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Abstract. A digital similar (DS) of a population of a region is a com-
mon starting point for agent-agent based simulations. Here, an integer
linear programming-based algorithm is presented that refines an existing,
high-resolution methodology for constructing DSs. The extension con-
sists of constructing a household-to-residence mapping that maximizes
the correlation between household income of individual households and
residence property values of individual residences. The algorithm is ap-
plied to a coastal region of Virginia (US) where we demonstrate that new
household-to-residence assignment generates significantly different out-
comes than the existing approach which is random assignment at block-
group level. Using the context of road inundation and measures such as
“time to evacuate” and “time to reach critical care”, it is demonstrated
significant differences across household income segments with the new
method, while no such difference is established with the prior method.

Keywords: Digital similar · societal resilience · synthetic population ·
population digital twin

1 Introduction

Highly-detailed population models form a basis for many agent-based simulation
models and computational modeling across domains such as epidemiology [2,25],
disaster preparedness and planning [19, 23], and urban science [5, 12]. Such ef-
forts rely on detailed, individual-level representations of entire populations of the
study region, which include relevant demographic information. We refer to these
as digital similars, though they are also referred to as synthetic populations or
population digital twins. These representations are synthesized by integrating
multiple datasets on demographics, activity patterns, and residences and other
locations that people visit. The success of such studies depends in large part on
the veridicality of the population representation. Data integration is typically
done by matching common attributes that are relevant to the purpose. For ex-
ample, when merging demographic and activity schedule data, matching is done
on demographic attributes that are determined to be relevant to predicting ac-
tivity durations [17, 27]. When such attributes are not available, matching has
been done randomly [1, 3].
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It is possible that, in the absence of precise data that would allow attribute
matching, we might still wish to have a non-random matching. An example is the
assignment of households to residence locations, where we might wish to have a
correlation between household incomes and residence values. We don’t typically
expect this correlation to be maximal, as a household might buy a residence and
then either have their income change or have the residence value change (increase
or decrease). Lacking empirical data on the level of correlation, our approach here
is to develop a method that allows us to do adjustable attribute matching. For
a concrete example, we use household income and residence value as the two
attributes to be matched. Our location data for US digital similars is generated
through a combination of modeling, data fusion, and model training based a
broad variety of data sources [4, 13,20,22]. This data resource has subsequently
been augmented with estimates of residential property value from parcel data.
Household income data are available through the US Census, which we used in
generating the synthetic people and households that constitute our US digital
similar [1,3]. In earlier work, these households of the digital similar were assigned
residence locations at random within each Census block group of the study
region. In our new methodology described here, we use an integer program (IP)
formulation to construct an assignment that maximizes the correlation between
household income, a PUMS [28] variable, and the detailed estimates of residence
values. The IP-formulation also supports construction of an assignment where
the Pearson correlation coefficient falls within a prescribed interval as long as
the interval’s upper bound does not exceed the maximal.

The new method for the household-residence assignment is illustrated for the
Eastern Shore, Virginia (ESVA), a region that is exposed to storm surges and
flooding. Using our related work on evacuation routing for inundated transporta-
tion networks [15, 16] in combination with digital similars for the two counties,
Accomack and Northampton, of ESVA, our setup is as follows: inundation data
from TideWatch [29] is spatially joined with the road infrastructure [13] and ad-
justed speed limits are determined. Through routing, we determine the following
for each household/residence location on the ESVA:
– The time needed to evacuate to a target destination across the state border

with Maryland in the north;
– The time needed to reach urgent care/hospital;
– The time needed for emergency personnel (e.g., a fire truck) to reach the

residence location.
The metrics are determined for (a) random assignment of household to resi-
dences and for (b) the new IP-based assignment presented in Section 3. In each
case, we measure the travel times with and without inundation and assess the
fraction of households for which travel times are impacted, for low-, middle-,
and high-income households (based on the assigned residences). We find that
there are significant differences in travel times only when matching is done in
a correlated way. While this is not unexpected, it leads us to believe that any
analysis of disaster response, evacuation, etc., that is based on the new matching
will show more meaningful patterns by household income and other, correlated,
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demographic variables such as race and ethnicity. In related work for construc-
tion of digital similars (or synthetic populations) such as [9–11,14,21,26,31], we
are not aware of such details being incorporated in the methodology.

Paper organization. In Section 2 and 3 we present the new algorithm with
proofs. Following this, we describe our approach to scaling which is through a
spatial decomposition of the study region followed by a multi-pass process for
each blockgroup. In Section 4 we demonstrate the use of the new digital similar
in the context of flooding for the Eastern Shore, Virginia (ESVA). Specifically,
we demonstrate how road inundation causes quite different impacts to the ESVA
population when broken down by income compared to when a random household-
to-residence mapping is used. The measures considered were time-to-evacuate,
time-to-reach-urgent-care, and emergency-response-time. We conclude with a
summary in Section 5.

2 Approach

2.1 Generalized Pearson Correlation Coefficient

Let R denote the set of real numbers and [n] denote the set {1, 2, . . . , n}. Consider
two sets of n variables, say X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, where
each variable takes on a value from R. In addition, there is a function f that
maps X ×Y to R. Thus, for each pair of variables xi ∈ X and yj ∈ Y , the value
f(xi, yj) is in R.

A perfect matching between X and Y is a permutation π of [n] such that
xi is matched with yπ(i). For a given perfect matching π between X and Y ,
the value of the Generalized Pearson Correlation Coefficient, denoted by
GPCC(X,Y, π), is defined as follows:

GPCC(X,Y, π) =

n∑
i=1

f(xi, yπ(i)) . (1)

A special case of this is the common definition of the Pearson Correlation Co-
efficient (PCC), where π is the identity permutation (i.e., each xi gets matched
with yi) and the function f is defined by

f(xi, yi) =
1

n− 1

(
xi − µ(X)

σ(X)

) (
yi − µ(Y )

σ(Y )

)
. (2)

In the above equation, µ(X) and µ(Y ) are respectively the sample means of X
and Y and σ(X) and σ(Y ) are respectively the sample standard deviations of
X and Y .

Graph Theoretic Definitions We will use a few standard definitions from
graph theory. These definitions can be found in many texts [30, e.g.]. A bipartite
graph G(V1, V2, E) has two disjoint sets of nodes V1 and V2, and each edge in E
has one node from V1 and the other from V2. A matching M in G is a subset
of edges such that no two edge of M are incident on the same node. The size
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of a matching M is the number of edges in M . When there is a weight w(e)
associated with each edge e ∈ E, the weight of a matching M is the sum of the
weights of the edges in M .

A bipartite graph G(V1, V2, E) is balanced if |V1| = |V2|. For a balanced
bipartite graph, with |V1| = |V2| = n, a perfect matching of G is a matching
of size n. Consider a balanced bipartite graph G(V1, V2, E) which has a perfect
matching. Suppose V1 = {v1, v2, . . . vn} and V2 = {w1, w2, . . . wn}. Now, any
perfect matching of G represents a one-to-one correspondence between V1 and
V2. If the nodes in V1 are ordered as ⟨v1, v2, . . . vn⟩, then a perfect matching M
can be thought of as a permutation π of [n]. In other words, M is the set of edges
given by {vi, wπ(i) : 1 ≤ i ≤ n}. This view of a perfect matching in a balanced
bipartite graph allows us to formulate the problem of maximizing GPCC as that
of constructing an appropriate perfect matching in such a bipartite graph.

When there are edge weights, a maximum weight perfect matching of
G(V1, V2, E) is a perfect matching whose weight is a maximum among all the
perfect matchings of G. It is well known that if a balanced bipartite graph
G(V1, V2, E), where |V1| = |V2| = n, has a perfect matching, then such a match-
ing of maximum weight can be computed in time O(n|E|), see [6].

2.2 Maximizing Generalized Pearson Correlation Coefficient

Given the definition of GPCC by Equation (1), it is of interest to consider the
problem of finding a permutation π that maximizes the GPCC value. From the
discussion in Section 2.1, it can be seen that this maximization problem can
be solved by a simple reduction to the maximum weight perfect matching
(MWPM) problem on balanced bipartite graphs. Since the MWPM problem can
be solved efficiently [6–8], it follows that the problem of finding a permutation
that maximizes the GPCC value can also be solved efficiently.

Our algorithm for maximizing the GPCC value is shown in Figure 1. The
following proposition establishes the correctness and the running time of the
algorithm.

Proposition 1. Given values for the variables in the sets X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn} and a function f that returns the value f(xi, yj) for
any pair of inputs xi and yj, the algorithm in Figure 1 returns a permutation
that maximizes the GPCC value defined by Equation (1). Further, the algorithm
runs in polynomial time.

Proof: Since G is a complete balanced bipartite graph and |Vx| = |Vy| = n, G
has a perfect matching. (For example, the set of edges {{vi, wi} : 1 ≤ i ≤ n} is
a perfect matching for G.) From the discussion in Section 2.1, it can be seen that
every matching of sets X and Y represents a perfect matching in G. Further, for
every such matching, from Equation (1), the value of GPCC is the sum of the
weights of the edges in the corresponding matching. Thus, a perfect matching
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Input: The values of 2n variables x1, x2, . . ., xn and y1, y2, . . ., yn; a function f that
returns the value f(xi, yj) given the values of any pair of variables xi and yj .
Output: A permutation π of [n] that maximizes GPCC(X,Y, π) over all permutations
of [n].

Steps of the Algorithm:

1. Construct a weighted balanced complete bipartite graph G(Vx, Vy, E) as follows.
The node sets Vx = {v1, v2, . . . , vn} and Vy = {w1, w2, . . . , wn} are in one-to-one
correspondence with sets X and Y respectively. E = {{vi, wj} : 1 ≤ i, j ≤ n}. For
each edge {vi, wj} ∈ E, the weight w(vi, wj) is set to f(xi, yj).

2. Compute a maximum weight perfect matching M of G.
3. For each edge {vi, wj} ∈ M , set π(i) = j.
4. Return the permutation π.

Fig. 1: Algorithm to Find a Permutation that Maximizes GPCC

in G with the largest total weight indeed provides a matching of X and Y with
the largest value of GPCC. This establishes the correctness of the algorithm.

To estimate the running time, we assume that for a given pair of values xi

and yj , the value f(xi, yj) can be computed in O(1) time. Step 1 of the algorithm
runs in O(n2) time since the number of edges in G is n2 and the weight of each
edge can be computed in O(1) time. As mentioned earlier, Step 2 runs in O(n|E|)
= O(n3) time since |E| = n2. Step 3 runs in O(n) time. Thus, the running time
of the algorithm is dominated by the time used in Step 2. Hence, the algorithm
runs in O(n3) time.

3 Integer Linear Programming Formulations for
Matching Problems

Overview We present integer linear programming (ILP) formulations for two
versions of the matching problem. In the first version, the goal is to obtain a
matching for which the GPCC value is within specified bounds. The second
version, the goal is to find a matching that maximizes the GPCC value.

Obtaining a GPCC Value Within Given Bounds A natural question that
arises in the context of generating synthetic populations is that of finding a per-
mutation that leads to a given GPCC value. From the previous discussion, it
can be seen that this problem corresponds to finding a perfect matching of a
specified weight in a balanced weighted bipartite graph. Maalouly [18] presents
results that suggest this problem, which he refers to as the Exact Weight Per-
fect Matching problem, is unlikely to be efficiently solvable. Here, we present
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a method that uses an integer linear programming (ILP) formulation for a re-
laxed version of the problem. Specifically, we are given values of 2n variables
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} and two real values ℓ and u. The
goal is to find a permutation π of [n] such that the GPCC value corresponding
to π (given by Equation (1)) satisfies the condition ℓ ≤ GPCC(X,Y, π) ≤ u.

Using the discussion in previous sections, we can consider the above problem
as that of finding a perfect matching M in a balanced complete bipartite graph
G(Vx, Vy, E) such that the weight of M is at least ℓ and at most u. Recall that the
weight of each edge {vi, wj} in G is given by f(xi, yj). Our {0,1}-ILP formulation
for the problem is as follows.

Variables: There are n2 variables zij , 1 ≤ i, j ≤ n. Each zij takes on a value from
{0, 1}. The variable zij represents edge {vi, wj}. The value of zij = 1 if the edge
{vi, wj} is in the chosen perfect matching; otherwise, the value of zij is 0.

Objective: No optimization objective is needed here.

Constraints:
1. For each node vi, exactly one edge from the chosen matching should be

incident on vi. This leads to the following set of n constraints:
n∑

j=1

zij = 1, 1 ≤ i ≤ n.

2. For each node wj , exactly one edge from the chosen matching should be
incident on wj . This leads to the following set of n constraints:

n∑
i=1

zij = 1, 1 ≤ j ≤ n.

3. The weight of the chosen matching must satisfy the specified upper and lower
bounds. This leads to the following two constraints:

n∑
i=1

n∑
j=1

f(xi, yj) zij ≥ ℓ and

n∑
i=1

n∑
j=1

f(xi, yj) zij ≤ u .

4. Each zij must take on a value from {0, 1}:
zij ∈ {0, 1}, 1 ≤ i, j ≤ n .

Recovering a matching: When there is a solution, for each zij that has value 1,
we match xi with yj .

3.1 Maximizing the GPCC Value

We now present an ILP formulation for finding a permutation that maximizes
the GPCC value. As pointed out in Section 2.2, this problem can be solved
efficiently by a reduction to the maximum weight perfect matching problem in
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bipartite graphs. However, an ILP formulation for the problem is convenient in
practice since search heuristics built into ILP solvers such as Gurobi are generally
able to generate solutions quickly even for reasonably large problem instances.
The ILP formulation presented here is obtained by a minor modification to the
formulation presented in Section 3.

Variables: There are n2 variables zij , 1 ≤ i, j ≤ n. Each zij takes on a value from
{0, 1}. The variable zij represents edge {vi, wj}. The value of zij = 1 if the edge
{vi, wj} is in the chosen perfect matching; otherwise, the value of zij is 0.

Objective: Maximize
∑n

i=1

∑n
j=1 f(xi, yj) zij .

Constraints:
1. For each node vi, exactly one edge from the chosen matching should be

incident on vi. This leads to the following set of n constraints:
n∑

j=1

zij = 1, 1 ≤ i ≤ n.

2. For each node wj , exactly one edge from the chosen matching should be
incident on wj . This leads to the following set of n constraints:

n∑
i=1

zij = 1, 1 ≤ j ≤ n.

3. Each zij must take on a value from {0, 1}:
zij ∈ {0, 1}, 1 ≤ i, j ≤ n .

Recovering a matching: When there is a solution, for each zij that has value 1,
we match xi with yj .

3.2 Adaptation for Use with Digital Similars

The IP-based algorithm for constructing household-to-residence assignment is
applied independently at blockgroup resolution. For a blockgroup, there will
typically be disparity between the number of households |H| and the number
of residence locations |R|. The two cases to consider are (i) |R| ≥ |H| and
(ii) |R| < |H|. For the first case, we apply the IP-based algorithm to the set
of households H and a randomly selected subset R′ ⊂ R with |R′| = |H|. For
the second case, we construct a partition H = {H1, H2, . . . ,Hk+1 of H such
that |H1| = |H2| = · · · = Hk = |R| and apply the algorithm to the pairs (Hi, R)
with 1 ≤ i ≤ k. The remaining set Hk+1 is handled as in the first case.

4 Results

The algorithm was applied to the digital similar of Accomack and Northamp-
ton, Virginia, the counties that constitute the Eastern Shore. We compare three
methods for household-to-residence assignment: (1) IP-based assignment with
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synthetic population PIP, (2) sorted assignment with population Psorted, and (3)
random assignment with population Prandom. In addition, we split the popula-
tions into the following income-based sub-demographics:

– Low income: [0, $55, 000]; 11,375 households
– Mid income: [$55, 000, $120, 000]; 5,533 households
– High income: > $120, 000; 1,736 households

The road network was constructed from OpenStreetMap data [24], inunda-
tion data was collected from TideWatch [29], and the two data sets were spa-
tially join to determine road segment traversability and modified traversal speeds
where. Routing was done at household resolution over (A) the baseline road net-
work and (B) the inundated road network where household were matched via
their residence to the nearest transportation node.
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Fig. 2: Distributions of travel time from emergency personnel for affected house-
holds under the three assignments.

The following metrics were measured through simulation:

– Travel time to safety: We calculate the travel time (τ1) from household to
a safe location (at the periphery of ESVA towards Maryland) for evacuation
under baseline conditions an, and the travel time τ2 for the inundated case.
For households that are cut off by inundation and are unable to reach the
safety destination, the travel time is set to a very high value τ2 → ∞ in
case the safe location is not reachable. We then calculate the performance
ratio 0 < τ1/τ2 ≤ 1. The closer the metric value to 1, the better.

– Travel time for emergency personnel: This measure considers travel
time from the nearest fire station to the household in the same manner as
for evacuation.

– Travel time to critical service: This measure considers travel time to the
nearest hospital from the household under two road conditions.

Figure 2 shows the travel times from emergency personnel for the households
in each income group that are affected by flooding (i.e., the ones for whom per-
formance ratio < 1). We see that the change for each group is about the same in
the random assignment but not for the other two. Table 1 shows the number of
households in the three income level groups, affected by road inundation in terms
of the three metrics, for different assignment method. For the IP assignment, we
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Income Level Travel time
to Safety

Travel time from
Emergency Personnel

Travel time to
Critical Service

IP assignment

Low 1927, 17% 2104, 18% 1871, 16%

Mid 1160, 21% 1351, 24% 1461, 26%

High 499, 29% 600, 35% 601, 35%

Sorted assignment

Low 1960, 17% 2154, 19% 1900, 17%

Mid 1166, 21% 1371, 25% 1499, 27%

High 496, 29% 599, 35% 582, 34%

Random assignment

Low 2767, 24% 3068, 27% 2981, 26%

Mid 1472, 27% 1351, 24% 1399, 25%

High 430, 25% 480, 28% 469, 27%

Table 1: Number and percentage of households affected by road inundation in
each income level, for the IP assignment method.

observe that, by count, low income level households are affected the most. How-
ever, if we consider percentage of households, then high income households are
affected the most. A similar pattern is observed for Sorted assignment method.
However, in the Random assignment method, we observe that the percentage of
households impacted in different income levels are close, i.e. 24− 28%.

To understand if the effect of road inundation on different income level house-
holds is different, we look at the performance ratio values of the set of households
in each income level. We then compare them using the two-sample Kolmogorov-
Smirnov (KS) test. The resulting p-values are shown in Table 2. For the IP
assignment method, we observe that the p-values are small (i.e. < 0.05) for all
three metrics. This implies that the difference in impact of road inundation on
different income level households is statistically significant. Similar result is found
for the sorted assignment method. However, for the random assignment method,
we see that the p-values are large (> 0.05). This implies that the difference in
impact of road inundation on different income level households is not statisti-
cally significant. This is expected as the households were assigned to residences
uniformly at random.

5 Discussion

The IP implementation was done using Gurobi. It is more computationally ex-
pensive than doing a random matching or a maximally correlated matching
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Income Level Travel time
to Safety

Travel time from
Emergency Personnel

Travel time to
Critical Service

IP assignment

Low vs Mid 3.03e-07 1.62e-15 1.42e-40

Mid vs High 2.1e-07 2.46e-12 1.69e-08

Low vs High 5.167e-19 1e-34 1.11e-46

Sorted assignment

Low vs Mid 1.08e-06 1.92e-14 2.7e-43

Mid vs High 5.77e-07 2.25e-11 4.65e-07

Low vs High 1.74e-17 1.73e-32 6.28e-40

Random assignment

Low vs Mid 0.65 1 0.7

Mid vs High 0.79 0.98 0.55

Low vs High 1 1 0.76

Table 2: p-values from two-sample Kolmogorov-Smirnov test. For IP and Sorted
assignment, the p-values are small (< 0.05), implying statistically significant
difference between the income level groups. For Random assignment, p-values
are large (> 0.05), implying no statistically significant difference between the
groups.

(which can be done by sorting and matching). However, as this method is run
independently for each blockgroup, it can be parallelized easily. The method is
also agnostic to the attributes, so it can be used wherever we have beliefs about
the correlation between attributes, but lack data.

Empirical studies have consistently shown disparities by socioeconomic class,
race, and ethnicity, in risks due to flooding and other environmental hazards.
This is an important area of research in multiple domains. The use of digital sim-
ilars in these contexts is helpful in the evaluation of detailed and geographically
contingent policies and procedures for mitigating these risks. Our methodology
in this work brings additional veridicality to these efforts.

Data availability

The digital similar that formed the basis for this work, albeit without the IP
implementation, is available as “Virginia: DP-VA-2.4.0” at https://doi.org/
10.18130/V3/5LSDCY.
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