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Abstract

Prompt tuning attempts to update few task-
specific parameters in pre-trained models. It
has achieved comparable performance to fine-
tuning of the full parameter set on both lan-
guage understanding and generation tasks. In
this work, we study the problem of prompt tun-
ing for neural text retrievers. We introduce
parameter-efficient prompt tuning for text re-
trieval across in-domain, cross-domain, and
cross-topic settings. Through an extensive anal-
ysis, we show that the strategy can mitigate the
two issues—parameter-inefficiency and weak
generalizability—faced by fine-tuning based re-
trieval methods. Notably, it can significantly
improve the out-of-domain zero-shot gener-
alization of the retrieval models. By updat-
ing only 0.1% of the model parameters, the
prompt tuning strategy can help retrieval mod-
els achieve better generalization performance
than traditional methods in which all parame-
ters are updated. Finally, to facilitate research
on retrievers’ cross-topic generalizability, we
curate and release an academic retrieval dataset
with 18K query-results pairs in 87 topics, mak-
ing it the largest topic-specific one to date. 1

1 Introduction

Seeking for relevant texts has been a fundamental
problem for a broad range of natural language pro-
cessing (NLP) applications such as open-domain
question answering (Chen et al., 2017), retrieval-
augmented language modeling (Guu et al., 2020),
and fact verification (Thorne et al., 2018). Its re-
cent progress has been dominantly favored by the
neural approaches (Karpukhin et al., 2020; Khat-
tab and Zaharia, 2020), especially the large-scale
pre-trained language models with ever-growing pa-
rameters. For example, a recent study attempts to
leverage models up to 10 billion parameters (Ni

*The first two authors contributed equally.
1Code and data are at https://github.com/THUDM/
P-tuning-v2/tree/main/PT-Retrieval
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Figure 1: For DPR (Karpukhin et al., 2020) trained
on OpenQA datasets, PE learning (e.g., P-Tuning v2)
offers parameter-efficiency and improved generalization
thanks to better calibration and query-length robustness.

et al., 2021), i.e., 100× larger than those used pre-
viously (Karpukhin et al., 2020).

Meanwhile, an increasing number of studies
have focused on the parameter-efficiency and gen-
eralizability challenges of neural methods. In
terms of parameter-efficiency, the common prac-
tices (Karpukhin et al., 2020) rely on fine-tuning
dual encoders for queries and documents separately
and thus cause parameter redundancy (Geigle et al.,
2022). Furthermore, fine-tuning the full parameters
of a pre-trained retriever for multi-lingual (Litschko
et al., 2022) or cross-topic settings can also result
in parameter-inefficiency. Moreover, despite neural
approaches’ in-domain outperformance, it has been
found that their cross-domain generalization can-
not match the simple BM25 method (Thakur et al.,
2021). Consequently, these issues pose challenges
to develop cost-effective neural text retrievers.

Recently, parameter-efficient (PE) transfer learn-
ing, including prompt tuning (Li and Liang,
2021; Liu et al., 2021c; Lester et al., 2021),
adapters (Houlsby et al., 2019), and hybrid meth-
ods (Hu et al., 2021; Zaken et al., 2022), is proved
to achieve comparable performance to fine-tuning
on language understanding and generation tasks by
employing very few task-specific tuning parame-
ters. Inspired by this progress, we propose to study
whether and how PE learning can benefit neural

https://github.com/THUDM/P-tuning-v2/tree/main/PT-Retrieval
https://github.com/THUDM/P-tuning-v2/tree/main/PT-Retrieval


text retrieval in terms of both parameter-efficiency
and generalizability.

In this work, we systematically examine a line
of mainstream PE methods in in-domain, cross-
domain, and cross-topic settings. As expected,
most PE approaches perform comparably to fine-
tuning on in-domain retrieval. Excitingly, PE
prompt tuning (Li and Liang, 2021; Liu et al., 2022)
can also encourage neural text retrievers to general-
ize on the cross-domain benchmark BEIR (Thakur
et al., 2021) and OAG-QA—a new multi-discipline
academic cross-topic retrieval dataset we con-
structed. For example, by simply replacing fine-
tuning to the parameter-efficient P-Tuning v2 (Liu
et al., 2022), we achieve relative gains ranging from
3.5% to 105.0% on out-of-domain BEIR datasets.

Through empirical analyses, we attempt to pro-
vide an understanding of the better generalization
brought by PE prompt tuning. First, PE prompt tun-
ing can help empower the neural model with better
confidence calibration, which refers to the theoreti-
cal principle that a model’s predicted probabilities
of labels should correspond to the ground-truth
correctness likelihood (Guo et al., 2017). Second,
it encourages better performance on queries with
different lengths from in-domain training, demon-
strating PE methods’ generalization capacity to
out-of-domain datasets.

To summarize, this work aims to advance the
neural text retrievers from three aspects:

• Problem: we propose to leverage PE learn-
ing for neural text retrievers with much fewer
tuning parameters. We demonstrate that PE
prompt tuning can not only perform compara-
bly to fine-tuning in-domain but also enable
neural retrievers to achieve significant gener-
alization advantages over fine-tuning on cross-
domain and cross-topic benchmarks.

• Understanding: we provide an understand-
ing of PE learning’s outperformance across
domains and topics. Our analysis sug-
gests that its generalization advantage largely
comes from its confidence-calibrated predic-
tion and query-length robustness.

• Dataset: we construct OAG-QA, an academic
paper retrieval dataset curated from real-world
questions and expert answers, to test retriev-
ers’ cross-topic generalizability. With 22 dis-
ciplines and 87 topics, OAG-QA is the largest
fine-grained topic retrieval dataset to date.

2 Related Work

Neural Text Retrieval. Text retrievers tradition-
ally rely on sparse lexical-based inverted index to
rank candidate documents containing query terms
(e.g., TF-IDF and BM25). They benefit from the
simplicity but often suffer from the lexical gap
(Berger et al., 2000). Recently, neural text retriev-
ers, including dense retrievers (Karpukhin et al.,
2020; Xiong et al., 2021; Hofstätter et al., 2021),
late-interaction models (Khattab and Zaharia, 2020;
Santhanam et al., 2021), and hybrid or re-ranking
models (Nogueira et al., 2019; Wang et al., 2020b),
becomes popular as they can capture the semantic-
level query-document similarity thanks to the ad-
vance of pre-trained language models (Han et al.,
2021).

Generalization in Text Retrieval. The weaker
generalizability of neural retrievers compared to
conventional lexical ones has recently arouse con-
cerns in the community (Liu et al., 2021a,b;
Chen et al., 2022), and it results in BEIR, a het-
erogeneous cross-domain generalization bench-
mark (Thakur et al., 2021). While recent works no-
tice and employ ideas like bigger pre-trained mod-
els (Ni et al., 2021) or unsupervised pre-training
on large corpus (Izacard et al., 2021) to improve
scores on BEIR, few of them focus on studying
better transferring strategies based on existing ar-
chitectures and datasets for out-of-domain general-
ization.

Parameter-Efficient (PE) Learning. Sizes of pre-
trained language models are soaring up (Brown
et al., 2020), causing great challenges to tradi-
tional task transfer based on full-parameter fine-
tuning. A recent focus has been on the emerged
PE transfer learning, including prompt tuning (Li
and Liang, 2021; Liu et al., 2021c; Lester et al.,
2021), adapters (Houlsby et al., 2019), and hybrid
methods (Hu et al., 2021; Zaken et al., 2022). They
employ very few tuning parameters to achieve fine-
tuning comparable transfer performance. Despite
abundant research made on problems like language
understanding (Houlsby et al., 2019; Liu et al.,
2022) and generation (Li and Liang, 2021), how it
will impact retrieval remains under-explored.

3 Challenges in Neural Text Retrieval

The neural text retriever, which leverages pre-
trained language models, e.g., BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), as the



backbone, has significantly mitigated the lexical
gap (Berger et al., 2000) in text retrieval and be-
come a standard component for many NLP applica-
tions (Chen et al., 2017; Guu et al., 2020; Petroni
et al., 2021). It consists of several different cate-
gories and in this work we focus on the following
two dominant ones.
• Dense Retriever (Karpukhin et al., 2020): Dense

retrieval learns dual encoders to map queries
and documents into a dense vector space such
that relevant pairs of queries and documents
have shorter distances. It usually adopts the
inner-dot product for the sake of efficiency as
sim(q, p) = EQ(q)

TEP (p) where EQ(·) and
EP (·) are dense encoders that map queries and
documents to dense vectors, respectively. A rule-
of-thumb training objective is the Noise Con-
trastive Error (NCE), which takes the query qi
and its relevant (positive) document p+i and n
irrelevant (negative) documents p−i,j as:

LNCE = − log
esim(qi,p

+
i )

esim(qi,p
+
i ) +

∑n
j=1 e

sim(qi,p
−
i,j)

(1)
• Late-Interaction Retriever (Khattab and Za-

haria, 2020): ColBERT combines the strengths
of the bi-encoder and cross-encoder to encode the
the query and document at a finer granularity into
multi-vector representations. The relevance is es-
timated by using the rich yet scalable interaction
between the query and document representations.
Specifically, the model produces an embedding
for every token in queries and documents and
compute the relevance using the sum of maxi-
mum similarities between vectors of query to-
kens and all document tokens as:

sim(q, p) =
∑

i∈||Eq ||

max
j∈||Ed||

ET
dj
Eqi (2)

where Eq and Ed are the sequences of embed-
dings for query q and document d.

Challenges. Neural retrieval approaches, such as
dense retrievers and late-interaction models, have
achieved outperformance over lexical ones on typi-
cal open-domain question answering datasets, e.g.,
NaturalQuestions (Kwiatkowski et al., 2019). How-
ever, recent studies (Litschko et al., 2022; Thakur
et al., 2021) unveil some of their inherent limita-
tions, posing the following challenges:
• Parameter Inefficiency: Though the full-

parameter fine-tuning empowers neural retriev-

ers to achieve good results, it results in sub-
stantial parameter redundancy from two aspects.
First, training dual-encoders double the size
of the parameters to be tuned. The improv-
ing strategies, such as parameter sharing (Yan
et al., 2021; Geigle et al., 2022), have to sac-
rifice the retrieval performance. Second, the
cross-lingual (Litschko et al., 2022) and cross-
domain (Thakur et al., 2021) transfer may require
additional full-parameter tuning on each of the
individual tasks and consequently increase the
number of parameters by several times.

• Weak Generalizability: Though neural retriev-
ers offers advantages on domain datasets, e.g.,
OpenQA datasets (Karpukhin et al., 2020), some
of them—particularly dense retrievers—cannot
generalize well to zero-shot cross-domain bench-
marks (Thakur et al., 2021). However, the zero-
shot setting is widely adopted in downstream sce-
narios, as constructing retrieval training datasets
with annotations could be outrageously expen-
sive. Such challenge also broadly connects to the
generalizability of neural networks.

In this work, we aim to explore the solutions
for addressing the above challenges in neural text
retrieval. Specifically, we focus on the parameter-
efficient transfer learning, which has offered al-
ternative strategies for the downstream usage of
pre-trained models in natural language processing.

4 Parameter-Efficient Transfer Learning

We introduce the parameter-efficient transfer learn-
ing (PE learning) framework and notable tech-
niques. Different from fine-tuning (Devlin et al.,
2019), which updates the full parameters of pre-
trained models for each target task, PE learning
aims to achieve comparable performance to fine-
tuning by tuning only a small portion of parameters
per task (Houlsby et al., 2019; Li and Liang, 2021;
Liu et al., 2022).

4.1 Transformers

The success of PE learning largely takes advantages
of the Transformer architecture (Vaswani et al.,
2017). Transformers are composed of stacked lay-
ers, each containing a multi-head attention module
and a feed-forward network (FFN). The attention
function can be written as:

Attention(x) = softmax(
QKT

√
dk

)V (3)



Figure 2: The illustration of four parameter-efficient methods. The PLM module represents a certain sublayer of a
PLM, e.g., the attention or FFN. The components in blue are frozen and the yellow ones are trainable.

where the query Q, key K and value V are:

{Q,K, V }(x) = W{q,k,v}x+ b{q,k,v} (4)

The multi-head attention performs N heads in par-
allel and concatenates their outputs to form the
input to FFN where f is an activation function:

FFN(x) = f(xW1 + b1)W2 + b2 (5)

Different PE learning methods attempt to modify
different modules of a Transformer to achieve pa-
rameter efficiency.

4.2 Parameter-Efficient Learning Methods
We introduce several emerging PE learning meth-
ods. Figure 2 illustrates the technical differences
between them.

Adapters (Houlsby et al., 2019; Pfeiffer et al.,
2020). The adapter inserts small modules between
Transformer layers, which forms as a bottleneck to
limit the amount of parameters in the format of:

h← h+ f(hWdown)Wup (6)

where h is the input, Wdown ∈ Rd×r and Wup ∈
Rr×d are project matrices, and f(·) is the activation
function (Cf. Figure 2 (a)).

BitFit (Zaken et al., 2022). Each Transformer
layer consists of self-attention, FFN, and Layer-
Norm operations, all of which have certain bias
terms as shown in Eqs 4 and 5. Bit-fit proposes
to only tune the bias terms b(·) of the Transformer
(Cf. Figure 2 (d)).

Lester et al. & P-Tuning (Liu et al., 2021c). This
approach inserts trainable continuous prompts to
the input sequences of the Transformer. Given a
PLM, e(·) is the input embedding function that
maps input tokens to input embeddings. For a tem-
plate T = {[P0:i], x, [Pi+1:m], y} where x is the
context and y is the target, e.g., the [MASK] token,
the model’s inputs are:

{h0, h1, ...hi, e(x), hi+1, ..., hm, e(y)} (7)

where hi is the trainable prompt (Cf. Figure 2 (b)).

Prefix-Tuning (Li and Liang, 2021) & P-Tuning
v2 (Liu et al., 2022). Prefix-tuning concatenates l
trainable key and value embeddings of the attention
to the prefix on each layer of the language models.
Specifically, given the original key vectors K ∈
Rl×d and value vectors V ∈ Rl×d, the trainable
vectors Pk, Pv are correspondingly concatenated
to K and V . The computation of an attention head
becomes:

headi(x) = Attention(xW (i), [P
(i)
k : K(i)], [P (i)

v : V (i)])
(8)

Here the superscript (i) refers to the part of the
vectors that correspond to the i-th head. It has been
empirically proved comparable to fine-tuning on
a wide range of downstream tasks, including text
generation (Li and Liang, 2021), natural language
understanding (NLU) and sequence labeling (Liu
et al., 2022).

Since the retrieval task is more related to NLU,
we employ P-Tuning v2’s implementation, which
makes several optimizations on top of prefix-tuning
(Cf. Figure 2 (c)).

5 In-Domain Parameter-Efficiency

In this section, we describe the data and settings we
used for the in-domain OpenQA experiments and
evaluate the retrieval performance of the parameter-
efficient methods introduced above.

Datasets. We follow (Karpukhin et al., 2020)
to use five open-QA datasets and their train/test/-
valid splits: Natural Questions (NQ) (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), We-
bQuestions (WQ) (Berant et al., 2013), Curat-
edTREC (TREC) (Baudis and Sedivý, 2015) and
SQuAD v1.1 (Rajpurkar et al., 2016). We follow
(Karpukhin et al., 2020) to use the split text blocks
from the English Wikipedia dump as the retrieval
candidate set, which contains 21,015,324 passages.

Settings. We evaluate the in-domain performance



Table 1: In-domain parameter-efficiency. The retrievers are multi-task fine-tuned or PE trained on 4 OpenQA
datasets (except for SQuAD∗, which is excluded from Avg.) following the setting in (Karpukhin et al., 2020).

Retrievers #Params Top-20 Top-100

Avg. NQ Trivia WQ TREC SQuAD∗ Avg. NQ Trivia WQ TREC SQuAD∗

BM25 - 63.0 59.1 66.9 55.0 70.9 68.8 76.4 73.7 76.7 71.1 84.1 80.0

Fine-tuning 100% 80.6 79.4 78.8 75.0 89.1 51.6 86.9 86.0 84.7 82.9 93.9 67.6
P-Tuning v2 0.1% 80.6 79.5 78.8 75.2 88.8 54.6 87.5 86.6 85.0 83.3 95.1 69.6
Adapter1 0.8% 38.8 37.1 38.8 30.3 49.1 28.3 56.9 53.8 56.4 47.5 70.0 44.1
Lester et al. & P-tuning 0.01% 78.0 76.7 75.6 72.3 87.5 56.1 85.8 85.0 82.8 82.1 93.1 70.6
BitFit 0.09% 79.9 78.8 77.6 74.8 88.2 56.0 87.2 86.3 84.5 83.3 94.5 71.4

1 We adopt (Pfeiffer et al., 2020)’s implementation (Cf. Appendix B.1) and tried several hyper-parameter combinations.

using the Dense Passage Retrieval (DPR) Model
proposed by (Karpukhin et al., 2020). We train
our DPR model with four different PE learning
techniques: Adapters (Houlsby et al., 2019), Lester
et al. & P-Tuning (Liu et al., 2021c), P-Tuning
v2 (Liu et al., 2022) and BitFit (Zaken et al., 2022),
which are introduced in Section 4.2, and compare
them against the original full-parameter fine-tuned
DPR. Following (Karpukhin et al., 2020), we eval-
uate in the multi-dataset setting where the training
data combines all datasets excluding SQuAD while
the testing is done for all datasets.

We use top-k retrieval accuracy as our evalu-
ation metric, which measures the percentage of
questions that have at least one document contain-
ing the answer in the top k retrieved documents.
In our experiments, we report top-20 and top-100
accuracy following (Karpukhin et al., 2020).

Results. We identify the best-performed hyper-
parameters for each method and the results are
shown in Table 1. P-Tuning v2 and BitFit are com-
parable to fine-tuned baseline on all datasets as
expected. P-Tuning v2 also performs the best on
four in-domain datasets among the tested PE ap-
proaches. On the other hand, Lester et al. & P-
Tuning performs a bit weaker than the fine-tuned
baseline. Adapter shows weak performance, but
might be attributed to the version of implementa-
tion (Pfeiffer et al., 2020) (i.e., other versions with
different implementation or more tunable parame-
ters may be better). The results empirically demon-
strate that PE methods can significantly cut down
necessary tuning parameters to 0.1% and provide
competitive performance in in-domain data.

Interestingly, we also notice that on the out-of-
domain dataset SQuAD, P-Tuning v2, Lester et al.
& P-Tuning, and BitFit substantially outperform
the fine-tuned counterpart.

6 Cross-Domain and Cross-Topic
Generalizability

In this section, we examine the zero-shot general-
izability of fine-tuning and PE learning. We take
P-Tuning v2 (Liu et al., 2022) as an representative
for PE methods, which has the highest average in-
domain accuracy . Particularly, as previous work
seldom looks into the cross-topic generalization,
we introduce OAG-QA, the largest fine-grained
cross-topic retrieval dataset to date. On cross-
domain evaluation, we adopt the well-acknowledge
BEIR (Thakur et al., 2021) benchmark.

6.1 OAG-QA: A Fine-Grained Cross-Topic
Scientific Literature Retrieval Dataset

OAG-QA is a fine-grained topic-specific pas-
sage retrieval dataset constructed by collecting
high-quality questions and answers from Online
Question-and-Answers (Q&A) forums, such as
Quora and Stack Exchange. These forums offer
people chances to ask questions and receive an-
swers from other expert users, potentially with
reference to academic papers. These references
can be consequently aligned to paper entities
with rich meta-information (e.g. abstract, field-
of-study (FOS)) in the Open Academic Graph
(OAG) (Zhang et al., 2019), the largest publicly
available academic entity graph to date.

We collect questions from two influential web-
sites: Stack Exchange2 in English, and Zhihu3 in
Chinese. On top of the collected pairs of questions
and paper titles, we align them to OAG (Zhang
et al., 2019; Wang et al., 2020a; Tang et al., 2008)
paper ids via public API4. In terms of topics, disci-
plines from Stack Exchange and tags from Zhihu
naturally serve as fine-grained topics attached to

2https://stackexchange.com/sites
3https://www.zhihu.com
4https://www.aminer.cn/restful_service



Table 2: Examples of disciplines, topics, and example query-paper pairs (only titles are shown) in OAG-QA.

Disc. #Topic Example Topic #Query Example query-paper pairs

Neural
Network

2 Artificial
Neural Network

488 Q: Can neural networks be used to prove conjectures?
Paper: Generating Correctness Proofs with Neural Networks

Quantum
Mechanics

12 Photon 125 Q: What is the effective potential for photons in X-ray diffraction?
Paper: Introduction to the theory of x-ray matter interaction

Table 3: OAG-QA’s statistics and examples. Com-
pared to existing scientific retrieval dataset (Sci-
Fact (Wadden et al., 2020), SCIDOCS (Cohan et al.,
2020), TREC-COVID (Voorhees et al., 2021)).

Dataset #Query #Corpus #Disc. #Topic Fabrication

SciFact 1,409 5,183 - - Crowd-Source
SCIDOCS 22,000 25,657 - - User Clicks
TREC-COVID 50 171,332 - - Crowd-Source

OAG-QA 17,948 870,000 22 87 Online Forum

collected questions after post-processing. For more
construction details, please refer to Appendix A.

Consequently, we present OAG-QA (Cf. Ta-
ble 3) which consists of 17,948 unique queries
from 22 scientific disciplines and 87 fine-grained
topics. Given each topic, we sample 10,000 can-
didate papers including the groundtruth from the
same disciplines as OAG annotates, and take their
titles and abstracts as the corpus.

6.2 Zero-Shot Cross-Domain Generalization

Datasets. We adopt Benchmarking-IR (BEIR) pro-
posed in (Thakur et al., 2021), a zero-shot gener-
alization benchmark for evaluating retrievers tasks
across domains. It consists of zero-shot evalua-
tion datasets, (15 out of 18 are available) from
9 retrieval tasks of heterogeneity. The datasets
vary from each other in corpus sizes (3.6k - 15M
documents), queries and documents’ lengths, and
domains (news articles vs. scientific papers).

Settings. Following (Thakur et al., 2021), we
trained the models on one dataset and report the
zero-shot performances on the other datasets. We
choose DPR (Karpukhin et al., 2020) from dense re-
trievers and ColBERT (Khattab and Zaharia, 2020)
from late-interaction models to explore the retrieval
effectiveness under PE and full-parameter fine-
tuning settings. Following the settings of BEIR,
we use the open-sourced Multi-dataset DPR check-
point (Karpukhin et al., 2020) and ColBERT model
trained on MS MARCO (Nguyen et al., 2016).

To obtain comparable evaluation across datasets
and tasks in BEIR (Thakur et al., 2021), we use
Normalized Cumulative Discount Gain (nDCG@k)

to involve both binary and graded relevance mea-
sures for ranking quality.

Results. Table 4 reports the results of DPR and
ColBERT on the 15 datasets of BEIR. For DPR,
P-Tuning v2 generalizes much better than the fine-
tuned one on all datasets except for MS MARCO
and DBPedia. We observe that the datasets where
our method improves by more than 5 points, such
as Touche-2020 and SciFact, usually consist of
long documents with average lengths over 200. We
conjecture that the DPR trained on OpenQA has
been biased to the 100-word document length in
the oridinary setting. In summary, P-Tuning v2
achieves an absolute 5.2% improvement on the
fine-tuned baseline on average. Thus, P-Tuning v2
greatly improves the out-of-domain generalization
of dense retrieval models.

On the other hand, ColBERT trained by P-
Tuning v2 also outperforms the fine-tuned Col-
BERT on almost all (13/15) datasets. P-Tuning
v2 slightly underperforms on NQ and Quora where
documents are relatively short. For the out-of-
domain average scores, P-Tuning v2 outperforms
the baseline ColBERT by an absolute gain of 2.4%.
Compared to DPR, fine-tuned ColBERT general-
izes better, probably because it is trained on the
larger and more diverse MS MARCO and its ar-
chitecture can be more scalable. But P-Tuning v2
still gains an advancement on generalization over
the fine-tuned one. In conclusion, the results show
that with similar in-domain performance, P-Tuning
v2 can improve zero-shot generalization for cross-
domain compared to fine-tuning.

6.3 Zero-Shot Cross-Topic Generalization

In addition to cross-domain generalization, cross-
topic generalization is a more pragmatic and mean-
ingful challenge for retrieval tasks. For example,
in a scientific literature retrieval system, the corpus
sizes, abstract lengths, and writing styles would
not vary too much. The challenge lies in refining
retrievers for more fine-grained fields-of-study.

Settings. We use the same trained DPR (Karpukhin
et al., 2020) and ColBERT (Khattab and Zaharia,



Table 4: Zero-shot cross-domain generalization evalu-
ated on 14 datasets of BEIR (Thakur et al., 2021). All
scores are nDCG@10, and those of “FT” are taken from
BEIR’s report. (“*” denotes in-domain datasets; “FT”
denotes fine-tuning; “PT2” denotes P-Tuning v2)

Model(→) Lexical Dense Late-Interaction

Dataset(↓) BM25 DPR ColBERT
- FT PT2 FT PT2

MS MARCO 0.228 0.177 0.171 0.401∗ 0.414∗

TREC-COVID 0.656 0.332 0.394 0.677 0.679
NFCorpus 0.325 0.189 0.224 0.305 0.327
NQ 0.329 0.474∗ 0.479∗ 0.524 0.515
HotpotQA 0.603 0.391 0.416 0.593 0.623
FiQA 0.236 0.112 0.128 0.317 0.333
ArguAna 0.315 0.175 0.214 0.233 0.415
Touche-2020 0.367 0.131 0.207 0.202 0.236
CQADupStack 0.299 0.153 0.158 0.350 0.366
Quora 0.789 0.248 0.509 0.854 0.845
DBPedia 0.313 0.263 0.254 0.392 0.407
SCIDOCS 0.158 0.077 0.099 0.145 0.156
FEVER 0.753 0.562 0.593 0.771 0.779
ClimateFEVER 0.213 0.148 0.194 0.184 0.190
SciFact 0.665 0.318 0.436 0.671 0.685

Avg(w/o MS MARCO) 0.430 0.255 0.307 0.444 0.468

2020) model introduced in 6.2 and conduct a zero-
shot evaluation. We measure top-20 retrieval ac-
curacy on the dataset of each topic and report the
average scores over each discipline.

Results. Table 5 compares models trained by P-
Tuning v2 and fine-tuning using top-20 retrieval
accuracy. P-Tuning v2 outperforms fine-tuning in
20/22 topics in DPR and 18/22 topics in ColBERT
respectively. Specifically, P-Tuning v2 performs
poorly in Algebra and Linear algebra, two fields
which contain a large number of mathematical sym-
bols, in both DPR and ColBERT at the same time.
Overall, on average P-Tuning v2 are better than
that of baseline, gaining 2.6% and 1.2% absolute
improvement over DPR and ColBERT respectively.

7 An Understanding of the Generalization

How does PE learning help neural text retrievers to
generalize well? While it might be attributed to PE
learning’s flatter loss minimum or alleviated catas-
trophic forgetting, in this work we investigate other
quantifiable reasons, the confidence calibration and
query-length robustness.

7.1 Confidence Calibration

Despite metrics like accuracy are usually the most
concerned in machine learning, there are more
properties to care about, such as calibration. Cal-

Table 5: Zero-shot cross-topic generalization evaluated
on 22 disciplines of OAG-QA. All scores are Top-20.
(“FT” denotes fine-tuning; “PT2” denotes P-Tuning v2)

Model(→) Dense Late-Interaction

Topic(↓) DPR ColBERT
FT PT2 FT PT2

Geometry 0.154 0.199 0.303 0.323
Statistics 0.149 0.184 0.289 0.302
Algebra 0.194 0.171 0.271 0.267
Calculus 0.145 0.169 0.248 0.259
Number theory 0.136 0.161 0.260 0.256
Linear algebra 0.227 0.211 0.351 0.345
Astrophysics 0.130 0.160 0.213 0.229
Quantum mechanics 0.134 0.169 0.240 0.245
Physics 0.205 0.245 0.349 0.360
Chemistry 0.157 0.159 0.296 0.300
Biochemistry 0.301 0.332 0.443 0.463
Health Care 0.367 0.388 0.446 0.459
Natural Science 0.306 0.364 0.408 0.410
Psychology 0.214 0.247 0.332 0.362
Algorithm 0.211 0.244 0.365 0.390
Neural Network 0.176 0.207 0.214 0.245
Computer Vision 0.152 0.197 0.264 0.291
Data Mining 0.139 0.161 0.226 0.231
Deep Learning 0.143 0.173 0.249 0.271
Machine Learning 0.136 0.187 0.258 0.278
NLP 0.149 0.160 0.234 0.254
Economics 0.339 0.353 0.321 0.298

Average 0.194 0.220 0.299 0.311

ibration refers to models’ ability to provide class
probability that corresponds to its likelihood of
being true. A calibrated model provide trustful
confidence to its prediction, which is particularly
important for algorithms deploying in critical real-
world scenarios.

Notwithstanding the higher accuracy, mod-
ern neural networks are known to be miscali-
brated (Guo et al., 2017). Recent literature has
also demonstrated that cross-domain calibration is
a nice proxy for model’s out-of-domain generaliz-
ability (Wald et al., 2021). To measure a retriever’s
calibration, we resort to Expected Calibration Error
(ECE) proposed in (Naeini et al., 2015) as:

ECE =

M∑
m=1

|Bm|
n

∣∣∣∣∣ 1

Bm

∑
i∈Bm

[I(ŷi = yi)− p̂i]

∣∣∣∣∣
(9)

which bins estimates from n samples within [0, 1]
into Bm, a set of M equal-length buckets. Each
sample i has its label yi, estimated label ŷi, and
estimated probability p̂i.

Following prior work (Penha and Hauff, 2021),
we cast the ranking problem as multi-class clas-
sification to compute ECE. We take queries with
valid top-5 predictions, apply softmax over retrieval
scores per query, and turns the ranking into 5-class
classification to derive ECE (Cf. Table 6) and cali-
bration diagrams (Cf. Figure 3).



Table 6: Expected Calibration Error (ECE) (Naeini et al., 2015) of Fine-tuning (FT) and P-Tuning v2 (PT2) based
on DPR (Karpukhin et al., 2020); smaller the better.

In-domain Cross-domain

NQ TQA WQ TREC SQuAD MS-M TCovid NFC HoPo FiQA ArgA T-2020 CQA Quora DBPedia SCID FEVER CFEVER SciFact

FT 0.135 0.259 0.219 0.323 0.114 0.156 0.164 0.143 0.071 0.153 0.156 0.141 0.144 0.104 0.128 0.144 0.069 0.135 0.120
PT2 0.113 0.243 0.178 0.299 0.084 0.153 0.304 0.099 0.053 0.145 0.145 0.084 0.139 0.051 0.122 0.125 0.053 0.104 0.099

Figure 3: Calibration diagrams of DPR using P-Tuning v2 and fine-tuning on in-domain OpenQA datasets (e.g.,
NaturalQuestions and TriviaQA) and cross-domain BEIR datasets (e.g., ArguAna, Quora and SciFact).

Figure 4: NDCG@10 (left axis) and #Query (right axis) of P-Tuning v2 (PT2) and Fine-tuning (FT) by query length
(splitted into bins) on ArguAna and Quora based on DPR (Karpukhin et al., 2020).

Findings. As shown in Table 6 and Figure 3, we
find that P-Tuning v2 based DPR are more cal-
ibrated than its fine-tuned counterpart, whatever
on in-domain or cross-domain datasets. The only
exception is the TREC-COVID dataset in BEIR,
which only evaluates on 50 queries and may cause
a variance. To conclude, even though fine-tuning
and P-Tuning v2 share a similar in-domain perfor-
mance, their levels of calibration still vary largely
from each other, which accords with observations
in (Guo et al., 2017) that better accuracy does not
mean better calibration property. Such calibra-
tion can explain P-Tuning v2’s generalizability, as
(Wald et al., 2021) theoretically proves that a supe-
rior multi-domain calibration effect to fine-tuning
usually leads to better cross-domain generalization.

7.2 Query-Length Robustness

Mismatched query lengths across datasets is an-
other hidden reason. For example, in four OpenQA
datasets we experiment, most query lengths locate
in the interval from 8 to 40; while other datasets
can have very different query lengths. Fine-tuning
changes pre-trained models parameters and may
consequently bias text retrievers to certain query
lengths; PE methods are free from such worries.

Findings. We present a case study on two typical

datasets, Quora and ArguAna from BEIR (Thakur
et al., 2021), to justify the hypothesis. The query
lengths are derived from splitting plain query texts
by white-spaces. For a clearer visualization, we
split the lengths by equal-sized bins. As shown
in Figure 4, when queries are medium-length (30-
100), both P-Tuning v2 and fine-tuning perform
comparably. But when queries are either relatively
short (in Quora) or long (in ArguAna), P-Tuning
v2 generalizes much better than fine-tuning. This
indicates that PE learning based (e.g., P-Tuning
v2) neural text retrievers have a better robustness
against varied query lengths in testing.

8 Conclusion

We propose to leverage PE prompt tuning for neu-
ral text retrieval, which is proved for the first time
in this problem for comparable performance to
full-parameter fine-tuning. Furthermore, PE ap-
proaches like P-Tuning v2 improve cross-domain
and cross-topic generalization, which fundamen-
tally comes from improved confidence calibration
and query length robustness as we show. Finally,
we construct and release the largest fine-grained
topic-specific academic retrieval dataset OAG-QA,
which contains 87 different domains and 17,948
query-paper pairs, to support future research.



Limitations

In this section we discuss several potentially unre-
solved topics related to this work.

First, despite the superior parameter-efficiency
of PE learning, a long-standing challenge is that
it converges slower and is relatively more sensi-
tive to hyper-parameters (typically, learning rate)
than fine-tuning. We have the same observation
in this work and have to bypass the problem by
training longer and trying multiple groups of hyper-
parameters. It is thus important to design more
robust and stable training strategies for prompt tun-
ing in the future.

Second, the OAG-QA dataset requires further
exploration. As indicated in Table 7, we purposely
leave 20 samples in each fine-grained topic for
future investigations on the effectiveness of PE
learning in few-shot and meta learning settings.
Conventionally, these settings require fine-tuning
the whole model in each task separately, causing
great redundancy. However, PE learning’s extreme
parameter efficiency can come to its rescue. We
leave this investigation for future work.

Third, PE learning’s calibration and generaliza-
tion properties should ideally be applicable to other
language tasks, such as text understanding and gen-
eration. In this work, we focus on neural text re-
trieval, as it usually faces more distribution-shift
scenarios. However, many other practical problems
also suffer from the challenges of biased training
data and generalization, and the application of PE
learning on them remains largely unexplored.
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A Details of OAG-QA

In this section, we introduced the steps for building
our fine-grained cross-topic dataset OAG-QA.

A.1 Data Collecting
OAG-QA is collected from two widely used web-
sites: Stack Exchange in English and Zhihu in
Chinese. Stack Exchange consists of various fo-
rums for specific domain, such as data science,
physics and chemistry, where questions are marked
by fine-grained tags by users. Zhihu is not divided
by domains but questions are also tagged by topics.

A.2 Data Pre-Processing

Paper Extraction and Title Retrieval. We ex-
tract the paper from answers by regular expres-
sion patterns for paper URLs. So far, we focus
on five types of URLs from the answer context:
arxiv.org, dl.acm.org, doi.org, researchgate.net,
www.nature.com, which can indicate publications
cited by users. Then we retrieve the titles from the
URLs using the the strategies listed below:
• arxiv.org: We recognize pdf suffix in the URL

and extract arxiv id with regular expression, then
query in the arxiv API with arxiv id to get the
paper title.

• dl.acm.org: We get the HTML with URL, use the
text in "title" label, then delete the website name
in the suffix, take the result as the paper title.

• doi.org: We extract doi with regular expression,
then query the doi api with the doi to get the
paper title.

• researchgate.net: We just split the suffix of URL
into words with "_" as the paper title.

• www.nature.com: We get the HTML with URL,
use the text in "title" label, then delete the website

name in the suffix, take the result as the paper
title.

Translation. Because questions from Zhihu are
in Chinese, we use Tencent Cloud5 for the corpus
translation.

Cleaning. Out of consideration for remaining the
diversity of questions and difficulty to evaluate the
quality of questions in academic fields, we just use
simple cleaning strategies. For the questions from
Stack Exchange, we deleted the questions shorter
than 4 words which usually not able to restrict
the topic to an appropriately sized field for paper
retrieval. For the questions from Zhihu, we also
just removed the questions manually which are
obviously not related to academic topics.

A.3 Alignment.
We align the extracted papers with the OAG paper
database (Zhang et al., 2019) to retrieve more infor-
mation of papers, especially abstract. The papers
which cannot be found in the database or whose
corresponding abstract is missing in the database
are discarded. Finally we only keep the question-
paper pairs with complete title and abstract text.

A.4 Statistics
Our self-construct dataset OAG-QA composes of
17,948 unique questions from 21 scientific disci-
pline and 87 fine-grained topics. We sample 10,000
papers including the groundtruth papers to con-
struct a candidate set for each topic. The queries
in each topic is divided as a training set of size 20
and a test set with the remaining data. OAG-QA
has a two-level hierarchical structure where each
topic is under a specific discipline. Table 7 shows
the statistics of OAG-QA in detail.

B Implementation Details

B.1 Implementation of DPR

Experiment enviroment We conducted our exper-
iments on the Linux platform, the version of which
was 3.10.0-957.el7.x86_64, and the GPU version
was NVIDIA Corporation GV100GL [Tesla V100
PCIe 32GB]. After installation of CUDA 11.2,
we set basic experiment environment with conda
4.10.1. Our models were implemented using
Python 3.8 and PyTorch 1.11.0. We used the trans-
formers library (version 4.12.5) for the pre-trained
5https://cloud.tencent.com/document/product/551/32572
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Table 7: Statistics of OAG-QA.

Discipline Topic #Query Train Test #Query

Geometry

geometry 230 20 210

1380

algebraic_geometry 188 20 168
algebraic_topology 131 20 111
differential_geometry 230 20 210
group_theory 248 20 228
category 191 20 171
topology 162 20 142

Statistics
mathematical_statistics 144 20 124

516bayes_theorem 134 20 114
probability_theory 238 20 218

Algebra algebra 280 20 260 387polynomial 107 20 87

Calculus

calculus 242 20 222

868
partial_differential_equation 200 20 180
functional_analysis 127 20 107
hilbert_space 127 20 107
real_analysis 172 20 152

Number theory

number_theory 274 20 254

899combinatorics 221 20 201
set_theory 179 20 159
prime_number 225 20 205

Linear algebra linear_algebra 220 20 200 350matrix 130 20 110

Astrophysics

astronomy 108 20 88

1575

astrophysics 101 20 81
universe 112 20 92
cosmology 159 20 139
general_relativity 191 20 171
special_relativity 132 20 112
spacetime 172 20 152
dark_matter 176 20 156
black_hole 160 20 140
entropy 127 20 107
string_theory 137 20 117

Quantum mechanics

quantum_mechanics 467 20 447

2385

quantum_entanglement 101 20 81
quantum_field_theory 295 20 275
quantum_gravity 154 20 134
quantum_information 190 20 170
particle_physics 247 20 227
photon 125 20 105
supersymmetry 245 20 225
thermodynamics 213 20 193
experimental_physics 143 20 123
conformal_field_theory 101 20 81
gauge_theory 104 20 84

Physics

classical_mechanics 115 20 95

862
condensed_matter_physics 201 20 181
optics 151 20 131
electromagnetism 224 20 204
mathematical_physics 171 20 151

Chemistry

organic_chemistry 332 20 312

1082
chemical_synthesis 240 20 220
inorganic_chemistry 218 20 198
physical_chemistry 190 20 170
computational_chemistry 102 20 82

Biochemistry biochemistry 129 20 109 442cell_biology 313 20 293

Health Care
health_care 288 20 268

623endocrinology 111 20 91
physiology 224 20 204

Natural Science natural_science 193 20 173 664evolutionary_biology 471 20 451

Psycology social_psychology 223 20 203 571cognitive_neuroscience 348 20 328

Algorithm algorithm 386 20 366 575graph_theory 189 20 169

Neural Network artificial_neural_network 488 20 468 590cognitive_science 102 20 82

Computer Vision
computer_vision 315 20 295

661computer_graphics_images 68 20 48
convolutional_neural_network 278 20 258

Data Mining

data_mining 131 20 111

694
feature_selection 130 20 110
cross_validation 117 20 97
time_series 224 20 204
cluster_analysis 92 20 72

Deep Learning
deep_learning 372 20 352

791optimization_algorithm 238 20 218
reinforcement_learning 181 20 161

Machine Learning

machine_learning 583 20 563

1208hidden_markov_model 112 20 92
classifier 269 20 249
linear_regression 244 20 224

NLP natural_language_processing 305 20 285 587recurrent_neural_network 282 20 262
Economics economics 238 20 218 238

Total - 17948 1740 16208 17948

BERT model. When training DPR with Adapter,
the adapter-transformers(version 2.2.0) was used.

Original DPR (Karpukhin et al., 2020) We used
the open-sourced DPR checkpoint trained on multi-
task data with bert-base-uncased model (sequence
length: 256). The results are aligned with DPR
authors’ reported ones in paper.

DPR with P-tuning v2 (Liu et al., 2022). For P-
tuning v2 training, we used a batch size of 128 and
a sequence length of 256. We trained the question
and passage encoders, which are based on bert-
based-uncased model, for up to 40 epochs for large
datasets (NQ, TriviaQA, SQuAD and Multi-dataset
setting) and 100 epochs for small datasets (TREC,
QA) with a learning rate of 0.01 and a prefix length
of 100 using Adam, linear scheduling with 5%
warm-up and dropout rate 0.1.

DPR with Lester et al. & P-Tuning (Liu et al.,
2021c). Like P-tuning v2, we used bert-based-
uncased model as basic model, however, we only
applied modification to the input and set the param-
eters of learning rate as 0.01. We tried different
prefix length such as 100, 200 to test the perfor-
mance of the model.

DPR with BitFit (Zaken et al., 2022). In BitFit
training, we use the same values of batch size, se-
quence length, dropout rate and learning rate as in
P-tuning v2 as well as the same model, bert-based-
uncased model. It took 40 epochs to train the model
in the same datasets using Adam Optimizer and lin-
ear scheduling with 5% warm-up. We fixed all
parameters and trained only bias parameters.

DPR with Adapter (Houlsby et al., 2019). In the
procedure of training Adapter, we set the Adapter
architectures as PfeifferConfig style, and except
learning rate of 3e-5 and epochs of 50, the pa-
rameters and datasets were all same as in Bit-
Fit as introduced in the above paragraph. We
adopt the implementation of adapter in ADAPTER-
TRANSFORMER (Pfeiffer et al., 2020).



B.2 Implementation of ColBERT

Original ColBERT (Khattab and Zaharia, 2020)
In full-parameter training, We adopt the parameters
offered by (Khattab and Zaharia, 2020). We trained
ColBERT model with a learning rate of 3× 10−6

with a batch size of 32. We fix the number of em-
beddings per query at 32 and follows (Thakur et al.,
2021) to set the number of document embeddings
as 300. The embedding dimension is set as 128.

The model is trained for up to 400k iterations.

ColBERT with P-Tuning v2 (Liu et al., 2022).
With P-tuning v2, We trained ColBERT from the
parameters of bert-based-uncased for up to 400K
steps on MS MARCO dataset with a learning rate
of 0.01 and a prefix length of 64. We used a batch
size of 32 and fixed the number of embeddings
per query at 32 and the number of embeddings per
document at 300. The embedding dimension is set
to be 128.


