the
 815 interior of \mathbf{I} and satisfies for all t in the interior of \mathbf{I} :

$$\frac{du(t)}{dt} \leq \beta(t)u(t)$$

816 then we have:

$$u(t) \leq u(a) \exp \left(\int_a^t \beta(s) ds \right)$$

817 for all $t \in I$

818 **Lemma A.6.** *Universal upper bound on the log Sobolev constant for measures with compact support*
 819 (Chen et al., 2021) Let P a probability measure supported on a compact set with radius R . Then,
 820 for each $\sigma > 0$, $P * \mathcal{N}(0, \sigma I_d)$ satisfy a log Sobolev inequality with constant upper bounded by
 821 $6(4R^2 + \sigma) \exp \left(\frac{4R^2}{\sigma} \right)$

822 *Proof.* Using these results, we have:

$$D_\alpha(h_\# \pi_R^{T+K} \| h_\# \pi_U^K) \leq D_\alpha(\pi_R^{T+K} \| \pi_U^K) \quad (\text{Lemma A.2})$$

823 **The PNGD updates preserve the log-Sobolev inequality for the resulting distributions:** let
 824 $\pi_U^{K,1,t} = h_\# \pi_U^K * \mathcal{N}(0, 2t\sigma^2 I_d)$ and $\pi_R^{T+K,1,t} = h_\# \pi_U^K * \mathcal{N}(0, 2t\sigma^2 I_d)$. Since π_L^T and π_R^T sat-
 825 isfy a log-Sobolev inequality (initialization distributions) and the loss function is L -smooth, then by
 826 Lemma A.1 the distributions π_U^K, π_L^T satisfy respectively $C_{U,K}, C_{L,T+K}$ log Sobolev inequal-
 827 ities. Using Lemma A.1 on the distributions $\pi_U^{K,1,t}, \pi_R^{T+K,1,t}$ yields that they respectively satisfy
 828 $(1 + \eta L)^2 C_{U,K} + 2\eta\sigma^2$ and $(1 + \eta L)^2 C_{L,T+K} + 2\eta\sigma^2$ log Sobolev inequalities for all $t \in [0, \eta]$.

829 **Upper bounding the distributions convolved with Gaussian distributions:** Using Lemma A.3,
 830 we have that, $\forall \alpha > 0$:

$$\frac{\partial D_\alpha(\pi_R^{T+K,1,t} \| \pi_U^{K,1,t})}{\partial t} = -\alpha\sigma^2 \frac{G_\alpha(\pi_R^{T+K,1,t} \| \pi_U^{K,1,t})}{F_\alpha(\pi_R^{T+K,1,t} \| \pi_U^{K,1,t})}$$

831 and since $\pi_U^{K,1,t}$ satisfies a $C_{U,K,t} = (1 + \eta L)^2 C_{U,K} + 2t\sigma^2$ log-Sobolev inequality, we can use
 832 Lemma A.4 to upper bound the derivative of the Rényi divergence with respect to $t \in [0, \eta]$:

$$\frac{\partial D_\alpha(\pi_R^{T+K,1,t} \| \pi_U^{K,1,t})}{\partial t} \leq -\frac{2\sigma^2}{\alpha C_{U,K,t}} D_\alpha(\pi_R^{T+K,1,t} \| \pi_U^{K,1,t})$$

833 Thus, by Grönwall's inequality (Lemma A.5), we have $\forall t \in [0, \eta]$:

$$\begin{aligned} D_\alpha(\pi_R^{T+K,1,t} \| \pi_U^{K,1,t}) &\leq D_\alpha(h_\# \pi_R^{T+K} \| h_\# \pi_U^K) \exp \left(\int_0^t -\frac{2\sigma^2}{\alpha C_{U,K,s}} ds \right) \\ &\leq D_\alpha(h_\# \pi_R^{T+K} \| h_\# \pi_U^K) \exp \left(\int_0^t -\frac{2\sigma^2}{\alpha ((1 + \eta L)^2 C_{U,K} + 2s\sigma^2)} ds \right) \\ &\leq D_\alpha(\pi_R^{T+K} \| \pi_U^K) \exp \left(\int_0^t -\frac{2\sigma^2}{\alpha ((1 + \eta L)^2 C_{U,K} + 2s\sigma^2)} ds \right) \end{aligned} \quad (\text{Lemma A.2})$$

834 Computing the integral yields:

$$\begin{aligned} \int_0^t -\frac{2\sigma^2}{\alpha ((1 + \eta L)^2 C_{U,K} + 2s\sigma^2)} ds &= -\frac{1}{\alpha} \int_0^t \frac{2\sigma^2}{(1 + \eta L)^2 C_{U,K} + 2s\sigma^2} ds \\ &= -\frac{1}{\alpha} \left[\log ((1 + \eta L)^2 C_{U,K} + 2t\sigma^2) - \log ((1 + \eta L)^2 C_{U,K}) \right] \\ &= -\frac{1}{\alpha} \left[\log \left(1 + \frac{2t\sigma^2}{(1 + \eta L)^2 C_{U,K}} \right) \right] \end{aligned}$$

864 Thus, by setting $t = \eta$, we get:
 865

$$866 \quad D_\alpha(\pi_R^{T+K,1,\eta} \|\pi_U^{K,1,\eta}) \leq \left(1 + \frac{2t\sigma^2}{(1+\eta L)^2 C_{U,K}}\right)^{\frac{-1}{\alpha}} D_\alpha(\pi_R^{T+K} \|\pi_U^K)$$

$$867$$

$$868$$

869 Finally, using the data processing inequality for the projection of PNGD and iterating over the num-
 870 ber of unlearning iterations, we get:
 871

$$872 \quad D_\alpha(\pi_R^{T+K+1} \|\pi_U^{K+1}) \leq D_\alpha(\pi_R^{T+K,1,\eta} \|\pi_U^{K,1,\eta})$$

$$873$$

$$874 \quad \leq \left(1 + \frac{2t\sigma^2}{(1+\eta L)^2 C_{U,K}}\right)^{\frac{-1}{\alpha}} D_\alpha(\pi_R^{T+K} \|\pi_U^K)$$

$$875$$

$$876 \quad \leq D_\alpha(\pi_R^T \|\pi_L^T) \prod_{k=1}^K \left(1 + \frac{2t\sigma^2}{(1+\eta L)^2 C_{U,k}}\right)^{\frac{-1}{\alpha}}$$

$$877$$

$$878$$

□

881 A.2 TRACKING THE LOG-SOBOLEV CONSTANTS

882 For a generic, L -smooth non-convex loss function \mathcal{L} , one can derive the following recurrence rela-
 883 tion, $\forall k \geq 1$ upper bounding the log-Sobolev constants:
 884

$$885 \quad C_1 \leq (1+\eta L)^2 C_0 + 2\eta\sigma^2 \quad (\text{Lemma A.1})$$

$$886$$

$$887 \quad C_2 \leq (1+\eta L)^4 C_0 + (1+\eta L)^2 2\eta\sigma^2 + (1+\eta L)^2$$

$$888 \quad \dots$$

$$889$$

$$890 \quad C_K \leq (1+\eta L)^{2K} C_0 + 2\eta\sigma^2 \sum_{k=0}^{K-1} (1+\eta L)^2$$

$$891$$

$$892 \quad \leq (1+\eta L)^{2K} C_0 + 2\eta\sigma^2 \frac{(1+\eta L)^{2K} - 1}{(1+\eta L)^2 - 1} \quad (5)$$

$$893$$

$$894$$

895 If we add the assumption that the loss is convex, then the map $h(\theta) = \theta - \eta \nabla_\theta \mathcal{L}(\theta)$ is 1-Lipschitz
 896 for $\eta < \frac{2}{L}$ (Hardt et al., 2016) and we can reduce $(1+\eta L)$ to 1 in the aforementioned bounds:
 897

$$898 \quad C_K \leq C_0 + 2K\eta\sigma^2 \quad (6)$$

$$899$$

900 Finally, assuming m -strong convexity yields that the map $h(\theta)$ is $1 - \eta m$ -Lipschitz, which allows
 901 for the following **contractive** recurrence on the log-Sobolev constants $\forall k \geq 1$ by setting $\eta <$
 902 $\frac{2}{m}(1 - \frac{\sigma^2}{mC_0})$ (Chien et al., 2024a):
 903

$$904 \quad C_k \leq (1 - \eta m)^2 C_{k-1} + 2\eta\sigma^2 \leq C_{k-1}$$

$$905 \quad C_k \leq (1 - \eta m)^{2K} C_0 + 2\eta\sigma^2 \frac{(1 - \eta m)^{2K} - 1}{(1 - \eta m)^2 - 1} \leq C_0$$

$$906$$

907 Thus, we have that $\forall t \in [0, \eta]$, $\pi_U^{K,1,t}$ satisfies a C_0 log-Sobolev inequality thus we have by
 908 Lemma A.4:
 909

$$910 \quad \frac{\partial D_\alpha(\pi_R^{T+K,1,t} \|\pi_U^{K,1,t})}{\partial t} \leq -\frac{2\sigma^2}{\alpha C} D_\alpha(\pi_R^{T+K,1,t} \|\pi_U^{K,1,t})$$

$$911$$

912 Thus, by Grönwall's inequality (Lemma A.5), we have $\forall t \in [0, \eta]$:
 913

$$914 \quad \frac{\partial D_\alpha(\pi_R^{T+K,1,t} \|\pi_U^{K,1,t})}{\partial t} \leq D_\alpha(h_\sharp \pi_R^{T+K} \| h_\sharp \pi_U^K) \exp\left(\int_0^t -\frac{2\sigma^2}{\alpha C} ds\right)$$

$$915$$

$$916 \quad \leq D_\alpha(h_\sharp \pi_R^{T+K} \| h_\sharp \pi_U^K) \exp\left(-\frac{2t\sigma^2}{\alpha C}\right)$$

$$917$$

918 Thus, by setting $t = \eta$ and using similar steps as the non convex proof above, we get the following
 919 result:

$$920 \quad 921 \quad 922 \quad D_\alpha(\pi_R^{T+K} \|\pi_U^K) \leq D_\alpha(\pi_R^T \|\pi_L^T) \exp\left(-\frac{2K\eta\sigma^2}{\alpha C}\right)$$

923 The message conveyed by the strongly convex proof is that if we have a universal iteration inde-
 924 pendent upper bound on the log Sobolev constants at each timestep of the PNGD updates, then we
 925 could have a more meaningful upper bound on the Rényi divergence. The non convex Eq. (5) and
 926 convex Eq. (6) recurrence bounds are non contractive and iteration dependent, so they do not allow
 927 to establish a convergence rate for Theorem 3.2. This is where the projection step of PNGD comes
 928 in handy, as it allows to leverage the geometry of the set Θ to get a more informative bound:

929 **Lemma A.7** (Log Sobolev inequality on measures supported on a compact set (Chen et al., 2021),
 930 Corollary 1). *Let π be a probability measure on \mathbb{R}^d supported on a compact set Θ with radius
 931 $R \geq 0$. Then, for each $t \geq 0$, $\mu * \mathcal{N}(0, tI_d)$ satisfy a log sobolev inequality with constant C
 932 controlled by:*

$$933 \quad 934 \quad C \leq 6(4R^2 + t) \exp\left(\frac{4R^2}{t}\right)$$

935 **Proposition A.1** (Universal bound on the log Sobolev constants of distributions induced by PNGD
 936 updates (Chien et al., 2024a)). *Suppose that \mathcal{L} is M Lipschitz. Let $\theta_0 \sim \pi_0 \in \mathcal{P}(\Theta)$ where Θ is a
 937 compact set of radius R and denote by π_k the distribution θ_k , the k -th iterate of PNGD (Eq. (2)).
 938 Then, $\forall k \geq 0$, π_k satisfies a log-Sobolev inequality with constant C_k controlled by:*

$$939 \quad 940 \quad C_k \leq 6(4(R + \eta M)^2 + 2\eta\sigma^2) \exp\left(\frac{4(R + \eta M)^2}{2\eta\sigma^2}\right)$$

941 We can thus derive a similar bound to the strongly convex setting, for the non convex/convex
 942 settings:

943 Using Proposition A.1, we have $\forall k \geq 0$ that π_U^K satisfies a $\tilde{C} =$
 944 $6(4(R + \eta M)^2 + 2\eta\sigma^2) \exp\left(\frac{4(R + \eta M)^2}{2\eta\sigma^2}\right)$ log Sobolev inequality. Thus, using Lemma A.4,
 945 we have:

$$946 \quad \frac{\partial D_\alpha(\pi_R^{T+K,1,t} \|\pi_U^{K,1,t})}{\partial t} \leq -\frac{2\sigma^2}{\alpha\tilde{C}} D_\alpha(\pi_R^{T+K,1,t} \|\pi_U^{K,1,t})$$

947 Thus, by Grönwall's inequality (Lemma A.5), we have $\forall t \in [0, \eta]$:

$$948 \quad 949 \quad \frac{\partial D_\alpha(\pi_R^{T+K,1,t} \|\pi_U^{K,1,t})}{\partial t} \leq D_\alpha(h_\sharp \pi_R^{T+K} \|\pi_U^K) \exp\left(\int_0^t -\frac{2\sigma^2}{\alpha\tilde{C}} ds\right)$$

$$950 \quad 951 \quad \leq D_\alpha(h_\sharp \pi_R^{T+K} \|\pi_U^K) \exp\left(-\frac{2t\sigma^2}{\alpha\tilde{C}}\right)$$

952 Finally, similarly to the strongly convex proofs, we can deduce that:

$$953 \quad 954 \quad D_\alpha(\pi_R^{T+K} \|\pi_U^K) \leq D_\alpha(\pi_R^T \|\pi_L^T) \exp\left(-\frac{2K\eta\sigma^2}{\alpha\tilde{C}}\right)$$

955 A.3 PROOF OF THEOREM 3.1

956 **Theorem.** *Suppose that the loss is L -smooth and M -Lipschitz, and that the initialization distribu-
 957 tion satsfies a C -log Sobolev inequality. Moreover, suppose that the PNGD updates project onto a
 958 compact set Θ of radius R .*

959 *Then at learning iteration T , we have the following upper bound on the Renyi divergence between
 960 the retraining π_R^T and learning π_L^T distributions:*

$$961 \quad 962 \quad 963 \quad \frac{D_\alpha(\pi_R^T \|\pi_L^T)}{\alpha} \leq \frac{2M^2\eta^2 n_{\text{forget}}^2}{(n_{\text{pub}} + n_{\text{priv}})^2 \sigma^2} \sum_{t=1}^{T-1} \prod_{t'=t}^{T-1} \left(1 + \frac{\eta\sigma^2}{C_{t',1}}\right)^{-1}$$

964 where $C_{t',1} > 0$ are log Sobolev constants of the distributions of the intermediate PNGD updates.
 965 Using the support's radius allows to loosely upper bound those constants (Chien et al., 2024a):
 966 $C_{t',1} \leq 6e^{4\tau}(4\tau^2 + \eta\sigma^2)$ with $\tau = R + \eta M$

972 *Proof.* The following proof is an adaptation of the proof of Theorem 3.2 in Chien et al. (2024a) to
 973 the asymmetric data setting.

974 Consider the following updates done during training. Recall that we are using full batch projected
 975 noisy gradient descent:

$$\begin{aligned}\theta_L^{t+1} &= \Pi_{\Theta} \left[\theta_L^t + \eta \nabla \mathcal{L}_{D_{\text{pub}} \cup D_{\text{priv}}}(\theta_L^t) + \sqrt{2\eta\sigma^2} W_t \right] & (W_t \sim \mathcal{N}(0, I_d)) \\ \theta_R^{t+1} &= \Pi_{\Theta} \left[\theta_R^t + \eta \nabla \mathcal{L}_{D_{\text{retain}}}(\theta_R^t) + \sqrt{2\eta\sigma^2} W_t \right] & (W_t \sim \mathcal{N}(0, I_d))\end{aligned}$$

981 Let's divide each optimization step into the following:

$$\begin{aligned}\theta_L^{t,1} &= \theta_L^t + \eta \nabla \mathcal{L}_{D_{\text{pub}} \cup D_{\text{priv}}}(\theta_L^t) + \sqrt{\eta\sigma^2} W_t \\ \theta_R^{t,1} &= \theta_R^t + \eta \nabla \mathcal{L}_{D_{\text{retain}}}(\theta_R^t) + \sqrt{\eta\sigma^2} W_t\end{aligned}$$

986 Therefore, we can write

$$\theta_L^{t+1} = \Pi_{\Theta} \left[\theta_L^{t,1} + \sqrt{\eta\sigma^2} W_t \right] \quad (7)$$

$$\theta_R^{t+1} = \Pi_{\Theta} \left[\theta_R^{t,1} + \sqrt{\eta\sigma^2} W_t \right]. \quad (8)$$

991 Let $\pi_R^t, \pi_R^{t,1}, \pi_L^t, \pi_L^{t,1}$ be the distributions of respectively $\theta_R^t, \theta_R^{t,1}, \theta_L^t, \theta_L^{t,1}$

994 **The main question we try to tackle here is: what is $D_{\alpha}(\pi_R^t \parallel \pi_L^t)$?**

995 We first compare the distributions $\pi_R^{t,1}$ and $\pi_L^{t,1}$. By composition theorem of the Gaussian mechanism for Rényi Differential privacy (Mironov, 2017), and equivalently for the Rényi divergence, we
 996 have:

$$\frac{D_{\alpha}(\pi_R^{t,1} \parallel \pi_L^{t,1})}{\alpha} \leq \frac{D_{\alpha}(\pi_R^t \parallel \pi_L^t)}{\alpha} + \frac{\Delta_F^2}{2\sigma^2} \quad (9)$$

1001 where Δ_F is the l_2 sensitivity of the gradient update. For the next computations, let n_{pub} denote
 1002 the number of public points, n_{forget} denote the number of points to forget, and $n_{\text{r-priv}}$ denote the
 1003 number of *remaining* private points in the retain set. Computing the sensitivity in the asymmetric
 1004 setting yields:

$$\begin{aligned}1005 \Delta_F &= \max_{\theta} \eta \|\nabla \mathcal{L}_{D_{\text{retain}}}(\theta) - \nabla \mathcal{L}_{D_{\text{pub}} \cup D_{\text{priv}}}(\theta)\| \\ 1006 &= \max_{\theta} \eta \left\| \frac{1}{n_{\text{pub}} + n_{\text{r-priv}}} \sum_{d_i \in \text{I} \cup \text{II}} \nabla l(\theta, d_i) - \frac{1}{n_{\text{pub}} + n_{\text{r-priv}} + n_{\text{forget}}} \sum_{d_i \in \text{I} \cup \text{II} \cup \text{III}} \nabla l(\theta, d_i) \right\| \\ 1007 &\leq \eta \left(\frac{1}{n_{\text{pub}} + n_{\text{r-priv}}} - \frac{1}{n_{\text{pub}} + n_{\text{r-priv}} + n_{\text{forget}}} \right) \sum_{d_i \in \text{I} \cup \text{II}} \|\nabla l(\theta, d_i)\| \\ 1008 &\quad + \frac{\eta}{n_{\text{pub}} + n_{\text{r-priv}} + n_{\text{forget}}} \sum_{d_i \in \text{I} \cup \text{II} \cup \text{III}} \|\nabla l(\theta, d_i)\| \\ 1009 &\leq M\eta(n_{\text{pub}} + n_{\text{r-priv}}) \left(\frac{1}{n_{\text{pub}} + n_{\text{r-priv}}} - \frac{1}{n_{\text{pub}} + n_{\text{r-priv}} + n_{\text{forget}}} \right) + \frac{n_{\text{forget}} M \eta}{n_{\text{pub}} + n_{\text{r-priv}} + n_{\text{forget}}} \\ 1010 &\leq \underbrace{\frac{2M\eta n_{\text{forget}}}{n_{\text{pub}} + n_{\text{r-priv}} + n_{\text{forget}}}}_{\varepsilon}\end{aligned}$$

1020 **Lemma A.8.** (Ye & Shokri, 2022) For any distributions ξ_t, ξ'_t both satisfying $C_{t,1}$ -LSI, we have:

$$\frac{D_{\alpha}(\xi_t * \mathcal{N}(0, \eta\sigma^2 I), \xi'_t * \mathcal{N}(0, \eta\sigma^2 I))}{\alpha} \leq \frac{D_{\alpha(t)}(\xi_t, \xi'_t)}{\alpha(t)} \left(1 + \frac{\eta\sigma^2}{C_{t,1}} \right)^{-1}$$

1025 where $\alpha(t) = \frac{\alpha-1}{1 + \frac{\eta\sigma^2}{C_{t,1}}}$

1026 By combining the data processing inequality (projection) and Lemma A.8, we get the following
 1027 recurrence inequality:
 1028

$$\begin{aligned}
 \frac{D_\alpha(\pi_R^{T+1} \|\pi_L^{T+1})}{\alpha} &\leq \left(\frac{D_{\alpha(T)}(\pi_R^T \|\pi_L^T)}{\alpha(T)} + \frac{\varepsilon^2}{2\sigma^2} \right) \left(1 + \frac{\eta\sigma^2}{C_{T,1}} \right)^{-1} \\
 &= \frac{\varepsilon^2}{2\sigma^2} \left(1 + \frac{\eta\sigma^2}{C_{T,1}} \right)^{-1} + \frac{D_{\alpha(T)}(\pi_R^T \|\pi_L^T)}{\alpha(T)} \left(1 + \frac{\eta\sigma^2}{C_{T,1}} \right)^{-1} \\
 &\leq \frac{\varepsilon^2}{2\sigma^2} \left(1 + \frac{\eta\sigma^2}{C_{T,1}} \right)^{-1} + \left(\frac{D_{\alpha(T-1)}(\pi_R^T \|\pi_L^T)}{\alpha(T-1)} + \frac{\varepsilon^2}{2\sigma^2} \right) \left(1 + \frac{\eta\sigma^2}{C_{T,1}} \right)^{-1} \left(1 + \frac{\eta\sigma^2}{C_{T-1,1}} \right)^{-1} \\
 &\leq \frac{\varepsilon^2}{2\sigma^2} [B(T) + B(T-1)] + B(T-2) \left(\frac{D_{\alpha(T-2)}(\pi_R^T \|\pi_L^T)}{\alpha(T-2)} + \frac{\varepsilon^2}{2\sigma^2} \right) \\
 &\quad \text{(where } B(t) = \prod_{k=t}^T \left(1 + \frac{\eta\sigma^2}{C_{k,1}} \right)^{-1} \text{)} \\
 &\leq \frac{\varepsilon^2}{2\sigma^2} \sum_{i=1}^T B(i) + B(0) \left(\frac{D_{\alpha(0)}(\pi_R^T \|\pi_L^T)}{\alpha(0)} + \frac{\varepsilon^2}{2\sigma^2} \right) \\
 &\leq \frac{\varepsilon^2}{2\sigma^2} \sum_{i=0}^T B(i) \quad \text{(since } D_{\alpha(t)}(\pi_0 \|\pi_0) = 0 \text{)} \\
 &= \frac{\varepsilon^2}{2\sigma^2} \sum_{t=0}^T \prod_{t'=t}^T \left(1 + \frac{\eta\sigma^2}{C_{t',1}} \right)^{-1}
 \end{aligned}$$

1050 The upper bound on the log Sobolev constants can be tracked in a similar fashion as in Proposition
 1051 A.1 because of the projection onto the compact set Θ . \square
 1052

1053 A.4 PROOF OF THEOREM 3.3

1055 **Proposition.** *Assuming the data generating distributions share the same support, that the weight
 1056 space Θ is compact and that the loss is M -Lipschitz wrt θ , we have the following upper bound on the
 1057 generalization error on the private data after performing K iterations of unlearning, and initializing
 1058 a weight θ_0 from π_L^T :*

$$\begin{aligned}
 \mathbb{E}_{\theta \sim \pi_U} [\mathbb{E}_{x \sim P_{\text{priv}}} [\mathcal{L}(\theta, x)]] &\leq \underbrace{\exp \left(\frac{n_{\text{pub}}}{n_{\text{pub}} + n_{\text{retain}}} D_\infty(P_{\text{priv}} \| P_{\text{pub}}) \right)}_{\text{distribution mismatch penalty}} \mathbb{E}_{\theta \sim \pi_R} [\mathbb{E}_{d \sim P_{\text{train}}} [\mathcal{L}(\theta, d)]] + \\
 &\quad M \times \text{diam}(\Theta) \times \underbrace{\sqrt{\frac{1}{2} D_\alpha(\pi_R \|\pi_U)}}_{\text{unlearning approximation error}}
 \end{aligned}$$

1067 where $D_\infty(P \| Q) = \log \left(\text{ess sup}_{x \sim Q} \frac{p(x)}{q(x)} \right)$ is the infinite Rényi divergence (worst case regret (Er-
 1068 ven & Harremoës, 2014)) and p_{train} denotes the mixture of distributions D_{pub} and D_{priv} used for
 1069 training the model.

1071 In order to prove Theorem 3.3, we will use the following quantities to define a set of preliminary
 1072 lemmas.

1074 A.4.1 PERFORMANCE ON THE TRAINING DISTRIBUTION MIXTURE

1076 **Definition A.1** (Wasserstein distance). *The Wasserstein-1 distance is defined as*

$$W_1(\mu, \nu) = \inf_{\gamma \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{X}} d(x, y) d\gamma(x, y),$$

1077 where:
 1078
 1079

- μ and ν are probability measures on a metric space (\mathcal{X}, d) ,
- $d(x, y)$ is the distance between points $x, y \in \mathcal{X}$,
- $\Pi(\mu, \nu)$ is the set of all couplings of μ and ν , i.e., the set of joint distributions γ on $\mathcal{X} \times \mathcal{X}$ such that the marginals of γ are μ and ν :

$$\int_{\mathcal{X}} \gamma(x, y) dy = \mu(x), \quad \int_{\mathcal{X}} \gamma(x, y) dx = \nu(y).$$

Definition A.2 (Total Variation Distance). Let P and Q be two probability measures on a measurable space (Ω, \mathcal{F}) . The **total variation distance** between P and Q is defined as

$$TV(P, Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)| \quad (10)$$

$$= \frac{1}{2} \int_{\Omega} |dP - dQ| \quad (11)$$

$$= \frac{1}{2} \|P - Q\|_{TV}. \quad (12)$$

Theorem A.1. (Kantorovich Rubinstein's duality, (Villani et al., 2009), Theorem 5.10) If μ, ν have a bounded support Ω , then

$$W_1(\mu, \nu) = \sup_{\|h\|_L \leq 1} \mathbb{E}_{x \sim \mu}[h(x)] - \mathbb{E}_{y \sim \nu}[h(y)], \quad (13)$$

where $\|h\|_L \leq 1$ denotes the set of 1-Lipschitz functions on Ω

Let $f : \Theta \rightarrow \mathbb{R}$ such that $f(\theta) = \mathbb{E}_{D \sim P_{\text{train}}}[\mathcal{L}_D(\theta)]$, where P_{train} denotes the training data distribution (a mixture of P_{priv} and P_{pub}). Since $\mathcal{L}(\cdot, D)$ is M -Lipschitz, so is f . Then, we have that:

$$\begin{aligned} \mathbb{E}_{\substack{\theta \sim \pi_U \\ D \sim P_{\text{train}}}} [\mathcal{L}(\theta, D)] - \mathbb{E}_{\substack{\theta \sim \pi_R \\ D \sim P_{\text{train}}}} [\mathcal{L}(\theta, D)] &= \mathbb{E}_{\theta \sim \pi_U}[f(\theta)] - \mathbb{E}_{\theta \sim \pi_R}[f(\theta)] \quad (\text{Fubini's theorem}) \\ &\leq M \times W_1(\pi_U, \pi_R) \quad (\text{By Theorem A.1}) \end{aligned}$$

Now, we need to find an upper bound on the 1-Wasserstein distance in terms of the Rényi divergence between π_R and π_U . The following results will be useful in deriving it:

Proposition A.2. (Pinsker's inequality) For two probability distributions P, Q , we have

$$2TV(P, Q)^2 \leq KL(P||Q). \quad (14)$$

Proposition A.3. (Monotonicity of Rényi divergence, (Erven & Harremoës, 2014)) For $1 \leq \alpha_1 \leq \alpha_2$ and probability measures P, Q ,

$$KL(P||Q) \leq D_{\alpha_1}(P||Q) \leq D_{\alpha_2}(P||Q).$$

The KL lower bounds any Rényi divergence since it is obtained by the limit $\alpha \rightarrow 1$.

Proposition A.4. (Upper bounding W_1 with TV (Gibbs & Su, 2002)) If the distributions P, Q share a support Ω and $\text{diam}(\Omega) = \sup_{(x,y) \in \Omega \times \Omega} d(x, y)$ is finite, then we have

$$W_1(P, Q) \leq \text{diam}(\Omega)TV(P, Q). \quad (15)$$

Using the results above, we have

$$\begin{aligned} \mathbb{E}_{\theta \sim \pi_U}[f(\theta)] - \mathbb{E}_{\theta \sim \pi_R}[f(\theta)] &\leq MW_1(\pi_U, \pi_R) \\ &\leq M \times \text{diam}(\Theta) \times TV(\pi_U, \pi_R) \\ &\quad (\text{By Proposition A.4 and compactness of } \Theta) \\ &\leq M \times \text{diam}(\Theta) \times \sqrt{\frac{1}{2} KL(\pi_U, \pi_R)} \quad (\text{By Proposition A.3}) \\ &\leq M \times \text{diam}(\Theta) \times \sqrt{\frac{1}{2} D_{\alpha}(\pi_U, \pi_R)} \quad (\text{By Proposition A.3}) \end{aligned}$$

Thus, we obtain that the generalization error of learning + unlearning is upper bounded by:

Proposition A.5. Assuming that \mathcal{L} is M -Lipschitz, we have

$$\mathbb{E}_{\theta \sim \pi_U} [\mathbb{E}_{D \sim P_{\text{train}}}[\mathcal{L}(\theta, D)]] \leq \mathbb{E}_{\theta \sim \pi_R} [\mathbb{E}_{D \sim P_{\text{train}}}[\mathcal{L}(\theta, D)]] + M \times \text{diam}(\Theta) \times \sqrt{\frac{1}{2} D_{\alpha}(\pi_U, \pi_R)} \quad (16)$$

1134 A.4.2 ADAPTING THE BOUND TO THEOREM 3.3
1135

1136 We would like to evaluate the performance of the model obtained after unlearning. Proposition
1137 A.5 provides a generalization bound on a mixture of distributions, namely on public data + pri-
1138 vate data. In most practical scenarios, one would want to quantify the "lost" performance on
1139 private data after forgetting one of its subsets. Thus, we would like to upper bound the quantity
1140 $\mathbb{E}_{\pi_U} [\mathbb{E}_{D \sim P_{\text{priv}}} [\mathcal{L}_D(\theta)]]$. The training data distribution used for either retraining or unlearning can
1141 be considered as generated from a mixture of the distributions I and II . Assuming the sampling
1142 proportions for training are consistent, one can write that the data distribution used in retraining is

$$1143 P_{\text{train}} = \frac{n_{\text{pub}}}{n_{\text{pub}} + n_{\text{r-priv}}} P_{\text{pub}} + \frac{n_{\text{r-priv}}}{n_{\text{pub}} + n_{\text{r-priv}}} P_{\text{priv}}.$$

1146 Fix any $\theta \in \Theta$. We have that

$$\begin{aligned} 1148 \mathbb{E}_{\mathcal{D} \sim P_{\text{train}}} [\mathcal{L}(\theta, \mathcal{D})] &= \frac{n_{\text{pub}}}{n_{\text{pub}} + n_{\text{r-priv}}} \mathbb{E}_{\mathcal{D} \sim P_{\text{pub}}} [\mathcal{L}(\theta, \mathcal{D})] + \frac{n_{\text{r-priv}}}{n_{\text{pub}} + n_{\text{r-priv}}} \mathbb{E}_{\mathcal{D} \sim P_{\text{priv}}} [\mathcal{L}(\theta, \mathcal{D})] \\ 1151 \mathbb{E}_{\mathcal{D} \sim P_{\text{priv}}} [\mathcal{L}(\theta, \mathcal{D})] &= \int p_{\text{priv}}(x) \mathcal{L}(\theta, x) dx \\ 1154 &= \int p_{\text{train}}(x) \frac{p_{\text{priv}}(x)}{p_{\text{train}}(x)} \mathcal{L}(\theta, x) dx \\ 1156 &= \mathbb{E}_{x \sim P_{\text{train}}} \left[\frac{p_{\text{priv}}(x)}{p_{\text{train}}(x)} \mathcal{L}(\theta, x) \right] \\ 1158 &\leq \mathbb{E}_{d \sim P_{\text{train}}} [\text{ess sup}_{x \in \text{Supp}(P_{\text{pub}}) \cup \text{Supp}(P_{\text{priv}})} \frac{p_{\text{priv}}(x)}{p_{\text{train}}(x)} \mathcal{L}(\theta, d)] \\ 1160 &\leq \text{ess sup}_{x \in \text{Supp}(P_{\text{pub}}) \cup \text{Supp}(P_{\text{priv}})} \frac{p_{\text{priv}}(x)}{p_{\text{train}}(x)} \mathbb{E}_{d \sim P_{\text{train}}} [\mathcal{L}(\theta, d)] \\ 1162 &\leq \exp(D_\infty(P_{\text{priv}}, P_{\text{train}})) \mathbb{E}_{d \sim P_{\text{train}}} [\mathcal{L}(\theta, d)]. \end{aligned}$$

1164 Moreover, we have by convexity of the Rényi divergence (Erven & Harremoës, 2014) in its second
1165 argument that

$$1167 D_\infty(P_{\text{priv}} \| P_{\text{train}}) \leq \frac{n_{\text{pub}}}{n_{\text{pub}} + n_{\text{r-priv}}} (P_{\text{priv}} \| P_{\text{pub}}).$$

1169 Thus we also have

$$1171 \mathbb{E}_{d \sim P_{\text{priv}}} [\mathcal{L}(\theta, d)] \leq \exp \left(\frac{n_{\text{pub}}}{n_{\text{pub}} + n_{\text{r-priv}}} D_\infty(P_{\text{priv}} \| P_{\text{pub}}) \right) \mathbb{E}_{d \sim P_{\text{train}}} [\mathcal{L}(\theta, d)]. \quad (17)$$

1174 Thus, we can adapt proposition A.5 to evaluate the risk *only* on private data. Note that so far, the
1175 only assumption made on the difference between the data generating distributions I and II is that
1176 they share the same support. The following bound might be refined with additional assumptions,
1177 such as covariate shift or conditional shift.

1178 We can thus take the expectation of θ with respect to π_U to get

$$1180 \mathbb{E}_{\theta \sim \pi_U} [\mathbb{E}_{d \sim P_{\text{priv}}} [\mathcal{L}(\theta, d)]] \leq \exp \left(\frac{n_{\text{pub}}}{n_{\text{pub}} + n_{\text{r-priv}}} D_\infty(P_{\text{priv}} \| P_{\text{pub}}) \right) \mathbb{E}_{\theta \sim \pi_U} [\mathbb{E}_{d \sim P_{\text{train}}} [\mathcal{L}(\theta, d)]],$$

1182 and using proposition A.5 to upper bound $\mathbb{E}_{\theta \sim \pi_U} [\mathbb{E}_{d \sim P_{\text{train}}} [\mathcal{L}(\theta, d)]]$, we prove proposition 3.3:

$$\begin{aligned} 1184 \mathbb{E}_{\theta \sim \pi_U} [\mathbb{E}_{x \sim P_{\text{priv}}} [\mathcal{L}(\theta, x)]] &\leq \exp \left(\frac{n_{\text{pub}}}{n_{\text{pub}} + n_{\text{r-priv}}} D_\infty(P_{\text{priv}} \| P_{\text{pub}}) \right) \mathbb{E}_{\theta \sim \pi_R} [\mathbb{E}_{d \sim P_{\text{train}}} [\mathcal{L}(\theta, d)]] + \\ 1186 &\quad M \times \text{diam}(\Theta) \times \sqrt{\frac{1}{2} D_\alpha(\pi_R \| \pi_U)}. \end{aligned}$$

1188

Algorithm 1 Training with Projected Noisy Gradient Descent (PNGD)

1189

```

1:  $\theta_0 \sim \pi_0$  ▷ Sample from initialization distribution
2: for  $t = 0$  to  $T - 1$  do
3:    $g_t \leftarrow \nabla_{\theta} L_D(\theta_t)$  ▷ Compute gradient on full dataset
4:    $\xi_t \sim \mathcal{N}(0, 2\eta\sigma^2 I_d)$  ▷ Sample Gaussian noise
5:    $\theta_{t+1} \leftarrow \Pi_{\Theta}[\theta_t - \eta g_t + \xi_t]$  ▷ Update and project
6: end for
7: return  $\theta_T$ 

```

1190

1191

1192

1193

1194

1195

1196

1197

1198

Algorithm 2 Langevin Unlearning

1199

```

1:  $\theta_0^U \leftarrow \theta_T$  ▷ Initialize from trained model
2: for  $k = 0$  to  $K - 1$  do
3:    $g_k \leftarrow \nabla_{\theta} L_{D_{\text{retain}}}(\theta_k^U)$  ▷ Compute gradient on retain set only
4:    $\xi_k \sim \mathcal{N}(0, 2\eta\sigma^2 I_d)$  ▷ Sample Gaussian noise
5:    $\theta_{k+1}^U \leftarrow \Pi_{\Theta}[\theta_k^U - \eta g_k + \xi_k]$  ▷ Update and project
6: end for
7: return  $\theta_K^U$ 

```

1200

1201

1202

1203

1204

1205

1206

1207

1208

A.5 LANGEVIN UNLEARNING PSEUDO-CODE

1209

1210

1211

1212

A.6 DOMAINNET DATA

1213

1214

1215

1216

The following is a snippet of samples from the DomainNet dataset, where we extracted two domains, Clipart and Quickdraw. The classes are aggregated into 24 meta-classes Table 3, following (Peng et al., 2019).

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

Figure 4: The two domains of public and private data used for Sections 4.1 and 4.2 (Peng et al., 2019). Both datasets share the same number of classes, with Clipart being a collection of stylized images representing the private data, and Quickdraw representing a collection of hand-draw sketches.

1238

1239

1240

1241

A.7 DETAILS ABOUT THE RÉNYI ESTIMATION**A.7.1** NEURAL RÉNYI ESTIMATION

Following the works of Birrell et al. (2021; 2023), two variational representations of the Rényi divergence between two distributions P, Q have been proposed. The first draws inspiration from the Donsker–Varadhan dual representation (Donsker & Varadhan, 1975) of the KL divergence:

Figure 5: The two domains of public and private data used for Section 4.2 (Peng et al., 2019). Both datasets share the same number of classes, with Infograph being a collection of stylized images representing the public data, and Real representing a collection of real-life images.

Theorem A.2 (Donsker–Varadhan Rényi divergence (Birrell et al., 2021)). *Let P, Q be two distributions on (Ω, \mathcal{M}) and $\alpha \in \mathbb{R}$, $\alpha \neq 0, 1$. Then, for any set of functions Φ with $\mathcal{M}_b(\Omega) \subset \Phi \subset \mathcal{M}(\Omega)$,*

$$\frac{D_\alpha(P\|Q)}{\alpha} = \sup_{\phi \in \Phi} \left\{ \frac{1}{\alpha-1} \log \int e^{(\alpha-1)\phi} dP - \frac{1}{\alpha} \log \int e^{\alpha\phi} dQ \right\}. \quad (18)$$

If in addition (Ω, \mathcal{M}) is a metric space with the Borel σ -algebra, then Eq. (18) holds for all Φ satisfying $\text{Lip}_b \subset \Phi \subset \mathcal{M}(\Omega)$, where Lip_b denotes the set of bounded Lipschitz functions.

Here, $\mathcal{M}(\Omega)$ denotes the space of measurable real-valued functions on Ω , and $\mathcal{M}_b(\Omega)$ the subspace of bounded functions.

While this representation allows sample-based estimation, it involves exponential terms that yield high-variance estimates in practice. To mitigate this issue, Birrell et al. (2023) proposed a convex conjugate formulation:

Theorem A.3 (Convex conjugate Rényi divergence (Birrell et al., 2023)). *Let P, Q be probability distributions supported on Ω , with $P \ll Q$, and let $\mathcal{M}_b(\Omega)$ denote the space of bounded measurable functions. Then, for all $\alpha \in (0, +\infty) \setminus \{1\}$,*

$$\frac{D_\alpha(P\|Q)}{\alpha} = \sup_{g \in \mathcal{M}_b(\Omega), g < 0} \int g dQ + \frac{1}{\alpha-1} \int |g|^{\frac{\alpha-1}{\alpha}} dP + \frac{1}{\alpha} (\log \alpha + 1). \quad (19)$$

This convex conjugate formulation removes the exponential dependence and provides more stable numerical estimates, making it preferable for our setting.

Neural network parameterization. To approximate $\Phi = \{g \in \mathcal{M}(\Theta) : g < 0\}$ we use the class g_θ of two-layer MLPs with spectral normalization (Miyato et al., 2018), LeakyReLU activations, and a polysoftplus output activation as in Birrell et al. (2023). The polysoftplus activation offers superior numerical stability compared to ReLU. It is defined as

$$\text{polysoftplus}(x) = - \left(\frac{1}{1-x} \mathbf{1}_{x<0} + (1+x) \mathbf{1}_{x \geq 0} \right). \quad (20)$$

The discriminator network g_θ is trained to maximize the variational bound in Eq. (4) using samples $\{\theta_i^U\}_{i=1}^N \sim \pi_U^K$ and $\{\theta_j^R\}_{j=1}^N \sim \pi_R^{T+K}$. The optimization objective becomes:

$$\max_{\theta} \left\{ \frac{1}{N} \sum_{j=1}^N g_\theta(\theta_j^R) + \frac{1}{\alpha-1} \frac{1}{N} \sum_{i=1}^N |g_\theta(\theta_i^U)|^{\frac{\alpha-1}{\alpha}} + \frac{1}{\alpha} (\log \alpha + 1) \right\}. \quad (21)$$

To reduce estimator variance, we repeat the discriminator training five times with different random initializations and report the average. We use a learning rate of value 0.0001 with Adam optimizer (Kingma & Ba, 2017), and train the discriminators for 30000 epochs with batch size $b = 6000$.

1296 Table 3: Class aggregation for experimental dataset. Individual classes are grouped into 24 super-
1297 classes.
1298

1299 Superclass	1300 Individual Classes
1300 Furniture	1301 bathtub, bed, bench, ceiling fan, chair, chandelier, couch, door, dresser, fence, fireplace, floor lamp, hot tub, ladder, lantern, 1302 mailbox, picture frame, pillow, postcard, see saw, sink, sleeping bag, stairs, stove, streetlight, suitcase, swing set, table, 1303 teapot, toilet, toothbrush, toothpaste, umbrella, vase, wine glass
1303 Mammal	1304 bat, bear, camel, cat, cow, dog, dolphin, elephant, giraffe, hedgehog, horse, kangaroo, lion, monkey, mouse, panda, pig, 1305 rabbit, raccoon, rhinoceros, sheep, squirrel, tiger, whale, zebra
1305 Tool	1306 anvil, axe, bandage, basket, boomerang, bottlecap, broom, bucket, compass, drill, dumbbell, hammer, key, nail, paint can, 1307 passport, pliers, rake, rifle, saw, screwdriver, shovel, skateboard, stethoscope, stitches, sword, syringe, wheel
1307 Cloth	1308 belt, bowtie, bracelet, camouflage, crown, diamond, eyeglasses, flip flops, hat, helmet, jacket, lipstick, necklace, pants, 1309 purse, rollerskates, shoe, shorts, sock, sweater, t-shirt, underwear, wristwatch
1308 Electricity	1310 calculator, camera, cell phone, computer, cooler, dishwasher, fan, flashlight, headphones, keyboard, laptop, light bulb, 1311 megaphone, microphone, microwave, oven, power outlet, radio, remote control, spreadsheet, stereo, telephone, television, 1312 toaster, washing machine
1310 Building	1311 The Eiffel Tower, The Great Wall, barn, bridge, castle, church, diving board, garden, garden hose, golf club, hospital, 1312 house, jail, lighthouse, pond, pool, skyscraper, square, tent, waterslide, windmill
1312 Office	1313 alarm clock, backpack, binoculars, book, calendar, candle, clock, coffee cup, crayon, cup, envelope, eraser, map, marker, 1314 mug, paintbrush, paper clip, pencil, scissors
1313 Human Body	1315 arm, beard, brain, ear, elbow, eye, face, finger, foot, goatee, hand, knee, leg, moustache, mouth, nose, skull, smiley face, 1316 toe, tooth
1315 Road Transportation	1317 ambulance, bicycle, bulldozer, bus, car, firetruck, motorbike, pickup truck, police car, roller coaster, school bus, tractor, 1318 train, truck, van
1317 Food	1319 birthday cake, bread, cake, cookie, donut, hamburger, hot dog, ice cream, lollipop, peanut, pizza, popsicle, sandwich, steak
1318 Nature	1320 beach, cloud, hurricane, lightning, moon, mountain, ocean, rain, rainbow, river, snowflake, star, sun, tornado
1319 Cold Blooded	1321 crab, crocodile, fish, frog, lobster, octopus, scorpion, sea turtle, shark, snail, snake, spider
1320 Music	1322 cello, clarinet, drums, guitar, harp, piano, saxophone, trombone, trumpet, violin
1322 Fruit	1323 apple, banana, blackberry, blueberry, grapes, pear, pineapple, strawberry, watermelon
1323 Sport	1324 baseball, baseball bat, basketball, flying saucer, hockey puck, hockey stick, snorkel, soccer ball, tennis racquet, yoga
1324 Tree	1325 bush, cactus, flower, grass, house plant, leaf, palm tree, tree
1325 Bird	1326 bird, duck, flamingo, owl, parrot, penguin, swan
1326 Vegetable	1327 asparagus, broccoli, carrot, mushroom, onion, peas, potato, string bean
1327 Shape	1328 circle, hexagon, line, octagon, squiggle, triangle, zigzag
1328 Kitchen	1329 fork, frying pan, hourglass, knife, lighter, matches, spoon, wine bottle
1329 Water Transportation	1330 aircraft carrier, canoe, cruise ship, sailboat, speedboat, submarine
1330 Sky Transportation	1331 airplane, helicopter, hot air balloon, parachute
1331 Insect	1332 ant, bee, butterfly, mosquito
1332 Others	1333 The Mona Lisa, angel, animal migration, campfire, cannon, dragon, feather, fire hydrant, mermaid, snowman, stop sign, 1334 teddy-bear, traffic light

1336 This procedure used $N = 30,000$ model samples, which makes it computationally intensive and
1337 better suited for theoretical validation than for large-scale empirical benchmarking. Although reg-
1338 ularization and repeated runs alleviate variance, Rényi divergence estimation remains a statistically
1339 challenging task. Developing scalable and lower-variance estimators is therefore an important di-
1340 rection for future work.

1343 A.7.2 SAMPLING FROM π_U^K AND π_R^{T+K}

1345 We conduct experiments on the DomainNet dataset (24-class image classification) Fig. 4. We
1346 choose the domain Clipart as the private data domain, which are stylized images, and Quick-
1347 draw, a collection of hand-drawn sketches as the public domain. Image embeddings are extracted
1348 using DinoV2 (Oquab et al., 2024), a self-supervised vision transformer. We specifically use
1349 vit_small_patch16_224_dino (Caron et al., 2021). All images are resized to 224×224 prior to feature
extraction.

1350 On these embeddings, we train 30,000 linear classifiers on the full dataset $D = D_{\text{pub}} \cup D_{\text{priv}}$
 1351 for $T = 20$ iterations, and subsequently fine-tune them on the retain set $D_r = D \setminus D_{\text{forget}}$ for
 1352 $K \in \{1, 5, 10, 15\}$ additional iterations. This procedure yields 30,000 samples from the unlearning
 1353 distribution π_U^K .

1354 For comparison, we train another 30,000 linear classifiers directly on the retain set D_r for $T + K$
 1355 iterations, producing samples from the retraining distribution π_R^{T+K} . All models are trained using
 1356 the same projected noisy gradient descent (PNGD) update with noise scale $\sigma = 0.01$, learning rate
 1357 $\eta = 0.001$, batch size $b = 1024$, and radius $R = 1.0$ using SGD.

1358 To assess robustness across dataset splits, we fix the total training set size to $N_{\text{train}} = 42,000$, and
 1359 vary the public and forget set sizes as $(|D_{\text{pub}}|, |D_{\text{forget}}|) \in \{(10,000, 12,000), (15,000, 7,000),$
 1360 and $(20,000, 2,000)\}$. The remaining private data in the retain set is fixed to have size 20,000. The
 1361 resulting divergence estimates are reported in Figs. 2a and 2b.

1362 **A.7.3 PSEUDO-CODE**

1363 **Algorithm 3** Rényi Divergence Estimation via Variational Representation

1364 1: **Input:** Samples $\{\theta_i^R\}_{i=1}^N \sim \pi_R^{T+K}$, $\{\theta_j^U\}_{j=1}^N \sim \pi_U^K$, order α , discriminator architecture
 1365 2: Initialize discriminator network g_ϕ with spectral normalization
 1366 3: **for** epoch = 1 to num_epochs **do**
 1367 4: Sample minibatch from retraining samples $\{\theta_i^R\}$
 1368 5: Sample minibatch from unlearning samples $\{\theta_j^U\}$
 1369 6: Compute variational objective:

$$1370 \quad \mathcal{L} = \frac{1}{N} \sum_{i=1}^N g_\phi(\theta_i^R) + \frac{1}{\alpha-1} \frac{1}{N} \sum_{j=1}^N |g_\phi(\theta_j^U)|^{\frac{\alpha-1}{\alpha}} + \frac{1}{\alpha} (\log \alpha + 1) \quad (22)$$

1371 7: Update ϕ to maximize \mathcal{L} via gradient ascent
 1372 8: **end for**
 1373 9: **Output:** Estimated divergence $\widehat{D}_\alpha(\pi_U^K \parallel \pi_R^{T+K}) = \widehat{\mathcal{L}}^{1/\alpha}$

1380 **A.8 EVALUATION WITH U-LiRA**

1381 **A.8.1 U-LiRA DETAILS**

1382 U-LiRA, introduced by Hayes et al. (2025) as an adaptation of the LiRA membership inference
 1383 attack (Carlini et al., 2021) to the unlearning setting, formalizes unlearning evaluation as a binary
 1384 hypothesis test. The goal is to distinguish between two distributions over model parameters: the
 1385 unlearning distribution π_U^K , obtained by training on the full dataset and subsequently applying the
 1386 target unlearning algorithm to remove the influence of the forget set, and the retraining distribution
 1387 π_R^{T+K} , obtained by training from scratch without the forget set. Letting $P(\theta \mid \cdot)$ denote the like-
 1388 lihood of observing model parameters θ under a given distribution, the Neyman–Pearson lemma
 1389 (Neyman & Pearson, 1933) implies that the most powerful test for this discrimination problem is
 1390 achieved by thresholding the likelihood ratio

$$1391 \quad \frac{P(\theta \mid \pi_U^K)}{P(\theta \mid \pi_R^{T+K})}$$

1392 for model parameters θ .

1393 Since directly computing $P(\theta \mid \pi_U^K)$ and $P(\theta \mid \pi_R^{T+K})$ is infeasible in practice, U-LiRA employs
 1394 a series of approximations. First, the two distributions are approximated empirically by sampling:
 1395 the adversary trains N models under π_U^K (full training followed by unlearning) and N models under
 1396 π_R^{T+K} (training from scratch without the forget set).

1397 To reduce the sample complexity required for a low-variance estimate, U-LiRA projects models into
 1398 a one-dimensional representation space via a statistic $f : \Theta \rightarrow \mathbb{R}$ (since we only run the attack on
 1399 forget sets of size 1, we follow Hayes et al. (2025) and choose f to be the model’s confidence score

1404 on the forget example, rescaled by the logit function $\phi(\omega) = \ln\left(\frac{\omega}{1-\omega}\right)$). The test is then conducted
 1405 on the surrogate likelihood ratio
 1406

$$\frac{P(f(\theta)|f(\pi_U^K))}{P(f(\theta)|f(\pi_R^{T+K}))}.$$

1407 As a final simplifying approximation, U-LiRA models the projected distributions as Gaussians
 1408
 1409

$$f(\pi_U^K) \approx \mathcal{N}(\mu_U, \sigma_U^2), \quad f(\pi_R^{T+K}) \approx \mathcal{N}(\mu_R, \sigma_R^2),$$

1410 where the parameters (μ_U, σ_U^2) and (μ_R, σ_R^2) are estimated directly from the N sample models of
 1411 each distribution.
 1412

1413 In 4.3, we presented the attack through the lens of Bayes' rule (following Algorithm 1 of Hayes
 1414 et al. (2025)), providing a more intuitive explanation for readers less familiar with hypothesis testing
 1415 concepts.
 1416

1417 A.8.2 EXPERIMENTAL SETUP

1418 We evaluate unlearning in binary sentiment classification of IMDB reviews (Maas et al., 2011), with
 1419 Amazon product reviews (Zhang et al., 2015) as public data. Models are 2-layer LSTMs (Hochreiter
 1420 & Schmidhuber, 1997), trained to minimize cross-entropy loss with projected noisy gradient descent
 1421 (Gaussian noise variance $\sigma^2 = 0.01$, projection onto an ℓ_2 ball of radius 100).
 1422

1423 For each trial, the forget set consists of a 100 datapoints sampled uniformly from the IMDB reviews
 1424 dataset. Following the U-LiRA framework, we generate 75 model samples from two distributions:
 1425

- 1426 • **Unlearning distribution** π_U^K : models trained on 25,000 private datapoints plus the forget
 1427 set for T epochs, then finetuned without the forget set for K epochs.
- 1428 • **Retraining distribution** π_R^{T+K} : models trained from scratch on the same 25,000 private
 1429 datapoints (excluding the forget set) for $T + K$ epochs.
 1430

1431 We repeat this sampling process both with and without the inclusion of the 50,000 public datapoints
 1432 during training and unlearning.
 1433

1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457