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Abstract

The ability to cooperate and work as a team is one of the ‘holy grail’ goals of1

intelligent robots. Previous works have proposed many multi-agent reinforcement2

learning methods to study this problem in diverse multi-agent environments. How-3

ever, these environments have two limitations, which make them unsuitable for4

real-world applications: 1) the agent observes clean and formatted data from the5

environment instead of perceiving the noisy observation by themselves from the6

first-person perspective; 2) large domain gap between the environment and the7

real world scenarios. In this paper, we propose a Multi-Agent Indoor Navigation8

(MAIN) benchmark1, where agents navigate to reach goals in a 3D indoor room9

with realistic observation inputs. In the MAIN environment, each agent observes10

only a small part of a room via an embodied view. Less information is shared11

between their observations and the observations have large variance. Therefore,12

the agents must learn to cooperate with each other in exploration and communi-13

cation to achieve accurate and efficient navigation. We collect a large-scale and14

challenging dataset to research on the MAIN benchmark. We examine various15

multi-agent methods based on current research works on our dataset. However,16

we find that the performances of current MARL methods does not improve by the17

increase of the agent amount. We find that communication is the key to addressing18

this complex real-world cooperative task. By Experimenting on four variants of19

communication models, we show that the model with recurrent communication20

mechanism achieves the best performance in solving MAIN.21

1 Introduction22

Cooperative multi-agent problems are ubiquitous in real-world applications, for example, multiplayer23

games [40, 38, 18], multi-robot control [29], language communication [48, 15, 33], and social24

dilemmas [23]. These applications focus on solving the sequential decision-making problem of25

multiple autonomous agents within a common environment, which could be systematically modeled26

as the multi-agent reinforcement learning (MARL) paradigm [34, 52, 65]. Compared to traditional27

reinforcement learning, MARL has two major challenges. The first is the partial observability. Each28

agent observes only part of the global state. The second is the instability of learning decentralised29

policies. Recent works have proposed diverse environments to validate the effectiveness of the30

MARL algorithms, such as grounded communication environment [33], StarCraft II [42], DOTA2 [7],31

multi-agent emergence environments [4], soccer shooting [26], etc.32

Most of these game-based MARL environments are quite different from the real-world situation such33

as robotics and auto-driving. For example, the agent observes clean and formatted data from the34

1http://main-dataset.github.io/
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Figure 1: A demonstration of our Multi-agent Indoor Navigation (MAIN) benchmark. The agent 1
moves in the room to find the target by cooperating and communicating with agent 2 and agent 3.

game environment instead of perceiving realistic observations by themselves from the first-person35

perspective. The transition function in the game environments is based on simple rules without36

simulating the physical rules and considering the interference in the real world. Therefore, there is37

large domain gap between current MARL environments and real world, which limits current MARL38

models [27, 40, 62] to be applied to real-world scenarios.39

There are no good models without good data [41]. To overcome these limitations, we propose a novel40

benchmark, Multi-Agent Indoor Navigation (MAIN), where multiple agents are required to navigate41

to reach goals in a 3D indoor room. To obtain realistic observations from the first-person view of42

agents, we adopt Habitat [44] simulator to render realistic egocentric RGB-D image observations43

for agents. At each navigation step, each agent observes an RGB-D image from its own first-person44

perspective and makes action decision including, ‘turn left’, ‘turn right’ and ‘step forward’. The45

setting of realistic egocentric observation is closer to real-world situations, which makes the learned46

agents easier to be transferred to real-world applications like robotics.47

In other MARL environments such as StarCraft II [42] and multi-agent emergence environments [4],48

the observations of different agents have a large proportion of overlapping. For example, the status49

(position or health) of an agent or an object is fully observed if it is located within the vision50

range of another agent. It is unrealistic compared to the real-world where the status of agents51

and objects is not fully observable. In our proposed MAIN environment, the appearance, shape,52

and size of an object will be very different, when observed by the agents from different angles,53

especially in the first-person views where the angles are dynamically changing all the time. In54

addition to the realistic observation, MAIN adopts the Bullet physics engine [12] to provide a more55

realistic transition function. Unlike other environments [42, 4, 26], where the agent receives the56

high-precision localization information from the environment, MAIN does not provide a compass57

sensor and requires the agent to navigate solely using an egocentric RGB-D camera. Compared with58

previous single-agent navigation environments such as MINOS [43] and Habitat [44], we implement59

a asynchronous-synchronous pipeline for efficient multi-agent data sampling.60

To the best of our knowledge, our MAIN is the first multi-agent real-world navigation environment.61

The environments of MAIN benchmark bring new challenges, such as learning from realistic ob-62

servations and less observation overlapping between agents. These new challenges raise additional63

requirement for better utilizing the information by sharing the individual observation with other64

collaborators and making decisions based on both self-observation and collaborators’ observation.65

However, many MARL methods [40, 1, 18, 55] adopt the Centralized Training Decentralized Ex-66

ecution (CTDE) [36] framework, which forbids the real-time information sharing among agents.67

Therefore, these methods are not suitable for a real-world simulated environment like MAIN. To68

address this, we propose a new cooperative multi-agent communication mechanism to enable the69

agents to exchange the information in a real-time manner. This communication mechanism may not70

be essential for game-based or highly-simplified tasks like Hanabi [5], SMAC [53] and Hide-and-71

seek [4] but is crucial in real-world tasks like MAIN due to the highly unlinear and little overlapped72

observations. In short, being aware of the status of the collaborators is beneficial to making a good73

action decision, and is critical for accomplishing a real-world cooperative task. An overview of74

MAIN task with the communication mechanism is shown in Fig. 1. Three agents start from different75
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Input Environment Multi-agent Embodied Observation Overlap Physics Engine

Array

Hanabi [5] 3 - N−1
N -

Diplomacy [37] 3 - N−1
N -

EGCL [33] 3 7 100% -
DOTA2 [7] 3 7 100% Rubikon
SMAC [42] 3 7 81.0%-89.8% Havok

Hide-and-seek [4] 3 7 1
N -100% MuJoCo

Soccer [26] 3 7 100% MuJoCo

Syn image
MARLÖ [39] 3 3 1

N hybrid voxel
AI2-THOR [21] 7 3 1

N Unity

Real image
Habitat [44] 7 3 1

N Bullet
MAIN (Ours) 3 3 1

N Bullet

Table 1: Compared with existing MARL environments (N is the number of agents). The egocentric
view means if the agent has an local observation of environment from its perspective rather than
receiving global information. The embodied view represents whether an agent observe the 3D
environment from the first-person perspective (we only compare the navigable environments).

positions and are asked to find a TV in this room. Each agent receives a first-person photo-realistic76

observation from their perspective respectively. They explore the room and communicate with each77

other to exchange their discoveries. By active exploration and cooperative communication, the No. 178

agent finally finds the TV.79

Considering that agents can have different targets at the same time, we propose two sub-tasks for80

our MAIN task: 1) Shared-target navigation where all agents are asked to find a shared target81

g; 2) Individual-target navigation where each agent i has its own target gi. In the shared-target82

navigation sub-task, we mainly evaluate the agents cooperation ability of searching separately for83

a target. In the individual-target navigation, we focus on evaluating the ability of cooperative84

information exchanging. To fully investigate the MAIN benchmark, we construct a large-scale85

dataset consists of 24M episodes within 90 houses for training, validation, and testing splits, which is86

10 times larger than the dataset in [44]. The data is automatically labeled within the environment.87

Compared with other datasets [57, 44], our dataset is challenging since it provides more long-term88

hard samples.89

Along side with the environment, we provide multiple baselines for MARL research community for90

fast evaluating their effectiveness for real-world deployment. We build our baseline models based on91

previous MARL works [27, 1, 62] to validate the effectiveness of our benchmark and dataset. We92

find that the number of agents improves the navigation performance in simple baselines. However,93

without communication, the navigation performance will not increase by increasing the number of94

agents. And we find it is essential for agents to communicate with each other in addressing complex95

real-world cooperation tasks. We experiment on four kinds of communication variants and find that96

the model with a recurrent actor-critic mechanism to encode historical communication messages97

significantly outperforms other models. In summary, we make the following contributions: 1) we98

propose the MAIN benchmark to research on multi-agent problem in a realistic environment; 2) we99

collect a large-scale and challenging dataset and benchmark several MARL baseline models; 3) we100

propose a communication module that benefits for the real-world multi-agent system.101

2 Related Work102

Multi-agent Environments have been proposed to research multi-agent problems. However, previ-103

ous works ignore the importance of implementing a realistic environment, which limits the learned104

model to be applied on real-world applications such as robotics. In Tab. 1, we compare the differences105

between our MAIN environment with previous multi-agent environments. To the best of our knowl-106

edge, we claim that our MAIN environment is the first multi-agent environment that offers realistic107

image input. Previous works [7, 42, 4] get clean and formatted array data via programming interfaces.108

Therefore, it would be hard for the learned model to overcome the challenge of the interference109

from noisy data. MARLÖ [39] provide synthetic image whose domain is largely deviated from the110

scenarios of the real-world.111
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Our model provides an egocentric and embodied view, which is quite applicable for robots in the112

real world. A particular challenge in the MARL problem is partial observability. Each agent could113

only observe a part of the global state and solve the problem by communication. However, our114

investigation reveals that some of the previous MARL environments [42, 4], even though claimed115

to be partially observable, have large observation overlap. Little observations overlap makes our116

benchmark more challenging than the previous environments, because little information sharing117

makes cooperation difficult. A realistic physical engine helps simulate a real-world transition function.118

Our environment adopt Bullet engine to simulate physics activities such as acceleration and collision.119

Multi-agent Reinforcement Learning extends the problem of reinforcement learning [32, 20, 50]120

into multi-agent scenario and brings new challenges. Most MARL problems [28, 47, 65] falls into the121

centralized training with decentralized execution (CTDE) architecture [36, 22, 61]. Some works are122

dedicated to improving the mixing network which mixes the agent network outputs to learn a joint123

action-value function [40, 49, 55]. Other works are aiming at improving the network structure and124

developing a individual function with better representation and transfer capability [16, 18]. Besides,125

the utilization of state information varies. IPPO [13] incorporates the global state information barely126

by sharing network parameters among critics of individual agents. While MAPPO [63] constructs127

a centralised value function upon agents which takes the aggregated global state information as128

inputs. Researchers find that communication is critical cooperative multi-agent problems. Lowe129

et al. [27] propose MADDPG, a framework based on DDPG [24] with cooperative value function.130

Later, R-MADDPG [54] equips with recurrent actor crtic models, simultaneously learning policies for131

navigation and communication towards better information utilization and resource distribution. We132

implement diverse methods to support extensive research and illustrate the novelties and challenges133

of MAIN.134

Embodied Navigation Environments. Simulations such as Matterport3D simulator [3], Gibson135

simulator [60] and Habitat [44] propose high-resolution photo-realistic panoramic view to simulate136

more realistic environment. Rendering frame rate is also important to embodied simulators since it is137

critical to training efficiency. MINOS [43] runs more than 100 frame per second (FPS), which is 10138

times faster than its previous works. Habitat [44] runs more than 1000 FPS on 512× 512 RGB+depth139

image, making it become the fastest simulator among existing simulators. Some complex tasks may140

require a robot to interact with objects, such as picking up a cup, moving a chair or opening a door.141

AI2-THOR [21], iGibson [59] and RoboTHOR [14] provide interactive environments to train such a142

skill. Multi-agent reinforcement learning [25, 51] is a rising problem of cooperation and competition143

among agents. Based on the Habitat simulator, we construct a multi-agent environment to research144

on realistic MARL problem.145

Embodied Navigation Learning is attracting rising attention in the community and lots of methods146

have been proposed to address this problem. Based on conventional reinforcement learning meth-147

ods [31], Wu et al. [58] introduce an LSTM layer to encode the historical information. Wang et148

al. [56] propose to jointly learn a navigation model with imitation learning and supervised learning.149

Some works [19, 30, 66] propose auxiliary tasks to exploit extra training signals for learning navi-150

gation. SLAM-based methods [64, 9, 10] are widely adopted in navigation due to its capability of151

modeling the room structure. Nonetheless, those tasks do not conducted in multi-agent setting which152

requires cooperation and communication, and consequently, being more flexible and practical.153

3 Multi-agent Indoor Navigation Benchmark154

3.1 Task Definition155

Here we define our proposed Multi-agent Indoor Navigation (MAIN) Benchmark in detail. MAIN156

requires multiple agentsE = {e1, ..., en} to navigate to reach a set of targets accurately and efficiently157

in an indoor environment. At the beginning of an episode, each agent is told to reach a target gi. For158

each step, the agent observes an observation and make an action decision. The observation contains159

an RGB-D image, localization information from a GPS compass and contact information from a160

physics sensor. An action could be ‘turn left’, ‘turn right’, ‘step forward’ and ‘found’. The agent uses161

the first three actions to navigate in the environment and uses the last action to declare it has found the162

target object. The episode of this agent is considered succeed if the ‘found’ action is selected while163

the agent is located with the threshold toward the target object. Otherwise, the episode is consider a164
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Figure 2: Training overview of our MAIN environment.

failure if the ‘found’ action is sleeted while the agent is out of range or it has navigated for maximum165

steps without finding the target.166

Based on the above rules, we propose two sub-tasks, shared-target navigation and individual-target167

navigation. Shared-target navigation is a task where all agents are asked to find a shared target g.168

The task is considered succeed if any agent reaches g and considered failure if any agent fails within169

its episode. Individual-target navigation is a task where each agent i has its own target gi, and the170

task is considered succeed only when all agents successfully find its own target. We do experiments171

under the setting of different agents and different tasks to demonstrate the challenge and novelty of172

this benchmark. The reward function is defined by shortened distance similar to [57].173

3.2 Multi-agent Indoor Navigation Environment174

This environment is built based on Habitat [44] simulator. Habitat simulator renders the 3D assets175

of an house and provide a photo-realistic embodied environment for agents. The Habitat simulator176

provide multiple sensors including RGB-D image, GPS compass and contact. The Habitat is built177

upon the Bullet physics engine that enables realistic graphics rendering, velocity and acceleration178

simulation, and contact simulation. However, the rendering process is computation consuming and179

time costly. Therefore, we design a asynchronous-synchronous pipeline for data efficiency.180

Our pipeline is shown in Fig. 2. The MAIN environment createsB sub-environments for decentralized181

execution to sample data for training, where B is the size of the minibatch. Each sub-environment182

creates N processes, where the N is the number of agents. Each process has a copy of a Habitat183

simulator, and each simulator individually simulates the state of an agent and renders the RGB-D184

image observation for an agent. The MAIN sub-environment synchronizes the processes and interacts185

with a copy of a multi-agent navigation model. In the decentralized execution, the parameters of the186

the multi-agent navigation model are shared across all sub-environments. The multi-agent navigation187

model predicts actions for each agent for each step. The predicted actions are sent to the MAIN188

environment and then distributed to each process to execute. The Habitat simulator execute the action189

and return the updated state and the current partial observation to the MAIN sub-environment. The190

MAIN sub-environment calculate the global reward based on the global state and send the global191

reward and observations to the model. For each step, the global reward, observations for all agents192

and actions that agents predict are stored in the episode memory. We sample the episodes from the193

episode memory to optimize a centralized model by stochastic gradient descent (SGD). The model194

after a step of SGD optimization is copied to each MAIN sub-environment to update the execution195

model.196

3.3 Data Collection197

We use the room textures and other 3D assets provided by Matterport3D [8] to build the MAIN198

environment. Matterport3D consists of 10,800 panoramic views constructed from 194,400 RGB-D199

images of 90 building-scale scenes, where 61 scenes for training, 11 for validation, and 18 for testing200

following the standard split [8]. We provide episode data for learning and testing. An episode is201

defined by a starting position where the agent starts and the target position where the agent is required202

to reach. Both the starting position and the target positions are randomly sampled from navigable203

points within an environment. We ensures there is at least one navigable path from the starting204
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Figure 3: An analysis of our MAIN dataset. The curve in the left figure stands for the Gaussian
smoothing. The lines are the mean values of the smoothed Gaussian distributions.

position to the target. And we constrain the length of an episode to be between 2m and 20m, which205

ensures that each episode is neither too trivial nor too hard.206

We compare the distribution of the average trajectory length within a room with MultiON [57] and207

the object navigation data in the Habitat Challenge [6] in Fig. 3(a). Due to the different structures208

of the house, the episode data from each house have different average length. We find that with the209

same room setting, our average trajectory length is longer than both MultiON and Habitat, proving210

that our data is more challenging. Our dataset provide 24M episodes, 10 times more than the data211

scale of the Habitat dataset.212

The Fig. 3(b) shows the average distance that the agents need to navigate to successfully accomplish213

task. It reveals the gap of the difficulty among the two sub-tasks and the single-agent navigation task214

accompany with the agent amount using our dataset. With the increase of the agent amounts, the215

difficulty of individual-target task is significantly increasing while the shared-target task is reducing.216

3.4 Metrics217

The MAIN task is evaluated from two aspects: navigation accuracy and efficiency. We use the218

following metrics to quantitatively measure the effectiveness of models:219

Success Rate is used to measure if the agent successfully finds the target when it yields ‘found’. The220

agent is regarded ‘success’ only if it is located within a threshold distance towards the target.221

Distance indicates the average distance forward the target when the agent stops. This metric is useful222

when the success rate is low.223

SPL, short for Success weighted by Path Length [2], evaluates the accuracy and efficiency simultane-224

ously. The SPL is calculated by 1
N

∑N
i=1 Si

pi
li

, where the N is all testing samples, Si is the success225

indicator, pi is the shortest path length, and the li is the actual path length in testing. We adopt the226

SPL as our main metric.227

4 Multi-agent Models228

4.1 Preliminaries229

We systematically model our MAIN problem as a multi-agent reinforcement learning paradigm230

which is described as a partially-observed Markov decision process (POMDP) [35]. P (s′|s, a) is the231

transition probability that transforms the current state space S to the next state space S′ conditions on232

the a global action a ∈ A. We follow the centralized-training decentralized-execution framework233

that parameterize the shared policy of each agent as πθ. For each step t, the agent i receive its partial234

observation ot,i and choose its action by at,i = πθi(ot,i). The global action at = a1,t, ..., an,t All235

agents share the same global reward function r(s, a) : S ×A→ R. And the γ ∈ [0, 1) is a discount236
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factor that defines the length of the horizon. We optimization the parameter θ by minimizing the237

optimization objective J(θ) = E [
∑
t γ

tr(st, at)] by PPO algorithm [46].238

4.2 Baseline Multi-agent Models239

We implement several multi-agent models to investigate the performance of multi-agent models on240

the MAIN task.241

Random navigator with oracle founder. We implement a random baseline which randomly sample242

the action of ‘turn left’, ‘turn right’ and ‘go forward’. And the baseline model has the oracle ‘found’243

module that yields ‘found’ as long as the agent reaches within the success range of navigation. This244

baseline model is used to validate if our dataset is too easy or have severe bias.245

Multi-single agent. This model is implement in the PPO [46] that is trained in a single-agent246

paradigm but tested in a multi-agent paradigm. We research on this model to see if the number of247

agents help the performance of navigaion in multi-agent paradigm.248

IPPO. The IPPO model learns the global reward and share network parameters each agent. The249

difference between PPO and IPPO [1] is that the PPO model receives a single-agent reward while the250

IPPO model receives a global reward that influenced by other agents. The actions of other agents251

cause the instability of the global reward, which increases the difficulty of training.252

MAPPO. Based on IPPO, MAPPO [63] introduces a centralised value function upon agents with253

global state inputs. However, the original MAPPO does not consider the importance of encoding the254

historical communicative information, which limits its application in complex environments where255

the observations of the agents have little in common and the historical information is important in256

action decision. In our implementation, the CNN and RNN are shared among agents while the each257

agent has its own actor and critic functions.258

4.3 Multi-agent Cooperative Communication Navigation259

In this section, we are going to introduce our cooperative communicative navigation model, as shown260

in Fig. 4. We take a two-agent situation for demonstration. The framework firstly embeds the target as261

an embedding feature, and extracts visual feature using an Convolutional Neural Network (CNN) [17]262

module. The parameters of the embedding layer and the CNN layer are shared between agents to263

ensure the generazability. Then the target feature and visual feature are concatenated to feed the264

Recurrent Neural Network (RNN) [11] module. The RNN module is adopted to encode historical265

information. Since the agents receive partial observation, it is important to memorize the previous266

observation to help the agent build a more comprehensive understanding of the environment. The267

historical feature from the RNN is send to two fully connected layers. One outputs an probability268

that represents the preference of making action decision and the other predicts a value to estimate269

the effective of the current situation. The model is optimized by PPO algorithm. To be specific, the270

action prediction is supervised by policy gradient loss and the value prediction is supervised by the271

bellman equation.272
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Figure 5: The result curves of our experiments.

Models 2 Agents 3 Agents
Length Distance Success rate SPL Length Distance Success rate SPL

Random 3.39 12.75 0.00 0.00 3.30 16.67 0.00 0.00
Multi-PPO [46] 232.89 10.66 0.21 0.17 47.11 16.10 0.01 0.00
IPPO [1] 256.67 15.55 0.08 0.06 137.24 15.94 0.02 0.01
Comm-S 351.03 10.02 0.12 0.06 75.92 16.16 0.05 0.05
Comm-V 68.14 12.02 0.03 0.03 80.23 10.36 0.05 0.04
Comm-RM 309.7 12.78 0.3 0.23 312.86 14.59 0.13 0.06
Comm-RV 298.1 11.56 0.24 0.17 301.2 12.32 0.08 0.05

Table 2: The testing results of different models. Multi-PPO: single-agent PPO model tested in
multi-agent environment. The four variants of our communicative models is denoted as Sequential
Communication model (Comm-S), Value Communication model (Comm-V), recurrent message
communication model (Comm-RM), and recurrent value communication model (Comm-RV).

The agents exchange information between the the blue block and the green block to obtain more273

knowledge and build a more comprehensive understanding of the environment. The feature vector that274

an agent send is named as ‘message’. The agent that receives the message is named the ‘receiver’ and275

the agent that sends the message is named the ‘sender’. The gradient is not back-propagated from the276

‘receiver’ to the ‘sender’ since it causes severe instability in training, which makes the performance of277

the learned navigation model to be almost zero. On the left we show four communicative variants. We278

name the them as sequential communication model (Comm-S) , value communication model (Comm-279

V), recurrent message communication model (Comm-RM), and recurrent value communication280

model (Comm-RV).281

5 Experiment282

Implementation Details Our communicative model is built based on our implementation of [1].283

We train all of our models for 15M iterations. We adopt Adam optimizer whose learning rate is284

2.5× 10−4. The discount factor γ = 0.99 and the TD(λ) factor in GAE [45] is 0.95. Our model is285

trained on by 8 GPUs (7 GPUs for rendering image inputs and 1 GPU for optimization) for 36 hours.286

Ablation for Agent Amount The Fig. 5(a) ablates the amount of agent in MARL learning. We find287

that with the amount increasing, the navigation performance is declining. More agent narrows the288

searching area for find a target. However, the global reward is easily effected by the actions of other289

agents, and therefore, hard to give an agent a clear guidance.290
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Figure 6: The trajectory visualization results of the IPPO agent and the communicative agent in the
testing environment. The red circle with a red flag is the position where the target located. The yellow
circle is the starting position of an agent. The green line indicates the shortest path, and the blue line
is the actual navigation path. The red cross indicate the location where an agent fails.

The Difficulty of Two Sub-tasks The Fig. 5(b), (c) ablate the difficulty of two sub-tasks. We train291

the IPPO baselines on individual-target task and shared-target task respectively. We find that the292

individual-target task is significantly harder than the shared-target task, and the gap of difficulty is293

increasing with more agent amounts. This experimentation result also proves the dataset analysis294

result in Sec 3.3.295

Ablation for Communication We train the model with historical communication mechanism, the296

model with value communication mechanism and the IPPO baseline on 2 agents, 4 agents and297

6 agents scenario. The result if shown in the Fig. 5(d), (e), (f), where the model with historical298

communication mechanism significantly outperform other two models. In addition, we find that the299

value communication mechanism cause overfitting in the MAIN task.300

A more detailed comparison is shown in Tab. 2. We test our baseline models and the Comm-RM301

model in both 2-agents and 3-agent scenarios. We find that the third variant, whose structure is shown302

in Fig. 4, performs the best and largely outperforms other methods. We conclude from this figure303

that communication mechanism is quite important for the MAIN task. A proper communication304

mechanism largely improves the performance while a bad design of cooperative mechanism may305

introduce noise or cause overfitting. Moreover, we find that the results of the IPPO model and the306

single-agent PPO model tested in the multi-agent environment still competitive.307

Visualization for Navigation Process In Fig. 6, we visualize the navigation process of two models:308

the IPPO baseline model and the Comm-RM model. In this figure, at lease one agent from the309

communicative model successfully reaches the target. We find that the agents with cooperative310

communication is able to explore larger area and navigation for a longer trajectory. Similar result is311

also observed in Tab. 2. We find that the agents with communication tend to explore different areas312

in a room. It indicates that the agents is able to learn to navigate seperately and communicate the313

exploration result, which largely improve the navigation efficiency.314

6 Conclusion315

In this paper, we propose a novel Multi-Agent Indoor Navigation (MAIN) benchmark to research316

on multi-agent problem in a realistic environment. We collect a large-scale dataset for researching317

on MAIN and analysis the advantage of our dataset. We benchmark multiple baseline models in318

MAIN and find that traditional MARL methods cannot solve MAIN due to the unique challenges in319

MAIN such as little observation overlap and high variance of the embodied image view. By doing320

experimentation, We discover that the model with historical communication message significantly321

helps multi-agent navigation in MAIN. In the future, we are going to research on MARL problems322

based on MAIN and keep updating the dataset and the codebase of MAIN.323
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