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ABSTRACT

Named entity recognition (NER), a sequence labelling/token classification task,
has been traditionally considered a multi-class classification problem, the learn-
ing objective of which is to either optimise the multi-class cross entropy loss (CE)
or train a conditional random field (CRF). However, these standard learning ob-
jectives, though scalable to large NER datasets and often used in state-of-the-art
work, largely ignore the problem of imbalanced label distributions that is inherent
in all NER corpora. We show this leads to degraded performance in low-resource
settings. While reformulating this standard multi-class labelling problem as a one-
vs-all (OVA) learning problem, we propose to optimise the NER model with an
AUC-based alternative loss function that is more capable of handling imbalanced
datasets. As OVA often leads to a higher training time compared to the standard
multi-class setting, we also develop two training strategies, one trains together the
labels that share similar linguistic characteristics, and another employs a meta-
learning approach to speed convergence. In order to motivate some of our experi-
ments and better interpret the results, we also develop a Bayesian theory for what
is the AUC function during learning. Experimental results under low-resource
NER settings from benchmark corpora show that our methods can achieve consis-
tently better performance compared with the learning objectives commonly used
in NER. We also give evidence that our methods are robust and agnostic to the
underlying NER embeddings, models, domains, and label distributions. The code
to replicate this work will be released upon the publication of this paper.

1 INTRODUCTION

Named Entity Recognition (NER), a fundamental NLP task, aims to detect the semantic category of
named entity (NE), e.g., location, organization, or person. Being an important prerequisite for many
language applications, NER is deeply integrated in several NLP tasks such as information extraction
(Ritter et al., 2012), information retrieval (Banerjee et al., 2019), task oriented dialogues (Peng et al.,
2021), and knowledge base construction (Etzioni et al., 2005). Recently, NER has gained signifi-
cant performance improvements with the advances of state-of-the-art (SOTA) pre-trained language
models (PLMs) (Devlin et al., 2019). Unfortunately, these PLMs rely on sizable training datasets
to achieve high performance and the lack of such datasets in the specialized low resource domains
(e.g., biomedical domain) can often lead to sub-optimal performance (Yaseen & Langer, 2021).

As NER models rely heavily on human annotated data which can be expensive, time-consuming
and often infeasible without domain expertise, existing machine learning approaches such as do-
main adaptation (Li et al., 2020), and data augmentation (Zhou et al., 2022) have been adapted to
NER to alleviate this dependence on labeled data. Nonetheless, these approaches largely ignore the
imbalanced label distribution that inherently exists in most NER corpora. Table 1 documents this
imbalance issue where the majority of labels in the NER corpora is of non-entity type “O”, providing
NER models with little learning signals. For specialized biomedical corpora such as NCBI (Doğan
et al., 2014), and s800 (Pafilis et al., 2013), the corpus can be strongly imbalanced with more than
90% of its labels tagged as “O”. Although this problem can be mitigated given sizable training sets,
most specialized domains lack such datasets (Giorgi & Bader, 2019; Yaseen & Langer, 2021).
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Figure 1: One-vs-All predicted probability on BIO-tag of each tokens for CoNLL 2003 test data. We
visualise both the normal and deep ensemble performance of AUC and BCE loss/objective functions
trained with 100 sentences. While the binary classifiers trained with BCE are not confident in
classifying any tokens, as all the predictions are made to the lower-left corner. In contrast, the same
binary classifiers can learn to classify the tokens appropriately if trained with the AUC loss function.

With inherent imbalanced label distributions for NER corpora, we argue that even though standard
learning objective functions (i.e., multi-class cross entropy loss or conditional random fields), given
adequate annotated training data, are able to produce well-performing token classifiers or sequence
labelers, their performance can substantially degrade in the low-resource settings. Consequently,
we propose to directly address the imbalanced problem by training NER models with a surrogate
loss that maximizes the area under ROC curve (AUC) score. AUC maximization has been shown
to greatly improve the model prediction for imbalanced label distribution tasks (Gao et al., 2013;
Ying et al., 2016; Yuan et al., 2021a; Huang et al., 2022). Unfortunately, most recent practical
AUC surrogate loss/objective functions are solely designed to solve the binary classification task,
so are not directly applicable to NER. We thus reformulate the standard sequence tagging problem
as a one-vs-all (OVA) learning problem. Under the OVA setup, each unique label (e.g., B-PER, I-
ORG) will have its own binary classifier, which can be individually learned using an AUC objective
function. We did not use the one-vs-other (OVO) reformulation, with well developed theory Yang
et al. (2021), because of its computational complexity.

However, it is not unknown that OVA often suffers from the following two weaknesses: (i) OVA
has higher training time compared to the traditional multiclass setup since each binary classifier
should be independently trained, and (ii) OVA is not data efficient for learning from imbalanced
data and often produces less accurate classifiers compared to the multiclass setup (Liu et al., 2017b),
Figure 1 shows that the predictive confidence of OVA, learnt with the binary cross entropy loss
(BCE), always concentrates on the lower probability region (i.e., the lower left corner). We alleviate
the first weakness with two new training strategies: one groups labels that share similar linguistic
characteristics and trains their classifiers together; another adapts the idea of meta-learning (Finn
et al., 2017) by selecting a random batch of binary classifiers for the model to learn. For the second
weakness, we tune the binary classifier with the AUC surrogate loss function, which has shown its
robustness/resilience to imbalanced data (Ying et al., 2016; Yuan et al., 2021a;b; Huang et al., 2022).

To demonstrate the effectiveness of our proposed method, we conduct extensive empirical studies
on benchmark corpora that are from both generic domains, e.g., CoNLL 2003 and OntoNotes5, and
specialized domains, e.g., NCBI and s800. Additionally, we implement several SOTA model archi-
tectures and embeddings to verify the agnosticity of our method. Our studies reveal that our OVA
AUC NER setups, under the low resource settings, exhibit significant performance improvement
over the standard multiclass objective functions by a large margin, regardless of the underlying NER
embeddings, models, corpora, and label distributions. We also provide evidence to the theoretical
proof to derive the ranking function that gives the optimal AUC score under Bayesian context.

We summarize the contributions of our work as follows:

• Reformulation of NER as an OVA task: We transform NER from a standard multi-class learning
problem to an one-vs-all learning problem. Each unique label in the corpus will have its own
binary classifier. This simple OVA reformulation makes the AUC maximization feasible for NER.

• Effectiveness of AUC maximization for NER under OVA: We show that learning the binary
classifiers with AUC objective function can lead to well-tuned classifiers for the imbalanced label
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Dataset # Sentences # Tokens # Labels % label (B/I/O)
Train/Dev/Test Train/Dev/Test Train Dev Test

OntoNotes5 20,000/3,000/3,000 364,344/54,372/55,754 37 6.2/4.8/89.0 6.2/4.8/89.0 6.1/4.9/89.0

CoNLL 2003 14,040/3,249/3,452 203,589/51,319/46,376 9 11.5/5.2/83.3 11.6/5.1/83.3 12.2/5.3/82.5

NCBI 5,424/923/940 135,597/23,969/24,481 3 3.8/4.5/91.7 3.3/4.5/92.2 3.9/4.5/91.6

s800 5,733/830/1,630 147,205/22,166/42,287 3 1.7/2.3/96.0 1.7/2.2/96.1 1.8/2.5/95.7

Table 1: Summary of dataset distribution. Please note that we use BIO here for ease of reference,
detailed summarization for each corpus label distribution can be found in Table 4 in the Appendix.

distribution problem. This gives evidence that AUC objective function naturally works under the
OVA setup, regardless of the inherent weakness of OVA to imbalanced label distribution problem.

• Bayesian AUC Maximization: We prove that ensembling provides a Bayes optimal AUC ranking
function, and thus use it to push the performance of the binary classifiers, and consequently the
OVA NER model classification performance.

2 RELATED WORK

Acting as an integral part of NLP systems, NER can include semantic categorization of generic
NEs (e.g., person, organization, and location) and/or domain-specifc NEs (e.g., virus, protein, and
genome) (Li et al., 2020). Given a list of tokens x = {x1, . . . , xl}, NER models are expected to
output a list of corresponding labels y = {y1, . . . , yl}. Due to the nature of sequence labelling,
NER can be a challenging task for two reasons (i) most languages and domains lack sizable training
datasets; and (ii) the NER corpora label distribution can be highly imbalanced (Lample et al., 2016).

The OVA approach is mostly used to expand binary models to multi-class classifications, such as
logistic regression, support vector machines, etc (Galar et al., 2011; Liu et al., 2017a), with the OVO
approach seeing little use due to its higher training time. The objective of OVA is to divide a K-class
problem into K binary problems. For instance, K binary classifiers must be built, where K is the
number of classes, and the i-th classifier is trained with positive data from class i and negative sam-
ples from the other K − 1 classes. When the classifier evaluates an unclassified sample, the highest
confidence value of the sample is considered to have labelled corresponding to the specified class.
In recent years, researchers have discovered how OVA methods can accomplish various tasks with
deep neural networks. They found that OVA can improve the ability to identify more relevant hidden
representations for unidentified instances than the popular Softmax function (Jang & Kim, 2020).
It also improves calibration on image classification, outlier detection, and dataset shift tasks, reach-
ing Softmax’s predictive performance without increasing training or test time complexity (Padhy
et al., 2020; Saito & Saenko, 2021; Lübbering et al., 2021). Although the algorithm is simple, it
shows impressive results, demonstrating that its performance is usually at least as accurate as other
multi-class algorithms when appropriately tuned (Rifkin & Klautau, 2004).

AUC (Area Under ROC Curve) has been traditionally treated as an important measuring criterion
for model classification performance (Freund et al., 2003; Kotlowski et al., 2011; Zuva & Zuva,
2012). Due to its non-convex, and discontinuous nature, most works consider direct optimization
of AUC score an NP-hard problem (Yuan et al., 2021a). Freund et al. (2003) tried to alleviate this
computation difficulty through a pairwise surrogate loss, while Zhao et al. (2011) implemented a
hinge loss. However, both of these surrogate losses lack scalability to large datasets and models.
This led to the development of the least-square surrogate loss (Gao et al., 2013). Recent research on
AUC maximization further optimize the least-square surrogate loss via deep margin surrogate loss
(Yuan et al., 2021a) and compositional training (Yuan et al., 2021b). Overall, AUC maximization is
documented to work well when there exists an imbalanced label distribution, or the AUC score is
the default metric for evaluating and comparing different methods (Yuan et al., 2021a). To the best
of our knowledge, this is the first work exploring AUC maximization in the context of NER tasks.

Theoretical results on AUC show consistency, training models under some univariate losses (not
pairwise like AUC) is asymptotically equivalent to AUC training (Gao & Zhou, 2015), and the
results have been extended to the OVO case Yang et al. (2021). Thus, special purpose AUC training
should not be effective for larger data sets. Theory for Bayes optimal AUC scoring for finite data,
however, has not been developed to the best of our knowledge.
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3 AUC MAXIMIZATION FOR NER

Given a set of training data S = {(x1,y1) , . . . , (xn,yn)}, where xi = x1
i , . . . , x

l
i represents the

i-th training example (i.e., a sentence of length l), and yi ∈ {B, I,O}l denotes its corresponding
sequence of labels, we would like to learn the objective mapping function h : X → Y . This
objective mapping function, traditionally learned with either CRFs or the CE loss, is parameter-
ized with w ∈ Rd, i.e., hw(x) = h(w,x). Lastly, different corpora can have different label
set, e.g., yi ∈ {B-ORG,B-PER,B-MISC,B-LOC, I-ORG, I-PER, I-MISC, I-LOC,O} for CoNLL
2003 (Tjong Kim Sang & De Meulder, 2003); thus, yi ∈ {B, I,O}l is mainly for ease of reference.

3.1 ONE-VS-ALL AUC MAXIMIZATION FOR NAMED ENTITY RECOGNITION

To make direct AUC maximization applicable to NER, we first reformulate the standard NER multi-
class setup as a one-vs-all learning problem. Consequently, each unique label is given its own binary
classifier that can be learned using the AUC objective function. For instance, given the “O”-tag, the
label of this tag is yOi ∈ {−1, 1}l, while the parameter of this task is wO = {θ, ωO}. θ denotes the
shared embedding and pretrained language model parameters, while ωO denotes the parameters for
the binary classifier for the “O”-tag. After the reformulation, we can maximize the AUC score of
each binary classifier via the robust and practical deep AUC margin loss (DAM) (Yuan et al., 2021a).

AUCM(wO)

= E
[(
mO − hwO(x) + hwO

(
x′))2 | yO = 1, y′

O = −1
]

(1a)

= min
aO,bO

A1(wO) +A2(wO) + (mO − aO + bO)
2 (1b)

= min
aO,bO

A1(wO) +A2(wO) + max
αO≥0

{
2αO(mO − aO + bO)− αO

2} , (1c)

where A1(wO) = E[h2
wO

(x) | yO = 1]−a2O, A2(wO) = E[h2
wO

(x) | yO = −1]− b2O, and mO is the
margin that aims to push the expected prediction scores of negative and positive class far from each
other (Yuan et al., 2021a). Examining equation 1, the minimization problem of aO and bO is achieved
when aO = a(wO) = E[hwO(x) | yO = 1], and bO = b(wO) = E[hwO(x

′) | yO = −1] respectively
(Ying et al., 2016; Yuan et al., 2021a). Thus, we expect that minimizing equation 1 with respect
to wO can produce a well-tuned binary classifier for the imbalanced “O”-tag prediction. Given K
unique labels, we can define K similar learning objective functions. Under OVA, these K objective
functions can be independently minimized to produce the optimal binary classifier for each label.

At prediction time, we evaluate the individual classifiers by following the maximum confidence
strategy (Galar et al., 2011) to generate the prediction tags expected by the corpus label set.

ŷi = argmax
1...K

[
hw∗

1
(xi) , . . . , hw∗

K
(xi)

]
, (2)

where w∗
k represents the optimal parameters learnt by minimizing equation 1 for the k-label classifier

and hw∗
k
(xi) represents the probability that the xi token belongs to class k. We acknowledge that

maximum confidence strategy, although producing the appropriate label predictions, ignores the
inherent weakness of OVA, i.e., OVA can lead to confusion areas where (i) two or more binary
classifiers can be confident that the sample belong to their classes, or (ii) no classifiers are confident
enough to claim the sample, especially under the imbalanced settings (Rifkin & Klautau, 2004; Liu
et al., 2017b). However, since AUC maximization can lead to well-tuned binary classifiers under the
imbalanced settings, we argue that this weakness should be naturally mitigated. Figure 1 shows that
the NER model, trained with the AUC surrogate loss under the OVA setup, leads to smaller confusion
areas (few samples in the lower left region) compared to the cross entropy loss, indicating that the
binary classifiers, learnt with the AUC surrogate loss function, are more well tuned than those learnt
with the cross entropy loss. More statistical results/discussions can be found in subsection 5.3.

3.2 BAYESIAN OPTIMAL AUC RANKING FUNCTION

Consider a standard Bayesian learning context: assume the data distribution Pr (x) is known but we
do not know the class distribution, though have a Bayesian formulation for it, for instance a posterior
distribution Pr (w) for the weights of the class distribution, Pr (y | x,w). A reasonable theoretical
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question to ask in this Bayesian context is what function h(x) will result in the maximum posterior
expected AUC given the common definition of AUC of

AUC = Pr
(
h(x) ≥ h

(
x′) | y = 1, y′ = −1

)
(3)

The following theorem provides an answer.
Theorem 1. In the Bayesian context above with a posterior distribution Pr (w), the posterior
estimate of AUC can only be optimal when h(x1) = h(x2) implies Ew [Pr (y = 1 | x1,w)] =
Ew [Pr (y = 1 | x2,w)].

This means that any monotonic function of Ew [Pr (y = 1 | x,w)] will work as the optimal h(x). In
other words, the standard posterior Bayesian classifier also achieves the optimal posterior estimate of
AUC. In our case we use a common simple approximation, ensembling (Lakshminarayanan et al.,
2017), to implement this.

To prove the theorem, we first present a simpler case, where we know the conditional distribution,
Pr (y | x), so there is no learning involved. This result aligns with prior theory of AUC consistency
(Gao & Zhou, 2015). It also immediately follows that any strictly proper scoring rule Gneiting &
Raftery (2007), including the majority of deep learning objectives as well as surrogate losses in AUC
consistency theory Gao & Zhou (2015), can be used for asymptotically optimal AUC scoring. That
is, AUC consistency theory becomes redundant once you know the Bayes optimal classifier yields
optimal AUC.
Lemma 2. Consider AUC defined in terms of a scoring function h(x). What function h(x) gives
the largest AUC? AUC can only be optimal when for any x1 and x2, h(x1) = h(x2) implies
Pr (y = 1 | x1) = Pr (y = 1 | x2).

Proof of Lemma 2. To prove this define AUC as the limit of a sigmoid function, AUC =
lima→0+ AUCa, where AUCa and its differential are given by

AUCa =

∫∫
1

1 + e(h(x1)−h(x2))/a
dp(x1 | y = 1)dp(x2 | y = −1) (4)

δAUCa = −
∫∫

(δh(x1)− δh(x2))

a
qa(x1,x2)(1− qa(x1,x2))dp(x1 |y = 1)dp(x2 |y = −1) (5)

where qa(x1,x2) =
1

1+e(h(x1)−h(x2))/a . We can split up the terms in δh(x1) and δh(x2). Consider
the second, exchange x1 and x2 and use the symmetry of x1,x2 in qa(x1,x2)(1− qa(x1,x2)),∫∫

1

a
δh(x2)qa(x1,x2)(1− qa(x1,x2)) dp(x1 |y = 1)dp(x2 |y = −1)

=

∫∫
1

a
δh(x1)qa(x1,x2)(1− qa(x1,x2)) dp(x2 |y = 1)dp(x1 |y = −1) (6)

Substituting back into (4), and replacing p(x |y = 1) = p(y=1|x)
p(y=1) p(x), yields δAUCa

=

∫∫
δh(x1)

a

qa(x1,x2)(1− qa(x1,x2))

p(y = 1)p(y = −1)

(p(y = 1 | x2)p(y = −1 | x1)− p(y = 1 | x1)p(y = −1 | x2)) dp(x1)dp(x2)

=

∫∫
δh(x1)

a

qa(x1,x2)(1− qa(x1,x2))

p(y = 1)p(y = −1)
(p(y = 1 | x2)− p(y = 1 | x1)) dp(x1)dp(x2) (7)

Consider the quantity of 1
aqa(x1,x2)(1 − qa(x1,x2). This approaches zero exponentially as

|h(x1) − h(x2)| ≫ a and is O(1/a) when |h(x1) − h(x2)| ≤ O(a). Thus the dominant con-
tribution to the integral δAUCa comes from the region where h(x1) ≈ h(x2), but the integral itself
will be O(1/a). Now, if p(y = 1 | x1) ̸= p(y = 1 | x2), then p(y = 1 | x2)− p(y = 1 | x1) ̸= 0
and δAUCa → 1

aC as a → 0 for some non-zero constant C. Thus AUC can only have an optimum
when h(x1) = h(x2) implies Pr (y = 1 | x1) = Pr (y = 1 | x2).

Proof of Theorem 1. Modify the previous proof. First add the parameters w to the right hand side of
Pr (y = 1 | x) and Pr (x | y = 1), yielding Pr (y = 1 | x,w) and Pr (x | y = 1,w). Now rewrite
equation 4. denoting this as AUCa,w. The Bayesian posterior estimate of AUC becomes AUC =
lima→0 Ew [AUCa,w]. The final expression above for AUCa is linear in p(y = 1 | x,w), while
qa(x1,x2) and p(x) do not contain w. Thus, the expectation Ew[·] can be carried through and the
same logic applies.
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4 EXPERIMENTAL SETTINGS

Domains and Corpora: We used corpora from both the general domain and the biomedical domain
to benchmark the NER model performance. Table 1 and Table 4 summarize the label distribu-
tion statistics for these corpora. Both CoNLL 2003 (Tjong Kim Sang & De Meulder, 2003) and
OntoNotes5 (Weischedel et al., 2014) are benchmark corpora from the general domains for SOTA
NER works. Whereas NCBI (Doğan et al., 2014), and s800 (Pafilis et al., 2013) have been used in
many SOTA works in biomedical named entity recognition (bioNER) (Xu et al., 2019; Lee et al.,
2019). As these corpora are varying in terms of label distribution and linguistic characteristic, they
serve to substantiate the usefulness of our method regardless of the underlying corpora or domains.

Model Architecture and Embedding: For embeddings and model architectures, we focused on
the state-of-the-art NER and bioNER architectures and embeddings. CoNLL 2003 and OntoNotes5
are trained with “bert-base-cased” transformers (Devlin et al., 2019), while NCBI and s800 are
trained with “biobert-base-cased-v1.1” (Lee et al., 2019) to avoid out-of-vocabulary (OOV) issues.

Low-Resource and Imbalanced Data Distribution Settings: We evaluated the performance of our
proposed OVA AUC NER methods and selected baselines under the following experimental settings

• The size of training set S: In order to simulate the low-resource scenarios, we used training set S
with size ∈ {20, 50, 100, 200, 300, 400, 500}. We then trained our methods and all the baselines
on 10 random training partitions of the same size and investigated their average F1-performance.

• We used an imbalance entity tag generator to sample S that contains {1, 2, 5, 10} percentage
of entity-type tokens, i.e., tokens with labels that are not “O”. By simulating for different data
distributions, we can investigate the robustness of our methods under different distribution setups.

Baselines: For our baselines, the following traditional learning objective functions will be selected

• CE: The standard multiclass cross entropy loss, most commonly used in SOTA NER works, was
used as one of the major baselines to verify and establish the significance/impact of our methods.

• CRFs: Representing our second major baseline, CRFs have been traditionally used in many NER
works, such as those of (Lample et al., 2016; Xu et al., 2019). As CRFs produce a sequence la-
beller instead of a token classifier, we also used BiLSTM to push the performance of this baseline.

• OVA-BCE: This is our last baseline. This baseline is to indicate the ineffectiveness of binary cross
entropy loss (BCE) as an objective function in OVA NER setups under the low-resource settings.

OVA AUC NER: As OVA has higher training time compared to multi-class CE since each binary
classifier should be independently trained, we consider the following methods to alleviate this issue

• OVA-AUC: We group the binary classifiers for labels that share similar linguistic characteristics
(e.g., B-PER, B-ORG, B-MISC and B-LOC for CoNLL 2003) and train their classifiers together.

• OVA-AUC-MAML: We apply first-order meta-learning (MAML) (Finn et al., 2017; Nichol et al.,
2018) and sample a random batch of m binary classifiers in each iteration for the model to learn.

Please note that our work compares between the baseline objective functions and our OVA AUC
objective functions; thus, all objective functions share the same embeddings and language model,
e.g., Bert-CE, Bert-CRF, and Bert-BiLSTM-CRF v.s. Bert-OVA-AUC and Bert-OVA-AUC-MAML.

5 EXPERIMENTAL RESULTS & DISCUSSIONS

5.1 LOW-RESOURCE & ENSEMBLE STUDIES

Using the results from both Figure 2 and Table 2, we have the following observations:

• CE vs. OVA-AUC: Under extreme low-resource scenarios (i.e., size {20, 50}), OVA-AUC out-
performs CE by a significant margin, with the average F1-performance difference reaching 30%.
When the training set size increases, OVA-AUC still exhibits substantial gains compared to CE at
the 95% level of confidence the vast majority of the time. This indicates that OVA-AUC is a supe-
rior alternative to the standard multi-class CE objective function for low-resource NER scenarios.

• CRF and BiLSTM-CRF vs. OVA-AUC: It is apparent that OVA-AUC significantly outperforms
CRF in all scenarios. As CRF is a sequence labeler, we additionally adopt BiLSTM to improve this
baseline’s performance. Nevertheless, based on the findings, we believe that OVA-AUC should
remain a superior solution to both CRF and BiLSTM-CRF under the low-resource NER scenarios.
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Figure 2: Learning curves of the average performance taken from 10 random training partitions of
each training set S size for each loss/objective function. The error bands indicate the 95% confidence
level of the scores. The title of the plot indicates the corpus, and the label distribution in BIO format.
The embedding and language model used for CoNLL 2003 and OntoNotes5 is “bert-base-cased”
(Devlin et al., 2019) while that of NCBI and s800 is “biobert-base-cased-v1.1” (Lee et al., 2019).

Training Size 20 50 100 200 300 400 500
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5 CE 0.00600.0001 0.00610.0001 0.00890.0019 0.42110.0073 0.50210.0102 0.57270.0048 0.59440.0056

OVA-AUC 0.06650.0074 0.19260.0120 0.33570.0133 0.51980.0099 0.54180.0119 0.58570.0092 0.60780.0068
OVA-AUC-MAML 0.06220.0100 0.19340.0123 0.33400.0123 0.45730.0086 0.50220.0096 0.57220.014 0.59730.0134
CE-ENS 0.00700.0003 0.00680.0002 0.01420.0027 0.45920.0081 0.53540.0097 0.59710.0052 0.61790.0051
OVA-AUC-ENS 0.09610.0126 0.23410.0125 0.36890.0140 0.52370.0100 0.57650.0084 0.60670.0070 0.62660.0051

OVA-AUC-MAML-ENS 0.09750.0142 0.24570.0166 0.37360.0135 0.49410.0081 0.54990.0108 0.60320.0079 0.62390.0053

C
oN

L
L

20
03

CE 0.03380.0003 0.18300.0439 0.40430.0339 0.62480.0131 0.67930.0094 0.71780.0125 0.72480.0127
OVA-AUC 0.30170.0266 0.49280.0280 0.62180.0106 0.71450.0078 0.74360.0121 0.76360.0147 0.76500.0103
OVA-AUC-MAML 0.32130.0329 0.49970.0268 0.62590.0197 0.71670.0083 0.74370.0112 0.76510.0148 0.77220.0111
CE-ENS 0.06080.0050 0.22480.0431 0.44440.0292 0.65210.0117 0.71040.0130 0.74430.0143 0.75150.0139
OVA-AUC-ENS 0.32270.0957 0.53080.0213 0.64660.0101 0.71760.0079 0.75150.0118 0.76930.0145 0.77390.0117
OVA-AUC-MAML-ENS 0.34530.0354 0.52590.0250 0.63810.0155 0.72250.0088 0.76190.0109 0.77030.0137 0.78430.0122

N
C

B
I

CE 0.02330.0018 0.12410.0227 0.37460.0252 0.61980.0110 0.65360.0125 0.68190.0133 0.70890.0120
OVA-AUC 0.34510.0399 0.53580.0218 0.64470.0129 0.72270.0042 0.74380.0056 0.74910.0089 0.75800.0076
OVA-AUC-MAML 0.34130.0420 0.52670.0231 0.64380.0123 0.71880.0038 0.73270.0065 0.75820.0046 0.76230.0090
CE-ENS 0.06460.0020 0.12310.0204 0.41430.0245 0.65510.0095 0.68330.0070 0.70870.0064 0.73000.0076
OVA-AUC-ENS 0.37460.0382 0.56050.0221 0.6661 0.0118 0.73220.0046 0.75010.0051 0.75800.0084 0.76920.0074

OVA-AUC-MAML-ENS 0.37160.0416 0.56910.0224 0.66460.0083 0.73200.0055 0.75110.0052 0.75940.0060 0.76680.0072

s8
00

CE 0.01600.0032 0.00320.0116 0.13680.0302 0.43300.018 0.47340.0177 0.50200.0147 0.51890.0120
OVA-AUC 0.18690.0183 0.30090.0331 0.41690.0250 0.53870.0152 0.55320.0147 0.56340.0123 0.56770.0137
OVA-AUC-MAML 0.16790.0204 0.29410.0358 0.43310.0213 0.53840.0171 0.55430.0139 0.56190.0132 0.58020.0133
CE-ENS 0.02240.0012 0.03470.0107 0.14230.0337 0.45040.0153 0.48410.0188 0.50850.0143 0.52560.0128
OVA-AUC-ENS 0.18720.0179 0.32380.0304 0.44470.0228 0.54200.0152 0.55950.0151 0.57060.0119 0.58010.0130
OVA-AUC-MAML-ENS 0.18630.0218 0.33420.0304 0.45580.0252 0.54070.0147 0.56280.0152 0.57410.0130 0.58820.0134

Table 2: Average test F1-performance taken from 10 random partitions of different training set sizes
for different corpora. The non-parametric bootstrapped standard errors from these experiments are
under-scripted. The best performance for each setting is bold while the second best is underlined.

• OVA-AUC vs. OVA-AUC-MAML: Although the F1-score of OVA-AUC can be higher on av-
erage than that of OVA-AUC-MAML under some settings, the difference between the two ap-
proaches is not significant, except for OntoNotes5 with 200 training sentence size. As OVA-AUC
groups the labels that share similar linguistic characteristics (e.g., B-PER, B-ORG) and trains their
classifiers together, the difference can be attributed to longer training time as shown in Table 6 in
the Appendix. Since OVA-AUC-MAML performs on par with OVA-AUC, it consequently out-
performs all the baselines in most low-resource NER settings across all our benchmark corpora.

From the literature, AUC can be further enhanced via compositional training by alternating between
the standard multi-class cross entropy loss function and the AUC loss function during training as
proven by Yuan et al. (2021b). Consequently, we also apply compositional training in our OVA
NER methods (COMAUC) and provide the results for these experiments in the Appendix, Figure 5.

Motivated by Theorem 1, we generate the posterior distribution via deep ensemble to derive the
optimal ranking function h(x) for the binary classifiers. We show the empirical results in Table 2,
from which we can observe that knowing the posterior distribution indeed improves the performance
of the individual classifiers, raising the NER model prediction performance. As the number of
ensembles used is 5, more performance gain can be obtained by increasing the size of ensembles.

In our results, most of the largest gains from our OVA AUC NER methods compared to the baselines
are observed when the training size is of {20,50,100} and as the size increases, the performance dif-
ference begins to shrink. As mentioned in subsection 3.2, an asymptotically consistent estimator can
generate an approximately optimal ranking function and no AUC optimization is required. Further-
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Figure 3: Average performance taken from 10 random training partitions of each training set S size
for each loss/objective function. The entity tag size represents the percentage of entity-tokens to the
total number of tokens in the training set S. The error bars indicate the 95% confidence level of the
scores. The embedding and language model for CoNLL 2003 and OntoNotes5 is “bert-base-cased”
(Devlin et al., 2019) while that for NCBI and s800 is “biobert-base-cased-v1.1” (Lee et al., 2019).

more, on the basis of the F1-performance on CoNLL 2003, similar observations can be made for
ensemble training where no noticeable differences can be observed for our OVA AUC NER methods
at size of 500 sentences. As OntoNotes5 is a harder corpus to learn (37 classes for OntoNotes5 v.s.
9 classes for CoNLL 2003, see Table 4), we surmise that it would take a bigger training data for us
to see no noticeable differences between ensemble and non-ensemble training. Overall, we believe
the results give evidence that both AUC and ensemble training are important to derive the optimal
classifiers under the low-resource scenarios.

5.2 IMBALANCED DATA DISTRIBUTION STUDIES

We deployed an imbalance entity tag generator (subsection A.5) to demonstrate the robustness of
our methods on the diverse training sets for the NER task. The generator simulates scenarios in
which the training set S data distribution changes from that of S test in order to test the resilience of
the baselines and our methods. Figure 3 illustrates the performance differences for those methods
according to the size of the entity tag. From these results, we provide the following observations:

• CE vs. OVA-AUC: Across all imbalanced setting of entity tags, we observed that OVA-AUC
outperforms CE. On the basis of the F1-performance on CoNLL, NCBI, and s800, OVA-AUC is
significantly superior to CE in the most extreme imbalanced scenarios (i.e., entity label size of
1 and 2%). As the amount of entity tags rises in OntoNotes5, OVA-AUC performance improves
greatly. On the other side, CE performs inadequately when the entity tag size is extremely small.

• CRF and BiLSTM-CRF vs. OVA-AUC: OVA-AUC outperforms CRF and BiLSTM-CRF sub-
stantially in all scenarios. Similar to CE, neither CRF nor BiLSTM performs effectively when the
entity tag size is extremely small as the sequence labelers are not fed with enough learning signals.

• OVA-AUC vs. OVA-AUC-MAML: We observe no significant difference between OVA-AUC and
OVA-AUC-MAML based on the F1-performance in most settings across all datasets. Although
the F1-performance of OVA-AUC appears to be higher than that of OVA-AUC-MAML on CoNLL
for the 50 and 100 sentences, OVA-AUC-MAML performs better on NCBI for the same scenario.

8
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OVA-AUC OVA-BCE

Confusion area Non-confusion area Confusion area Non-confusion area

B I O B I O B I O B I O
# incorrect predictions 69 53 86 288 148 461 222 2,431 35,081 0 0 0
# correct predictions 70 43 167 5,213 2,214 37,564 5,418 27 3,197 0 0 0

# total predictions 139 96 253 5,501 2,362 38,025 5,640 2,458 38,278 0 0 0

OVA-AUC ensembles OVA-BCE ensembles

Confusion area Non-confusion area Confusion area Non-confusion area

B I O B I O B I O B I O
# incorrect predictions 56 75 32 329 222 306 1,572 2,264 33,514 0 0 0
# correct predictions 51 57 75 5,204 2,104 37,865 4,068 194 4,764 0 0 0

# total predictions 107 132 107 5,533 2,326 38,171 5,640 2,458 38,278 0 0 0

Table 3: Confusion matrix on test data for CoNLL 2003, both our OVA-AUC and OVA-BCE are
trained with 100 random sentences. We also include the ensemble performance for both approaches.

5.3 OVA-AUC AS AN EFFECTIVE SOLUTION TO NER

To properly assess the effectiveness of our OVA-AUC compared to the traditional OVA-BCE, we
transcribe Figure 1 into Table 3 and analyze the statistical results. We define the confusion areas
under the OVA framework as when (i) two or more binary classifiers are confident (p > 0.5) that
the sample belong to their classes, or (ii) no classifiers are confident enough to claim the sample
(p < 0.5). Both OVA-BCE and OVA-BCE with ensemble show weak performance as the classifiers
are always confused when making decision. Even though Pr (y ≡ ŷ | Confusion) = # Correct Predictions

# Total Confusion
increase from 0.186 for non-ensemble training to 0.195 for ensemble training, this performance is
still far below what should be, training with the standard multi-class cross entropy learning objective.

On the other hands, not only does OVA-AUC have a better average test F1-performance compared to
that of the standard CE (see Figure 2 and Table 2), it also eliminates most of the weaknesses that is
natural to OVA. The probability that any predictions in the confusion area is only 0.0105 for normal
training and 0.0075 for ensemble training, meaning that the binary classifiers are less likely to be
confused. Furthermore, Pr (y ≡ ŷ | Confusion) also increases to 0.5738 and 0.5289 for normal and
ensemble training respectively. Although the ensemble OVA-AUC Pr (y ≡ ŷ | Confusion) is down
from 0.5738, we surmise this happens as the number of confusion points is reduced, leaving only
the hard-to-classify tokens in the confusion area. Additionally, we observe for the non confusion
area that Pr (y ≡ ŷ | Non-Confusion) = # Correct Predictions

# Total Non-Confusion is 0.9805 and 0.9814 for the normal and
ensemble training respectively, suggesting that the binary classifiers, trained with the AUC surrogate
loss, are well-tuned. Lastly, we believe that future improvements to OVA AUC NER methods can be
made by focusing on the hardest label set in the corpus, those that start with “I”, as it has the highest
confusion and error rate out of all label sets for both our OVA-AUC and OVA-BCE implementations.

Overall, we observe that the ensemble performance for both OVA-AUC and OVA-BCE are better
compared to their non-ensemble counterparts. This supports Theorem 1 in that optimal ranking
occurs with ensembles, regardless of the estimator.

6 CONCLUSION

In this paper, we provide an effective solution to the low-resource and imbalanced data difficulties
that afflict many NER/BioNER tasks. To address these two problems, we first reformulated the
traditional NER multi-class learning problem as a one-vs-all learning problem and then used an
AUC surrogate loss to train the binary classifiers. Extensive experiments on multiple datasets in
different scenarios, reflecting the low-resource and the data imbalance challenges, demonstrated that
our OVA AUC NER approaches perform significantly better than the generally used CE and CRF,
independent of the underlying NER models, embeddings, or domains being used. Moreover, our
Bayesian theory of optimal AUC mutually reinforces the result that ensembling improves AUC, and
the benefit of any special purpose AUC training should only be substantial in the low data setting.

Of our approaches, OVA AUC NER with meta-learning gives significantly better results with com-
parable training time to existing approaches. There are still some limitations, among which are the
confusion regions resulting from OVA training. We consider the one-vs-one (OVO) setting might
serve as an alternative, which is subject to further development due to OVO high time complexity.
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7 REPRODUCIBILITY STATEMENT

For our reproducibility statement, we use the “The Machine Learning Reproducibility Checklist”.

1. For all models and algorithms presented, check if you include:
(a) A clear description of the mathematical setting, algorithm, and/or model. [Yes] These are

listed in the Table 1, in subsection A.3 and the theorem in section 3.
(b) An analysis of the complexity (time, space, sample size) of any algorithm. [Yes] These are

listed in the Table 1 and in Table 4 in Appendix.
2. For any theoretical claim, check if you include:

(a) A clear statement of the claim. [Yes] These are in section 3.
(b) A complete proof of the claim. [Yes] These are in subsection 3.2.

3. For all datasets used, check if you include:
(a) The relevant statistics, such as number of examples. [Yes] Table 1 and Table 4 in Appendix.
(b) The details of train / validation / test splits. [Yes] Table 1.
(c) An explanation of any data that were excluded, and all pre-processing step. [Yes] There are

listed in README.MD of the zip file.
(d) A link to a downloadable version of the dataset or simulation environment. [Partial] The

link will be on Github once the paper is published. CoNLL, NCBI and s800 are uploaded
into our Github link. We can not upload the OntoNotes 5 into our Github’s repository since
it has the copyright owned by Linguistic Data Consortium. However, we provide the script
to generate the experimental dataset of OntoNotes 5 for reproducibility purposes.

(e) For new data collected, a complete description of the data collection process, such as in-
structions to annotators and methods for quality control. [No] We did not collect the new
data, only used the existing partially benchmark datasets.

4. For all shared code related to this work, check if you include:
(a) Specification of dependencies. [Yes] There are listed in the requirements.txt of the zip file.
(b) Training code. [Yes] There are listed in losses.py, optimizers.py, prepro.py and train.py of

the zip file.
(c) Evaluation code. [Yes] There are listed in the train.py of the zip file.
(d) (Pre-)trained model(s). [Yes] There are listed in the losses.py, model.py and train.py of the

zip file.
(e) README file includes table of results accompanied by precise command to run to produce

those results. [Partial] It is listed in README.MD of the zip file.
5. For all reported experimental results, check if you include:

(a) The range of hyper-parameters considered, method to select the best hyper-parameter con-
figuration, and specification of all hyper-parameters used to generate results. [Yes] There
are listed in section 4, subsection A.5 and subsection A.2.

(b) The exact number of training and evaluation runs. [Yes] There are listed in subsection A.2.
(c) A clear definition of the specific measure or statistics used to report results. [Yes] There are

listed in section 5 and subsection A.6.
(d) A description of results with central tendency (e.g. mean) & variation (e.g. error bars). [Yes]

We use the average results from certain runs of the experiments. All results are plotted with
error bars/ error bands.

(e) The average runtime for each result, or estimated energy cost. [Partial] There are listed in
subsection A.4.

(f) A description of the computing infrastructure used. [Yes] There are listed in section 4.
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A APPENDIX

A.1 DETAILED LABEL DISTRIBUTION

Dataset # Label and size(%)

Train Dev Test

OntoNotes5

B-CARDINAL/ B-PERSON/ I-PERSON/ B-GPE/ O
I-GPE/ B-NORP/ I-DATE/ B-DATE/ I-PRODUCT
B-EVENT/ I-EVENT/ B-ORG/ I-ORG/ B-PRODUCT
B-FAC/ B-ORDINAL/ B-TIME/ I-TIME/ I-NORP
B-LOC/ I-FAC/ I-CARDINAL/ B-MONEY/ I-MONEY
I-LOC/ B-PERCENT/ I-PERCENT/ B-WORK OF ART
B-QUANTITY/ I-QUANTITY/ B-LAW/ B-LANGUAGE
I-ORDINAL/ I-LANGUAGE/ I-WORK OF ART/ I-LAW

0.54/ 0.95/ 0.50/ 1.05/ 88.98
0.37/ 0.47/ 0.97/ 0.95/ 0.03
0.05/ 0.09/ 1.18/ 1.47/ 0.05
0.05/ 0.11/ 0.09/ 0.08/ 0.04
0.10/ 0.07/ 0.15/ 0.24/ 0.48
0.09/ 0.18/ 0.24/ 0.07
0.06/ 0.08/ 0.02/ 0.02
0.00/ 0.00/ 0.15/ 0.05

0.51/ 1.0/ 0.51/ 1.08/ 88.97
0.36/ 0.44/ 0.92/ 0.95/ 0.03
0.06/ 0.11/ 1.17/ 1.48/ 0.04
0.05/ 0.11/ 0.09/ 0.10/ 0.01
0.08/ 0.10/ 0.14/ 0.24/ 0.39
0.06/ 0.18/ 0.25/ 0.07
0.06/ 0.08/ 0.03/ 0.01
0.00/ 0.00/ 0.22/ 0.06

0.53/ 0.98/ 0.47/ 1.04/ 89.04
0.37/ 0.44/ 1.03/ 0.95/ 0.02
0.04/ 0.08/ 1.14/ 1.39/ 0.05
0.05/ 0.12/ 0.09/ 0.10/ 0.03
0.11/ 0.08/ 0.17/ 0.23/ 0.45
0.11/ 0.22/ 0.32/ 0.05
0.04/ 0.06/ 0.02/ 0.02
0.00/ 0.00/ 0.10/ 0.04

CoNLL 2003 B-MISC/ I-MISC/ B-PER/ I-PER
B-ORG/ I-ORG/ B-LOC/ I-LOC/ O

1.7/ 0.6/ 3.2/ 2.2
3.1/ 1.8/ 3.5/ 0.6/ 83.3

1.8/ 0.7/ 3.6/ 2.5
2.6/ 1.5/ 3.6/ 0.5/ 83.3

1.5/ 0.5/ 3.5/ 2.5
3.6/ 1.8/ 3.6/ 0.6/ 82.5

Table 4: The detail of label distribution for benchmark datasets

Table 4 gives detailed label distribution for OntoNotes5 (Weischedel et al., 2014) and CoNLL 2003
(Tjong Kim Sang & De Meulder, 2003). As OntoNotes5 has 37 unique labels, the label distribution
can be quite sparse, presenting challenges to the traditional multi-class NER objective functions.

A.2 HYPERPARAMETER SETTINGS

Hyperparameter Settings Hyperparameter Settings
Maximum Sequence Length 128 Drop-out Probability 1e-1
Number of Epochs 100 Weight decay 1e-4
Batch Size 64 Epsilon 1e-6
Learning Rate (LR) (CE, CRF) 1e-5 LR (BiLSTM-CRF) 3e-4
LR (AUC/COMAUC) 1e-1 Margin (AUC/COMAUC) 1

Table 5: Hyperparameter settings for low-resource and imbalanced data distribution experiments.

In this sub-section, we provide the hyperparameter settings to reproduce our works. These settings,
listed in Table 5, are obtained from a grid search to find the optimal values. The optimizer for our
baselines is AdamW, while that of our OVA AUC NER methods is PESG Yuan et al. (2022) All
experiments use PyTorch 1 and run on Intel Core i9 Processors CPU and Nvidia RTX 3090 GPUs.

A.3 OVA AUC NER TRAINING ALGORITHMS

Algorithm 1 OVA-AUC
Input: Training set S, θ, {ω1, . . . , ωK},
{a, b, α}K
Output: θ∗, {ω∗

1 , . . . , ω
∗
K}

1: for epoch in range(num epochs) do
2: for prefix in {B,I, O} do
3: L := 0
4: for i in range(K) do
5: if i.startswith(prefix) then
6: L+ = equation 1
7: end if
8: end for
9: L.optimize()

10: end for
11: end for

Algorithm 2 OVA-AUC-MAML
First Order Approximation
Input: Training set S , θ, {ω1, . . . , ωK},
{a, b, α}K
Output: θ∗, {ω∗

1 , . . . , ω
∗
K}

1: for epoch in range(num epochs) do
2: L := 0
3: sample m classes
4: for i in range(K) do
5: if i in m then
6: L+ = equation 1
7: end if
8: end for
9: L.optimize()

10: end for

1pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111
torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch stable.html
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A.4 REPORT ON TRAINING TIMES

CoNLL 2003 OntoNotes5

Number of Training Sentences 50 100 200 300 400 50 100 200 300 400

CE 849 852 888 907 926 784 792 830 844 876
CRF 897 917 961 974 1016 1,425 1,497 1,539 1,587 1,674
OVA-AUC 1,758 1,770 1,807 1,845 1,906 2,374 2,390 2,530 2,559 2,694
OVA-AUC-MAML 1,692 1,714 1,780 1,830 1,902 1,500 1,532 1,608 1,646 1,744

Table 6: Highest training time recorded for each method measured in second(s) across different
sentence levels on CoNLL 2003 and OntoNotes5

A.5 IMBALANCE ENTITY TAG GENERATOR

Algorithm 3 Imbalance Entity Tag Generator
Input: Sne is a subset of sentence sets including only non-entity tags {O} . Se is a subset of sentence
sets including any of entity tags from {B, I} . Ntot is total number of sentences for output set Sout.
Ppref is a pre-defined entity label size. Miter is the maximum number of iterations for the greedy
search. Nsd is the input seed number.
Output: Sout

1: random.seed(Nsd)
2: for i = 1 . . .Miter do
3: for k = 1 . . .Ntot do
4: sample k sentences from Se into Sen
5: sample Ntot − k sentences from Sne into Snen
6: Sout ≡ {Sne,Snen}
7: if Ppref ≈ # of B, and I tokens in Sout

# tokens in Sout
then

8: return Sout
9: end if

10: end for
11: end for

We use an imbalanced entity tag generator and generate the imbalanced training set S with specific
percentage of the entity labels to evaluate the resilience of both the baselines and our methods. For
each corpus from Table 1 and Table 4, we choose 4 specific training set sizes {50, 100, 200, 500},
and for each training set size, we generate the training set S with certain percentages of entity label,
e.g., 1% entity label size. Algorithm 3 presents the greedy procedure to generate the training set S.

A.6 MISCELLANEOUS RESULTS

Since F1-score is not the only metrics to measure NER model performance, we also included the
precision and recall performance for both our OVA AUC NER methods and the baselines, this is
shown in Figure 4. It is not surprising to see that our methods outperform all the baselines on
average for both metrics as they are already substantially better than the baselines on the basis of
F1-performance. Moreover, it is important to note that our methods always outperform the baselines
on the basis of the recall performance, meaning that the classifier, trained with the AUC surrogate
loss, are better at picking out the entity-type tokens, signifying the importance of AUC loss function
dealing with the imbalanced distribution difficulties.

Other results include:

• Low-resource studies from compositional training perspective, illustrated by Figure 5. As compo-
sitional training benefits from both AUC and CE, it is unsurprisingly better than all the baselines.

• Precision and Recall score for imbalanced distribution studies, shown in Figure 6 and Figure 7
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Low-Resource Studies: Test Precision and Recall Performance

Figure 4: Learning curves of the average performance taken from 10 random training partitions of
each training set S size for each loss/objective function. The error bands indicate the 95% confidence
level of the scores. The title of the plot indicates the corpus, and the label distribution in BIO format.
The embedding and language model used for CoNLL 2003 and OntoNotes5 is “bert-base-cased”
(Devlin et al., 2019) while that of NCBI and s800 is “biobert-base-cased-v1.1” (Lee et al., 2019).

Low-Resource Studies: Compositional Training Performance

Figure 5: Learning curves of the average performance taken from 10 random training partitions of
each training set S size for each loss/objective function. The error bands indicate the 95% confidence
level of the scores. The title of the plot indicates the corpus, and the label distribution in BIO format.
The embedding and language model used for CoNLL 2003 and OntoNotes5 is “bert-base-cased”
(Devlin et al., 2019) while that of NCBI and s800 is “biobert-base-cased-v1.1” (Lee et al., 2019).
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Imbalanced Data Distribution Studies: Precision on the Test Set

Figure 6: Average performance taken from 10 random training partitions of each training set S size
for each loss/objective function. The entity tag size represents the percentage of entity-tokens to the
total number of tokens in the training set S. The error bars indicate the 95% confidence level of the
scores. The embedding and language model for CoNLL 2003 and OntoNotes5 is “bert-base-cased”
(Devlin et al., 2019) while that for NCBI and s800 is “biobert-base-cased-v1.1” (Lee et al., 2019).
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Imbalanced Data Distribution Studies: Recall on the Test Set

Figure 7: Average performance taken from 10 random training partitions of each training set S size
for each loss/objective function. The entity tag size represents the percentage of entity-tokens to the
total number of tokens in the training set S. The error bars indicate the 95% confidence level of the
scores. The embedding and language model for CoNLL 2003 and OntoNotes5 is “bert-base-cased”
(Devlin et al., 2019) while that for NCBI and s800 is “biobert-base-cased-v1.1” (Lee et al., 2019).
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