
Published as a conference paper at ICLR 2023

CAUSAL IMITATION LEARNING
VIA INVERSE REINFORCEMENT LEARNING

Kangrui Ruan∗, Junzhe Zhang∗, Xuan Di, and Elias Bareinboim
Columbia University, New York, NY 10027, USA
{kr2910,junzhez,sharon.di,eliasb}@columbia.edu

ABSTRACT

One of the most common ways children learn when unfamiliar with the environment
is by mimicking adults. Imitation learning concerns an imitator learning to behave
in an unknown environment from an expert’s demonstration; reward signals remain
latent to the imitator. This paper studies imitation learning through causal lenses
and extends the analysis and tools developed for behavior cloning (Zhang, Kumor,
Bareinboim, 2020) to inverse reinforcement learning. First, we propose novel
graphical conditions that allow the imitator to learn a policy performing as well as
the expert’s behavior policy, even when the imitator and the expert’s state-action
space disagree, and unobserved confounders (UCs) are present. When provided
with parametric knowledge about the unknown reward function, such a policy
may outperform the expert’s. Also, our method is easily extensible and allows
one to leverage existing IRL algorithms even when UCs are present, including
the multiplicative-weights algorithm (MWAL) (Syed & Schapire, 2008) and the
generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016). Finally, we
validate our framework by simulations using real-world and synthetic data.

1 INTRODUCTION

Reinforcement Learning (RL) has been deployed and shown to perform extremely well in highly
complex environments in the past decades (Sutton & Barto, 1998; Mnih et al., 2013; Silver et al.,
2016; Berner et al., 2019). One of the critical assumptions behind many of the classical RL algorithms
is that the reward signal is fully observed, and the reward function could be well-specified. In many
real-world applications, however, it might be impractical to design a suitable reward function that
evaluates each and every scenario (Randløv & Alstrøm, 1998; Ng et al., 1999). For example, in the
context of human driving, it is challenging to design a precise reward function, and experimenting in
the environment could be ill-advised; still, watching expert drivers operating is usually feasible.

In machine learning, the imitation learning paradigm investigates the problem of how an agent should
behave and learn in an environment with an unknown reward function by observing demonstrations
from a human expert (Argall et al., 2009; Billard et al., 2008; Hussein et al., 2017; Osa et al., 2018).
There are two major learning modalities that implements IL – behavioral cloning (BC) (Widrow,
1964; Pomerleau, 1989; Muller et al., 2006; Mülling et al., 2013; Mahler & Goldberg, 2017) and
inverse reinforcement learning (IRL) Ng et al. (2000); Ziebart et al. (2008); Ho & Ermon (2016);
Fu et al. (2017). BC methods directly mimic the expert’s behavior policy by learning a mapping
from observed states to the expert’s action via supervised learning. Alternatively, IRL methods first
learn a potential reward function under which the expert’s behavior policy is optimal. The imitator
then obtains a policy by employing standard RL methods to maximize the learned reward function.
Under some common assumptions, both BC and IRL are able to obtain policies that achieve the
expert’s performance (Kumor et al., 2021; Swamy et al., 2021). Moreover, when additional parametric
knowledge about the reward function is provided, IRL may produce a policy that outperforms the
expert’s in the underlying environment (Syed & Schapire, 2008; Li et al., 2017; Yu et al., 2020).

For concreteness, consider a learning scenario depicted in Fig. 1a, describing trajectories of human-
driven cars collected by drones flying over highways (Krajewski et al., 2018; Etesami & Geiger, 2020).
Using such data, we want to learn a policy X ← π(Z) deciding on the acceleration (action) X ∈
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Figure 1: Causal diagrams where X represents an action (shaded red) and Y represents a latent
reward (shaded blue). Input covariates of the policy scope S are shaded in light red.

{0, 1} of the demonstrator car based on velocities and locations Z of surrounding cars. The driving
performance is measured by a latent reward signal Y . Consider an instance where Y ← (1−X)Z +
X(1−Z) and values of Z are drawn uniformly over {0, 1}. A human expert generates demonstrations
following a behavior policy such that P (X = 1 | Z = 0) = 0.6 and P (X = 0 | Z = 1) = 0.4.
Evaluating the expert’s performance gives E[Y ] = P (X = 1, Z = 0) + P (X = 0, Z = 1) = 0.5.
Now we apply standard IRL algorithms to learn a policy X ← π(Z) so that the imitator’s driving
performance, denoted by E[Y | do(π)], is at least as good as the expert’s performance E[Y ]. Detailed
derivations of IRL policy are shown in (Ruan et al., 2023, Appendix A). Note that E[Y |z, x] =
x+ z − 2xz belongs to a family of reward functions fY (x, z) = αx+ βz − γxz, where 0 < α < γ.
A typical IRL imitator solves a minimax problem minπ maxfY E [fY (X,Z)]−E [fY (X,Z) | do(π)].
The inner step “guesses” a reward function being optimized by the expert; while the outer step learns a
policy maximizing the learned reward function. Applying these steps leads to a policy π∗ : X ← ¬Z
with the expected reward E[Y | do(π∗)] = 1, which outperforms the sub-optimal expert.

Despite the performance guarantees provided by existing imitation methods, both BC and IRL rely
on the assumption that the expert’s input observations match those available to the imitator. More
recently, there exists an emerging line of research under the rubric of causal imitation learning
that augments the imitation paradigm to account for environments consisting of arbitrary causal
mechanisms and the aforementioned mismatch between expert and imitator’s sensory capabilities
(de Haan et al., 2019; Zhang et al., 2020; Etesami & Geiger, 2020; Kumor et al., 2021). Closest to our
work, Zhang et al. (2020); Kumor et al. (2021) derived graphical criteria that completely characterize
when and how BC could lead to successful imitation even when the agents perceive reality differently.
Still, it is unclear how to perform IRL-type training if some expert’s observed states remain latent to
the imitator, which leads to the presence of unobserved confounding (UCs) in expert’s demonstrations.
Perhaps surprisingly, naively applying IRL methods when UCs are present does not necessarily lead
to satisfactory performance, even when the expert itself behaves optimally.

To witness, we now modify the previous highway driving scenario to demonstrate the challenges of
UCs. In reality, covariates Z (i.e., velocities and location) are also affected by the car horn U1 of
surrounding vehicles and the wind condition U2. However, due to the different perspectives of drones
(recording from the top), such critical information (i.e, U1, U2 ) is not recorded by the camera and thus
remains unobserved. Fig. 1b graphically describes this modified learning setting. More specifically,
consider an instance where Z ← U1 ⊕ U2, Y ← ¬X ⊕ Z ⊕ U2; ⊕ is the exclusive-or operator;
and values of U1 and U2 are drawn uniformly over {0, 1}. An expert driver, being able to hear the
car horn U1, follows a behavior policy X ← U1 and achieves the optimal performance E[Y ] = 1.
Meanwhile, observe that E[Y |z, x] = 1 belongs to a family of reward functions fY (x, z) = α (where
α > 0). Solving minπ maxfY E [fY (X,Z)]− E [fY (X,Z) | do(π)] leads to an IRL policy π∗ with
expected reward E[Y |do(π∗)] = 0.5, which is far from the expert’s optimal performance E[Y ] = 1.

After all, a question that naturally arises is, under what conditions an IRL imitator procedure can
perform well when UCs are present, and there is a mismatch between the perception of the two agents?
In this paper, we answer this question and, more broadly, investigate the challenge of performing IRL
through causal lenses. In particular, our contributions are summarized as follows. (1) We provide a
novel, causal formulation of the inverse reinforcement learning problem. This formulation allows one
to formally study and understand the conditions under which an IRL policy is learnable, including in
settings where UCs cannot be ruled out a priori. (2) We derive a new graphical condition for deciding
whether an imitating policy can be computed from the available data and knowledge, which provides
a robust generalization of current IRL algorithms to non-Markovian settings, including GAIL (Ho
& Ermon, 2016) and MWAL (Syed & Schapire, 2008). (3) Finally, we move beyond this graphical
condition and develop an effective IRL algorithm for structural causal models (Pearl, 2000) with
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arbitrary causal relationships. Due to the space constraints, all proofs are provided in (Ruan et al.,
2023, Appendix B). For a more detailed survey on imitation learning and causal inference, we refer
readers to (Ruan et al., 2023, Appendix E).

1.1 PRELIMINARIES

We use capital letters to denote random variables (X) and small letters for their values (x). DX

represents the domain of X and PX the space of probability distributions over DX . For a set X ,
let |X| denote its dimension. The probability distribution over variables X is denoted by P (X).
Similarly, P (Y |X) represents a set of conditional distributions P (Y |X = x) for all realizations
x. We use abbreviations P (x) for probabilities P (X = x); so does P (Y = y |X = x) = P (y |
x). Finally, indicator function 1{Z = z} returns 1 if Z = z holds true; otherwise 0.

The basic semantic framework of our analysis rests on structural causal models (SCMs) (Pearl,
2000, Ch. 7). An SCM M is a tuple ⟨U ,V ,F , P (U)⟩ with V the set of endogenous, and U
exogenous variables. F is a set of structural functions s.t. for fV ∈ F , V ← fV (paV ,uV ), with
PAV ⊆ V ,UV ⊆ U . Values of U are drawn from an exogenous distribution P (U), inducing
distribution P (V ) over endogenous variables V . Since the learner can observe only a subset of
endogenous variables, we split V into a partition O ∪L where variable O ⊆ V are observed and
L = V \O remain latent to the leaner. The marginal distribution P (O) is thus referred to as the
observational distribution. An atomic intervention on a subset X ⊆ V , denoted by do(x), is an
operation where values of X are set to constants x, replacing the functions fX = {fX : ∀X ∈X}
that would normally determine their values. For an SCM M , let Mx be a submodel of M induced by
intervention do(x). For a set Y ⊆ V , the interventional distribution P (s|do(x)) induced by do(x)
is defined as the distribution over Y in the submodel Mx, i.e., PM (Y |do(x)) ≜ PMx(Y ). We leave
M implicit when it is obvious from the context.

Each SCM M is associated with a causal diagram G which is a directed acyclic graph where (e.g.,
see Fig. 1) solid nodes represent observed variables O, dashed nodes represent latent variables L,
and arrows represent the arguments PAV of each function fV ∈ F . Exogenous variables U are
not explicitly shown; a bi-directed arrow between nodes Vi and Vj indicates the presence of an
unobserved confounder (UC) affecting both Vi and Vj . We will use family abbreviations to represent
graphical relationships such as parents, children, descendants, and ancestors. For example, the set of
parent nodes of X in G is denoted by pa(X)G = ∪X∈Xpa(X)G ; ch , de and an are similarly defined.
Capitalized versions Pa,Ch,De,An include the argument as well, e.g. Pa(X)G = pa(X)G ∪X .
For a subset X ⊆ V , the subgraph obtained from G with edges outgoing from X / incoming into X
removed is written as GX /GX respectively. G[X] is a subgraph of G containing only nodes X and
edges among them. A path from a node X to a node Y in G is a sequence of edges, which does not
include a particular node more than once. Two sets of nodes X,Y are said to be d-separated by a
third set Z in a DAG G, denoted by (X ⊥⊥ Y |Z)G , if every edge path from nodes in X to nodes in
Y is “blocked” by nodes in Z. The criterion of blockage follows (Pearl, 2000, Def. 1.2.3). For a
more detailed survey on SCMs, we refer readers to (Pearl, 2000; Bareinboim et al., 2022).

2 CAUSAL INVERSE REINFORCEMENT LEARNING

We investigate the sequential decision-making setting concerning a set of actions X , a series of
covariates Z, and a latent reward Y in an SCM M . An expert (e.g., a physician, driver), operating in
SCM M , selects actions following a behavior policy, which is the collection of structural functions
fX = {fX | X ∈ X}. The expert’s performance is evaluated as the expected reward E[Y ]. On
the other hand, a learning agent (i.e., the imitator) intervenes on actions X following an ordering
X1 ≺ · · · ≺ Xn; each action Xi is associated with a set of features PA∗

i ⊆ O \ {Xi}. A policy π
over actions X is a sequence of decision rules π = {π1, . . . , πn}. Each decision rule πi(Xi | Zi)
is a probability distribution over an action Xi ∈ X , conditioning on values of a set of covariates
Zi ⊆ PA∗

i . Such policies π are also referred to as dynamic treatment regimes (Murphy et al., 2001;
Chakraborty & Murphy, 2014), which generalize personalized medicine to time-varying treatment
settings in healthcare, in which treatment is repeatedly tailored to a patient’s dynamic state.

A policy intervention on actions X following a policy π, denoted by do(π), entails a submodel
Mπ from a SCM M where structural functions fX associated with X (i.e., the expert’s behavior
policy) are replaced with decision rules Xi ∼ πi(Xi | Zi) for every Xi ∈X . A critical assumption
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throughout this paper is that submodel Mπ does not contain any cycles. Similarly, the interventional
distribution P (V | do(π)) induced by policy π is defined as the joint distribution over V in Mπ .

Throughout this paper, detailed parametrizations of the underlying SCM M are assumed to be
unknown to the agent. Instead, the agent has access to the input: (1) a causal diagram G associated
with M , and (2) the expert’s demonstrations, summarized as the observational distribution P (O).
The goal of the agent is to output an imitating policy π∗ that achieves the expert’s performance.
Definition 1. For an SCM M = ⟨U ,V ,F , P (U)⟩, an imitating policy π∗ is a policy such that its
expected reward is lower bounded by the expert’s reward, i.e., EM [Y | do(π∗)] ≥ EM [Y ].

In words, the right-hand side is the expert’s performance that the agent wants to achieve, while the
left-hand side is the real reward experienced by the agent. The challenge in imitation learning arises
from the fact that the reward Y is not specified and latent, i.e., Y ̸∈ O. This precludes approaches that
identify E[Y |do(π)] directly from the demonstration data (e.g., through the do- or soft-do-calculus
Pearl (2000); Correa & Bareinboim (2020)).

There exist methods in the literature for finding an imitating policy in Def. 1. Before describing their
details, we first introduce some necessary concepts. For any policy π, we summarize its associated
state-action domain using a sequence of pairs of variables called a policy scope S.
Definition 2 (Lee & Bareinboim (2020)). For an SCM M , a policy scope S (for short, scope) over
actions X is a sequence of tuples {⟨Xi,Zi⟩}ni=1 where Zi ⊆ PA∗

i for every Xi ∈X .

We will consistently use π ∼ S to denote a policy π associated with scope S . For example, consider
a policy scope S = {⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩} over actions X1, X2 in Fig. 1c. A policy π ∼ S is a
sequence of distributions π = {π1(X1 | Z1), π2(X2 | Z2)}.
Zhang et al. (2020); Kumor et al. (2021) provide a graphical condition that is sufficient for learning
an imitating policy via behavioral cloning (BC) provided with a causal diagram G. For a policy
scope S = {⟨Xi,Zi⟩}ni=1, let G(i), i = 1, . . . , n, denote a manipulated graph obtained from G by the
following steps: for all j = i+1, . . . , n, (1) remove arrows coming into every action Xj ; and (2) add
direct arrows from nodes in Zj to Xj . Formally, the sequential π-backdoor criterion is defined as:
Definition 3 (Kumor et al. (2021)). Given a causal diagram G, a policy scope S = {⟨Xi,Zi⟩}ni=1
is said to satisfy the sequential π-backdoor criterion in G (for short, π-backdoor admissible) if at
each Xi ∈ X , one of the following conditions hold: (1) Xi is not an ancestor of Y in G(i), i.e.,
X ̸∈ An(Y )G(i) ; or (2) Zi blocks all backdoor path from Xi to Y in G(i), i.e., (Y ⊥⊥ Xi|Zi) in G(i)Xi

.

(Kumor et al., 2021) showed that whenever a π-backdoor admissible scope S is available, one could
learn an imitating policy π∗ ∼ S by setting π∗

i (xi | zi) = P (xi | zi) for every action Xi ∈ X .
For instance, consider the causal diagram G in Fig. 1c. Scope S = {⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩} is
π-backdoor admissible since (X1 ⊥⊥ Y |Z1) and (X2 ⊥⊥ Y |Z2) hold in G, which is a super graph
containing both manipulated G(1) and G(2). An imitating policy π∗ = {π∗

1 , π
∗
2} is thus obtainable

by setting π∗
1(X1 | Z1) = P (X1 | Z1) and π∗

2(X2 | Z2) = P (X2 | Z2). While impressive, a
caveat of their results is that the performance of the imitator is restricted by that of the expert, i.e.,
E[Y | do(π∗)] = E[Y ]. In other words, causal BC provides an efficient way to mimic the expert’s
performance. If the expert’s behavior is far from optimal, the same will hold for the learning agent.

2.1 MINIMAL SEQUENTIAL BACKDOOR CRITERION

To circumvent this issue, we take a somewhat different approach to causal imitation by incorporating
the principle of inverse reinforcement learning (IRL) principle. Following the game-theoretic
approach (Syed & Schapire, 2008), we formulate the problem as learning to play a two-player
zero-sum game in which the agent chooses a policy, and the nature chooses an SCM instance. A key
property of this algorithm is that it allows us to incorporate prior parametric knowledge about the latent
reward signal. When such knowledge is informative, our algorithm is about to obtain a policy that
could significantly outperform the expert with respect to the unknown causal environment, while at
the same time are guaranteed to be no worse. Formally, let M = {∀M | GM = G, PM (O) = P (O)}
denote the set of SCMs compatible with both the causal diagram G and the observational distribution
P (O). Fix a policy scope S. Now consider the optimization problem defined as follows.

ν∗ = min
π∼S

max
M∈M

EM [Y ]− EM [Y | do(π)]. (1)
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The inner maximization in the above equation can be viewed as an causal IRL step where we attempt
to “guess” a worst-case SCM M̂ compatible with G and P (O) that prioritizes the expert’s policy.
That is, the gap in the performance between the expert’s and the imitator’s policies is maximized.
Meanwhile, since the expert’s reward EM [Y ] is not affected by the imitator’s policy π, the outer
minimization is equivalent to a planning step that finds a policy π∗ optimizing the learned SCM
M̂ . Obviously, the solution π∗ is an imitating policy if gap ν∗ = 0. In cases where the expert is
sub-optimal, i.e., EM̂ [Y ] < EM̂ [Y | do(π)] for some policies π, we may have ν∗ < 0. That is, the
policy π∗ will dominate the expert’s policy fX regardless of parametrizations of SCM M in the
worst-case scenario. In other words, π∗ to some extent ignores the sub-optimal expert, and instead
exploits prior knowledge about the underlying model.

Despite the clear semantics in terms of causal models, the optimization problem in Eq. (1) requires
the learner to search over all possible SCMs compatible with the causal diagram G and observational
distribution P (O). In principle, it entails a quite challenging search since one does not have access to
the parametric forms of the underlying structural functions F nor the exogenous distribution P (U).
It is not clear how the existing optimization procedures can be used.

In this paper, we will develop novel methods to circumvent this issue, thus leading to effective
imitating policies. Our first algorithm relies on a refinement of the sequential π-backdoor, based on
the concept of minimality. A subscope S ′ of a policy scope S = {⟨Xi,Zi⟩}ni=1, denoted by S ′ ⊆ S ,
is a sequence {⟨Xi,Z

′
i⟩}

n
i=1 where Z ′

i ⊆ Zi for every Xi ∈ X . A proper subscope S ′ ⊂ S is a
subscope in S other than S itself. The minimal π-backdoor admissible scope is defined as follows.
Definition 4. Given a causal diagram G, a π-backdoor admissible scope S is said to be minimal if
there exists no proper subscope S ′ ⊂ S satisfying the sequential π-backdoor in G.

Theorem 1. Given a causal diagram G, if there exists a minimal π-backdoor admissible scope
S = {⟨Xi,Zi⟩}ni=1 in G, consider the following conditions:

1. Let effective actions X∗ = X ∩An(Y )GS and effective covariates Z∗ =
⋃

Xi∈X∗ Zi;
2. For i = 1, . . . , n+ 1, let X∗

<i = {∀Xj ∈X∗ | j < i} and Z∗
<i =

⋃
Xj∈X∗

<i
Zj .

Then, for any policy π ∼ S, the expected reward E[Y | do(π)] is computable from P (O, Y ) as:

E[Y | do(π)] =
∑
x∗,z∗

E[Y | x∗, z∗]ρπ(x
∗, z∗) (2)

where the occupancy measure ρπ(x∗, z∗) =
∏

Xi∈X∗ P
(
zi | x∗

<i, z
∗
<i

)
πi(xi | zi).

To illustrate, consider again the causal diagram G in Fig. 1c; the manipulated diagram G(2) = G
and G(1) is obtained from G by removing Z2 ↔ X2. While scope S1 = {⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩}
satisfies the sequential π-backdoor, it is not minimal since (X1 ⊥⊥ Y ) in G(1)X1

. On the other hand,
S2 = {⟨X1, ∅⟩, ⟨X2, {Z2}⟩} is minimal π-backdoor admissible since (X2 ⊥⊥ Y | Z2) holds true in
G(2)X2

; and the covariate set {Z2} is minimal due to the presence of the backdoor path X2 ← Z2 → Y .

Let us focus on the minimal π-backdoor admissible scope S2. Note that GS2
is a subgraph obtained

from G by removing the bi-directed arrowZ2 ↔ X2. We must have effective actions X∗ = {X1, X2}
and effective covariates Z∗ = {Z2}. Therefore, Z∗

<1 = Z∗
<2 = ∅ and Z∗

<3 = {Z2}. For any policy
π ∼ S2, Thm. 1 implies E[Y | do(π)] =

∑
x1,x2,z2

E[Y | x1, x2, z2]P (z2|x1)π2(x2|z2)π(x1). On
the other hand, the same result in Thm. 1 does not necessarily hold for a non-minimal π-backdoor ad-
missible scope. For instance, consider again the non-minimal scope S1 = {⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩}.
The expected reward E[Y | do(π)] of a policy π ∼ S2 is not computable from Eq. (2), and is
ultimately not identifiable from distribution P (O, Y ) in G (Tian, 2008).

2.2 IMITATION VIA INVERSE REINFORCEMENT LEARNING

Once a minimal π-backdoor admissible scope S is found, there exist effective procedures to solve for
an imitating policy in Eq. (1). Let R be a hypothesis class containing all expected rewards EM [Y |
x∗, z∗] compatible with candidate SCMs M ∈ M , i.e., R = {EM [Y | x∗, z∗] | ∀M ∈M }. Ap-
plying the identification formula in Thm. 1 reduces the optimization problem in Eq. (1) as follows:

ν∗ = min
π∼S

max
r∈R

∑
x∗,z∗

r(x∗, z∗) (ρ(x∗, z∗)− ρπ(x∗, z∗)) (3)
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where the expert’s occupancy measure ρ(x∗, z∗) = P (x∗, z∗) and the agent’s occupancy measure
ρπ(x

∗, z∗) is given by Eq. (2). The above minimax problem is solvable using standard IRL algorithms.
The identification result in Thm. 1 ensures that the learned policy applies to any SCM compatible with
the causal diagram and the observational data, thus robust to the unobserved confounding bias in the
expert’s demonstrations. Henceforth, we will consistently refer to Eq. (3) as the canonical equation
of causal IRL. In this paper, we solve for an imitating policy π∗ in Eq. (3) using state-of-the-art
IRL algorithms, provided with common choices of parametric reward functions. These algorithms
include the multiplicative-weights algorithm (MWAL) (Syed & Schapire, 2008) and the generative
adversarial imitation learning (GAIL) (Ho & Ermon, 2016). We refer readers to Algs. 3 and 4 in
(Ruan et al., 2023, Appendix C) for more discussions on the pseudo-code and implementation details.

Causal MWAL (Abbeel & Ng, 2004; Syed & Schapire, 2008) study IRL in Markov decision
processes where the reward function r(x∗, z∗) is a linear combination of k-length feature expectations
vectors ϕ(x∗, z∗). Particularly, let r(x∗, z∗) = w · ϕ(x∗, z∗) for a coefficient vector w contained
in a convex set Sk =

{
w ∈ Rk | ∥w∥1 = 1 and w ⪰ 0

}
. Let ϕ(i) be the i-th component of feature

vector ϕ and let deterministic policies with scope S be ordered by π(1), . . . ,π(n). The canonical
equation in Eq. (3) is reducible to a two-person zero-sum matrix game under linearity.

Proposition 1. For a hypothesis class R = {r = w · ϕ | w ∈ Sk}, the solution ν∗ of the canonical
equation in Eq. (3) is obtainable by solving the following minimax problem:

ν∗ = min
π∼S

max
w∈Sk

w⊤Gπ, (4)

where G is a k × n matrix given by G(i, j) =
∑

x∗,z∗ ϕ(i)(x∗, z∗) (ρ(x∗, z∗)− ρπ(j)(x∗, z∗)).

There exist effective multiplicative weights algorithms for solving the matrix game in Eq. (4),
including MW (Freund & Schapire, 1999) and MWAL (Syed & Schapire, 2008).

Causal GAIL (Ho & Ermon, 2016) introduces the GAIL algorithm for learning an imitating policy
in Markov decision processes with a general family of non-linear reward functions. In particular,
r(x∗, z∗) takes values in the real space R, i.e., r ∈ RX∗,Z∗

where RX∗,Z∗
= {r : DX∗ ×DZ∗ 7→

R}. The complexity of reward function r is penalized by a convex regularization function ψ(r), i.e.,

ν∗ = min
π∼S

max
r∈RX×Z

∑
x∗,z∗

r(x∗, z∗) (ρ(x∗, z∗)− ρπ(x∗, z∗))− ψ(r) (5)

Henceforth, we will consistently refer to Eq. (5) as the penalized canonical equation of causal IRL. It
is often preferable to solve its conjugate form. Formally,

Proposition 2. For a hypothesis class R = {r : DX∗ ×DZ∗ 7→ R} regularized by ψ, the solution
ν∗ of the penalized canonical equation in Eq. (5) is obtainable by solving the following problem:

ν∗ = min
π∼S

ψ∗ (ρ− ρπ) (6)

where ψ∗ be a conjugate function of ψ and is given by ψ∗ = maxr∈RX×Z a⊤r − ψ(r).

Eq. (6) seeks a policy π which minimizes the divergence of the occupancy measures between
the imitator and the expert, as measured by the function ψ∗. The computational framework of
generative adversarial networks (Goodfellow et al., 2014) provides an effective approach to solve
such a matching problem, e.g., the GAIL algorithm (Ho & Ermon, 2016).

3 CAUSAL IMITATION WITHOUT SEQUENTIAL BACKDOOR

In this section, we investigate causal IRL beyond the condition of minimal sequential π-backdoor.
Observe that the key to the reduction of the canonical causal IRL equation in Eq. (3) lies in the
identification of expected rewards E[Y | do(π)] had the latent reward Y been observed. Next we
will study general conditions under which E[Y | do(π)] is uniquely discernible from distribution
P (O, Y ) in the causal diagram G, called the identifiability of causal effects (Pearl, 2000, Def. 3.2.4).

Definition 5 (Identifiability). Given a causal diagram G and a policy π ∼ S, the expected reward
E[Y | do(π)] is said to be identifiable from distribution P (O, Y ) in G if E[Y | do(π)] is uniquely
computable from P (O, Y ) in any SCM M compatible with G.

6



Published as a conference paper at ICLR 2023

We say a policy scope S is identifiable (from P (O, Y ) in G) if for all policies π ∼ S , the correspond-
ing expected rewards E[Y | do(π)] are identifiable from P (O, Y ) in G. Our next result shows that
whenever an identifiable policy scope S is found, one could always reduce the causal IRL problem to
the canonical optimization equation in Eq. (3).
Theorem 2. Given a causal diagram G, a policy scope S is identifiable from P (O, Y ) in G if and
only if for any policy π ∼ S, the expected reward E[Y | do(π)] is computable from P (O, Y ) as

E[Y | do(π)] =
∑
x∗,z∗

E[Y | x∗, z∗]ρπ(x
∗, z∗) (7)

where subsets X∗ ⊆ X , Z∗ ⊆ O \X; and the imitator’s occupancy measure ρπ(x∗, z∗) is a
function of the observational distribution P (O) and policy π.

X Z Y

(a) G
X Z Y

(b) GS

Figure 2: Frontdoor

Thm. 2 suggests a general procedure to learn an imitating policy via causal IRL.
Whenever an identifiable scope S is found, the identification formula in Eq. (7)
permits one to reduce the optimization problem in Eq. (1) to the canonical
equation in Eq. (3). One could thus obtain an imitating policy π ∼ S by
solving Eq. (3) where the expert’s occupancy measure ρ(x∗, z∗) = P (x∗, z∗)
and the imitator’s occupancy measure ρπ(x∗, z∗) is given by Eq. (7). As an
example, consider the frontdoor diagram described in Fig. 2a and a policy scope
S = {⟨X, ∅⟩}. The expected reward E[Y | do(π)] =

∑
x′ E[Y | do(x′)]π(x′)

and E[Y | do(x′)] is identifiable from P (X,Y, Z) using the frontdoor adjustment formula (Pearl,
2000, Thm. 3.3.4). The expected reward E[Y | do(π)] of any policy π(X) could be written as:

E[Y | do(π)] =
∑
z,x

E[Y | x, z]P (x)
∑
x′

P (z|x′)π(x′). (8)

Let occupancy measures ρ(x, z) = P (x, z) and ρπ(x, z) = P (x)
∑

x′ P (z|x′)π(x′). We could thus
learn an imitating policy in the frontdoor diagram by solving the canonical equation given by:

ν∗ = min
π∼S

max
r∈R

∑
x,z

r(x, z) (ρ(x, z)− ρπ(x, z)) , (9)

where R is a hypothesis class of the reward function r(x, z) ≜ E[Y | x, z]. The solution π∗(X) is
an imitating policy performing at least as well as the expert’s behavior policy if the gap ν∗ ≤ 0.

Next, we will describe how to obtain the identification formula in Eq. (7) provided with an identifiable
scope S . Without loss of generality, we will assume that the reward Y is the only endogenous variable
that is latent in the causal diagram G, i.e., V = O∪{Y }.∗ We will utilize a special type of clustering
of nodes in the causal diagram G, called the confounded component (for short, c-component).
Definition 6 (C-component (Tian & Pearl, 2002)). For a causal diagram G, a subset C ⊆ V is a
c-component if any pair Vi, Vj ∈ C is connected by a bi-directed path in G.

For instance, the frontdoor diagram in Fig. 2a contains two c-components C1 = {X,Y } and
C2 = {Z}. We will utilize a sound and complete procedure IDENTIFY (Tian, 2002; 2008) for
identifying causal effects E[Y | do(π)] of an arbitrary policy π ∼ S . Particularly, IDENTIFY takes as
input the causal diagram G, a reward Y , and a policy scope S . It returns an identification formula for
E[Y | do(π)] from P (O, Y ) if expected rewards of all policies π ∼ S are identifiable. Otherwise,
IDENTIFY(G, Y,S) = “FAIL”. Details of IDENTIFY are shown in (Zhang et al., 2020, Appendix
B). Recall that GS is the causal diagram of submodel Mπ induced by policy π ∼ S. Fig. 2b shows
diagram GS obtained from the frontdoor graph G and scope S = {⟨X, ∅⟩} described in Fig. 2a. Let
ZY = An(Y ) be ancestors of Y in GS . Our next result shows that IDENTIFY(G, Y,S) is ensured to
find an identification formula of the form in Eq. (7) when it is identifiable.
Lemma 1. Given a causal diagram G, a policy scope S is identifiable from P (O, Y ) in G if and only
if IDENTIFY(G, Y,S) ̸= “FAIL”. Moreover, IDENTIFY(G, Y,S) returns an identification formula
of the form in Eq. (7) where X∗ = Pa(CY ) ∩X and Z∗ = Pa(CY ) \ ({Y } ∪X); and CY is a
c-component containing reward Y in subgraph G[An(ZY )].

∗
Otherwise, one could always simplify the diagram G and project other latent variables L \ {Y } using the

projection algorithm (Tian, 2002, Sec. 4.5), without affecting the identifiability of target query E[Y | do(π)].
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For example, for the frontdoor diagram G in Fig. 2a, the manipulated diagram GS with scope S =
{⟨X, ∅⟩} is described in Fig. 2b. Since ZY = An(Y )GS = {X,Z, Y }, CY is thus given by {X,Y }.
Lem. 1 implies that X∗ = Pa({X,Y }) ∩ {X} = {X} and Z∗ = Pa({X,Y }) \ {X,Y } = {Z}.
Applying IDENTIFY(G, Y, {⟨X, ∅}) returns the frontdoor adjustment formula in Eq. (8).

3.1 SEARCHING FOR IDENTIFIABLE POLICY SCOPES

The remainder of this section describes an effective algorithm to find identifiable policy scopes S had
the latent reward signal Y been observed. Let S denote the collection of all identifiable policy scopes
S from distribution P (O, Y ) in the causal diagram G. Our algorithm LISTIDSCOPE, described in
Alg. 1, enumerates elements in S. It takes as input a causal diagram G, a reward signal Y , and subsets
L = ∅ and R =

⋃n
i=1 PA

∗
i . More specifically, LISTIDSCOPE maintains two scopes Sl ⊆ Sr (Step

2). It performs backtrack search to find identifiable scopes S in G such that Sl ⊆ S ⊆ Sr. It aborts
branches that either (1) all subscopes in Sr are identifiable (Step 3); or (2) all subscopes containing
Sl are non-identifiable (Step 6). The following proposition supports our aborting criterion.
Lemma 2. Given a causal diagram G, for policy scopes S ′ ⊆ S , S ′ is identifiable from distribution
P (O, Y ) in G if S is identifiable from P (O, Y ) in G.

Algorithm 1: LISTIDSCOPE

1: Input: G, Y and subsets L ⊆ R
2: Output: a set of identifiable policy scopes S
3: Let scopes Sr = {⟨Xi,R ∩PA∗

i ⟩}
n
i=1 and

Sl = {⟨Xi,L ∩PA∗
i ⟩}

n
i=1.

4: if IDENTIFY(G, Y,Sr) ̸= “FAIL′′ then
5: Output Sr.
6: end if
7: if IDENTIFY(G, Y,Sl) ̸= “FAIL′′ then
8: Pick an arbitrary V ∈ R \L.
9: LISTIDSCOPE(G, Y,L ∪ {V },R).

10: LISTIDSCOPE(G, Y,L,R \ {V }).
11: end if

At Step 7, LISTIDSCOPE picks an arbitrary vari-
able V that is included in input covariates R but
not in L. It then recursively returns all identifi-
able policy scopes S in G: the first recursive call
returns scopes taking V as an input for some
actions Xi ∈ X and the second call return all
scopes that do not consider V when selecting
values for all actions X . We say a policy π
is associated with a collection of policy scopes
S, denoted by π ∼ S, if there exists S ∈ S so
that π ∼ S. It is possible to show that LIS-
TIDSCOPE produces a collection of identifiable
scopes that is sufficient for the imitation task.
Theorem 3. For a causal diagram G and a re-
ward Y , LISTIDSCOPE(G, Y, ∅,

⋃n
i=1 PA

∗
i ) enumerates a subset S∗ ⊆ S so that for any π ∼ S,

there is π∗ ∼ S∗ where E[Y | do(π)] = E[Y | do(π∗)].

Moreover, LISTIDSCOPE outputs identifiable policy scopes with a polynomial delay. This follows
from the observation that LISTIDSCOPE searches over a tree of policy scopes with height at most
|
⋃n

i=1 PA
∗
i | and IDENTIFY(G, Y,S) terminates in polynomial steps w.r.t. the size of diagram G.

4 EXPERIMENTS

In this section, we demonstrate our framework on various imitation learning tasks, ranging from
synthetic causal models to real-world datasets, including highway driving (Krajewski et al., 2018) and
images (LeCun, 1998). We find that our approach is able to incorporate parametric knowledge about
the reward function and achieve effective imitating policies across different causal diagrams. For all
experiments, we evaluate our proposed Causal-IRL based on the canonical equation formulation
in Eq. (3). As a baseline, we also include: (1) standard BC mimicking the expert’s nominal behavior
policy; (2) standard IRL utilizing all observed covariates preceding every Xi ∈ X while being
blind to causal relationships in the underlying model; and (3) Causal-BC (Zhang et al., 2020;
Kumor et al., 2021) that learn an imitating policy with the sequential π-backdoor criterion. We refer
readers to (Ruan et al., 2023, Appendix D) for additional experiments and more discussions on the
experimental setup.

Backdoor Consider an SCM instance compatible with Fig. 1c including binary observed vari-
ables Z1, X1, Z2, X2, Y ∈ {0, 1}. Causal-BC utilizes a sequential π-backdoor admissible scope
{⟨X1, {Z1}⟩, ⟨X2, {Z2}⟩}; while Causal-IRL utilizes the scope {⟨X1, ∅⟩, ⟨X2, {Z2}⟩} satisfying
the minimal sequential π-backdoor. Simulation results, shown in Fig. 3a, reveal that Causal-IRL
consistently outperforms the expert’s policy and other imitation strategies by exploiting additional
parametric knowledge about the expected reward E[Y | X1, X2, Z2]; Causal-BC is able to achieve
the expert’s performance. Unsurprisingly, neither BC nor IRL is able to obtain an imitating policy.
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Figure 3: Simulation results (a, b, c, d) for our experiments, where y-axis represents the expected
reward of learned policies in the actual causal model; the grey dashed line denotes the expert’s reward.

Highway Driving We consider a learning scenario where the agent learns a driving policy from the
observed trajectories of a human expert. Causal diagram of this example is provided in (Ruan et al.,
2023, Appendix D, Fig. 4) where X1 is the accelerations of the ego vehicle at the previous step; Z1

is both longitudinal and lateral historical accelerations of the ego vehicle two steps ago; X2 is the
velocity of the ego vehicle; Z2 is the velocity of the preceding vehicle; W indicates the information
from surrounding vehicles. Values of X1, X2, Z1, Z2 are drawn from a real-world driving dataset
HighD Krajewski et al. (2018). The reward Y is decided by a non-linear function fY (X2, Z2, UY ).
Both Causal-IRL and Causal-BC utilize the scope {⟨X1, ∅⟩, ⟨X2, {Z2}⟩}. Causal-IRL also
exploits the additional knowledge that the expected reward E[Y | X1, X2, Z2] is a monotone function
via reward augmentation (Li et al., 2017). Simulation results are shown in Fig. 3b. We found that
Causal-IRL performs the best among all strategies. Causal-BC is able to achieve the expert’s
performance. BC and IRL perform the worst among all and fail to obtain an imitating policy.

MNIST Digits Consider again the frontdoor diagram in Fig. 2a. To evaluate the performance of our
proposed approach in high-dimensional domains, we now replace variable Z with sampled images
drawn from MNIST digits dataset (LeCun, 1998). The reward Y is decided by a linear function
taking Z and an unobserved confounder UX,Y as input. The Causal-IRL formulates the imitation
problem as a two-person zero-sum game through the frontdoor adjustment described in Eq. (9), which
can be solved by the MW algorithm (Freund & Schapire, 1999; Syed & Schapire, 2008). As shown in
Fig. 3c, simulation results reveal that Causal-IRL outperforms Causal-BC and BC; while IRL
performs the worst among all the algorithms.

Infinite MDPUC To demonstrate our proposed framework in the sequential decision-making
setting with an infinite horizon, we consider a generalized Markov decision process incorporating
unobserved confounders (Ruan & Di, 2022), called the MDPUC (Zhang & Bareinboim, 2022). This
sequential model simulates real-world driving dynamics. By exploiting the Markov property over
time steps, we are able to decompose the causal diagram over the infinite horizon into a collection of
sub-graphs, one for each time step i = 1, 2, . . . . Fig. 1d shows the causal diagram spanning time steps
i = 1, 2, 3. As a comparison, BC and IRL still utilize the stationary policy {⟨Xi, {Zi}⟩}. By applying
Thm. 1 at each time step, we obtain a π-backdoor admissible policy scope {⟨Xi, {Zi, Xi−1, Zi−1}⟩}
for Causal-IRL and Causal-BC. Simulation results are shown in Fig. 3d. One could see by
inspection that Causal-IRL performs the best and achieves the expert’s performance.

5 CONCLUSION

This paper investigates imitation learning via inverse reinforcement learning (IRL) in the semantical
framework of structural causal models. The goal is to find an effective imitating policy that performs
at least as well as the expert’s behavior policy from combinations of demonstration data, qualitative
knowledge the data-generating mechanisms represented as a causal diagram, and quantitative knowl-
edge about the reward function. We provide a graphical criterion (Thm. 1) based on the sequential
backdoor, which allows one to obtain an imitating policy by solving a canonical optimization equation
of causal IRL. Such a canonical formulation addresses the challenge of the presence of unobserved
confounders (UCs), and is solvable by leveraging standard IRL algorithms (Props. 1 and 2). Finally,
we move beyond the backdoor criterion and show that the canonical equation is achievable whenever
expected rewards of policies are identifiable had the reward also been observed (Thms. 2 and 3).
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the expert to determine the original values of the action are unknown, introducing unobserved
confounding bias in demonstration data. Our framework may apply to various fields in reality,
including autonomous vehicle development, industrial automation, and chronic disease management.
A positive impact of this work is that we discuss the potential risk of training IRL policy from
demonstrations with the presence of unobserved confounding (UC). Our formulation of causal IRL is
inherently robust against confounding bias. For example, solving the causal IRL problem in Eq. (1)
requires the imitator to learn an effective policy that maximizes the reward in a worst-case causal
model where the performance gap between the expert and imitator is the largest possible. More
broadly, automated decision systems using causal inference methods prioritize safety and robustness
during their decision-making processes. Such requirements are increasingly essential since black-box
AI systems are prevalent, and our understandings of their potential implications are still limited.
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