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Graph based Consistency Learning for Contrastive Multi-View
Clustering

Anonymous Author(s)

ABSTRACT
Multi-View Clustering (MVC) aims to mine complementary infor-
mation across different views to partition multi-view data more
effectively and has attracted considerable interest. However, ex-
isting deep multi-view clustering methods frequently neglect the
exploration of structural information within individual view and
lack the learning of structural consistency among views, which
results in limitations in the clustering performance. In this paper,
we introduce a novel multi-view clustering framework based on
graph consistency learning to address this issue. Specifically, we
design intra-view graph contrastive learning to uncover structural
information within each view and achieve structural conscistency
objectives through cross-view graph consistency learning. Addition-
ally, to address the conflict between different learning objectives
when trained in the same space, we introduce two new feature
spaces, one for cluster-levcel contrastive learning and the other for
instance-level contrastive learning. Subsequently, to make the most
of discriminative information from all views, we concatenate high-
level features from all views to form global features and employ
self-supervision to promote clustering consistency across differ-
ent views. Experimental results on several challenging datasets
demonstrate the outstanding performance of our proposed method.

CCS CONCEPTS
•Multimodal Fusion and Embeddings→Multi-View Cluster-
ing.
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1 INTRODUCTION
Clustering analysis is a fundamental unsupervised learning task
in machine learning, widely applied in fields such as computer
vision and data mining. Its primary objective is to partition data
items with similar features into the same group in the absence of
label information. In the real world, multi-view data is prevalent
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in many practical applications, originating from different informa-
tion sources or diverse feature extraction methods. For instance, a
news story can be reported from various angles by different media
outlets, and a bouquet of flowers can be described from multiple
dimensions, including color, fragrance and species. Because differ-
ent views can offer distinct data perspectives, relyin g solely on
information from a single view is often insufficient. In recent years,
Multi-View Clustering (MVC) has garnered significant attention as
a vital research domain in unsupervised learning. The primary goal
of MVC is to extract complementary and consistent information
from multiple views to enhance clustering performance.

In the early stages, MVC primarily employed conventional ma-
chine learning methods for clustering analysis. These approaches
can be broadly categorized into graph-based learningmethod[19, 20,
30], multi-kernel method[25, 26, 41], subspace clustering mothed[8,
10, 35–37] and non-negative matrix factorization[2, 14, 15] method.
For graph-based learning mothod, multiple graphs are used to rep-
resent relationships among data from different views, enabling
the exploration of structural consistency across multiple views.
Multi-kernel method utilizes kernel functions to unveil underlying
clustering patterns at the view level. Subspace clustering mothed
predominantly aims to find a shared subspace for representation
learning. Non-negative matrix factorization method, on the other
hand, focuses on dimensionality reduction and factorization of the
feature matrix to achieve more effective feature representations.
Nevertheless, in the real-world scenarios, many traditional MVC
methods suffer from weak representational capability and high
computational complexity, ultimately limiting their applications.

In recent years, due to the powerful nonlinear fitting capabilities
of deep neural networks, many researches focus on leveraging deep
models for MVC to overcome the limitations of traditional machine
learning. Specifically, MVC methods based on deep representations
implement deep neural networks as nonlinear parametric mapping
functions, effectively exploring the nonlinear characteristics embed-
ding in the original data space. In deep multi-view clustering, one
of the most commonly used models is the autoencoder, typically
composed of a symmetric Multi-Layer Perceptron (MLP), which
effectively preserves feature information in the original data space
through reconstruction loss. Recent studies integrate multi-view
feature learning and clustering assignment into a unified frame-
work, allowing clustering results to participate in network training
to improve the quality of feature learning. This results in an end-
to-end multi-view clustering framework that achieves excellent
clustering performance[21, 32, 40].

Despite significant advancements in deep MVC methods in re-
cent years, they still face limitations and challenges: (1) The neglect
of exploring view information from a structural perspective, while
focusing solely on instance-level or cluster-level consistency, can
lead to the disruption of structure information and the loss of sample
association information. It may increase the difficulty of clustering.
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(2) Some multi-view clustering methods attempt to simultaneously
achieve the consistency of different objectives within a single fea-
ture space, usually by merely stacking loss functions. It may result
in less discriminative feature representations, making it challenging
to capture complex data structures effectively. (3) Many approaches
involve a two-stagemulti-view clustering process, where traditional
clustering algorithms (e.g., K-means[16] or spectral clustering[17])
are applied after multi-view feature learning to obtain the final
clustering results. It makes that, clustering cannot guide the fea-
ture learning process, limiting overall performance improvements.
Hence, addressing these challenges in deep multi-view clustering is
crucial for improving clustering performance and the effectiveness
of feature learning.

In this paper, to address the challenges mentioned above, we pro-
pose a novel deep multi-view clustering framework termed Graph
based Consistency learning for Contrastive Multi-View Clustering
(GC-CMVC). The framework consists of three key modules: graph
learning, hierarchical contrastive learning, and self-supervised clus-
tering. The graph learning module aims to dig deeper into the
local structure information within each view through contrastive
learning and capture structurally consistent feature representations
among views more effectively through graph consistency learning.
The hierarchical contrastive learning module incorporates twoMLP
shared by all the views to obtain high-level features and cluster dis-
tributions. It performs instance-level and cluster-level consistency
learning in their respective feature spaces. In the self-supervised
clustering module, high-level features are concatenated to construct
global features and generate pseudo-labels for self-supervised learn-
ing. These modules are seamlessly integrated and collaborated to
enhance multi-view clustering. Our contributions are listed as fol-
lows:

(1) We develop an end-to-end deepmulti-view clustering frame-
work, incorporating graph learning to better explore local
geometric information within each view. By performing
consistency learning on relationship graphs across differ-
ent views, we successfully capture the consistent structure
information within multi-view data.

(2) We introduce distinct objectives in different feature spaces,
performing multi-level contrastive learning at both the clus-
ter and instance levels. At the same time, we construct
global features to guide the clustering distribution of each
view through self-supervised learning.

(3) Extensive experiments on various datasets demonstrate the
remarkable effectiveness and superior performance of our
method in MVC tasks.

2 RELATEDWORK
2.1 Deep Multi-View Clustering
In the realm of multi-view clustering, the advent of deep multi-view
clustering has drawn considerable attention, benefiting from the
nonlinear modeling capabilities of neural networks. These methods
primarily leverage deep learning architectures for feature extrac-
tion, and are successfully applied in various real-world scenarios.

Deep MVC methods can be divided into three distinct categories:
(1) Subspace-based Methods[24, 42]. This category of techniques

encodes each view of the original data using autoencoders and sub-
sequently combines the encoded features through self-expression
to obtain comprehensive representations. Notably, Zhu et al.[42]
employed Diversity Networks (Dnet) and Universality Networks
(Unet) to learn view-specific self-expressive matrices and a com-
mon self-expressive matrix for all views. To preserve view-specific
structural information, Zheng et al.[38] introduced first-order and
second-order graph mining, capturing local and global graph infor-
mation to guide subspace representation learning. (2) Generative
Model-based Methods. This category of methods aims to learn un-
derlying data patterns and features to generate new samples akin
to the original data. Li et al.[12] used autoencoders as generators
in a Generative Adversarial Network (GAN), incorporating a fully
connected network as a discriminator for post-decoding. To en-
hance feature representation ability, Zhou et al.[40] introduced a
novel Cauchy-Schwarz divergence-based clustering loss that en-
courages both cluster separation and intra-cluster compactness. (3)
Contrastive Learning-based Methods. This category of approach
excels at learning shared representations across different views by
maximizing the similarity of positive samples within views and
minimizing the similarity of negative samples across views. Chen et
al.[3] introduced a methodology that amalgamates contrastive loss
and clustering loss from three modalities, offering a comprehensive
constraint on feature learning.

2.2 Contrastive Clustering
Contrastive learning has exceptional representation learning capa-
bilities and is widely applied in various domains[4, 18, 27]. Its core
concept revolves around constructing pairs of positive and negative
samples, aiming to maximize the similarity of positive pairs and
minimize that of negative pairs in the feature space to learn em-
bedding representations. Many works employ contrastive learning
strategies to data clustering and obtains excellent performance. Li
et al.[11] proposed an end-to-end online image clustering method
termed Contrastive Clustering (CC), which introduces two novel
feature spaces for instance-level contrastive learning and cluster-
level contrastive learning, and generate more accurate image em-
bedding representations for clustering. Zhong et al.[39] presented
a novel graph contrastive clustering method termed Graph Con-
trastive Clustering (GCC). GCC addresses the limitations of existing
contrastive learning methods by considering category information
and clustering objectives, yielding representations better suited for
clustering tasks. To address the issue of false positives, Yin et al.[34]
leveraged an effective data augmentation method ContrastiveCrop
and constructed positive sample pairs based on nearest-neighbor
mining to acquire more semantic information. Contrastive cluster-
ing is also generalized to multi-view data, and lots of contrastive
multi-view clustering methods are proposed[13, 21, 33]. To extend
contrastive learning to themulti-view domain, Trosten et al.[21] em-
ployed instance-level contrastive learning loss to further enhance
the clustering performance of the model. Lin et al.[13] utilized con-
trastive learning based on cross-view mutual information to obtain
informative and consistent representations. Xu et al.[33] proposed
multi-view instance-level contrastive learning and clustering-level
contrastive learning, seamlessly integrating them into a unified
framework.
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Figure 1: The framework of GC-CMVC. GC-CMVC consists of three main modules: graph learning (intra-view graph contrastive
learning and cross-view graph consistency learning), hierarchical contrastive learning (cluster-level contrastive learning
and instance-level contrastive learning), and self-supervised clustering . These modules work together to explore intra-view
consistency and complementary information, which aims to achieve consistency for clustering results across different feature
spaces.

3 PROPOSED METHOD
Problem Description: Given a clustering problem with a set of
𝑁 samples composed of 𝑉 views, the goal is to partition 𝐷 =

{𝑋 1, . . . , 𝑋 𝑣, . . . , 𝑋𝑉 } into𝐶 clusters, where𝑋 𝑣 = {𝑥𝑣1 , . . . , 𝑥
𝑣
𝑖
, . . . , 𝑥𝑣

𝑁
} ∈

R𝑑𝑣×𝑁 represents 𝑁 samples with dimension 𝑑𝑣 from the 𝑣-th view.
Our model is illustrated in Figure 1, and we will now explain each
module one by one.

3.1 Specific View Reconstruction
Considering that data from different views typically have distinct
dimensions and may contain redundancies and random noise, we
employ a set of view-specific deep autoencoders. These autoen-
coders are designed to ensure that the learned embedding features
contain the characteristic information of the original data space.
Specifically, for the 𝑣-th view, we denote 𝑓 𝑣

𝜃 𝑣
and 𝑔𝑣

𝜙𝑣
as the encoder

and decoder, with 𝜃 𝑣 and 𝜙𝑣 representing the trainable parame-
ters of autoencoders. The notation 𝑧𝑣

𝑖
= 𝑓 𝑣

𝜃 𝑣
(𝑥𝑣
𝑖
) represents the

low-dimensional and more aggregated embedding features of 𝑥𝑣
𝑖

obtained by the encoder network. To train the autoencoder network
, we define the multi-view reconstruction loss as follows:

𝐿𝑅𝐶 =

𝑉∑︁
𝑣=1

𝑁∑︁
𝑖=1

∥ 𝑥𝑣𝑖 − 𝑔
𝑣
𝜙𝜈

(𝑓 𝑣
𝜃𝜈

(𝑥𝑣𝑖 )) ∥
2
2 . (1)

Through the autoencoder, we obtain low-dimensional embedding
features 𝑍 𝑣 = {𝑧𝑣1, . . . , 𝑧

𝑣
𝑖
, . . . , 𝑧𝑣

𝑁
} from the high-dimensional and

information-dispersed data 𝑋 𝑣 .

3.2 Graph Learning
Graph Contrastive Learning: In order to fully explore the local
structure within each view and retain the structural information of
the original data in the embedding feature space, we construct a re-
lationship graph 𝐺𝑣

𝑖
= {𝑧𝑣

𝑖1
, . . . , 𝑧𝑣

𝑖𝑘
, . . . , 𝑧𝑣

𝑖𝐾
} containing 𝐾 nearest

neighbors of 𝑧𝑣
𝑖
. In other words, we consider that, within the 𝑣-th

view, 𝑧𝑣
𝑖
is strongly associated with the samples in 𝐺𝑣

𝑖
. During the

network training process, their features should be as similar to 𝑧𝑣
𝑖
as

possible. Simultaneously, for samples not in𝐺𝑣
𝑖
, they should be kept

as dissimilar to 𝑧𝑣
𝑖
as possible. In the context of contrastive learn-

ing, if a sample is presented in the relationship graph of another
sample, they form a positive pair in the graph structure; otherwise,
they constitute a negative pair. We measure the similarity between
different samples using cosine similarity:

𝑠 (𝑧𝑣𝑖 , 𝑧
𝑣
𝑗 ) =

(𝑧𝑣
𝑖
)𝑇 (𝑧𝑣

𝑗
)

∥ 𝑧𝑣
𝑖
∥∥ 𝑧𝑣

𝑗
∥ . (2)
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Therefore, the intra-view graph contrastive learning loss for 𝑧𝑣
𝑖
is

defined as follows:

𝐿𝑣𝐺𝐶𝑖
= − 1

𝐾

𝐾∑︁
𝑘=1

log
e𝑠 (𝑧

𝑣
𝑖
,𝑧𝑣
𝑖𝑘
)/𝜏𝐺∑𝑁

𝑗=1 e
𝑠 (𝑧𝑣

𝑖
,𝑧𝑣
𝑗
)/𝜏𝐺 − 𝑒1/𝜏𝐺

, (3)

where 𝜏𝐺 denotes the temperature parameter, 𝑧𝑣
𝑖𝑘

denotes 𝑘-th
neighbor sample of 𝑧𝑣

𝑖
, 𝑠 (𝑧𝑣

𝑖
, 𝑧𝑣
𝑗
) is the cosine distance used to mea-

sure the similarity between two embedding features. Through this
loss, 𝑧𝑣

𝑖
is encouraged to be more close to samples within the rela-

tionship graph and farther from other samples. With all the training
samples, the overall loss for intra-view graph contrastive learning
is defined as follows:

𝐿𝐺𝐶 =
1
𝑁𝑉

𝑉∑︁
𝑣=1

𝑁∑︁
𝑖=1

𝐿𝑣𝐺𝐶𝑖
. (4)

Graph Consistency Learning: While intra-view graph con-
trastive learning fully explores local structure information within
each view, MVC requires a strong emphasis on the consistency of
information across different views. Therefore, it is insufficient to
retain only local structural information. To address this issue, we
introduce a method for learning structural consistency among dif-
ferent views[28]. Specifically, we constrain the relationship graph
of the same sample in different views to be as similar as possible, en-
couraging the structural information of different views to be more
consistent. The graph consistency learning for 𝑧𝑣

𝑖
can be expressed

as follows:

𝐿𝑐𝑐𝑣𝑖 =
1
𝐾

𝑉∑︁
𝑗≠𝑣

𝐾∑︁
𝑘=1

∥ 𝑧𝑣
𝑖k
− 𝑧 𝑗

𝑖k
∥22, (5)

𝑧𝑣
𝑖𝑘

and 𝑧 𝑗
𝑖𝑘

belong to𝐺𝑣
𝑖
and𝐺 𝑗

𝑖
, representing neighbors of 𝑧𝑣

𝑖
in the

𝑣-th and 𝑗-th views, respectively. The overall cross-view consistency
learning is defined as follows:

𝐿𝐶𝐶 =
1
𝑁𝑉

𝑁∑︁
𝑖=1

𝑉∑︁
𝑣=1

𝐿𝑐𝑐𝑣𝑖 . (6)

In summary, our graph learning loss 𝐿𝐺 consists of 𝐿𝐶𝐶 and 𝐿𝐺𝐶 ,
and is defined as:

𝐿𝐺 = 𝐿𝐶𝐶 + 𝐿𝐺𝐶 . (7)

3.3 Hierarchical Contrastive Learning
To address the conflict between different learning objectives when
trained in the same feature space, we introduce a hierarchical con-
trastive learning to achieve both instance-level and cluster-level
consistency objectives.

Instance-Level Contrastive Learning: In multi-view scenar-
ios, there are naturally positive and negative sample pairs where the
feature representations of each sample across different views are
considered as positive pairs, and other combinations are regarded as
negative pairs. Based on these sample pairs, we utilize a three-layer
MLP network on top of the embedding features to obtain high-level
features{𝐻 𝑣}𝑉

𝑣=1. The dimensionality of high-level features is usu-
ally smaller than that of the embedded features. We introduce a
contrastive learning loss for instance-level consistency to learn the
commonality among these high-level features, which helps capture

the instance-level consistency information of multi-view data more
effectively, the instance-level contrastive loss is defined as:

𝐿𝑎𝑏𝑆 = − 1
𝑁

𝑁∑︁
𝑖=1

log
𝑒𝑠 (ℎ

𝑎
𝑖
,ℎ𝑏
𝑖
)/𝜏𝑆∑𝑁

𝑗=1
∑
𝑣=𝑎,𝑏 𝑒

𝑠 (ℎ𝑎
𝑖
,ℎ𝑏
𝑗
)/𝜏𝑆 − 𝑒1/𝜏𝑆

, (8)

where𝜏𝑆 denotes the temperature parameter.We extend the instance-
level contrastive learning loss to the multi-view scenario, and the
loss is defined as follows:

𝐿𝑆 =
1
𝑉

𝑉∑︁
𝑎=1

𝑉∑︁
𝑏≠𝑎

𝐿𝑎𝑏𝑆 . (9)

Cluster-Level Contrastive Learning: To achieve cluster-level
consistency, similar to instance-level contrastive learning, we also
stack a three-layer MLP network on the embedding features. The
difference lies in the final layer, where we use the softmax func-
tion to obtain the probability distribution for cluster assignment,
i.e., {𝑄𝑣· 𝑗 = {𝑞𝑣

𝑖 𝑗
}𝑁
𝑖=1}

𝑉
𝑣=1, where 𝑞

𝑣
𝑖 𝑗
represents the probability that

the 𝑖-th sample in the 𝑣-th view belongs to the 𝑗-th cluster. The
objective of cluster consistency is to ensure that the distributions
of samples from the same cluster are as similar as possible, while
the distributions between different clusters are as dissimilar as pos-
sible. The contrastive learning loss function for 𝑄 (𝑎) and 𝑄 (𝑏 ) is
formulated as follows:

𝐿𝑎𝑏𝑄 = − 1
𝐶

𝐶∑︁
𝑗=1

log
𝑒
𝑠 (𝑄𝑎· 𝑗 ,𝑄𝑏· 𝑗 )/𝜏𝐿∑𝐶

𝑐=1
∑
𝑣=𝑎,𝑏 𝑒

𝑠 (𝑄𝑎· 𝑗 ,𝑄𝑏·𝑐 )/𝜏𝐿 − 𝑒1/𝜏𝐿
, (10)

where𝜏𝐿 denotes the temperature parameter. Similar to the instance-
level contrastive learning, themulti-view clustering-level contrastive
learning loss is defined as follows:

𝐿𝑄 =
1
𝑉

𝑉∑︁
𝑎=1

𝑉∑︁
b≠a

𝐿𝑎𝑏Q +
𝑉∑︁
𝑣=1

𝐶∑︁
𝑗=1

𝑠𝑣𝑗 log 𝑠
𝑣
𝑗 , (11)

where 𝑠𝑣
𝑗
= 1

𝑁

∑𝑁
𝑖=1 𝑞

𝑣
𝑖 𝑗
. The latter term is a regularization com-

ponent aimed at preventing all samples from being assigned to a
single cluster[23].

To sum up, our hierarchical contrastive learning loss consists of
𝐿𝑆 and 𝐿𝑄 , and is defined as:

𝐿𝐻𝐶𝐿 = 𝐿𝑆 + 𝐿𝑄 . (12)

3.4 Self-Supervised Clustering
In multi-view clustering, the discriminative power of samples is var-
ied between different views, with some views being more effective
at distinguishing between different samples. When we concatenate
the features from each view, those views with higher feature dis-
criminability often play a more important role during the sample
discrimination process. Based on this principle, to make the most
of discriminative information from all views, we concatenate all
the high-level features obtained from instance-level contrastive
learning to generate a global feature representation ℎ𝑖 as:

𝒉𝑖 = [𝒉1𝑖 ;𝒉
2
𝑖 ; ...;𝒉

𝑉
𝑖 ] ∈ R

∑𝑉
𝑣=1 𝑑𝑣 . (13)

Next, we apply K-means to the global features to compute the
cluster centers, denoted as 𝜇 𝑗 , where j represents the 𝑗-th cluster.
And then we use the t-distribution[22] to measure the similarity
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between the global feature 𝒉𝑖 and the cluster center 𝜇 𝑗 , which is
defined as:

𝑡𝑖 𝑗 =
(1 + ||ℎ𝑖 − 𝜇 𝑗 | |2)−1∑𝐶
𝑗=1 (1 + ||ℎ𝑖 − 𝜇 𝑗 | |2)−1

. (14)

Normally, components with high probabilities in the soft assign-
ment represent high confidence. To enhance the discriminability of
the soft assignment, we employ the following method to sharpen
them to obtain a consistent target distribution 𝑝𝑖 𝑗 as:

𝑝𝑖 𝑗 =
𝑡2
𝑖 𝑗
/∑𝑁𝑖=1 𝑡𝑖 𝑗∑𝐶

𝑗=1 (𝑡2𝑖 𝑗/
∑𝑁
𝑖=1 𝑡𝑖 𝑗 )

. (15)

To ensure the entiremodel can achieve clustering consistency across
various feature spaces, we perform self-supervised training with
consistent probability distribution and special probability distribu-
tion of each view. Specifically, for the 𝑣-th view, we introduce a
clustering loss to measure the Kullback-Leibler divergence between
the unified target distribution 𝑝𝑖 𝑗 and the clustering distribution
𝑞𝑣
𝑖 𝑗
of each view, which is defined as:

𝐿𝐶 =

𝑉∑︁
𝑣=1

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑣
𝑖 𝑗

. (16)

Finally, we obtain the clustering labels {𝑦𝑖 }𝑁𝑖=1 based on 𝑝𝑖 𝑗 as:

𝑦𝑖 = argmax
𝑗

𝑝𝑖 𝑗 . (17)

3.5 Optimization
We integrate the aforementioned four modules within an end-to-
end deep learning framework. The view reconstruction 𝐿𝑅𝐶 loss is
constructed on embedded feature {𝑍 𝑣}𝑉

𝑣=1. The graph learning loss
𝐿𝐺 is constructed based on relationship graph {𝐺𝑣

𝑖
}𝑉
𝑣=1 to preserve

structural information. Hierarchical contrastive learning loss 𝐿𝐻𝐶𝐿
is employed to respectively obtain high-level features {𝐻 𝑣}𝑉

𝑣=1 and
clustering distribution {𝑄𝑣· 𝑗 }

𝑉
𝑣=1. Self-supervised clustering loss 𝐿𝐶

is imposed on {𝐻 𝑣}𝑉
𝑣=1 and {𝑄𝑣· 𝑗 }

𝑉
𝑣=1 to learn consistent cluster

assignments. With these losses mentioned above, the overall loss
of our model is defined as:

𝐿 = 𝐿𝑅𝐶 + 𝜆1𝐿𝐻𝐶𝐿 + 𝜆2𝐿𝐺 + 𝐿𝐶

= 𝐿𝑅𝐶

({
𝑋 𝑣, 𝑋 𝑣

}𝑉
𝑣=1 ; {𝜃𝑣, 𝜙𝑣}

𝑉
𝑣=1

)
+ 𝜆1𝐿𝐻𝐶𝐿

({
𝐻 𝑣, 𝑄𝑣

}𝑉
𝑣=1 ; {𝜓, 𝜖}

)
+ 𝜆2𝐿𝐺 + 𝐿𝐶

(18)

where 𝜆1 and 𝜆2 are hyperparameters used to balance the losses
between hierarchical contrastive learning and graph learning. The
optimization process of GC-CMVC is summarized in Algorithm 1.

4 EXPERIMENTS
4.1 Datasets
As shown in Table 1, the experiments are conducted on a variety
of representative datasets, including RGB-D[40], Columbia Con-
sumer Video (CCV)[7], Fashion[31], Reuters[1] and Caltech[5]. The
introduction of these datasets is given as follows:

RGB-D[40] consists of 1,449 images from 13 indoor scenes, with
each image accompanied by descriptive paragraphs providing rich
multi-view information.

Algorithm 1: Algorithm of GC-CMVC

Input :Multi-view dataset {𝑋 𝑣}𝑉
𝑣=1; Number of clusters C;

Temperature parameters 𝜏𝐺 , 𝜏𝑆 and 𝜏𝐿 ; K-Nearest
neighbor parameter 𝐾 ; Hyperparameters 𝜆1 and 𝜆2.

Output :Clustering distribution 𝑃 ; Global features {ℎ𝑖 }𝑁𝑖=1;
Clustering label {𝑦𝑖 }𝑁𝑖=1.

1 Initialize {𝜃 𝑣 , 𝜙𝑣}𝑉
𝑣=1 by minimizing Eq.(1).

2 Concatenate all the high-level features obtained from
instance-level contrastive learning to generate global
features {ℎ𝑖 }𝑁𝑖=1.

3 Initialize {𝜇 𝑗 }𝐶𝑗=1 by K-means on {ℎ𝑖 }𝑁𝑖=1.
4 while not converged do
5 Construct a relationship graph {𝐺𝑣}𝑉

𝑣=1 by K-nearest
neighbor on {𝑍 𝑣}𝑉

𝑣=1.
6 Optimize {{𝜃 𝑣 , 𝜙𝑣}𝑉

𝑣=1,𝜓, 𝜖} by minimizing Eq.(18).

7 Output the clustering label {𝑦𝑖 }𝑁𝑖=1 by Eq.(17).

Dataset Sample Class View Feature

RGB-D 1449 13 2 2048/300
CCV 6773 20 3 5000/5000/4000

Fashion 10000 10 3 784/784/784
Reuters 18758 6 2 10/10

Caltech-2V 1400 7 2 40/254
Caltech-3V 1400 7 3 40/254/928
Caltech-4V 1400 7 4 40/254/928/512
Caltech-5V 1400 7 5 40/254/928/512/1984

Table 1: Specification and partitioning of the selected
datasets.

CCV[7] consists of 9,317 YouTube videos, covering 20 distinct
semantic categories.

Fashion[31] is an image dataset related to products, where three
different styles are treated as three views of the product.

Reuters[1] is a subset of a text dataset, containing 18,758 samples
from six different categories. It provides large-scale data for multi-
view text clustering tasks.

Caltech[5] is an RGB image dataset with multiple views. To
evaluate the robustness of our method under varying numbers
of views, four different versions of Caltech, namely Caltech-2V,
Caltech-3V, Caltech-4V and Caltech-5V, are created, which consist
of 2, 3, 4 and 5 views respectively[33].

4.2 Comparison Methods
The comparison methods can be broadly categorized into two
classes. The first class is traditional MVC methods, including MVC-
LFA [26], COMIC[19] and IMVTSC-MVI[30]. The second class is
advanced deep learning methods, including RMSL[10], CDIMC-net
[29], EAMC [40], SiMVC&CoMVC [21] and MFLVC [33]. Their
corresponding descriptions are given as follows:

MVC-LFA [26]: The mothed aims to maximally align the con-
sensus partition with the weighted base partitions, thereby sig-
nificantly reducing computational complexity and simplifying the
optimization process.
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Datasets RGB-D CCV Fashion Reuters

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

RMSL[10] 31.4 24.5 32.7 21.5 15.7 24.3 40.8 40.5 42.1 33.6 16.0 31.1
MVC-LFA [26] 37.9 39.8 39.7 23.2 19.5 26.1 79.1 75.9 79.4 41.9 20.3 42.0
COMIC[19] 31.2 28.6 32.0 15.7 8.1 15.7 57.8 64.2 60.8 33.8 14.9 32.3
IMVTSC-MVI[30] 35.5 31.2 36.4 11.7 6.0 15.8 63.2 64.8 63.5 40.9 21.4 41.0
CDIMC-net [29] 39.2 35.4 38.7 20.1 17.1 21.8 77.6 80.9 78.9 39.7 20.1 41.2
EAMC [40] 32.3 20.7 32.3 26.3 26.7 27.4 61.4 60.8 63.8 41.3 27.8 42.7
SiMVC[21] 39.6 35.6 38.7 15.1 12.5 21.6 82.5 83.9 82.5 45.5 26.4 45.5
CoMVC[21] 41.3 40.5 41.0 29.6 28.6 29.7 85.7 86.4 86.3 48.4 23.6 48.0
MFLVC[33] 37.6 24.7 43.8 31.2 31.6 33.9 99.2 98.0 99.2 44.9 23.8 49.9
OURS 46.4 30.2 49.6 30.4 30.1 34.0 99.0 98.5 99.5 54.6 31.5 62.0

Table 2: Clustering results on four multi-view datasets. Bold denotes the best results and underline denotes the second-best.

Datasets Caltech-2V Caltech-3V Caltech-4V Caltech-5V

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

RMSL[10] 52.5 47.4 54.0 55.4 48.0 55.4 59.6 55.1 60.8 35.4 34.0 39.1
MVC-LFA [26] 46.2 34.8 49.6 55.1 42.3 57.8 60.9 52.2 63.6 74.1 60.1 74.7
COMIC[19] 42.2 44.6 53.5 44.7 49.1 57.5 63.7 60.9 76.4 53.2 54.9 60.4
IMVTSC-MVI[30] 49.0 39.8 54.0 55.8 44.5 57.6 11.7 6.0 15.8 76.1 0.69.1 78.5
CDIMC-net [29] 51.5 48.0 56.4 52.8 48.3 56.5 56.0 56.4 61.7 72.7 69.2 74.2
EAMC [40] 41.9 25.6 42.7 38.9 21.4 39.8 35.6 20.5 37.0 31.8 17.3 34.2
SiMVC[21] 50.8 47.1 57.7 56.9 49.5 59.1 61.9 53.6 63.0 71.9 67.7 72.9
CoMVC[21] 46.6 42.6 52.7 54.1 50.4 58.4 56.8 56.9 64.6 70.0 68.7 74.6
MFLVC[33] 60.6 52.8 61.6 63.1 56.6 63.9 73.3 65.2 73.4 80.4 70.3 80.4
OURS 64.2 53.5 64.1 68.9 60.4 70.6 76.4 72.8 78.4 84.9 76.4 84.9

Table 3: Clustering results on Caltech dataset with different views. Bold denotes the best results and underline denotes the
second-best.

COMIC[19]: It projects raw data into a unified space, where
the projection emphasizes both geometric consistency and cluster
assignment consistency.

IMVTSC-MVI[30]: A multi-view clustering approach for the
challenging problem of multi-view clustering with missing views,
recovers missing views and leverage the full information from both
recovered and available views for clustering.

RMSL[10]: A deep multi-view clustering approach handles high-
dimensional data while simultaneously exploring the consistency
and complementarity among different views.

CDIMC-net [29]: An incomplete multi-view clustering network
integrates view-specific deep encoders and graph embedding strate-
gies into its framework, capturing the high-level features and local
structure of each view.

EAMC[40]: An end-to-end adversarial-attention network for
multi-modal clustering, uses adversarial learning and attention
mechanisms to align latent feature distributions and quantify the
importance of modalities.

SiMVC&CoMVC [21]: It employs a weighting strategy to blend
representations for the final data clustering process. This strategy
involves feature-level contrastive learning of all views.

MFLVC [33]: It is a deep contrastivemulti-view clusteringmethod,
which learns feature representations at different levels of multi-
view data within an end-to-end network, and utilizes contrastive

learning to achieve feature-level and cluster-level objective consis-
tency.

4.3 Implementation Details
To ensure a fair comparison, we set the parameters of each MVC
method according to the settings of the original papers. And We
evaluate MVC methods using three clustering validity metrics: Ac-
curacy (ACC), Normalized Mutual Information (NMI) and Purity
(PUR). These metrics offer a comprehensive measure of cluster-
ing quality, with higher values indicating better clustering perfor-
mance. For our method, we train the proposed network using the
PyTorch platform[19]. Adam optimizer[9] is employed to optimize
our model, and the initial learning rate is set as 0.0003. For all
datasets, we set the batch size as 256 and fix the number of training
epochs at 100. Additionally, in the graph contrastive learning pro-
cess, we compute K-nearest neighbor graphs, with 𝐾 set as 10. Our
model has a simple network architecture with low computational
resource requirements. The experiments are conducted on PC with
GeForce RTX 3090 GPU, Intel i9-12900F CPU, 32.0GB RAM and
Ubuturn operating system.

4.4 Result Analysis
As shown in Table 2, we observe that our method outperforms both
traditional machine learning methods and deep learning methods
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on four different datasets. Compared to traditional machine learn-
ing methods, our approach uses deep neural networks to uncover
nonlinear relationships of multi-view data, capturing the complex
attributes of real-world data. As a result, we achieve significant
improvements in all clustering metrics. Taking the Fashion dataset
as an example, our model outperforms traditional methods with
an increase of 19.9%, 22.6% and 20.1% for ACC, NMI and PUR, re-
spectively. Compared to deep learning methods, our approach also
demonstrates notable advantages, particularly on Reuters dataset,
where ACC, NMI and PUR of our method exceed the best baseline
by 6.2%, 7.7% and 12.1%, respectively. Furthermore, our method
improves ACC and PUR by 5.1% and 5.8% on RGB-D dataset and
achieves leading results on CCV and Fashion datasets.

To evaluate the effectiveness of our method for multi-view data
with different number of views, we compare it with other MVC
methods on Caltech-2V, Caltech-3V, Caltech-4V and Caltech-5V,
respectively. As shown in Table 3, the clustering performances of
most methods improve as the number of views increases, but EAMC
and COMIC experience a performance decline. In contrast, our
method exhibits significant improvements on all the four datasets,
particularly on the Caltech-3V dataset, where ACC, NMI, and PUR
increase by 5.8%, 3.8% and 6.7%. This is probably caused by that, our
method comprehensively explores the local geometric structure
between views, while achieving structure-level, instance-level and
cluster-level consistency objectives simultaneously. These findings
underscore the effectiveness and versatility of our multi-view clus-
tering framework and highlight its ability for handling multi-view
data from various domains.

(a) epoch 0 (b) epoch 30

(c) epoch 60 (d) epoch 90

Figure 2: The 𝑡 − 𝑆𝑁𝐸 visualization of the clustering results
at different epochs on Caltech-5V dataset.

5 MODEL ANALYSIS
5.1 Visualization Analysis
In order to better visualize and analyze the performance of our
approach, we employ the widely used t-SNE [6] tool to visualize
clustering results on Caltech-5V dataset. We concatenate high-level
features learned through instance-level contrastive learning and
then map them to a two-dimensional space. In Figure 2, we can
observe the scatter plots generated by our method at different
iterations, with different colors representing distinct clusters. From
these plots, it is evident to see that, as the number of iterations
increases, the clustering structure becomes progressively clearer,
further substantiating the effectiveness of our approach. The main
reason is GC-CMVC achieves consistency at the graph level, cluster
level and instance level, and obtains consistent clustering results
across multiple spaces through self-supervised learning.

(a) Caltech-2V (b) Caltech-3V

(c) Caltech-4V (d) Caltech-5V

Figure 3: Loss and clustering evaluation metrics versus the
variation of epochs on Caltech dataset.

5.2 Convergence Analysis
To demonstrate the convergence of our method, we conduct con-
vergence analysis on four versions of Caltech dataset. We visualize
the losses in the trainning process, along with the corresponding
values of ACC, NMI and PUR. From Figure 3, we can observe that,
the loss function rapidly decreases in the initial stages of training
and then tends to converge to a stable value. Simultaneously, the
values of the three metrics increase as the loss decreases, ultimately
reaching stability. These results provide compelling evidence for
the effectiveness and stability of our proposed model.

5.3 Parameter Sensitivity Analysis
In our objective function, there are two hyper-parameters, 𝜆1 and
𝜆2, which are used to balance the hierarchical contrastive learning
loss and the graph learning loss. To gain a deeper understanding of
how these two parameters affect the clustering performance, we
conduct a parameter sensitivity experiment on Caltech datasets, and
the values of ACC under different parameters are shown in Figure
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Datasets Caltech-2V Caltech-3V Caltech-4V Caltech-5V

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

𝐿𝑅𝐶 43.7 31.6 42.7 47.6 32.4 47.6 55.1 46.6 55.7 63.2 53.7 62.6
𝐿𝑅𝐶+𝐿𝐺 59.1 34.9 57.3 54.9 36.7 53.6 69.4 56.2 67.2 74.9 68.2 76.1
𝐿𝑅𝐶+𝐿𝐻𝐶𝐿 56.4 42.5 58.1 62.5 43.3 62.8 70.9 63.1 71.1 80.1 73.4 79.3
𝐿𝑅𝐶+𝐿𝐺+𝐿𝐻𝐶𝐿 63.2 50.5 62.5 68.3 58.7 69.1 75.7 70.8 77.4 83.2 75.7 84.6
𝐿𝑅𝐶+𝐿𝐺+𝐿𝐻𝐶𝐿+𝐿𝐶 64.2 53.5 64.1 68.9 60.4 70.6 76.4 72.8 78.4 84.9 76.4 84.9

Table 4: Ablation study under different combinations of modules on Caltech dataset.

(a) Caltech-2V (b) Caltech-3V

(c) Caltech-4V (d) Caltech-5V

Figure 4: ACC with different 𝜆1 and 𝜆2 on Caltech dataset.

4. From Figure 4, it can be observed that, on Caltech dataset, our
model achieves relatively stable ACC values under most parameter
selections. However, we can also see that, too small or too large
parameters will lead to slight decline of ACC. The best clustering
results are all obtained with 𝜆1 = 1.0 and 𝜆2 = 1.0 on four versions
of Caltech dataset, thus we set the parameters as this on all the
datasets.

5.4 Ablation Study
To further validate the importance of four modules in our method,
we conduct an ablation study on Caltech dataset. As shown in Table
4, combining the reconstruction module with the graph learning
module or hierarchical contrastive learning module significantly
improves the clustering performance compared to using the ba-
sic reconstruction module alone. The combination of hierarchical
contrastive learning module and reconstruction module usually
has better clustering performances than the combination of graph
learning module and reconstruction module. It may be caused by
that, hierarchical contrastive learning module can explore more
types of consistency information. Additionally, integrating the self-
supervised clustering module with other modules leads to improve-
ments in various clustering metrics. The results of the ablation
study indicate that, all the modules within the proposed method

play indispensable roles, and integrating these modules together
can achieve the best performance.

6 CONCLUSIONS
In this paper, we propose a novel multi-view clustering framework
based on graph consistency learning. Specifically, we achieve the
preservation of feature and structure information through origi-
nal feature reconstruction and intra-view contrastive learning. We
perform consistency learning at the graph level, cluster level and
instance level, simultaneously. Finally, we construct global features
from high-level features to obtain a unified target distribution that
guides all views towards clustering consistency by a self-supervised
manner. It allows us to better capture the feature and structure
information of multi-view data, leading to more accurate cluster-
ing results. Our method obtains outstanding performances across
benchmark multi-view datasets, highlighting its wide applicability
in multi-view data analysis.
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