

A SPECTRAL-GRASSMANN WASSERSTEIN METRIC FOR OPERATOR REPRESENTATIONS OF DYNAMICAL SYSTEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

The geometry of dynamical systems estimated from trajectory data is a major challenge for machine learning applications. Koopman and transfer operators provide a linear representation of nonlinear dynamics through their spectral decomposition, offering a natural framework for comparison. We propose a novel approach representing each system as a distribution of its joint operator eigenvalues and spectral projectors and defining a metric between systems leveraging optimal transport. The proposed metric is invariant to the sampling frequency of trajectories. It is also computationally efficient, supported by finite-sample convergence guarantees, and enables the computation of Fréchet means, providing interpolation between dynamical systems. Experiments on simulated and real-world datasets show that our approach consistently outperforms standard operator-based distances in machine learning applications, including dimensionality reduction and classification, and provides meaningful interpolation between dynamical systems.

1 INTRODUCTION

Dynamical systems are widely used across scientific and engineering disciplines to model state variables' evolution over time (Lasota & Mackey, 2013). Nonlinear ordinary or partial differential equations typically govern these systems and may incorporate stochastic components (Meyn & Tweedie, 2012). However, in many practical situations, analytical models are unavailable or intractable, motivating the use of data-driven approaches to infer the underlying dynamics from sampled trajectories. In this context, Koopman and transfer operator regressions have emerged as a powerful framework for learning and interpreting dynamical systems from data (Brunton et al., 2022). Rather than directly modeling the evolution of state variables, these operators advance observables (scalar functions defined on the state space) by mapping each to its expected future value conditioned on the current state. Crucially, these operators are linear even when the underlying systems are not linear. Under suitable conditions, they admit a spectral decomposition that provides insight into the system's long-term behavior, stability, and modal structure (Mauroy et al., 2020). These properties have made the operator-centric framework particularly appealing for both theoretical analysis and practical applications across various domains, including chemistry for molecular kinetics explainability (Wu et al., 2017), robotics for control (Bruder et al., 2020), and fluid dynamics for prediction (Lange et al., 2021).

Koopman and transfer operators for dynamical systems. From a learning standpoint, Koopman and transfer operators provide a compact and structured representation of dynamical systems, making them well-suited for machine learning applications requiring system comparison, such as time series classification (Surana, 2020) and dynamical graph clustering (Klus & Djurdjevac Conrad, 2023). However, in order to leverage these representations in standard statistical and machine learning pipelines, one must first define a meaningful metric between them. Unfortunately, despite recent advances in operator estimation (Colbrook et al., 2023; Kostic et al., 2023; 2024a; Bevanda et al., 2023), the development of similarity measures be-

047 between operator representations of dynamical systems remains relatively underexplored despite the growing
 048 need for interpretable metrics on dynamical systems in machine learning applications (Ishikawa et al., 2018).
 049

050 **Comparing dynamical systems.** We succinctly review existing similarity measures on dynamical systems;
 051 a detailed account is given in Appendix A. The case of (stochastic) linear dynamical systems (LDSs) and
 052 linear state-space models was first addressed in the literature (Afsari & Vidal, 2014). While early metrics
 053 are theoretically sound and leverage the manifold structure of LDS spaces, they suffer from high compu-
 054 tational cost, making them impractical in most machine learning settings (Hanzon & Marcus, 1982; Gray,
 055 2009). Originally designed for ARMA models, the Martin pseudo-metric (Martin, 2002) offers a practical
 056 alternative and has later been extended to general LDS spaces and inspired kernel-based variants (Chaudhry
 057 & Vidal, 2013). These measures have been generalized to nonlinear systems through the Koopman/transfer
 058 operator framework (Fujii et al., 2017; Ishikawa et al., 2018). More recent work considers topological conju-
 059 gacy, where similarities can be defined via alignment methods (Ostrow et al., 2023; Glaz, 2025) or Optimal
 060 Transport (OT) between operator spectra (Redman et al., 2024; Zhang et al., 2025). A related line of research
 061 studies Wasserstein-type metrics on functional spaces such as Antonini & Cavalletti (2021), introducing OT
 062 between measures derived from the eigenvalues of normal operators.
 063 The above approaches face key limitations. Norm-based measures and the Martin pseudo-metric are noise-
 064 sensitive and lack interpretability. OT-based similarities improve interpretability by comparing spectral geo-
 065 metry, but they are restricted to self-adjoint operators and define pseudo-metrics rather than metrics. As
 066 a result, no existing method combines theoretical soundness, robustness, and computational efficiency, and
 067 defining a principled metric for dynamical systems remains an open challenge.

068 **Contributions.** In Section 3, we introduce a novel representation of transfer operators as joint distribu-
 069 tions over eigenvalues and eigenspaces. Building on tools from optimal transport and Grassmann geometry,
 070 we propose a new Wasserstein metric, named Spectral–Grassmann Optimal Transport (SGOT), that com-
 071 pares transfer operators through their joint spectral distribution. We show that SGOT is theoretically well-
 072 founded, computationally efficient, and broadly applicable, as it is compatible with any operator estimation
 073 method. Assuming operator estimation via reduced-rank regression, we further strengthen the theory of
 074 non-parametric spectral learning by establishing learning bounds for Koopman eigenvalues and eigenfunc-
 075 tions under weaker regularity assumptions, which in turn yield finite-sample convergence guarantees for
 076 SGOT. We then exploit SGOT to design a scalable algorithm for computing Fréchet barycenters of dynamical
 077 systems, enabling new forms of system averaging and interpolation. Finally, in Section 4, we empirically
 078 validate the advantages of our approach over existing metrics and demonstrate its utility in system interpola-
 079 tion and machine learning tasks, using operator estimators derived from kernel methods and deep learning.

080 2 BACKGROUND

081 **Linear evolution operators.** Let $(X_t)_{t \in \mathbb{T}}$ be the flow in some state space \mathcal{X} whose governing laws are
 082 temporally invariant, where the time index t can be either discrete ($\mathbb{T} = \mathbb{N}_0$) or continuous ($\mathbb{T} = [0, +\infty)$).
 083 While the flows of many important dynamical systems are nonlinear and possibly stochastic, under quite
 084 general assumptions they admit *linear operator representations* on a suitably chosen space of real-valued
 085 functions $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$, henceforth referred to as observable space. Namely, letting $t \in \mathbb{T}$, the *transfer operator*,
 086 also known as *Koopman operator* for deterministic systems, $A_t: \mathcal{F} \rightarrow \mathcal{F}$ evolves an observable $f: \mathcal{X} \rightarrow \mathbb{R}$
 087 for time t via conditional expectation
 088

$$[A_t(f)](x) := \mathbb{E}[f(X_t) | X_0 = x], \quad x \in \mathcal{X}. \quad (1)$$

089 Clearly, since $A_t A_s = A_{t+s}$, in the discrete-time setting the process can be studied only through the trans-
 090 fer operator $A := A_1$ of one unit of time, typically a second. On the other hand, when time is con-
 091 tinuous, the process is characterized by the infinitesimal generator of the semigroup $(A_t)_{t \geq 0}$, defined as
 092

094 $L := \lim_{t \rightarrow 0^+} (A_t - \text{Id})/t$ that is a differential operator with domain in \mathcal{F} that encodes the equations of
 095 motion and generate dynamics as $A_t = e^{Lt}$, see Lasota & Mackey (1994); Ross (1995).
 096

097 **Spectral decomposition.** The utility of transfer operator representations stems from its linearity on a suitably
 098 chosen \mathcal{F} that is *invariant* space under the action of A_t , that is $A_t[\mathcal{F}] \subseteq \mathcal{F}$ for all t (a property that
 099 we tacitly assumed above), and *rich enough* to represent the flow of the process, i.e., it contains observables
 100 from which we can reconstruct all the relevant information of the state (e.g. in the case of a stochastic sys-
 101 tem distribution μ_t at any time t). Namely, using the spectral theory of linear operators (Kato, 2013), under
 102 suitable assumptions, one can spectrally decompose generator $L = \sum_{j \in J} (\lambda_j P_j + N_j) + P_c L$ into distinct
 103 complex scalars $\lambda_j \in \mathbb{C}$, called eigenvalues, forming point-spectrum and mutually commuting Riesz spec-
 104 tral projectors P_j that satisfy equations $LP_j = \lambda_j P_j$ and $P_c = I - \sum_j P_j$, P_j being of finite rank m_j
 105 (geometric multiplicity), N_j being nilpotent, and $j \in J$ being countably many. Assuming for simplicity that
 106 \mathcal{F} is a separable Hilbert space and L is a non-defective operator with purely discrete spectrum, e.g. stable
 107 diffusion processes, see Ross (1995), we have that $L = \sum_{j \in \mathbb{N}} \lambda_j g_j \otimes_{\mathcal{F}} f_j$, with $Lf_j = \lambda_j f_j$, $L^* g_j = \overline{\lambda_j} g_j$, and
 108 $\langle f_j, g_j \rangle_{\mathcal{F}} = \delta_{i,j}$, where $(\lambda_j, f_j, g_j)_{j \in \mathbb{N}}$ are eigen-triplets consisting of an eigenvalue, left and right eigenfunc-
 109 tion, respectively. This, in turn, allows one to decouple the evolution of an arbitrary observable $f \in \mathcal{F}$
 110

$$\mathbb{E}[f(X_t) | X_0 = x_0] = [A_t f](x) = \sum_{j \in \mathbb{N}} e^{\lambda_j t} \langle f_j, g_j \rangle_{\mathcal{F}} f_j(x_0) = \sum_{j \in \mathbb{N}} e^{\tau_j t} e^{i 2 \pi \omega_j t} m_j^f(x_0), \quad (2)$$

111 into modes $m_j^f = \langle f_j, g_j \rangle_{\mathcal{F}} f_j: \mathcal{X} \rightarrow \mathbb{R}$ that evolve as scalar oscillators at timescales given by reciprocals
 112 of $\tau_j = \Re(\lambda_j)$ and frequencies $\omega_j = \Im(\lambda_j) / 2\pi$ in Hz (assuming time in seconds).
 113

114 **Learning transfer operators.** In machine learning applications, dynamical systems are only observed,
 115 and neither A nor its domain, such as the space of square integrable functions w.r.t. the equilibrium mea-
 116 sure, is known, providing a key challenge to learn them from data. The most popular algorithms (Brunton
 117 et al., 2022) aim to learn the action of $A: \mathcal{F} \rightarrow \mathcal{F}$ on a predefined, possibly infinite dimensional, Repro-
 118 ducing Kernel Hilbert Space (RKHS), resulting in estimating the *restriction* of A on $\mathcal{H} \subseteq \mathcal{F}$ by projection,
 119 that is $P_{\mathcal{H}} A|_{\mathcal{H}}: \mathcal{H} \rightarrow \mathcal{H}$, typically via empirical risk minimization (Kawahara, 2016; Kostic et al., 2022).
 120 When \mathcal{H} is given by a universal reproducing kernel (Steinwart & Christmann, 2008), meaning it is dense
 121 in \mathcal{F} , such techniques have strong spectral estimation guarantees (Kostic et al., 2023), can forecast well the
 122 states (Bevanda et al., 2023; Alexander & Giannakis, 2020), and evolve distributions of stochastic processes
 123 via kernel mean embeddings (Kostic et al., 2024c). As an alternative, finite-dimensional \mathcal{H} spaces can be
 124 used with these methods (Kutz et al., 2016) or be learned from data in the form of rich neural represen-
 125 tations (Liu et al., 2024), that can be also trained to minimize the projection error $\|P_{\mathcal{H}}^{\perp} A|_{\mathcal{H}}\|_{\mathcal{F} \rightarrow \mathcal{F}}$ (Kostic
 126 et al., 2024b). In these settings, a major limitation of the existing statistical learning guarantees is assum-
 127 ing well-specifiedness, i.e., the existence of an exact RKHS representation of A . A more realistic learning
 128 scenario requires that only the most relevant spectral part of A lives in a suitable universal RKHS space.
 129

130 **Discrete optimal transport.** Optimal Transport (OT) is a well-defined framework to compare probability
 131 distributions, with many applications in machine learning (Peyré et al., 2019). In discrete OT, one seeks a
 132 transport plan mapping samples from a source distribution to those of a target distribution while minimizing
 133 a transportation cost. Formally, consider $\mathcal{Z}_S = \{z_i \in \mathcal{Z} | i \in [k_S]\}$ and $\mathcal{Z}_T = \{z'_i \in \mathcal{Z} | i \in [k_T]\}$ as the
 134 sets of source and target samples in a space \mathcal{Z} . We associate to these sets the probability distributions $\mu_S = \sum_{i \in [k_S]} a_i \delta_{z_i}$ and $\mu_T = \sum_{i \in [k_T]} b_i \delta_{z'_i}$ with $(\mathbf{a}, \mathbf{b}) \in \Delta^{k_S} \times \Delta^{k_T}$ and $\Delta^n = \{\mathbf{p} \in \mathbb{R}_+^n | \sum_{i \in [n]} p_i = 1\}$
 135 the n -simplex. Let $\mathbf{C} \in \mathbb{R}_+^{k_S \times k_T}$ be the cost matrix with $C_{ij} = c(z_i, z'_j)$ being the transport cost between z_i
 136 and z'_j given by the cost function c . The Monge-Kantorovich problem aims at identifying a coupling matrix,
 137 also denoted as OT plan $\mathbf{P}^* \in \mathbb{R}_+^{k_S \times k_T}$, that is a solution of the constrained linear problem:
 138

$$\min_{\mathbf{P} \in \Pi(\mu_S, \mu_T)} \langle \mathbf{C}, \mathbf{P} \rangle_F \quad \text{s.t.} \quad \Pi(\mu_S, \mu_T) = \{\mathbf{P} \in \mathbb{R}_+^{k_S \times k_T} | \mathbf{P} \mathbf{1} = \mathbf{a}, \mathbf{P}^\top \mathbf{1} = \mathbf{b}\}, \quad (3)$$

139 where $\Pi(\mathbf{a}, \mathbf{b})$ is the set of joint-distributions over $\mathcal{Z}_S \times \mathcal{Z}_T$ with marginals \mathbf{a} and \mathbf{b} . In what follows,
 140 we denote $L_c(\mu_S, \mu_T)$ the application returning the optimal value of problem (3) where c indicates the

cost function. A fundamental property of OT is that, under suitable conditions on the cost function, the Wasserstein distance defined as $W_p(\mu, \nu) \triangleq (L_{dp}(\mu, \nu))^{\frac{1}{p}}$ is a metric on the space of probability measures, see Villani et al. (2008, Theorem 6.18).

3 SPECTRAL-GRASSMANN OPTIMAL TRANSPORT (SGOT)

Problem setting and assumptions. Machine learning tasks on (stochastic) dynamical systems, such as comparing trajectories, identifying regimes, or clustering dynamics, require a discriminative and computationally efficient notion of distance between observed processes. We address this by representing each system through its associated Koopman/transfer operator and then introducing the SGOT metric to compare them. To that end, let us [formalize the problem setting \(A1\) and make the main learnability assumptions \(A2\)-\(A3\) necessary to obtain strong statistical learning guarantees](#).

(A1, Dynamical systems functional spaces and sampling) Consider $N \in \mathbb{N}^*$ time homogeneous, Markovian dynamical systems defined on a common state space \mathcal{X} and characterized by their generators $L_k : \text{dom}(L_k) \subset \mathcal{F}_k \rightarrow \mathcal{F}_k$ defined on the respective spaces \mathcal{F}_k of observables $\mathcal{X} \rightarrow \mathbb{R}$, $k \in [N]$. For every $k \in [N]$, let $\mathcal{D}_k = \{(x_i^k, y_i^k)\}_{i \in [n_k]}$ be a dataset of observations of the k -th system, consisting of consecutive states separated by time-lag Δt_k . Notably, in the case of a single trajectory $y_i^k = x_{i+1}^k$.

Since data-driven methods can distinguish between systems only up to the temporal resolution at which the observations are made (Zayed, 2018), recalling equation 2, the systems differing in spectral components beyond the observable range of timescales $1/\tau_j$ and frequencies ω_j are undistinguishable from measurements. Therefore, we focus below on spectral projections of dynamics that can be learned from finite data.

(A2, Low rank) For every $k \in [N]$ there exists $r_k \in \mathbb{N}$ such that r_k eigenvalues of L_k closest to the origin are separated from the rest of the spectrum, and let $P_{\leq r_k} : \mathcal{F}_k \rightarrow \mathcal{F}_k$ denote the corresponding spectral projector.

Recalling the case of dynamical systems sampled at equilibrium, i.e. $\mathcal{F}_k = \mathcal{L}_{\pi_k}^2(\mathcal{X})$ with π_k being the invariant measure of the k -th system, a central conceptual difficulty in introducing distance between systems is that transfer operators for different systems naturally act on different spaces, and therefore cannot be compared directly. To resolve this, we restrict each operator to a common reproducing kernel Hilbert space \mathcal{H} that is included in the domain of all the transfer operators.

(A3, Common functional space) Let \mathcal{H} be a separable RKHS associated with kernel κ , such that for all $k \in [N]$ it holds $\text{Im}(P_{\leq r_k} L_k) \subset \mathcal{H} \subset \mathcal{F}_k$. Hence, there exists representation $T_k = e^{(P_{\leq r_k} L_k)|_{\mathcal{H}}} : \mathcal{H} \rightarrow \mathcal{H}$ with spectral decomposition $T_k = \sum_{j \in [\ell_k]} e^{\lambda_j^k} Q_j^k$ where ℓ_k is the number of distinct eigenvalues.

First, we remark that this assumptions is significantly relaxed compare to the most related prior work (Kostic et al., 2023). In fact, for typical Langevin dynamics, under suitable assumptions on the potential, a universal Gaussian RBF RKHS with properly chosen landscale parameter contains a finite number of leading eigenfunctions of generators L_k defined on $\mathcal{L}_{\pi_k}^2(\mathcal{X})$ spaces weighted by Boltzmann distributions π_k . Thus, (A3) holds true, while aforementioned is violated. Moreover, one can formally build a finite-dimensional space \mathcal{H} by choosing exactly the basis of such a generator's eigenfunctions; the complexity of the problem is then transferred to learning \mathcal{H} . Beyond this case, one can similarly work in other domains, see e.g. Colbrook et al. (2025); Alexander & Giannakis (2020); Bevanda et al. (2023). Finally, if Assumptions (A2) and (A3) hold, we obtain an exact spectral representation in \mathcal{H} , which, as we will show, enables unbiased operator comparison. When these assumptions are violated, the comparison incurs a bias that can be assessed through the metric distortion between the chosen common subspace and the true operator domain. This phenomenon is analyzed in (Kostic et al., 2023), which also provides an efficient empirical estimator of the distortion.

188 **Spectral Grassmannian Wasserstein metric.** Since the spectral decomposition of a non-defective operator
 189 T_k into its eigenvalues and spectral projectors is uniquely defined up to a permutation, any meaningful com-
 190 parison approach based on operators' spectral decomposition must be invariant to permutations and change
 191 of basis in which spectral projectors are expressed. While discrete optimal transport naturally provides in-
 192 variance to permutations through the minimizing coupling matrix eq. (3), we need to design a ground metric
 193 that takes into account both spectral and subspace aspects to obtain a true OT metric. This is done below,
 194 where we define a Wasserstein metric on the set of non-defective operators (complete proof in Appendix C).

195 **Theorem 1.** *Let \mathcal{H} be a separable \mathbb{C} -Hilbert space and $\mathcal{S}_r(\mathcal{H})$ the set of non-defective operators with rank
 196 at most $r \in \mathcal{D}$. Let $(\mathcal{G}, d_{\mathcal{G}})$ be the Grassmannian manifold of the space of Hilbert-Schmidt operators on \mathcal{H} .
 197 Given $p \in \mathbb{N}^*$ and $\eta \in (0, 1)$, let $\mu: \mathcal{S}_r(\mathcal{H}) \rightarrow \mathcal{P}_p(\mathbb{C} \times \mathcal{G})$ and $d_{\eta}: (\mathbb{C} \times \mathcal{G})^2 \rightarrow \mathbb{R}_+$ be given by*

$$198 \quad \mu(T) \triangleq \sum_{j \in [\ell]} \frac{m_j}{m_{\text{tot}}} \delta_{(\lambda_j, \mathcal{V}_j)} \quad \text{and} \quad d_{\eta}[(\lambda', \mathcal{V}'), (\lambda', \mathcal{V}')] \triangleq \eta |\lambda - \lambda'| + (1 - \eta) d_{\mathcal{G}}(\mathcal{V}, \mathcal{V}'), \quad (4)$$

200 with $|\cdot|$ applied on polar coordinates λ, λ' , $m_{\text{tot}} = \sum_{i \in [\ell]} m_i$, \mathcal{V}_j the m_j -dimensional vector space in
 201 $\text{HS}(\mathcal{H}, \mathcal{H})$ spanned by the rank one operators of the right/left eigenfunctions associated with the eigenvalue
 202 e^{λ_j} of T (same notation for T'). Then, $(\mathcal{S}_r(\mathcal{H}), d_{\mathcal{S}})$ is a metric space, where $d_{\mathcal{S}}: \mathcal{S}_r(\mathcal{H}) \rightarrow \mathbb{R}_+$ is given by

$$203 \quad d_{\mathcal{S}}(T, T') = W_{d_{\eta}, p}(\mu(T), \mu(T')). \quad (5)$$

205 First, recalling equation 2 and (A1), note that while typically in data-driven methods datasets are sampled
 206 at some frequency $\omega_k^{\text{ref}} = 1/\Delta t_k$ to estimate eigenvalues $e^{\lambda_i^k \Delta t_k}$ of transfer operators $A_k^{\Delta t_k}$, we build a
 207 metric using the difference in the generator eigenvalues. This is to compare Koopman modes' eigenvalues
 208 as physical quantities, since for the k -th system the observed time-scales are $\tau_j^k / \omega_k^{\text{ref}}$ and the oscillating
 209 frequencies $\omega_j^k / \omega_k^{\text{ref}}$. So, by re-normalizing eigenvalues, we can compare systems observed at different
 210 time-scales in the universal time units. Further, we remark that assuming non-defective operators is not a
 211 major bottleneck, since Theorem 1 can be extended to the space of general linear operators with rank at most
 212 r by leveraging the Dunford-Jordan decomposition (Dunford & Schwartz, 1988). In this case, the cost metric
 213 in d_{η} compares the spectrum and subspaces of Jordan blocks. **As well, depending on the prior geometry one
 214 wishes to emphasize on \mathcal{G} , one can consider other metrics as depicted in Appendix C.3.**

215 **Metric computation.** In order to evaluate the SGOT metric, one needs to compute the cost matrix (see
 216 section 2), i.e., d_{η} for each pair of spectrals. Following (A1)-(A3), let \widehat{T} be an operator estimated from
 217 samples $\{(x_i, y_i)\}_{i \in [n]}$ with a kernel based method. Suppose that \widehat{T} admits l eigenvalues, each with multi-
 218 plicity m_i . Let $\beta_i, \alpha_i \in (\mathbb{C}^{n \times l_i})^2$ be the control parameters of the left/right eigenfunctions related to the
 219 i^{th} eigenvalue and preprocessed to form an orthonormal basis. Let \widehat{T}' be another estimated operator, and
 220 $\mathbf{M}_{\epsilon} \triangleq \{k(\epsilon_i, \epsilon'_j)\}_{(i,j) \in [n] \times [n']}$ with $\epsilon \in \{\mathbf{x}, \mathbf{y}\}$, be the cross-kernel matrices. For $p = 1$, the cost matrix
 221 $\mathbf{C} \in \mathbb{R}_+^{l \times l'}$ is given by:

$$222 \quad C_{i,j} = \eta |\lambda_i - \lambda'_j| + (1 - \eta)(m_i + m_j - 2 \text{Tr}((\beta_i^* \mathbf{M}_y \beta_j)^* (\alpha_i^* \mathbf{M}_x \alpha_j)))^{\frac{1}{2}}. \quad (6)$$

225 With the rank $r \geq \max(l, l')$, the time complexity of $d_{\mathcal{S}}$ is in $O(n^2 r^2 + r^3 \log(r))$ respectively due to
 226 the cost matrix computation and the OT solver (that is negligible for small r). Consequently, $d_{\mathcal{S}}$ and the
 227 kernel metric computation are asymptotically equivalent, overcoming the usual computational drawbacks of
 228 OT-based methods relative to kernel ones. If needed, both metrics can further benefit from standard kernel
 229 scaling techniques (Meanti et al., 2023).

230 **Statistical guarantees.** In the following, we show how using RRR estimators yields unbiased estimation of
 231 the SGOT. To that end, consider $\widehat{T}_k = (\widehat{C}_x^k + \gamma I)^{-\frac{1}{2}} \llbracket (\widehat{C}_x^k + \gamma I)^{-\frac{1}{2}} \widehat{C}_{xy}^k \rrbracket_{r_k}$, where $\widehat{C}_x^k = \frac{1}{n_k} \sum_{i \in [n_k]} \kappa_{x_i^k} \otimes \kappa_{x_i^k}$,
 232 $\widehat{C}_{xy}^k = \frac{1}{n_k} \sum_{i \in [n_k]} \kappa_{x_i^k} \otimes \kappa_{y_i^k}$, $\gamma > 0$ and $\llbracket \cdot \rrbracket_r$ denoting best rank- r approximation. As discussed above, one
 233 can efficiently compute $d_{\mathcal{S}}(\widehat{T}_1, \widehat{T}_2)$ so that the following holds.

Theorem 2. Let (A1)-(A3) hold with $k \in [2]$, $\mathcal{F}_k = \mathcal{L}_{\pi_k}^2(\mathcal{X})$ and $\kappa(x, x) < \infty$ a.s. for $x \sim \pi_k$. Let $\mathbb{E}[\widehat{C}_x^k] = C_x^k$ and assume that for some $\alpha \in [1, 2]$ and $\beta \in [0, 1]$ it holds that $\|[(C_x^k)^\dagger]^{\frac{\alpha-1}{2}} T_k\|_{\mathcal{H} \rightarrow \mathcal{H}} < \infty$ and $\lambda_i(C_x^k) \leq i^{-1/\beta}$ for $i \in \mathbb{N}$. Given $\delta \in (0, 1)$, if n is large enough and $\lambda_{r_k} \lesssim -\frac{\alpha \log n}{2(\alpha+\beta)}$, then w.p.a.l. $1 - \delta$ in the i.i.d. draw of samples \mathcal{D}_1 and \mathcal{D}_2 it holds $|d_{\mathcal{S}}(\widehat{T}_1, \widehat{T}_2) - d_{\mathcal{S}}(T_1, T_2)| \lesssim n^{-\frac{\alpha-1}{2(\alpha+\beta)}} \ln(2\delta^{-1})$.

Sketch of Proof. To obtain this result, we needed to overcome the overly strong assumption of well-specifiedness of \mathcal{H} made in Kostic et al. (2023), which significantly reduces the applicability of those bounds to estimate the distance between true generators L_k with high probability. By carefully treating the approximation errors originating from rank reductions, \widetilde{T}_k being population version of \widehat{T}_k , we obtain $\|\widetilde{T}_k - T_k\| \lesssim \gamma^{\frac{\alpha-1}{2}} + e^{\lambda_{r_k}}$ under realistic assumption (A3). Furthermore, we derive an upper bound on the operator norm $\|\widetilde{T}_k - \widehat{T}_k\|_{\mathcal{H} \rightarrow \mathcal{H}} \lesssim \sqrt{\gamma^{-\beta-1} n^{-1}} \log(\delta^{-1})$ w.p.a.l. $1 - \delta$. Balancing the two terms gives the bound on $\|\widetilde{T}_k - T_k\|$. Next, we apply standard polar analysis and Davis-Kahan perturbation analysis to derive the bound on $d_{\eta}(\widetilde{T}_k, T_k)$. Finally, the stability property of the Wasserstein distance gives the final bound. Full proof is available in appendix E. \square

Spectral Grassmann OT barycenter, parametric model and optimization. Computation of barycenters is fundamental for many unsupervised methods; it is known as the *Fréchet mean problem* in metric spaces. It consists in identifying an element that minimizes a weighted sum of distances to the observations. Formally, given the importance weights $\gamma \in \Delta^N$, assuming (A1)-(A3), and $p=2$ in Theorem 1, we aim to solve:

$$\arg \min_{T \in \mathcal{S}_r(\mathcal{H})} \sum_{k \in [N]} \gamma_i d_{\mathcal{S}}(T, T_k)^2, \quad (7)$$

By construction of $d_{\mathcal{S}}$, problem 7 corresponds to a *free-support Wasserstein barycenter* estimation problem which aims at optimizing the support of the atoms parametrizing the barycenter, in our case, its spectral decomposition. State-of-the-art algorithms typically rely on a coordinate descent scheme, alternating between transport plan computation and measure optimization (Cuturi & Doucet, 2014; Claici et al., 2018). Whenever the RKHS \mathcal{H} is infinite dimensional, the Fréchet mean problem (eq. (7)) is intractable. So we restrain the optimization over a set of parametrized operators defined such that for any $\boldsymbol{\theta} \triangleq (\boldsymbol{\lambda}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{x})$:

$$T_{\boldsymbol{\theta}} : h \in \mathcal{H} \mapsto \sum_{i \in [r]} \lambda_i \langle \kappa_{\mathbf{x}} \boldsymbol{\alpha}_i, h \rangle_{\mathcal{H}} \kappa_{\mathbf{x}} \boldsymbol{\beta}_i \in \mathcal{H} \quad (8)$$

where $\boldsymbol{\lambda} \in \mathbb{C}^r$, $\mathbf{x} \in \mathcal{X}^n$ are state space control points, and $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{C}^{n \times r}$ control parameters acting on the representer functions $\kappa_{\mathbf{x}} = \{\kappa(\cdot, x_j)\}_{j \in [n]}$ with κ the kernel of \mathcal{H} , i.e. $\kappa_{\mathbf{x}} \boldsymbol{\alpha}_i \triangleq \sum_{j \in [n]} \kappa_{x_j} \alpha_{ji}$. While these operators are compact with rank at most r , further constraints on the control points and parameters are required to ensure a spectral decomposition (see eq. (2)). Together with the definition of discrete optimal transport (see Section 2), it leads to the constrained optimization problem:

$$\arg \min_{\boldsymbol{\theta}, \mathbf{P}} \sum_{i \in [N]} \gamma_i \langle \mathbf{C}_i(\boldsymbol{\theta}), \mathbf{P}_i \rangle_F \quad \text{s.t.} \quad \begin{cases} \boldsymbol{\alpha}^* \mathbf{K} \boldsymbol{\beta} = \mathbf{I} & \mathbf{K} = \{\kappa(x_i, x_j)\}_{(i,j) \in [n]^2} \\ \boldsymbol{\beta}_j^* \mathbf{K} \boldsymbol{\beta}_j = 1, \forall j \in [r] & \mathbf{P}_i \in \Pi(\mu(T_{\boldsymbol{\theta}}), \mu(T_i)), \forall i \in [N] \end{cases} \quad (9)$$

where $\mathbf{P} = \{\mathbf{P}_i\}_{i \in [N]}$, $\widehat{\mathbf{T}} = \{\widehat{T}_i\}_{i \in [N]}$, such that $(\mathbf{C}_i(\boldsymbol{\theta}), \mathbf{P}_i)$ are the cost and transport matrices associated to the Wasserstein metric $d_{\mathcal{S}}$ defined in Theorem 1, between the parametric operator $T_{\boldsymbol{\theta}}$ and \widehat{T}_i . Following Cuturi & Doucet (2014) and considering a differentiable kernel w.r.t the control points, we propose an inexact coordinate descent scheme with a cyclic update rule for optimizing problem 9. Each cycle begins with the computation of the optimal transport plans, then the subsequent coordinate updates are performed with a few gradient descent steps and a closed-form projection scheme to enforce the constraints. In Appendix D we provide more detail about the computational and theoretical aspects of the barycenters.

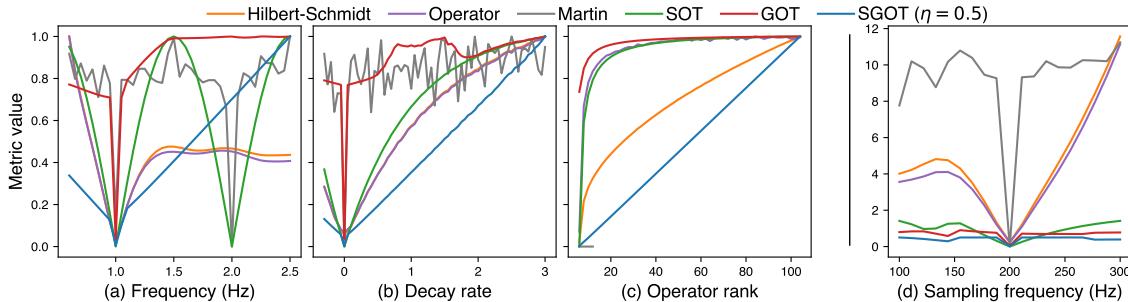


Figure 1: Similarity measures’ behaviors under four scenarios of shifts of a linear oscillatory system: (a) frequency shift, (b) decay rate shift, (c) operator rank/subspace shift, (d) sampling frequency variation. In scenarios (a,b,c), metric values are normalized by their maximum.

4 NUMERICAL EXPERIMENTS

We now illustrate the benefits of our metric and barycenter through numerical experiments on dynamical systems. We first study the behavior of different similarity measures under various shifts and compare them on unsupervised and supervised machine learning tasks. Finally, we demonstrate the properties of operator barycenters using our proposed algorithm on two simulated examples.

Compared similarity measures. In addition to our proposed metric SGOT, we compare other OT-based similarities that focus solely on the eigenvalues (SOT) (Redman et al., 2024) or solely on the eigenspaces using a Grassmannian metric (GOT) (Antonini & Cavalletti, 2021). We also include metrics induced by the Hilbert–Schmidt and operator norms, as well as the Martin similarity (Martin, 2002).

4.1 COMPARISON WITH OTHER SIMILARITY MEASURES

Simulated system and shifts. First, we illustrate the behavior of different similarity measures between dynamical systems with regard to variations of the spectral decompositions of their Koopman operators. We consider a referent linear oscillatory system that is the sum of two simple harmonic oscillators with frequencies 0.5Hz and 1.0Hz, respectively, with a trajectory sampled at 200Hz. Considering the linear kernel, we compare the Koopman operator of the referent system with those of shifted systems according to four scenarios: **(a) Frequency shift**, changes the 1Hz harmonic frequency. **(b) Decay rate shift**, changes the 1Hz harmonic decay rate. **(c) Subspace shift (rank)** gradually transforms the 1Hz sine wave into a 1Hz square wave signal using a Fourier decomposition of a square wave signal with increasing order. **(d) Sampling frequency shift** where the system is sampled at different sampling frequencies instead of the reference 200Hz. In each scenario, Koopman operators are estimated from sampled trajectories with the RRR method (Kostic et al., 2022) with rank fixed to twice the number of harmonic oscillators.

Results & interpretation. Values of the different metrics as a function of the shifts are shown in Figure 1. In scenarios (a,b,c), our metric SGOT [increases continuously \(near linearly\)](#) with the shifts almost everywhere. In contrast, other similarities tend to saturate quickly, and some even oscillate as shifts increase. In particular, OT-based competitors exhibit extreme behaviors: the pseudo-metric SOT oscillates in the frequency scenario, while GOT saturates fastest overall. Likewise, the Hilbert-Schmidt and operator metrics present both a saturating and an oscillating behavior, introducing many local minima. When changing the sampling frequency in scenario (d), only GOT and our metric SGOT are robust and remain low and almost constant. [Appendix F and G.5 provides details and a sensitivity analysis of the \$\eta\$ parameter in SGOT.](#)

4.2 MACHINE LEARNING OF DYNAMICAL SYSTEMS

329

330 Table 1: Classification rank per kernel type. Deep: kernel based on learned deep features. **Best** and
331 **second best** performers are highlighted (lower is better). Ranks are denoted: $\langle \text{mean} \rangle \pm \langle \text{std} \rangle$.

	Hilbert-Schmidt	Operator	Martin	SOT	GOT	SGOT
Linear	3.29 ± 1.02	3.92 ± 1.1	5.30 ± 1.31	4.49 ± 1.15	2.66 ± 1.18	1.34 ± 0.79
RBF	3.74 ± 1.27	NA	4.02 ± 0.98	3.28 ± 1.15	2.48 ± 1.19	1.48 ± 0.70
Deep	3.33 ± 1.56	4.14 ± 1.27	5.06 ± 1.48	3.84 ± 1.34	2.94 ± 1.33	1.71 ± 0.77

336

337

338

339 Table 2: Classification accuracy for operators estimated with RBF kernels. Datasets on rows and similarities
340 on columns. **Best** and **second best** performers are highlighted. Accuracy scores are denoted: $\langle \text{mean} \rangle \pm \langle \text{std} \rangle$.

	Hilbert-Schmidt	Martin	SOT	GOT	SGOT
BasicMotions	0.26 ± 0.17	0.77 ± 0.06	0.87 ± 0.05	0.69 ± 0.14	0.95 ± 0.02
ERing	0.74 ± 0.07	0.22 ± 0.05	0.38 ± 0.05	0.96 ± 0.01	0.98 ± 0.02
Epilepsy	0.31 ± 0.02	0.80 ± 0.01	0.77 ± 0.02	0.93 ± 0.02	0.95 ± 0.02
FingerMovements	0.53 ± 0.06	0.50 ± 0.03	0.53 ± 0.05	0.50 ± 0.06	0.53 ± 0.01
NATOPS	0.59 ± 0.06	0.25 ± 0.02	0.35 ± 0.02	0.78 ± 0.03	0.80 ± 0.05

341

342

Experimental setup. We now illustrate and study the usability of our metric SGOT in machine learning applications, both unsupervised (dimensionality reduction) and supervised (classification), when sequential data are embedded by estimated operators governing their dynamics. In both experiments, we considered 14 multivariate time series datasets from the UEA database (Ruiz et al., 2021), and time series are represented with Koopman operators estimated with the RRR method (Kostic et al., 2022).

343

Dimensionality reduction. We first explore the dimensionality reduction capabilities of the different similarity measures. Considering a linear kernel, 5 datasets and all similarities, the estimated operators are embedded as 2D vector with the T-distributed Stochastic Neighbor Embedding (T-SNE) (Maaten & Hinton, 2008) method fitted on the cross-distance matrix estimated with the similarity. Figure 2 illustrates the embeddings for the most discriminative similarities on datasets *EigenWorms* (motion) and *Epilepsy* (biomedical). TSNE embedding for all 5 datasets and metrics are available in Appendix G.2, Figure 8. The Hilbert-Schmidt distance is too conservative, and no clusters or classes can be identified. For OT-based metrics, GOT better identifies classes; however, they do not form distinct clusters as is obtained with our metric SGOT.

344

Classification setup. We now quantify similarities’ performances on a classification task. We consider three types of kernels for operator estimation via RRR Kostic et al. (2022): linear, RBF, and kernels based on learned deep features. For each kernel type and dataset, we run a Monte-Carlo nested cross-validation procedure with a (0.7, 0.3) train/test split and no data preprocessing. We perform 10 iterations for the linear case and 5 iterations for the RBF and deep-feature cases. For every similarity measure, we train a k -NN classifier and tune the hyperparameters— k (and η for SGOT) with a 5-fold inner cross-validation. The RBF experiments are restricted to the five smallest datasets, and the operator metric is excluded due to computational constraints. For the deep-feature experiments, an additional preprocessing step is required: features are learned from the training data using a Multi-Layer Perceptron (MLP), following the strategy

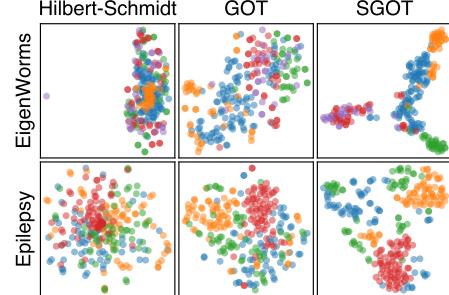


Figure 2: T-SNE embeddings. Datasets on rows, metrics on columns, classes in colors.

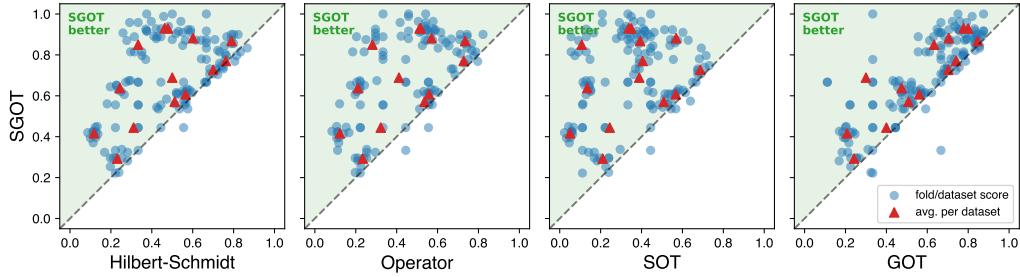


Figure 3: Classification performance (accuracy) comparison between SGOT and competitive metrics. Each point represents a dataset accuracy, with SGOT on the y-axis and the competing metrics on the x-axis.

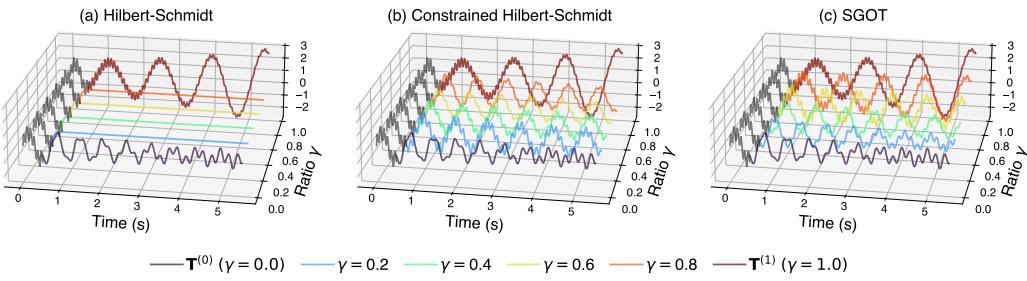


Figure 4: Predictions of interpolated systems between two linear oscillating systems from the same initialization. Interpolated systems correspond to weighted Fréchet barycenter for three different metrics: (a) Hilbert-Schmidt, (b) Hilbert-Schmidt with spectral decomposition constraints, and (c) our metric SGOT. The interpolation is controlled by a ratio parameter $\gamma \in [0, 1]$ which sets operators' weights.

of Kostic et al. (2024b) for learning invariant representations of time-homogeneous stochastic dynamical systems. Further details on the experimental protocol are provided in Appendix G.

Classification results. Table 1 presents the average rank per metric/kernel combination, while Table 2 provides the accuracy scores in the RBF setting and Figure 3 compares the accuracy between our metric SGOT and other metrics in the linear case. Overall, SGOT consistently outperforms other metrics across most datasets and for any kernel type. These results indicate that SGOT is a robust and well-behaved metric for operator comparison, independent of the underlying estimation method. In particular, SGOT surpasses both SOT and GOT by jointly leveraging information from eigenvalues and eigensubspaces. Detailed results for each kernel type, including comparison plots, full performance tables, critical-difference diagrams, and execution times, are provided in Appendix G.2, G.3, and G.4.

4.3 BARYCENTERS AND INTERPOLATION OF DYNAMICAL SYSTEMS

Interpolation between 1D DS. In this experiment, we compare the interpolation between dynamical systems through the weighted Fréchet barycenters of their Koopman operators, estimated with a linear kernel, for different metrics. The two systems are linear oscillatory systems, each being the sum of two simple harmonic oscillators with different frequencies and decay rates, and additive Gaussian noise. The interpolation is controlled by a ratio parameter $\gamma \in [0, 1]$ with weights $(1 - \gamma, \gamma)$ in the Fréchet mean problem equation 7. We compare (a) the Hilbert-Schmidt metric without spectral decomposition constraints given by $\mathbf{T}_{bar} = (1 - \gamma)\mathbf{T}^{(0)} + \gamma\mathbf{T}^{(1)}$, (b) the Hilbert-Schmidt metric with spectral decomposition constraints, and (c) our proposed metric SGOT. For (b) and (c), barycentric operators are estimated with the proposed optimization scheme, and experimental settings are detailed in Appendix H.

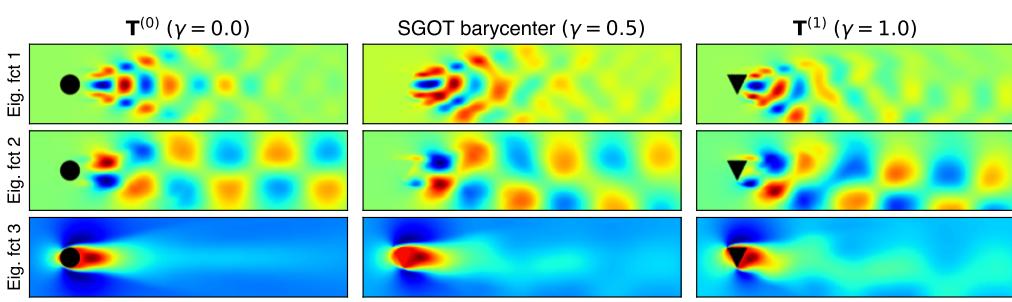


Figure 5: SGOT barycenter of Koopman operators of flows past static objects: a cylinder $\mathbf{T}^{(0)}$ and a triangle $\mathbf{T}^{(1)}$. Each operator’s three leading right eigenfunctions are displayed and can be associated with the vortex-shedding phenomenon of the fluids flowing from left to right.

The interpolated predictions, starting from an identical initialization signal (in gray) containing all four frequencies, are illustrated in Figure 4 for all three metrics. In the Hilbert-Schmidt case (fig. 4.a) leads to over-damped systems $\forall \gamma \in (0, 1)$. Adding spectral decomposition constraints on the Hilbert-Schmidt barycenter (fig. 4. (b) mitigates the damping effects; however, the oscillatory frequencies and decay rate converge to a local minimum close to initialization, as expected by the saturating behavior of the Hilbert-Schmidt metric (see fig. 1). Only SGOT barycenters naturally interpolate between the two systems, notably by retrieving the frequencies and the decay rates.

Interpolating fluid dynamics. We aim to compute the barycenter of two fluid dynamics systems. To that end, we consider the *Flow past a bluff object* dataset (Tali et al., 2025), which gathers trajectories of time-varying 2D velocity and pressure fields of incompressible Navier-Stokes fluids flowing around static objects. We select two trajectories, one with a cylinder object and the other with a triangular object. We only kept the velocity field along the flowing direction for each trajectory, leading to trajectories containing 242 samples of 1024x256 grids, which we down-sampled to grids with a 256x64 resolution. We estimate a Koopman operator with linear kernel using the RRR method from each trajectory: $\mathbf{T}^{(0)}$ for the cylinder and $\mathbf{T}^{(1)}$ for the triangle. The operators are restricted to the fourth leading eigenvalues and eigenfunctions. We compute the SGOT barycenter with the optimization scheme described in Appendix D with an initialization being the average of eigenvalues and eigenfunctions. In Appendix H we detail the experimental settings. Figure 5 illustrates the non-conjugated right eigenfunctions of all three Koopman operators (cylinder, barycenter, triangle). By symmetry of boundary conditions and the cylinder, the eigenfunctions in the cylinder case have an axial symmetry that is lost with the triangle. SGOT by interpolating between both introduces the asymmetry in the eigenfunctions of the barycenter.

5 CONCLUSION

In this paper, we proposed SGOT, a novel optimal transport metric between distributional representations of transfer operators in the joint spectral–Grassmann space. The metric has strong theoretical properties, induces a meaningful geometry for barycenters and interpolation, and can be computed efficiently. Numerical experiments demonstrate the superiority of the proposed metric for machine learning tasks and system interpolation. Our method opens the door to machine learning applications on dynamical systems, with future work including dictionary learning and conditional prediction to accelerate numerical simulations.

470 REFERENCES

471

472 Bijan Afsari and René Vidal. The alignment distance on spaces of linear dynamical systems. In *52nd IEEE*
473 *Conference on Decision and Control*, pp. 1162–1167. IEEE, 2013.

474

475 Bijan Afsari and René Vidal. Distances on spaces of high-dimensional linear stochastic processes: A survey.
476 In *Geometric Theory of Information*, pp. 219–242. Springer, 2014.

477

478 Martial Aguech and Guillaume Carlier. Barycenters in the wasserstein space. *SIAM Journal on Mathematical*
479 *Analysis*, 43(2):904–924, 2011.

480

481 Romeo Alexander and Dimitrios Giannakis. Operator-theoretic framework for forecasting nonlinear time
482 series with kernel analog techniques. *Physica D: Nonlinear Phenomena*, 409:132520, 2020.

483

484 Pedro C Álvarez-Esteban, E Del Barrio, JA Cuesta-Albertos, and C Matrán. A fixed-point approach to
485 barycenters in wasserstein space. *Journal of Mathematical Analysis and Applications*, 441(2):744–762,
486 2016.

487

488 Ethan Anderes, Steffen Borgwardt, and Jacob Miller. Discrete wasserstein barycenters: Optimal transport
489 for discrete data. *Mathematical Methods of Operations Research*, 84(2):389–409, 2016.

490

491 Esteban Andrushow. The grassmann manifold of a hilbert space. 2014.

492

493 Paolo Antonini and Fabio Cavalletti. Geometry of grassmannians and optimal transport of quantum states.
494 *arXiv preprint arXiv:2104.02616*, 2021.

495

496 Thomas Bendokat, Ralf Zimmermann, and P-A Absil. A grassmann manifold handbook: Basic geometry
497 and computational aspects. *Advances in Computational Mathematics*, 50(1):6, 2024.

498

499 Petar Bevanda, Max Beier, Armin Lederer, Stefan Sosnowski, Eyke Hüllermeier, and Sandra Hirche. Koop-
500 man kernel regression. *Advances in Neural Information Processing Systems*, 36:16207–16221, 2023.

501

502 Alessandro Bissacco, Alessandro Chiuso, and Stefano Soatto. Classification and recognition of dynamical
503 models: The role of phase, independent components, kernels and optimal transport. *IEEE Transactions*
504 *on Pattern Analysis and Machine Intelligence*, 29(11):1958–1972, 2007.

505

506 Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement interpolation
507 using lagrangian mass transport. In *Proceedings of the 2011 SIGGRAPH Asia conference*, pp. 1–12, 2011.

508

509 Daniel Bruder, Xun Fu, R Brent Gillespie, C David Remy, and Ram Vasudevan. Data-driven control of soft
510 robots using koopman operator theory. *IEEE transactions on robotics*, 37(3):948–961, 2020.

511

512 Steven L. Brunton, Marko Budišić, Eurika Kaiser, and J. Nathan Kutz. Modern Koopman theory for dynam-
513 ical systems. *SIAM Review*, 64(2):229–340, 2022.

514

515 Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm. *Foun-
516 dations of Computational Mathematics*, 7(3):331–368, 2007.

517

518 Antoni B Chan and Nuno Vasconcelos. Probabilistic kernels for the classification of auto-regressive visual
519 processes. In *2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition*
(CVPR’05), volume 1, pp. 846–851. IEEE, 2005.

520

521 Rizwan Chaudhry and René Vidal. Initial-state invariant binet-cauchy kernels for the comparison of linear
522 dynamical systems. In *52nd IEEE Conference on Decision and Control*, pp. 5377–5384. IEEE, 2013.

517 Sebastian Claici, Edward Chien, and Justin Solomon. Stochastic wasserstein barycenters. In *International*
 518 *Conference on Machine Learning*, pp. 999–1008. PMLR, 2018.

519

520 Matthew J Colbrook, Lorna J Ayton, and Máté Szőke. Residual dynamic mode decomposition: robust and
 521 verified koopmanism. *Journal of Fluid Mechanics*, 955:A21, 2023.

522

523 Matthew J Colbrook, Catherine Drysdale, and Andrew Horning. Rigged dynamic mode decomposition:
 524 Data-driven generalized eigenfunction decompositions for koopman operators. *SIAM Journal on Applied*
 525 *Dynamical Systems*, 24(2):1150–1190, 2025.

526

527 Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In *International conference*
 528 *on machine learning*, pp. 685–693. PMLR, 2014.

529

530 Katrien De Cock and Bart De Moor. Subspace angles between arma models. *Systems & Control Letters*, 46
 531 (4):265–270, 2002.

532

533 Nelson Dunford and Jacob T Schwartz. *Linear operators, part 1: general theory*. John Wiley & Sons, 1988.

534

535 Keisuke Fujii, Yuki Inaba, and Yoshinobu Kawahara. Koopman spectral kernels for comparing complex
 536 dynamics: Application to multiagent sport plays. In *Joint European Conference on Machine Learning*
 537 and *Knowledge Discovery in Databases*, pp. 127–139. Springer, 2017.

538

539 Tryphon T Georgiou. Distances and riemannian metrics for spectral density functions. *IEEE Transactions*
 540 *on Signal Processing*, 55(8):3995–4003, 2007.

541

542 Bryan Glaz. Efficient pseudometrics for data-driven comparisons of nonlinear dynamical systems. *Nonlinear*
 543 *Dynamics*, 113(11):12465–12486, 2025.

544

545 Robert M Gray. *Probability, random processes, and ergodic properties*. Springer Science & Business Media,
 546 2009.

547

548 Bang-Xian Han, Deng-Yu Liu, and Zhuo-Nan Zhu. On the geometry of wasserstein barycenter i. *arXiv*
 549 *preprint arXiv:2412.01190*, 2024.

550

551 Bernard Hanzon and Steven I Marcus. Riemannian metrics on spaces of stable linear systems, with applica-
 552 tions to identification. In *1982 21st IEEE Conference on Decision and Control*, pp. 1119–1124. IEEE,
 553 1982.

554

555 Isao Ishikawa, Keisuke Fujii, Masahiro Ikeda, Yuka Hashimoto, and Yoshinobu Kawahara. Metric on non-
 556 linear dynamical systems with perron-frobenius operators. *Advances in Neural Information Processing*
 557 *Systems*, 31, 2018.

558

559 Tosio Kato. *Perturbation theory for linear operators*, volume 132. Springer Science & Business Media,
 560 2013.

561

562 Yoshinobu Kawahara. Dynamic mode decomposition with reproducing kernels for koopman spectral analy-
 563 sis. *Advances in neural information processing systems*, 29, 2016.

564

565 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *CoRR*, abs/1412.6980,
 566 2014. URL <https://api.semanticscholar.org/CorpusID:6628106>.

567

568 Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian Lemmerich. Similarity of neural net-
 569 work models: A survey of functional and representational measures. *ACM Computing Surveys*, 57(9):
 570 1–52, 2025.

564 Stefan Klus and Nataša Djurdjevac Conrad. Koopman-based spectral clustering of directed and time-
 565 evolving graphs. *Journal of nonlinear science*, 33(1):8, 2023.

566

567 V. R. Kostic, K. Lounici, H. Halconruy, T. Devergne, and M. Pontil. Learning the infinitesimal generator
 568 of stochastic diffusion processes. In *Conference on Neural Information Processing Systems*, volume 38,
 569 2024a.

570 V. R. Kostic, P. Novelli, R. Grazzi, K. Lounici, and M. Pontil. Learning invariant representations of time-
 571 homogeneous stochastic dynamical systems. In *International Conference on Learning Representations*,
 572 2024b.

573

574 Vladimir Kostic, Pietro Novelli, Andreas Maurer, Carlo Ciliberto, Lorenzo Rosasco, and Massimiliano Pontil.
 575 Learning dynamical systems via koopman operator regression in reproducing kernel hilbert spaces.
 576 *Advances in Neural Information Processing Systems*, 35:4017–4031, 2022.

577 Vladimir Kostic, Karim Lounici, Pietro Novelli, and Massimiliano Pontil. Sharp spectral rates for koopman
 578 operator learning. *Advances in Neural Information Processing Systems*, 36:32328–32339, 2023.

579

580 Vladimir Kostic, Prune Inzerili, Karim Lounici, Pietro Novelli, and Massimiliano Pontil. Consistent long-
 581 term forecasting of ergodic dynamical systems. In *2024 International Conference on Machine Learning*,
 582 2024c.

583 J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor. *Dynamic mode decomposition: data-driven modeling of complex systems*. SIAM, 2016.

584

585 Henning Lange, Steven L Brunton, and J Nathan Kutz. From fourier to koopman: Spectral methods for
 586 long-term time series prediction. *Journal of Machine Learning Research*, 22(41):1–38, 2021.

587

588 Andrzej Lasota and Michael C. Mackey. *Chaos, Fractals, and Noise*, volume 97 of *Applied Mathematical
 589 Sciences*. Springer New York, 1994.

590

591 Andrzej Lasota and Michael C Mackey. *Chaos, fractals, and noise: stochastic aspects of dynamics*, vol-
 592 ume 97. Springer Science & Business Media, 2013.

593

594 Thibaut Le Gouic and Jean-Michel Loubes. Existence and consistency of wasserstein barycenters. *Probabil-
 595 ity Theory and Related Fields*, 168(3):901–917, 2017.

596

597 Lingxiao Li, Aude Genevay, Mikhail Yurochkin, and Justin M Solomon. Continuous regularized wasserstein
 598 barycenters. *Advances in Neural Information Processing Systems*, 33:17755–17765, 2020.

599

600 Johannes von Lindheim. Simple approximative algorithms for free-support wasserstein barycenters. *Com-
 601 putational Optimization and Applications*, 85(1):213–246, 2023.

602

603 Yuying Liu, Aleksei Sholokhov, Hassan Mansour, and Saleh Nabi. Physics-informed koopman network for
 604 time-series prediction of dynamical systems. In *ICLR 2024 Workshop on AI4DifferentialEquations In
 605 Science*, 2024.

606

607 Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings of
 608 nonlinear dynamics. *Nature communications*, 9(1):4950, 2018.

609

610 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning
 611 research*, 9(Nov):2579–2605, 2008.

612 Anton Mallasto and Aasa Feragen. Learning from uncertain curves: The 2-wasserstein metric for gaussian
 613 processes. *Advances in Neural Information Processing Systems*, 30, 2017.

611 Richard J Martin. A metric for arma processes. *IEEE transactions on Signal Processing*, 48(4):1164–1170,
 612 2002.

613

614 Valentina Masarotto, Victor M Panaretos, and Yoav Zemel. Procrustes metrics on covariance operators and
 615 optimal transportation of gaussian processes. *Sankhya A*, 81(1):172–213, 2019.

616

617 Alexandre Mauroy, Y Susuki, and Igor Mezic. *Koopman operator in systems and control*, volume 7.
 618 Springer, 2020.

619

620 G. Meanti, A. Chatalic, V. R. Kostic, P. Novelli, M. Pontil, and L. Rosasco. Estimating koopman operators
 621 with sketching to provably learn large scale dynamical systems. In *Conference on Neural Information
 Processing Systems*, 2023.

622

623 Sean P Meyn and Richard L Tweedie. *Markov chains and stochastic stability*. Springer Science & Business
 624 Media, 2012.

625

626 Igor Mezic. On comparison of dynamics of dissipative and finite-time systems using koopman operator
 627 methods. *IFAC-PapersOnLine*, 49(18):454–461, 2016.

628

629 Igor Mezić and Andrzej Banaszuk. Comparison of systems with complex behavior. *Physica D: Nonlinear
 Phenomena*, 197(1-2):101–133, 2004.

630

631 Mitchell Ostrow, Adam Eisen, Leo Kozachkov, and Ila Fiete. Beyond geometry: Comparing the tempo-
 632 ral structure of computation in neural circuits with dynamical similarity analysis. *Advances in Neural
 Information Processing Systems*, 36:33824–33837, 2023.

633

634 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science.
 635 *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.

636

637 Yitian Qian and Shaohua Pan. An inexact pam method for computing wasserstein barycenter with unknown
 638 supports. *Computational and Applied Mathematics*, 40(2):45, 2021.

639

640 William Redman, Juan Bello-Rivas, Maria Fonoberova, Ryan Mohr, Yannis Kevrekidis, and Igor Mezic.
 641 Identifying equivalent training dynamics. *Advances in Neural Information Processing Systems*, 37:23603–
 23629, 2024.

642

643 William T Redman, Maria Fonoberova, Ryan Mohr, Ioannis G Kevrekidis, and Igor Mezić. Algorithmic
 644 (semi-)conjugacy via koopman operator theory. In *2022 IEEE 61st Conference on Decision and Control
 (CDC)*, pp. 6006–6011. IEEE, 2022.

645

646 Sheldon M Ross. *Stochastic Processes*. John Wiley & Sons, 1995.

647

648 Alejandro Pasos Ruiz, Michael Flynn, James Large, Matthew Middlehurst, and Anthony Bagnall. The great
 649 multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic
 650 advances. *Data mining and knowledge discovery*, 35(2):401–449, 2021.

651

652 Itsushi Sakata and Yoshinobu Kawahara. Enhancing spectral analysis in nonlinear dynamics with pseu-
 653 doeigenfunctions from continuous spectra. *Scientific Reports*, 14(1):19276, 2024.

654

655 Subhrajit Sinha, Sai Pushpak Nandanoori, Bowen Huang, Thiagarajan Ramachandran, and Craig Bakker.
 656 On formalisation of martin distance for linear dynamical systems. In *2024 American Control Conference
 (ACC)*, pp. 1243–1248. IEEE, 2024.

657

Ingo Steinwart and Andreas Christmann. *Support Vector Machines*. Springer New York, 2008.

658 Amit Surana. Koopman operator framework for time series modeling and analysis. *Journal of Nonlinear*
 659 *Science*, 30(5):1973–2006, 2020.
 660

661 Ronak Tali, Ali Rabeh, Cheng-Hau Yang, Mehdi Shadkhah, Samundra Karki, Abhisek Upadhyaya, Suriya
 662 Dhakshinamoorthy, Marjan Saadati, Soumik Sarkar, Adarsh Krishnamurthy, et al. Flowbench: A large
 663 scale benchmark for flow simulation over complex geometries. *Journal of Data-centric Machine Learning*
 664 *Research*, 2025.

665 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2008.
 666

668 SVN Vishwanathan, Alexander J Smola, and René Vidal. Binet-cauchy kernels on dynamical systems and its
 669 application to the analysis of dynamic scenes. *International Journal of Computer Vision*, 73(1):95–119,
 670 2007.

671 Stephen J Wright. Coordinate descent algorithms. *Mathematical programming*, 151(1):3–34, 2015.
 672

673 Hao Wu, Feliks Nüske, Fabian Paul, Stefan Klus, Péter Koltai, and Frank Noé. Variational koopman models:
 674 Slow collective variables and molecular kinetics from short off-equilibrium simulations. *The Journal of*
 675 *chemical physics*, 146(15), 2017.

677 Ke Ye and Lek-Heng Lim. Schubert varieties and distances between subspaces of different dimensions.
 678 *SIAM Journal on Matrix Analysis and Applications*, 37(3):1176–1197, 2016.
 679

680 AhmedI Zayed. *Advances in Shannon’s sampling theory*. Routledge, 2018.
 681

682 Shimin Zhang, Ziyuan Ye, Yinsong Yan, Zeyang Song, Yujie Wu, and Jibin Wu. KoopSTD: Reliable
 683 similarity analysis between dynamical systems via approximating koopman spectrum with timescale
 684 decoupling. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=29eZ8pWc8E>.
 685

686 Jiacheng Zhu, Aritra Guha, Dat Do, Mengdi Xu, XuanLong Nguyen, and Ding Zhao. Functional optimal
 687 transport: regularized map estimation and domain adaptation for functional data. *Journal of Machine*
 688 *Learning Research*, 25(276):1–49, 2024.
 689

690

691 A RELATED WORK

692

693 **Metric for linear dynamical systems.** A substantial body of research addresses the comparison of
 694 (stochastic) linear dynamical systems (LDSs) and linear state-space models (Afsari & Vidal, 2014). Early
 695 methods exploit the Riemannian manifold structure of LDS spaces to define meaningful metrics (Hanzon
 696 & Marcus, 1982), with related developments in power spectral density spaces (Georgiou, 2007), including
 697 approaches based on Wasserstein metrics (Gray, 2009). However, these methods suffer from high compu-
 698 tational cost. The Martin distance (Martin, 2002) offers a practical alternative, comparing ARMA models
 699 via their cepstrum. It has been generalized to state-space models and shown equivalent to metrics based
 700 on angles between observability subspaces (De Cock & De Moor, 2002; Sinha et al., 2024). Other ap-
 701 proaches include kernel-based metrics derived from the Binet-Cauchy theorem (Vishwanathan et al., 2007),
 702 Kullback–Leibler divergence (Chan & Vasconcelos, 2005), and moment matching (Bissacco et al., 2007).
 703 However, compared to the Martin distance, these metrics are sensitive to trajectory initial conditions, so
 704 extensions have been proposed to address this issue (Chaudhry & Vidal, 2013).

705 **Extension to nonlinear dynamical systems.** For nonlinear dynamical systems, most work leverages the
 706 Koopman framework to linearize dynamics. The Binet-Cauchy kernel has been extended to nonlinear systems
 707 (Fujii et al., 2017) within this context. Another kernel leverages Koopman representation to compare
 708 observability subspaces (Ishikawa et al., 2018). The latest has been used alongside a deep learning method
 709 for estimating Koopman operators (ResDMD Colbrook et al. (2023)) in the case of continuous spectrum
 710 (Sakata & Kawahara, 2024). However, both kernels are sensitive to trajectory initial conditions like the linear
 711 case. In Mezić & Banaszuk (2004), the authors propose metrics to compare the asymptotic dynamics of
 712 measure-preserving systems via Koopman representations, later extended to dissipative systems over finite
 713 time (Mezic, 2016).

714 **Metric for topologically conjugated dynamical systems.** Recently, interest has grown in comparing neural
 715 network dynamics in neuroscience and deep learning (Klabunde et al., 2025). Such comparisons often
 716 consider topological conjugacy, leading to metrics on quotient spaces. Redman et al. (2022; 2024) show
 717 that topologically conjugate systems share identical Koopman spectra and propose a pseudo-metric based
 718 on optimal transport. Ostrow et al. (2023) extends Procrustes analysis to compare Koopman representations
 719 up to orthogonal transformations, extending earlier work in the LDS setting (Afsari & Vidal, 2013). Glaz
 720 (2025) further generalizes these metrics to accommodate broader transformation classes.

721 **Optimal transport on functional spaces.** A related direction studies measures on functional spaces.
 722 Some works have studied measures on Gaussian processes (Masarotto et al., 2019; Mallasto & Feragen,
 723 2017), for which there exists a closed-form of the metric. In Antonini & Cavalletti (2021), the authors
 724 propose a theoretical Wasserstein metric between measures derived from the spectral decomposition of normal
 725 operators. More recently, Zhu et al. (2024) introduced a computable approximation of the Wasserstein
 726 metric between measures on infinite-dimensional Hilbert spaces, obtained by restriction to linear mappings.

729 B LEARNING KOOPMAN TRANSFER OPERATORS WITH KERNEL METHODS

730 In many practical scenarios, A_π is unknown, but data from system trajectories are available. For such cases,
 731 Koopman operator regression in reproducing kernel Hilbert spaces (RKHS) provides a learning framework
 732 to estimate A_π on $\mathcal{L}_\pi^2(\mathcal{X})$ (Kostic et al., 2022). Let \mathcal{H} be a RKHS with a bounded kernel k and feature
 733 map ϕ such that $k(x, y) = \langle \phi(x), \phi(y) \rangle$. We recall that the injection operator $S_\pi : \mathcal{H} \rightarrow \mathcal{L}_\pi^2(\mathcal{X})$ is
 734 Hilbert-Schmidt (Caponnetto & De Vito, 2007; Steinwart & Christmann, 2008), and thus so is the restricted
 735 Koopman operator $Z_\pi := A_\pi S_\pi : \mathcal{H} \rightarrow \mathcal{L}_\pi^2(\mathcal{X})$.

736 The goal is to approximate $Z_\pi = A_\pi S_\pi$ by minimizing the risk $\mathcal{R}(G) = \mathbb{E}_{x \sim \pi} \sum_{i \in \mathbb{N}} \mathbb{E}[(h_i(X_{t+1}) -
 737 (G h_i)(X_t))^2 | X_t = x]$ over Hilbert-Schmidt operators $G \in \text{HS}(\mathcal{H})$, where $(h_i)_{i \in \mathbb{N}}$ is an orthonormal basis
 738 of \mathcal{H} . This risk admits a decomposition $\mathcal{R}(G) = \mathcal{R}_0 + \mathcal{E}_{\text{HS}}(G)$, where

$$739 \mathcal{R}_0 = \|S_\pi\|_{\text{HS}}^2 - \|Z_\pi\|_{\text{HS}}^2 \geq 0 \quad \text{and} \quad \mathcal{E}_{\text{HS}}(G) = \|A_\pi S_\pi - S_\pi G\|_{\text{HS}}^2 = \|A_\pi S_\pi - S_\pi G\|_{\text{HS}(\mathcal{H}, \mathcal{L}_\pi^2(\mathcal{X}))}^2 \quad (10)$$

740 are the irreducible risk and the excess risk, respectively. Using universal kernels, the excess risk can be made
 741 arbitrarily small: $\inf_{G \in \text{HS}(\mathcal{H})} \mathcal{E}_{\text{HS}}(G) = 0$.

742 A common approach is to solve the Tikhonov-regularized problem

$$743 \min_{G \in \text{HS}(\mathcal{H})} \mathcal{R}^\gamma(G) := \mathcal{R}(G) + \gamma \|G\|_{\text{HS}}^2, \quad (11)$$

744 with $\gamma > 0$. Defining the covariance operator $C_x := S_\pi^* S_\pi = \mathbb{E}_{x \sim \pi} \phi(x) \otimes \phi(x)$ and the cross-covariance
 745 operator $C_{xy} := S_\pi^* Z_\pi = \mathbb{E}_{(x,y) \sim \rho} \phi(x) \otimes \phi(y)$ (where ρ is the joint measure of consecutive states), the
 746 unique solution to equation 11 is the Kernel Ridge Regression (KRR) estimator $G_\gamma := C_\gamma^{-1} C_{xy}$, where
 747 $C_\gamma := C_x + \gamma \text{Id}_{\mathcal{H}}$.

To approximate the leading eigenvalues of A_π , low-rank estimators are used. The Reduced Rank Regression (RRR) estimator (Kostic et al., 2022) is the solution to equation 11 under a rank- r constraint:

$$C_\gamma^{-1/2} \llbracket C_\gamma^{-1/2} C_{xy} \rrbracket_r = \arg \min_{G \in B_r(\mathcal{H})} \mathcal{R}^\gamma(G), \quad (12)$$

where $B_r(\mathcal{H})$ denotes the set of rank- r HS operators and $\llbracket \cdot \rrbracket_r$ is the r -truncated SVD.

Given data $\mathcal{D} = \{(x_i, y_i)\}_{i \in [n]}$, empirical estimators are derived by minimizing the regularized empirical risk $\widehat{\mathcal{R}}^\gamma(G) := \frac{1}{n} \sum_{i \in [n]} \|\phi(y_i) - G^* \phi(x_i)\|_2^2 + \gamma \|G\|_{\text{HS}}^2$. Introducing the sampling operators for data \mathcal{D} and RKHS \mathcal{H} by

$$\widehat{S}: \mathcal{H} \rightarrow \mathbb{R}^n \quad \text{s.t. } f \mapsto \frac{1}{\sqrt{n}} [f(x_i)]_{i \in [n]} \quad \text{and} \quad \widehat{Z}: \mathcal{H} \rightarrow \mathbb{R}^n \quad \text{s.t. } f \mapsto \frac{1}{\sqrt{n}} [f(y_i)]_{i \in [n]},$$

and their adjoints by

$$\widehat{S}^*: \mathbb{R}^n \rightarrow \mathcal{H} \quad \text{s.t. } w \mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} w_i \phi(x_i) \quad \text{and} \quad \widehat{Z}^*: \mathbb{R}^n \rightarrow \mathcal{H} \quad \text{s.t. } w \mapsto \frac{1}{\sqrt{n}} \sum_{i \in [n]} w_i \psi(y_i),$$

we obtain $\widehat{\mathcal{R}}^\gamma(G) = \|\widehat{Z} - \widehat{S}G\|_{\text{HS}}^2 + \gamma \|G\|_{\text{HS}}^2$.

The empirical covariance and cross-covariance operators are:

$$\widehat{C}_x := \widehat{S}^* \widehat{S}, \quad \widehat{D} := \widehat{Z}^* \widehat{Z}, \quad \widehat{C}_{xy} := \widehat{S}^* \widehat{Z}. \quad (13)$$

The corresponding regularized empirical covariance is $\widehat{C}_\gamma := \widehat{C}_x + \gamma \text{Id}_{\mathcal{H}}$. The kernel Gram matrices are:

$$K := \widehat{S} \widehat{S}^*, \quad L := \widehat{Z} \widehat{Z}^*. \quad (14)$$

The empirical RRR estimator is then $\widehat{C}_\gamma^{-1/2} \llbracket \widehat{C}_\gamma^{-1/2} \widehat{C}_{xy} \rrbracket_r$. These empirical estimators can be expressed in the form $\widehat{G} = \widehat{S} U_r V_r^\top \widehat{Z}$ for matrices $U_r, V_r \in \mathbb{R}^{n \times r}$ (Kostic et al., 2022), enabling the computation of spectral decompositions in infinite-dimensional RKHS.

Theorem 1 ((Kostic et al., 2022)). *Let $1 \leq r \leq n$ and $\widehat{G} = \widehat{S} U_r V_r^\top \widehat{Z}$, where $U_r, V_r \in \mathbb{R}^{n \times r}$. If $V_r^\top M U_r \in \mathbb{R}^{r \times r}$, for $M = n^{-1} [k(y_i, x_j)]_{i,j \in [n]}$, is full rank and non-defective, the spectral decomposition $(\widehat{\lambda}_i, \widehat{\xi}_i, \widehat{\psi}_i)_{i \in [r]}$ of \widehat{G} can be expressed in terms of the spectral decomposition $(\widehat{\lambda}_i, \widehat{u}_i, \widehat{v}_i)_{i \in [r]}$ of $V_r^\top M U_r$ as $\widehat{\xi}_i = \widehat{\lambda}_i \widehat{Z}^* V_r \widehat{u}_i / |\widehat{\lambda}_i|$ and $\widehat{\psi}_i = \widehat{S}^* U_r \widehat{v}_i$, for all $i \in [r]$.*

RKHS embeddings into $\mathcal{L}_\pi^2(\mathcal{X})$. We recall some facts on the injection operator S_π . Note first that $S_\pi \in \text{HS}(\mathcal{H}, \mathcal{L}_\pi^2(\mathcal{X}))$. Then according to the spectral theorem for positive self-adjoint operators, S_π has an SVD, i.e. there exists at most countable positive sequence $(\sigma_j)_{j \in J}$, where $J := \{1, 2, \dots\} \subseteq \mathbb{N}$, and orthonormal systems $(\ell_j)_{j \in J}$ and $(h_j)_{j \in J}$ of $\text{cl}(\text{Im}(S_\pi))$ and $\text{Ker}(S_\pi)^\perp$, respectively, such that $S_\pi h_j = \sigma_j \ell_j$ and $S_\pi^* \ell_j = \sigma_j h_j$, $j \in J$.

Now, given $\alpha \geq 0$, let us define scaled injection operator $S_\alpha: \mathcal{H} \rightarrow \mathcal{L}_\pi^2(\mathcal{X})$ as

$$S_\alpha := \sum_{j \in J} \sigma_j^\alpha \ell_j \otimes h_j. \quad (15)$$

Clearly, we have that $S_\pi = S_1$, while $\text{Im } S_0 = \text{cl}(\text{Im}(S_\pi))$. Next, we equip $\text{Im}(S_\alpha)$ with a norm $\|\cdot\|_\alpha$ to build an interpolation space:

$$[\mathcal{H}]_\alpha := \left\{ f \in \text{Im}(S_\alpha) \mid \|f\|_\alpha^2 := \sum_{j \in J} \sigma_j^{-2\alpha} \langle f, \ell_j \rangle^2 < \infty \right\}.$$

799 **C SPECTRAL-GRASSMANN WASSERSTEIN METRIC (SGOT) PROOF**
800

801 **C.1 MAIN PROOF**
802

803 In this section we prove that $\mathcal{S}_r(\mathcal{H})$ can be endowed with a Wasserstein metric based on operator spectral
804 decomposition as summarized by the following theorem:

805 **Theorem 3.** *Let \mathcal{H} be a separable \mathbb{C} -Hilbert space and $\mathcal{S}_r(\mathcal{H})$ the set of non-defective operators with rank
806 at most $r \in \mathcal{D}$. Let $(\mathcal{G}, d_{\mathcal{G}})$ be Grassmannian manifold of the space of Hilbert-Schmidt operators on \mathcal{H} . Given
807 $p \in \mathbb{N}^*$ and $\eta \in (0, 1)$, let $\mu: \mathcal{S}_r(\mathcal{H}) \rightarrow \mathcal{P}_p(\mathbb{C} \times \mathcal{G})$ and $d_{\eta}: (\mathbb{C} \times \mathcal{G})^2 \rightarrow \mathbb{R}_+$ be given by*

808
$$\mu(T) \triangleq \sum_{j \in [\ell]} \frac{m_j}{m_{\text{tot}}} \delta_{(\lambda_j, \mathcal{V}_j)} \quad \text{and} \quad d_{\eta}[(\lambda', \mathcal{V}'), (\lambda', \mathcal{V}')] \triangleq \eta |\lambda - \lambda'| + (1 - \eta) d_{\mathcal{G}}(\mathcal{V}, \mathcal{V}'), \quad (16)$$

809 with $|\cdot|$ applied on polar coordinates λ, λ' , $m_{\text{tot}} = \sum_{i \in [\ell]} m_i$, \mathcal{V}_j the m_j -dimensional vector space in
810 $\text{HS}(\mathcal{H}, \mathcal{H})$ spanned by the rank one operators of the right/left eigenfunctions associated with the eigenvalue
811 e^{λ_j} of T (same notation for T'). Then, $(\mathcal{S}_r(\mathcal{H}), d_{\mathcal{S}})$ is a metric space, where $d_{\mathcal{S}}: \mathcal{S}_r(\mathcal{H}) \rightarrow \mathbb{R}_+$ is given by

812
$$d_{\mathcal{S}}(T, T') = W_{d_{\eta}, p}(\mu(T), \mu(T')). \quad (17)$$

813 **Discrete Optimal transport.** For conciseness, we first recall discrete OT where one seeks a transport plan
814 mapping samples from a source distribution to those of a target distribution while minimizing a transportation
815 cost. Formally, consider $\mathcal{Z}_S = \{z_i \in \mathcal{Z} \mid i \in [k_S]\}$ and $\mathcal{Z}_T = \{z'_i \in \mathcal{Z} \mid i \in [k_T]\}$ as the sets of
816 source and target samples in a space \mathcal{Z} . We associate with these sets the probability distributions $\mu_S =$
817 $\sum_{i \in [k_S]} a_i \delta_{z_i}$ and $\mu_T = \sum_{i \in [k_T]} b_i \delta_{z'_i}$ with $(\mathbf{a}, \mathbf{b}) \in \Delta^{k_S} \times \Delta^{k_T}$ and $\Delta^n = \{\mathbf{p} \in \mathbb{R}_+^n \mid \sum_{i \in [n]} p_i = 1\}$
818 the n -simplex. Let $\mathbf{C} \in \mathbb{R}_+^{k_S \times k_T}$ be the cost matrix with $C_{ij} = c(z_i, z'_j)$ being the transport cost between z_i
819 and z'_j given by the cost function c . The Monge-Kantorovich problem aims at identifying a coupling matrix,
820 also denoted as OT plan $\mathbf{P}^* \in \mathbb{R}_+^{k_S \times k_T}$, that is solution of the constrained linear problem:

821
$$\min_{\mathbf{P} \in \Pi(\mu_S, \mu_T)} \langle \mathbf{C}, \mathbf{P} \rangle_F \quad \text{s.t.} \quad \Pi(\mu_S, \mu_T) = \{\mathbf{P} \in \mathbb{R}_+^{k_S \times k_T} \mid \mathbf{P}\mathbf{1} = \mathbf{a}, \mathbf{P}^\top \mathbf{1} = \mathbf{b}\}, \quad (18)$$

822 where $\Pi(\mathbf{a}, \mathbf{b})$ is the set of joint-distributions over $\mathcal{Z}_S \times \mathcal{Z}_T$ with marginals \mathbf{a} and \mathbf{b} . In what follows,
823 we denote $L_c(\mu_S, \mu_T)$ the application returning the optimal value of problem (18) where c indicates the
824 cost function. A fundamental property of OT is that, under suitable conditions on the cost function, the
825 Wasserstein distance is a metric on the space of probability measures:

826 **Theorem 4** (Theorem 6.18 in Villani et al. (2008)). *Let (\mathcal{Z}, d) be a separable complete metric space en-
827 dowed with its Borel set. Let $p \in \mathbb{N}^*$, and $\mathcal{P}_p(\mathcal{Z})$ the set of probability distributions on \mathcal{Z} admitting moments
828 of order p . Consider the application:*

829
$$W_p: (\mu, \nu) \in \mathcal{P}(\mathcal{Z}) \times \mathcal{P}(\mathcal{Z}) \mapsto (L_{d^p}(\mu, \nu))^{\frac{1}{p}} \in \mathbb{R}_+. \quad (19)$$

830 Then, $(\mathcal{P}_p(\mathcal{Z}), W_p)$ defines a separable complete metric space, known as a Wasserstein space.

831 **Main proof.** For proof correctness, we restrict the Grassmann manifold on Hilbert-Schmidt operators \mathcal{G} to
832 the set of operators with rank at most r , denoted by \mathcal{G}_r . This restricted space endowed with the Hilbert-
833 Schmidt norm is a complete metric space as detailed in Appendix C.2. The next two propositions detail
834 the essential building blocks to derive a Wasserstein metric on $\mathcal{S}_r(\mathcal{H})$. Proposition 1 specifies an inclusion
835 map from $\mathcal{S}_r(\mathcal{H})$ to a space of probability measures while proposition 2 defines a metric on the measures'
836 support space with sufficient topological properties to derive a Wasserstein metric on $\mathcal{S}_r(\mathcal{H})$.

837 **Proposition 1.** *Consider $p \in \mathbb{N}^*$ and the embedding map:*

838
$$\mu: T \in \mathcal{S}_r(\mathcal{H}) \mapsto \sum_{i \in [l]} \frac{l_i}{l_{\text{tot}}} \delta_{(\lambda_i, \mathcal{V}_i)} \in \mathcal{P}_p(\mathbb{C} \times \mathcal{G}_r), \quad (20)$$

846 where \mathcal{V}_j the m_j -dimensional vector space in $\text{HS}(\mathcal{H}, \mathcal{H})$ spanned by the rank one operators of the right/left
 847 eigenfunctions associated with the eigenvalue e^{λ_j} of T , and $m_{\text{tot}} = \sum_{i \in [l]} m_i$. Then, L is a one-to-one
 848 inclusion map.
 849

850 *Proof.* Let $T \neq T' \in \mathcal{S}_r(\mathcal{H})$, both operators differ by at least one pair $(\lambda_i, \mathcal{V}_i) \in \mathcal{G}_r$, by symmetry the
 851 pair is associated to T . Since $(\mathbb{C}, |\cdot|)$ and $(\mathcal{G}_r, d_{\mathcal{G}})$ are metric spaces, the singleton $\{(\lambda_i, \mathcal{V}_i)\}$ belongs to the
 852 Borel set. Therefore, $\mu_T((\lambda_i, \mathcal{V}_i)) = m_i/m_{\text{tot}}$ while $\mu_{T'}((\lambda_i, \mathcal{V}_i)) = 0$, i.e. $\mu_T \neq \mu_{T'}$. \square
 853

854 **Proposition 2.** Consider $\eta \in (0, 1)$, $\omega_{\text{ref}} \in \mathbb{R}_+^*$, and the application:

$$855 \quad d_{\eta} : ((\lambda, \mathcal{V}), (\lambda', \mathcal{V}')) \in (\mathbb{C} \times \mathcal{G}_r)^2 \mapsto \eta|\lambda - \lambda'| + (1 - \eta)d_{\mathcal{G}}(\mathcal{V}, \mathcal{V}') \in \mathbb{R}_+. \quad (21)$$

856 Then, $(\mathbb{C} \times \mathcal{G}_r, d_{\eta})$ is a separable complete metric space.
 857

858 *Proof.* By proposition 4, $(\mathcal{G}_r, d_{\mathcal{G}})$ is a separable complete metric space. Hence, for any $\eta \in (0, 1)$, $(\mathbb{C} \times$
 859 $\mathcal{G}_r, d_{\eta})$ is a separable complete metric space as $(\mathbb{C}, d_{\text{val}})$ is homeomorphic to $(\mathbb{C}, |\cdot|)$. \square
 860

861 Note that we introduce a metric, d_{val} , that compares Koopman modes' eigenvalues from physics-informed
 862 quantities, namely the time-scales ρ and the oscillating frequencies ω . The previous two propositions lead
 863 to our main contribution, a Wasserstein metric on the space of non-defective finite rank operators $\mathcal{S}_r(\mathcal{H})$:
 864

865 **Proposition 3.** Consider $\eta \in (0, 1)$, $p \in \mathbb{N}^*$, and the application:

$$866 \quad d_{\mathcal{S}} : (T, T') \in \mathcal{S}_r(\mathcal{H}) \times \mathcal{S}_r(\mathcal{H}) \mapsto W_{d_{\eta}, p}(\mu(T), \mu(T')) \in \mathbb{R}_+. \quad (22)$$

867 Then, $(\mathcal{S}_r(\mathcal{H}), d_{\mathcal{S}})$ is a metric space.
 868

869 *Proof.* Application of theorem 4 with Propositions 1 and 2. \square
 870

872 C.2 GRASSMAN METRIC

873 A Grassmann manifold is a collection of vector subspaces of a given vector space. Such manifolds appear
 874 in a handful of applications whenever subspaces must be compared. The particular case of Grassmann
 875 manifolds gathering all equidimensional subspaces of a finite-dimensional real vector space has been ex-
 876 tensively studied, see Bendokat et al. (2024) for a thorough review. In our context, this particular setting is
 877 limiting as we must consider a manifold including subspaces of various dimensions over a possibly infinite-
 878 dimensional complex vector space. On such manifolds, a classical metric compares subspaces through the
 879 associated orthogonal projectors with the operator norm (Andruchow, 2014). Unfortunately, this metric is
 880 computationally expensive, and the topology it induces does not provide the necessary conditions to derive
 881 Wasserstein metrics, namely, the separability. In the following proposition, we define a Grassmann manifold
 882 with the necessary conditions to derive Wasserstein metrics.
 883

884 **Proposition 4.** Let $r \in \mathbb{N}^*$ be fixed, and $\mathcal{G}_r(\mathcal{H})$ denote the set of all closed vector subspaces of a (possibly
 885 infinite-dimensional) separable Hilbert space \mathcal{H} having dimension at most r . Endow $\mathcal{G}_r(\mathcal{H})$ with the well-
 886 defined metric:

$$887 \quad d_{\mathcal{G}} : (\mathcal{U}, \mathcal{V}) \in \mathcal{G}_r(\mathcal{H}) \times \mathcal{G}_r(\mathcal{H}) \mapsto \|P_{\mathcal{U}} - P_{\mathcal{V}}\|_{\mathcal{HS}} \in \mathbb{R}_+, \quad (23)$$

888 where $P_{\mathcal{U}}$ is the orthogonal projector onto \mathcal{U} , and $\|\cdot\|_{\mathcal{HS}}$ is the Hilbert-Schmidt norm. Then $(\mathcal{G}_r(\mathcal{H}), d_{\mathcal{G}})$ is
 889 a separable complete metric space.
 890

891 *Proof.* Before the main proof, we investigate the properties of an inclusion map, which is useful for deter-
 892 mining the metric and completeness properties.

893 **Lemma 1.** *The map $i : \mathcal{V} \in \mathcal{G}_r(\mathcal{H}) \mapsto P_{\mathcal{V}} \in \mathcal{HS}(\mathcal{H})$, which associates to any subspace the orthogonal*
 894 *projector onto itself, is well defined and a one-to-one inclusion.*

895
 896 *Proof.* Since any $\mathcal{V} \in \mathcal{G}_r(\mathcal{H})$ is finite dimensional, it is closed, and the orthogonal projector $P_{\mathcal{V}}$ is a well-
 897 defined bounded linear operator by consequence of the Hilbert projection theorem. Furthermore, since \mathcal{H}
 898 is separable, it admits an orthogonal basis, respecting the orthogonal decomposition $\mathcal{H} = \mathcal{V} \oplus \mathcal{V}^\perp$. Since
 899 $\dim(\mathcal{V}) \leq r$ and by invariance of the Hilbert-Schmidt norm to change of basis, $\|P_{\mathcal{V}}\|_{\mathcal{HS}}$ is finite, more
 900 precisely: $\|P_{\mathcal{V}}\|_{\mathcal{HS}}^2 = \dim(\mathcal{V}) < r$. Furthermore, for any $\mathcal{V} \neq \mathcal{V}' \in \mathcal{G}_r(\mathcal{H})$, $P_{\mathcal{V}} \neq P_{\mathcal{V}'}$ due to the
 901 orthogonal decomposition $\mathcal{H} = \mathcal{V} \cap \mathcal{V}' \oplus \mathcal{V}/(\mathcal{V} \cap \mathcal{V}') \oplus \mathcal{V}'/(\mathcal{V} \cap \mathcal{V}') \oplus (\mathcal{V} \cup \mathcal{V}')^\perp$. \square

902 **Lemma 2.** $\mathcal{P}_r = \{P_{\mathcal{V}} \mid \mathcal{V} \in \mathcal{G}_r(\mathcal{H})\}$ *is a closed subspace of $\mathcal{HS}(\mathcal{H})$ for the topology induced by the*
 903 *Hilbert-Schmidt norm.*

904
 905 *Proof.* First notice that, $\mathcal{P}_r \subset \mathcal{HS}(\mathcal{H})$ and $\mathcal{HS}(\mathcal{H})$ is a Hilbert space, thus complete. Consider a sequence
 906 $(P_n)_{n \in \mathbb{N}} \in \mathcal{P}_r$ converging to an element $P \in \mathcal{HS}(\mathcal{H})$ (i.e. $\|P_n - p\|_{\mathcal{HS}} \rightarrow 0$), let's prove that $P \in \mathcal{P}_r$.

907 Since $P \in \mathcal{HS}(\mathcal{H})$, it follows that the adjoint operator $P^* \in \mathcal{HS}(\mathcal{H})$ exists and since $\|P^* - P_n^*\|_{\mathcal{HS}} =$
 908 $\|P - P_n\|_{\mathcal{HS}} \rightarrow 0$, the operator P is self-adjoint $P = P^*$. Furthermore by composition $P^2 \in \mathcal{HS}(\mathcal{H})$, and:

$$\|P^2 - P\|_{\mathcal{HS}} \leq \|P^2 - P_n^2\|_{\mathcal{HS}} + \|P_n^2 - P_n\|_{\mathcal{HS}} + \|P_n - P\|_{\mathcal{HS}} \quad (24)$$

$$\leq \|P^2 - P_n^2\|_{\mathcal{HS}} + \|P_n - P\|_{\mathcal{HS}} \quad (25)$$

$$\leq \|P_n - P\|_{\mathcal{HS}} (1 + \|P\|_{\mathcal{HS}} + \|P_n\|_{\mathcal{HS}}) \quad (26)$$

909 Since $\|P_n - P\|_{\mathcal{HS}} \rightarrow 0$, it follows that $P^2 = P$, meaning that P is an orthogonal projector. Let \mathcal{V} denote
 910 the closed vector subspace associated to P . Since P is an orthogonal projector with a finite Hilbert-Schmidt
 911 norm, \mathcal{V} is finite dimensional, and $\dim(\mathcal{V}) = \|P\|_{\mathcal{HS}}^2 \leq r$, as $\|P_n\|_{\mathcal{HS}}^2 \leq r$ for any $n \in \mathbb{N}$. Thus $P \in \mathcal{P}_r$,
 912 indicating that \mathcal{P}_r is a closed subset of $\mathcal{HS}(\mathcal{H})$. \square

913 **Main proof.** Since the map i , defined in Lemma 1, is a one-to-one inclusion into the space $\mathcal{HS}(\mathcal{H})$, the
 914 metric derived from the Hilbert-Schmidt norm ($\|\cdot\|_{\mathcal{HS}}$) induces a metric onto the space $\mathcal{G}_r(\mathcal{H})$. Furthermore,
 915 since $\mathcal{P}_r = \{P_{\mathcal{V}} \mid \mathcal{V} \in \mathcal{G}_r(\mathcal{H})\}$ is a closed subset of a complete space by Lemma 2, it is complete. Hence,
 916 the metric space $(\mathcal{G}_r(\mathcal{H}), d_{\mathcal{G}})$ is complete. Lastly, the space $\mathcal{HS}(\mathcal{H})$ is separable as it is homeomorphic to
 917 $\mathcal{H} \otimes \mathcal{H}$, which is a separable space as the tensor product of the separable space \mathcal{H} . Hence $\mathcal{P}_r \subset \mathcal{HS}(\mathcal{H})$
 918 is also separable by inclusion. Finally, the metric space $(\mathcal{G}_r(\mathcal{H}), d_{\mathcal{G}})$ is separable and complete, which
 919 concludes the proof. \square

C.3 ALTERNATIVE METRICS ON GRASSMANN MANIFOLD

920 **Principal angle definition.** Considering the real vector space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$, let $\mathcal{G}(k, n)$ denotes the Grass-
 921 mann manifold of all vector subspace of dimension k . Many metrics on the Grassmann manifold are based
 922 on the principal angles between subspaces. Formally, let $\mathcal{U}, \mathcal{V} \subset \mathbb{R}^n$ be two k -dimensional subspaces, the
 923 **principal angles**, $0 \leq \theta_1 \leq \theta_2 \leq \dots \leq \theta_k \leq \frac{\pi}{2}$, between \mathcal{U} and \mathcal{V} are defined recursively by

$$\cos \theta_i = \max_{\substack{u \in \mathcal{U}, v \in \mathcal{V} \\ \|u\| = \|v\| = 1}} u^\top v, \quad \text{s.t.} \begin{cases} u^\top u_j = 0 \\ v^\top v_j = 0 \end{cases}, \quad \forall j \in [i-1],$$

924 where u_j and v_j are the previously chosen principal vectors.

940
 941 Table 3: Metrics on Grassmann manifold $\mathcal{G}(k, n)$: angle-based and matrix-based formulations. Here
 942 $\mathbf{M} = \mathbf{U}^\top \mathbf{V}$, $\mathbf{P} = \mathbf{U}\mathbf{U}^\top$, $\mathbf{Q} = \mathbf{V}\mathbf{V}^\top$, and $S = \sqrt{\mathbf{M}\mathbf{M}^\top}$ where \mathbf{U}, \mathbf{V} are orthonormal bases.

Metric	Angle formulation	Matrix formulation
Geodesic (canonical)	$d_{\text{geo}} = \left(\sum_{i=1}^k \theta_i^2 \right)^{1/2}$	$d_{\text{geo}} = \ \arccos(\mathbf{S})\ _F$
Chordal	$d_{\text{chord}} = \left(\sum_{i=1}^k \sin^2 \theta_i \right)^{1/2}$	$d_{\text{chord}} = \frac{1}{\sqrt{2}} \ \mathbf{P} - \mathbf{Q}\ _F$
Procrustes	$d_{\text{proc}} = \left(2k - 2 \sum_{i=1}^k \cos \theta_i \right)^{1/2}$	$d_{\text{proc}} = \sqrt{2k - 2 \text{tr}(\mathbf{S})}$
Binet–Cauchy	$d_{\text{BC}} = \sqrt{1 - \prod_{i=1}^k \cos^2 \theta_i}$	$d_{\text{BC}} = \sqrt{1 - \det(\mathbf{M})^2}$
Martin	$d_{\text{Martin}} = \sqrt{- \sum_{i=1}^k \log(\cos^2 \theta_i)}$	$d_{\text{Martin}} = \sqrt{- \log \det(\mathbf{M}\mathbf{M}^\top)}$
Fubini–Study	$d_{\text{FS}} = \arccos \left(\prod_{i=1}^k \cos \theta_i \right)$	$d_{\text{FS}} = \arccos(\det(\mathbf{M}))$
Spectral (max)	$d_{\text{max}} = \max_i \theta_i$	$d_{\text{max}} = \ \arccos(\mathbf{S})\ _2$
Nuclear (sum)	$d_{\text{nuc}} = \sum_{i=1}^k \theta_i$	$d_{\text{nuc}} = \text{tr}(\arccos(\mathbf{S}))$

967
 968 **Computation.** Let $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{n \times k}$ be orthonormal basis matrices of \mathcal{U}, \mathcal{V} . Let $\mathbf{M} = \mathbf{U}^\top \mathbf{V}$ and $\mathbf{W} \Sigma \mathbf{Z}^\top$
 969 be the singular decomposition of \mathbf{M} , the the principal angles are given by

$$\cos \theta_i = \sigma_i(\mathbf{M}) = \Sigma_{ii}, \quad \forall i \in [K],$$

970 and the corresponding principal vectors are
 971

$$\mathbf{u}_i = \mathbf{U}\mathbf{w}_i, \quad \mathbf{v}_i = \mathbf{V}\mathbf{z}_i,$$

972 where \mathbf{w}_i and \mathbf{z}_i are the i -th left and right singular vectors of \mathbf{M} .
 973

974 **Metric based on principal angles.** Table 3 provides a non-exhaustive list of metrics to compare subspaces
 975 of identical dimensions from principal angles. For each metric, angle-based and matrix-based formulations
 976 are provided. These metrics can be extended to compare subspaces of different dimensions following the
 977 methods proposed in Ye & Lim (2016).
 978

979 D SPECTRAL GRASSMAN BARYCENTER

980 D.1 PROBLEM FORMULATION

981 Computing barycenters is a fundamental problem for many unsupervised methods. When data lie in a metric
 982 space, it is known as the *Fréchet mean problem*. It involves identifying an element that minimizes a weighted
 983

987 sum of distances to the observations. Formally, given the importance weights $\gamma \in \Delta^N$, assuming (A1)-(A3),
 988 for $p=2$ in Theorem 1 we aim to solve:
 989

$$990 \quad \arg \min_{T \in \mathcal{S}_r(\mathcal{H})} \sum_{k \in [N]} \gamma_i d_{\mathcal{S}}(T, T_k)^2, \quad (27)$$

992 By construction of $d_{\mathcal{S}}$, problem 7 corresponds to the estimation of Wasserstein barycenter over a set of finite
 993 measures with support on a manifold embedded in a (possibly infinite-dimensional) Hilbert space. From
 994 a theoretical standpoint, the existence (and uniqueness) of Wasserstein barycenters has been established in
 995 several settings, including continuous measures (Aguech & Carlier, 2011), and discrete measures on finite-
 996 dimensional Euclidean spaces (Anderes et al., 2016), and measures on geodesic spaces (Le Gouic & Loubes,
 997 2017). In Han et al. (2024), the authors address the case of continuous measures on infinite-dimensional met-
 998 ric spaces. In our settings, we assume the existence of a barycenter in the closure of $\mathcal{S}_r(\mathcal{H})$, see discussion
 999 on the extension to general operators in section 3. A formal proof would require extending previous works
 1000 to finite measures on manifolds in infinite-dimensional Hilbert spaces.

1001 From a computational standpoint, problem 27 is closely related to the *free-support Wasserstein barycen-*
 1002 *ter* estimation, which aims at optimizing the support and, optionally, the mass of the atoms parametrizing
 1003 the barycenter. State-of-the-art algorithms typically rely on a coordinate descent scheme (Wright, 2015),
 1004 alternating between transport plan computation and measure optimization with strategies including gradi-
 1005 ent descent (Cuturi & Doucet, 2014), fixed point iteration (Álvarez-Esteban et al., 2016; Lindheim, 2023),
 1006 stochastic optimization (Claici et al., 2018; Li et al., 2020), or proximal operators (Qian & Pan, 2021). In
 1007 our context, on the measure's support, i.e., the barycenter's spectral decomposition, must be optimized as
 1008 the eigensubspaces' dimensions condition the masses according to the embedding map in eq. (16).

1009 **A parametric problem formulation.** Whenever the RKHS \mathcal{H} is infinite dimensional (the finite case is
 1010 discussed in appendix D.3), the Fréchet mean problem (eq. (27)) is intractable in its original form. We
 1011 restrained the optimization over a set of parametrized operators defined such that for any $\theta \triangleq (\lambda, \alpha, \beta, x)$:

$$1013 \quad T_{\theta} : h \in \mathcal{H} \mapsto \sum_{i \in [r]} \lambda_i \langle \kappa \alpha_i, h \rangle_{\mathcal{H}} \kappa \beta_i \in \mathcal{H} \quad (28)$$

1015 where $\lambda \in \mathbb{C}^r$, $x \in \mathcal{X}^n$ are state space control points, and $\alpha, \beta \in \mathbb{C}^{n \times r}$ control parameters acting on the
 1016 representer functions $\kappa_x = \{\kappa(., x_j)\}_{j \in [n]}$ with κ the kernel of \mathcal{H} , i.e. $\kappa_x \alpha_i \triangleq \sum_{j \in [n]} \kappa_{x_j} \alpha_{ji}$. While
 1017 these operators are compact with rank at most r , further constraints on the control points and parameters
 1018 are required to ensure a spectral decomposition (see Equation (2)). Together with the definition of discrete
 1019 optimal transport (see Section 2), it leads to the constrained optimization problem:

$$1020 \quad \arg \min_{\theta, \mathbf{P}} \sum_{i \in [N]} \gamma_i \langle \mathbf{C}_i(\theta), \mathbf{P}_i \rangle_F \quad \text{s.t.} \quad \begin{cases} \alpha^* \mathbf{K} \beta = \mathbf{I} & \mathbf{K} = \{\kappa(x_i, x_j)\}_{(i,j) \in [n]^2} \\ \beta_j^* \mathbf{K} \beta_j = 1, \forall j \in [r] & \mathbf{P}_i \in \Pi(\mu_{T_{\theta}}, \mu_{T_i}), \forall i \in [N] \end{cases} \quad (29)$$

1023 where $\mathbf{P} = \{\mathbf{P}_i\}_{i \in [N]}$, $\widehat{\mathbf{T}} = \{\widehat{T}_i\}_{i \in [N]}$, such that $(\mathbf{C}_i(\theta), \mathbf{P}_i)$ are the cost and transport matrices associated
 1024 to the Wasserstein metric, $d_{\mathcal{S}}$ defined in proposition 3, between the parametric operator T_{θ} and \widehat{T}_i .
 1025

1026 D.2 BARYCENTER ESTIMATION METHOD

1028 **An inexact coordinate descent scheme.** In what follows, let \mathcal{X} be a bounded open set of \mathbb{R}^d with $d \in \mathbb{N}^*$
 1029 and $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a differentiable kernel. Following Cuturi & Doucet (2014), we propose an inexact
 1030 coordinate descent scheme with a cyclic update rule designed to converge to a stationary point of prob-
 1031 lem 29. Each cycle begins with the computation of the exact optimal transport plans \mathbf{P} to enforce sparsity.
 1032 This step is carried out with the algorithm of Bonneel et al. (2011), whose complexity depends on the num-
 1033 ber of eigenvalues, typically small in practice (Brunton et al., 2022). The subsequent coordinate updates

1034 are performed using a few gradient descent steps with a first-order optimizer such as ADAM (Kingma &
 1035 Ba, 2014). It starts with the eigenvalues λ , optionally followed by the state spaces control points x , for
 1036 which no optimization constraints exist. Next, the right eigenfunctions, β , are updated only considering the
 1037 normalization constraints: $\beta_j^* \mathbf{K} \beta_j = 1$, $j \in [r]$. Finally, the left eigenfunctions, α , are updated considering
 1038 the affine constraints: $\alpha^* \mathbf{K} \beta = \mathbf{I}$, leading to an iterated closed-form projection scheme detailed in Equa-
 1039 tion (33). Algorithm 1 summarizes the full procedure, and further implementation details are provided in
 1040 the next paragraphs. We usually repeat 10 gradient descent steps in experiments when updating λ, α, β and
 1041 x at each cycle.

1042

1043 **Algorithm 1** Spectral Barycenter

1044 **Require:** $\hat{\mathbf{T}} \triangleq \{\hat{T}_i\}_{i \in [N]} \in \mathcal{S}_r(\mathcal{H})^N$,

1045 1: $\theta \triangleq (\lambda, \alpha, \beta, x) \leftarrow \text{Initialization}(\hat{\mathbf{T}})$ \triangleright Operator parameters, see eq. (8)

1046 2: **while** not converged **do**

1047 3: $\mathbf{P} \leftarrow \text{ComputeTransportPlans}(T_\theta, \hat{\mathbf{T}})$ \triangleright See Theorem 1, and Section 2

1048 4: $\lambda \leftarrow \text{UpdateEigenValues}(\theta, \mathbf{P}, \hat{\mathbf{T}})$

1049 5: **if** optimize control points **then**

1050 6: $x \leftarrow \text{UpdateControlPoints}(\theta, \mathbf{P}, \hat{\mathbf{T}})$

1051 7: $\beta \leftarrow \text{UpdateRightEigenFunctions}(\theta, \mathbf{P}, \hat{\mathbf{T}})$ \triangleright Detailed in Algorithm 2

1052 8: $\alpha \leftarrow \text{UpdateLeftEigenFunctions}(\theta, \mathbf{P}, \hat{\mathbf{T}})$ \triangleright Detailed in Algorithm 3

1053 9: $\mathbf{P} \leftarrow \text{ComputeTransportPlans}(T_\theta, \hat{\mathbf{T}})$

1054 **return** θ, \mathbf{P}

1055

1056

1057

1058 **Update right eigenfunctions.** We detail the *UpdateRightEigenFunctions* step of Algorithm 1. Let λ, x, α
 1059 and \mathbf{P} be fixed; we aim to perform minimization steps of problem 29 with regard to β , the parameters
 1060 controlling the right eigenfunctions. Each optimization step consists of a first-order gradient descent step
 1061 followed by a projection of each eigenfunction on the RKHS unit sphere as described in Algorithm 2.

1062

1063 **Algorithm 2** UpdateRightEigenFunctions

1064 **Require:** $\theta = (\lambda, x, \alpha, \beta), \mathbf{P}, \hat{\mathbf{T}}$

1065 1: **while** stopping criteria not met **do**

1066 2: $\hat{\beta} \leftarrow \text{Gradient descent step of } J(\theta, \mathbf{P}; \hat{\mathbf{T}}) \text{ w.r.t } \beta$.

1067 3: **for** $i \in [r]$ **do** $\triangleright r$ being the number of eigenfunctions

1068 4: $\beta_i \leftarrow \hat{\beta}_i / \sqrt{\hat{\beta}_i^* \mathbf{K} \hat{\beta}_i}$ \triangleright Projection on the RKHS unit sphere

1069 **return** β

1070

1071

1072

1073 **Update left eigenfunctions.** We detail the *UpdateLeftEigenFunctions* step of Algorithm 1. Let λ, x, β
 1074 and \mathbf{P} be fixed; we aim to perform minimization steps of problem 29 with regard to α , the parameters
 1075 controlling the left eigenfunctions. Each optimization step consists of a first-order gradient descent step
 1076 followed by a projection onto the manifold induced by the spectral decomposition constraint: $\alpha^* \mathbf{K} \beta = \mathbf{I}$.
 1077 Algorithm 3 describes the optimization procedure, and the next paragraph discusses the projection.

1078

1079 **Projection step.** Let $\hat{\alpha} \in \mathbb{C}^{n \times r}$ be the estimated parameters controlling the left eigenfunctions after a
 1080 gradient descent step without constraints. Hence, these parameters might not verify the spectral decomposition
 constraint. We aim to identify the closest parameters, $\text{proj}(\hat{\alpha}) \in \mathbb{C}^{n \times r}$, for the RKHS metric and lying

1081 **Algorithm 3** UpdateLeftEigenFunctions1082 **Require:** $\theta = (\lambda, \mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{P}, \widehat{\mathbf{T}})$ 1083 1: **while** stopping criteria not met **do**1084 2: $\widehat{\boldsymbol{\alpha}} \leftarrow$ Gradient descent step of $J(\theta, \mathbf{P}; \widehat{\mathbf{T}})$ w.r.t $\boldsymbol{\alpha}$.1085 3: $\boldsymbol{\alpha} \leftarrow \widehat{\boldsymbol{\alpha}} - \boldsymbol{\beta} \left((\widehat{\boldsymbol{\alpha}}^* \mathbf{K} \boldsymbol{\beta} - \mathbf{I}) (\boldsymbol{\beta}^* \mathbf{K} \boldsymbol{\beta})^{-1} \right)^*$ \triangleright Manifold Projection, see below.1086 **return** $\boldsymbol{\alpha}$ 1087
1088 on the manifold induced by the spectral decomposition constraint. It leads to a constrained optimization
1089 problem:

1090
$$\begin{aligned} \text{Proj}(\widehat{\boldsymbol{\alpha}}) &\triangleq \arg \min_{\boldsymbol{\alpha}} \text{Tr}((\boldsymbol{\alpha} - \widehat{\boldsymbol{\alpha}})^* \mathbf{K} (\boldsymbol{\alpha} - \widehat{\boldsymbol{\alpha}})) \\ &\text{s.t. } \boldsymbol{\alpha}^* \mathbf{K} \boldsymbol{\beta} = \mathbf{I} \end{aligned} . \quad (30)$$

1091 Considering the real representation of the problem, it becomes a convex problem, and since $r \ll n$, it is
1092 strictly feasible. Strong duality holds by Slater's constraint qualification. As the optimization function J and
1093 constraints are differentiable with respect to $\boldsymbol{\alpha}$, the KKT conditions are necessary and sufficient conditions
1094 to characterize the optimum. The Lagrangian can be expressed as:

1095
$$L(\boldsymbol{\alpha}, \boldsymbol{\mu}, \boldsymbol{\nu}) \triangleq \text{Tr}((\boldsymbol{\alpha} - \widehat{\boldsymbol{\alpha}})^* \mathbf{K} (\boldsymbol{\alpha} - \widehat{\boldsymbol{\alpha}})) + \boldsymbol{\mu}^\top (\text{Re}(\boldsymbol{\alpha}^* \mathbf{K} \boldsymbol{\beta}) - \mathbf{I}) + \boldsymbol{\nu}^\top (\text{Im}(\boldsymbol{\alpha}^* \mathbf{K} \boldsymbol{\beta})) . \quad (31)$$

1096 Taking Wirtinger derivative notation, the optimal primal-dual variables verify:

1097
$$\begin{cases} \nabla_{\widehat{\boldsymbol{\alpha}}} L(\boldsymbol{\alpha}, \boldsymbol{\mu}, \boldsymbol{\nu}) = \mathbf{K}(\boldsymbol{\alpha} - \widehat{\boldsymbol{\alpha}} + \boldsymbol{\beta}(\boldsymbol{\mu} - i\boldsymbol{\nu})^\top) = \mathbf{0} \\ \nabla_{\boldsymbol{\mu}} L(\boldsymbol{\alpha}, \boldsymbol{\mu}, \boldsymbol{\nu}) = \text{Re}(\boldsymbol{\alpha}^* \mathbf{K} \boldsymbol{\beta}) - \mathbf{I} = \mathbf{0} \\ \nabla_{\boldsymbol{\nu}} L(\boldsymbol{\alpha}, \boldsymbol{\mu}, \boldsymbol{\nu}) = \text{Im}(\boldsymbol{\alpha}^* \mathbf{K} \boldsymbol{\beta}) = \mathbf{0} \end{cases} \quad (32)$$

1098 Regardless of the rank of \mathbf{K} , $\boldsymbol{\alpha} - \widehat{\boldsymbol{\alpha}} + \boldsymbol{\beta}(\boldsymbol{\mu} - i\boldsymbol{\nu})^\top = \mathbf{0}$ always verifies the first optimality equation. It leads
1099 to the projector:

1100
$$\text{Proj}(\widehat{\boldsymbol{\alpha}}) = \widehat{\boldsymbol{\alpha}} - \boldsymbol{\beta} \left((\widehat{\boldsymbol{\alpha}}^* \mathbf{K} \boldsymbol{\beta} - \mathbf{I}) (\boldsymbol{\beta}^* \mathbf{K} \boldsymbol{\beta})^{-1} \right)^* . \quad (33)$$

1101 D.3 CASE OF FINITE-DIMENSIONAL RKHS

1102 Consider \mathcal{H} be finite d -dimensional RKHS with the orthonormal basis $\mathbf{f} = \{f_i\}_{i \in [d]}$. For instance, \mathcal{H} is
1103 based on a functional dictionary as used in extended DMD (Kutz et al., 2016). Let $\mathcal{S}_r(\mathcal{H})$ be the set of
1104 non-defective compact operators acting on \mathcal{H} with rank at most $r \leq d$. We aim to solve:

1105
$$\arg \min_{T \in \mathcal{Z}_r(\mathcal{H})} \sum_{i \in [N]} \gamma_i d_{\mathcal{S}}(T, \widehat{T}_i)^2 , \quad (34)$$

1106 with $\boldsymbol{\gamma} \in \Delta^N$ the importance weights, $\{\widehat{T}_i \in \mathcal{Z}_r(\mathcal{H}) \mid i \in [N]\}$ estimated operators, and $d_{\mathcal{S}}$ defined in
1107 Theorem 1 given $\eta \in (0, 1)$ and $p = 2$. For any compact operator acting on \mathcal{H} with rank at most r , there
1108 exists coefficients $\boldsymbol{\lambda} \in \mathbb{C}^r$, and control parameters of the functional basis $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{C}^{d \times r}$ such that:

1109
$$T_\theta : h \in \mathcal{H} \mapsto \sum_{i \in [r]} \lambda_i \langle f_{\alpha_i}, h \rangle_{\mathcal{H}} f_{\beta_i} \in \mathcal{H} , \quad (35)$$

1110 where $f_{\alpha_i} \triangleq \sum_{j \in d} \alpha_{ji} f_j$, $f_{\beta_i} \triangleq \sum_{j \in d} \beta_{ji} f_j$, and $\theta \triangleq (\lambda, \boldsymbol{\alpha}, \boldsymbol{\beta})$. To ensure non-defectiveness of T_θ further
1111 constraints are imposed on the control parameters, which leads to the constrained optimization problem:

1112
$$\begin{aligned} \arg \min_{\lambda, \boldsymbol{\alpha}, \boldsymbol{\beta}} & \sum_{i \in [N]} \gamma_i d_{\mathcal{S}}(T_\theta, \widehat{T}_i)^2 \\ \text{s.t. } & \boldsymbol{\alpha}^* \boldsymbol{\beta} = \mathbf{I} \\ & \beta_i^* \beta_i = 1, \quad \forall i \in [r] \end{aligned} \quad (36)$$

1128 Note that this optimization problem is related to the infinite-dimensional problem defined eq. (9) by assuming
 1129 the control points to be fixed such that the kernel matrix is the identity matrix, i.e. $\mathbf{K} = \mathbf{I}$. It follows that the
 1130 optimization procedure described in the case of infinite-dimensional RKHS in Appendix D.2 also handles
 1131 the finite-dimensional case.

1133 E PROOFS OF STATISTIC RESULTS

1135 We now prove the main statistical results in this section.

1136 **Theorem 2.** *Let (A1)-(A3) hold with $k \in [2]$, $\mathcal{F}_k = \mathcal{L}_{\pi_k}^2(\mathcal{X})$ and $\kappa(x, x) < \infty$ a.s. for $x \sim \pi_k$. Let
 1137 $\mathbb{E}[\widehat{C}_x^k] = C_x^k$ and assume that for some $\alpha \in [1, 2]$ and $\beta \in [0, 1]$ it holds that $\|[(C_x^k)^\dagger]^{\frac{\alpha-1}{2}} T_k\|_{\mathcal{H} \rightarrow \mathcal{H}} < \infty$ and
 1138 $\lambda_i(C_x^k) \leq \lesssim i^{-1/\beta}$ for $i \in \mathbb{N}$. Given $\delta \in (0, 1)$, if n is large enough and $\lambda_{r_k} \lesssim -\frac{\alpha \log n}{2(\alpha+\beta)}$, then w.p.a.l. $1-\delta$
 1139 in the i.i.d. draw of samples \mathcal{D}_1 and \mathcal{D}_2 it holds $|d_S(\widehat{T}_1, \widehat{T}_2) - d_S(T_1, T_2)| \lesssim n^{-\frac{\alpha-1}{2(\alpha+\beta)}} \ln(2\delta^{-1})$.*

1142 *Proof of Theorem 2.* Without loss of generality, we can assume that the operators eigenvalues are of multi-
 1143 plicity 1. Then the discrete distribution representation of the operator T_k provided in equation 4 becomes

$$1145 \mu(T_k) \triangleq \frac{1}{r_k} \sum_{j \in [r_k]} \delta_{(\lambda_j(k), \mathcal{V}_j(k))}. \quad (37)$$

1147 Similarly

$$1148 \mu(\widehat{T}_k) \triangleq \frac{1}{r_k} \sum_{j \in [r_k]} \delta_{(\widehat{\lambda}_j(k), \widehat{\mathcal{V}}_j(k))}. \quad (38)$$

1150 **Stability of the d_S metric.** Next by definition of d_S in equation 5 and the triangular inequality applied
 1151 to the Wasserstein metric:

$$1153 |d_S(\widehat{T}_1, \widehat{T}_2) - d_S(T_1, T_2)| \leq W_p(\mu(T_1), \mu(\widehat{T}_1)) + W_p(\mu(T_2), \mu(\widehat{T}_2)). \quad (39)$$

1155 We recall that $W_p(\mu(T_k), \mu(\widehat{T}_k))$ is defined as:

$$1156 1157 1158 W_p(\mu(T_k), \mu(\widehat{T}_k)) := \left(\min_{\mathbf{P} \in \Pi_{\text{uniform}}(r_k)} \sum_{i=1}^{r_k} \sum_{j=1}^{r_k} c_{i,j}^p P_{i,j} \right)^{1/p},$$

1159 where the cost matrix $C_k = (c_{i,j})_{i,j \in [r_k]}$ is defined as

$$1161 c_{i,j} := d_\eta((\lambda_i(k), \mathcal{V}_i(k)), (\widehat{\lambda}_j(k), \widehat{\mathcal{V}}_j(k))) \geq 0, \quad \forall i, j \in [r_k],$$

1162 and the set of uniform transport plans is:

$$1164 1165 \Pi_{\text{uniform}}(r_k) := \left\{ \mathbf{P} \in \mathbb{R}_+^{r_k \times r_k} \mid \mathbf{P}\mathbf{1} = \frac{1}{r_k} \mathbf{1}, \mathbf{P}^\top \mathbf{1} = \frac{1}{r_k} \mathbf{1} \right\}.$$

1166 Then we note that the transport plan $\pi_{i,i} = 1/r_k$ for any $i \in [r_k]$ and $\pi_{i,j} = 0$ for any $i \neq j$ belongs to the
 1167 set $\Pi_{\text{uniform}}(r_k)$. Consequently

$$1168 1169 1170 W_p^p(\mu(T_k), \mu(\widehat{T}_k)) \leq \sum_{i=1}^{r_k} \sum_{j=1}^{r_k} c_{i,j}^p \pi_{i,j} = \frac{1}{r_k} \sum_{i=1}^{r_k} c_{i,i}^p, \quad (40)$$

1171 In view of equation 49 below, we prove w.p.a.l. $1 - \delta$ that

$$1173 1174 \max_{i \in [r_k]} \{c_{i,i}\} \lesssim \varepsilon_n(\delta) := n^{-\frac{\alpha-1}{2(\alpha+\beta)}} \ln(2\delta^{-1}), \quad \forall k \in [2].$$

1175 Then we get with the same probability

$$1177 W_p(\mu(T_k), \mu(\widehat{T}_k)) \lesssim n^{-\frac{\alpha-1}{2(\alpha+\beta)}} \ln(2\delta^{-1}), \quad \forall k \in [2],$$

1178 and consequently we obtain the final bound on $|d_{\mathcal{S}}(\widehat{T}_1, \widehat{T}_2) - d_{\mathcal{S}}(T_1, T_2)|$ in view of equation 39.

1180 **Bounding the learning error $\|T - \widehat{T}\|$.** For brevity we set $\|\cdot\|$ for the operator norm $\|\cdot\|_{\mathcal{H} \rightarrow \mathcal{H}}$ and
1181 $\|\cdot\|_{\mathcal{H}}$ for the Hilbert-Schmidt norm $\|\cdot\|_{\text{HS}(\mathcal{H}, \mathcal{H})}$. For any k , we introduce the population RRR and Ridge
1182 operators as

$$1184 T_{k,\gamma} := (C_x^k + \gamma I)^{-\frac{1}{2}} \llbracket (C_x^k + \gamma I)^{-\frac{1}{2}} C_{xy}^k \rrbracket_{r_k}, \quad T_{k,\gamma}^R = (C_x^k + \gamma)^{-1} C_{xy}^k.$$

1186 Then we have the following Bias-Variance decomposition in operator norm:

$$1187 \|T_k - \widehat{T}_k\| \leq \underbrace{\|T_k - T_{k,\gamma}\|}_{=: a_1 \text{ "Bias"}} + \underbrace{\|T_{k,\gamma} - \widehat{T}_k\|}_{=: a_2 \text{ "Variance}}. \quad (41)$$

1190 **Bias term a_1 .** We have

$$1192 a_1 \leq \|T_k - T_{k,\gamma}^R\| + \|T_{k,\gamma}^R - T_{k,\gamma}\|. \quad (42)$$

1194 Next since $P_{\leq r_k} A_k S_{\pi_k} = S_{\pi_k} T_k$, we get

$$1195 S_{\pi_k}^* P_{\leq r_k} A_k S_{\pi_k} = C_x^k T_k,$$

1197 and

$$1198 T_{k,\gamma}^R = (C_x^k + \gamma I)^{-1} C_x^k T_k + (C_x^k + \gamma I)^{-1} S_{\pi_k}^* P_{\leq r_k}^{\perp} A_{\pi_k} S_{\pi_k} \\ 1199 = T_k - \gamma (C_x^k + \gamma I)^{-1} (C_x^k)^{(\alpha-1)/2} (C_x^k)^{\dagger(\alpha-1)/2} T_k + (C_x^k + \gamma I)^{-1} S_{\pi_k}^* P_{\leq r_k}^{\perp} A_{\pi_k} S_{\pi_k}.$$

1201 Therefore,

$$1203 \|T_k - T_{k,\gamma}^R\| \leq \gamma \| (C_x^k + \gamma I)^{-1} (C_x^k)^{(\alpha-1)/2} \| \| [(C_x^k)^{\dagger}]^{1-\alpha} T_k \| + \frac{1}{\sqrt{\gamma}} \| P_{\leq r_k}^{\perp} A_{\pi_k} \| \sqrt{c_{\mathcal{H}}} \\ 1205 \leq \gamma^{(\alpha-1)/2} \| [(C_x^k)^{\dagger}]^{1-\alpha} T_k \| + \sqrt{\frac{c_{\mathcal{H}}}{\gamma}} \| P_{\leq r_k}^{\perp} A_{\pi_k} \| \quad (43)$$

1208 We tackle now the second term in the right-hand side of equation 42. We note first that

$$1209 T_{k,\gamma}^R - T_{k,\gamma} = (C_x^k + \gamma I)^{-1} C_{xy}^k (I - \Pi_{r_k}).$$

1211 Hence we get

$$1212 \|T_{k,\gamma}^R - T_{k,\gamma}\| \leq \frac{1}{\sqrt{\gamma}} \sigma_{r_k+1} ((C_x^k + \gamma I)^{-1/2} C_{xy}^k) \leq \frac{\sqrt{c_{\mathcal{H}}}}{\sqrt{\gamma}} \| P_{\leq r_k}^{\perp} A_{\pi_k} \|.$$

1215 Combining equation 42, equation 43 and equation 44 with the assumption $\| [(C_x^k)^{\dagger}]^{\frac{\alpha-1}{2}} T_k \|_{\mathcal{H} \rightarrow \mathcal{H}} < \infty$, we
1216 obtain the following control on the bias:

$$1218 a_1 = \|T_k - T_{k,\gamma}\| \leq \gamma^{(\alpha-1)/2} \| [(C_x^k)^{\dagger}]^{1-\alpha} T_k \| + \frac{2\sqrt{c_{\mathcal{H}}}}{\sqrt{\gamma}} \| P_{\leq r_k}^{\perp} A_{\pi_k} \| \\ 1220 \lesssim \gamma^{(\alpha-1)/2} + \frac{2\sqrt{c_{\mathcal{H}}}}{\sqrt{\gamma}} \| P_{\leq r_k}^{\perp} A_{\pi_k} \| \quad (45)$$

1222 **Variance term a_2 .** We note first

$$1223 \quad T_{k,\gamma} - \widehat{T}_k = (C_x^k + \gamma I)^{-1/2} (C_x^k + \gamma I)^{1/2} (T_{k,\gamma} - \widehat{T}_k)$$

1225 Taking the operator norm, we get

$$1226 \quad a_2 = \|T_{k,\gamma} - \widehat{T}_k\| \leq \|C_x^k + \gamma I\|^{-1/2} \|(C_x^k + \gamma I)^{1/2} (T_{k,\gamma} - \widehat{T}_k)\| \leq \frac{1}{\sqrt{\gamma}} \|(C_x^k + \gamma I)^{1/2} (T_{k,\gamma} - \widehat{T}_k)\|.$$

1228 Define $B_k := (C_x^k + \gamma I)^{-1/2} C_{xy}^k$. An analysis of the variance of the RRR estimation (see Sections D.3.4. 1229 and D.4 and more specifically Lemma 1 and the proof of Proposition 18 in Kostic et al. (2023)) gives for 1230 any $\delta \in (0, 1)$ w.p.a.l. $1 - \delta$

$$1232 \quad a_2 \leq \frac{1}{\sqrt{\gamma}} \|(C_x^k + \gamma I)^{1/2} (T_{k,\gamma} - \widehat{T}_k)\| \\ 1233 \quad \lesssim \frac{1}{n^{1/2} \gamma^{(\beta+1)/2}} \ln \delta^{-1} + \frac{1}{\sqrt{\gamma n}} \left(1 + \frac{\sigma_1(B_k)}{\sigma_{r_k}^2(B_k) - \sigma_{r+1}^2(B_k)} \right) \ln \delta^{-1}. \quad (46)$$

1236 Combining the previous display with equation 45, we get w.p.a.l. $1 - \delta$

$$1238 \quad \|T_k - \widehat{T}_k\| \lesssim \gamma^{(\alpha-1)/2} + \frac{1}{n^{1/2} \gamma^{(\beta+1)/2}} \ln \delta^{-1} \\ 1239 \quad + \frac{2 \sqrt{c_H}}{\sqrt{\gamma}} \|P_{\leq r_k}^\perp A_k\| + \frac{1}{\sqrt{\gamma n}} \left(1 + \frac{\sigma_1(B_k)}{\sigma_{r_k}^2(B_k) - \sigma_{r+1}^2(B_k)} \right) \ln \delta^{-1}. \quad (47)$$

1242 Since we assumed that the spectrum of A_k decreases exponentially fast to 0, that is $\lambda_{r_k} \lesssim -\frac{\alpha \log n}{2(\alpha+\beta)}$, and 1243 assuming in addition that the gap gap_{r_k} is bounded away from 0. Then, for $\gamma \in (0, 1)$ small, the dominating 1244 terms in the above display are the first two terms and we propose to balance γ using only those two. Hence 1245 we get for $\gamma \asymp n^{-\frac{1}{\alpha+\beta}}$ w.p.a.l. $1 - \delta$

$$1247 \quad \|T_k - \widehat{T}_k\| \lesssim n^{-\frac{\alpha-1}{2(\alpha+\beta)}} \ln \delta^{-1}. \quad (48)$$

1249 **Perturbation bounds.** For simplicity we assume here that the all the eigenvalues admit multiplicity 1. By a 1250 standard Davis-Kahan perturbation argument, we get

$$1251 \quad |\nu_i - \widehat{\nu}_i| \leq \|\xi_i\| \|\psi_i\| \|T - \widehat{T}\| \\ 1252 \quad \|\xi_i - \widehat{\xi}_i\| \leq \|\xi_i\| \|\psi_i\| \frac{\|T - \widehat{T}\|}{\text{gap}_i} \\ 1253 \quad \|\psi_i - \widehat{\psi}_i\| \leq \|\xi_i\| \|\psi_i\| \frac{\|T - \widehat{T}\|}{\text{gap}_i}$$

1258 **Final Bound on the metric.** An union combining equation 48 for any $k \in [N]$, we get w.p.a.l. $1 - \delta$ that 1259 the condition in equation 50 in Lemma 5 is satisfied with

$$1260 \quad \varepsilon_0 = \varepsilon_1 = n^{-\frac{\alpha-1}{2(\alpha+\beta)}} \ln(N\delta^{-1}) =: \varepsilon_n(\delta).$$

1262 Proposition 5 guarantees w.p.a.l. $1 - \delta$ that for any $k \in [N]$, the operators T_k, \widehat{T}_k with corresponding spectral 1263 decomposition $(\nu_i^{(k)}, P_i^{(k)})$ and $(\widehat{\nu}_i^{(k)}, \widehat{P}_i^{(k)})$: $\forall i \in [r_k]$,

$$1265 \quad |d_\eta((\nu_i^{(k)}, P_i^{(k)}), (\widehat{\nu}_i^{(k)}, \widehat{P}_i^{(k)}))| \leq 2\sqrt{2} \frac{\|\xi_i^{(k)}\| \|\psi_i^{(k)}\|}{\text{gap}_i^{(k)} \wedge |\lambda_i^{(k)}|} \varepsilon_n(\delta), \quad \forall i \in [r_k], \forall k \in [N]. \quad (49)$$

1268 \square

1269 E.1 AUXILIARY RESULTS
12701271 We propose a control on the metric $d_\eta(\cdot, \cdot)$. For simplicity, we assume that all the eigenvalues of the Koopman transfer operators are of multiplicity 1.
12721273 **Proposition 5.** *Let $\varepsilon_0, \varepsilon_1 \in (0, 1/2)$ be an absolute constant such that, for any $i \in [r]$,*
1274

1275
$$\frac{|\nu_i - \hat{\nu}_i|}{|\nu_i|} \leq \frac{\|\xi_i\| \|\psi_i\|}{|\nu_i|} \varepsilon_0 \quad \text{and} \quad \|P_i - \hat{P}_i\| \leq \frac{\|\xi_i\| \|\psi_i\|}{\text{gap}_i} \varepsilon_1. \quad (50)$$

1276

1277 Then we have for any $i \neq j \in [r]$
1278

1279
$$|d_\eta(\nu_i, P_i), (\nu_j, P_j)) - d_\eta(\hat{\nu}_i, \hat{P}_i), (\hat{\nu}_j, \hat{P}_j))|$$

1280
$$\leq 2\sqrt{2} \left(\left(\frac{\|\xi_i\| \|\psi_i\|}{|\nu_i|} \vee \frac{\|\xi_j\| \|\psi_j\|}{|\nu_j|} \right) \varepsilon_0 + \left(\frac{\|\xi_i\| \|\psi_i\|}{\text{gap}_i} \vee \frac{\|\xi_j\| \|\psi_j\|}{\text{gap}_j} \right) \varepsilon_1 \right).$$

1281

1282 Similarly for any $i \in [r]$
1283

1284
$$d_\eta(\nu_i, P_i), (\hat{\nu}_i, \hat{P}_i)) \leq 2\sqrt{2} \left(\frac{\|\xi_i\| \|\psi_i\|}{|\nu_i|} \varepsilon_0 + \frac{\|\xi_i\| \|\psi_i\|}{\text{gap}_i} \varepsilon_1 \right).$$

1285

1286 *Proof of Proposition 5.* The metric d_η is a convex combination of two parts.
12871288 We focus on the distance between generator eigenvalues, which is the same as the polar distance d_{val} between transfer operator eigenvalues. Similarly as above, we have by the triangular inequality
1289

1290
$$|d_{val}(\nu, \nu') - d_{val}(\hat{\nu}, \hat{\nu}')| \leq \|(\tau, \omega) - (\hat{\tau}, \hat{\omega})\|_2 + \|(\tau', \omega') - (\hat{\tau}', \hat{\omega}')\|_2$$

1291

1292 Using Lemma 1, we get that
1293

1294
$$\|(\tau, \omega) - (\hat{\tau}, \hat{\omega})\|_2^2 \leq |\nu - \hat{\nu}|^2 + \arcsin \left(\frac{|\nu - \hat{\nu}|^2}{4|\nu||\hat{\nu}|} \right). \quad (51)$$

1295

1296 Assume the relative eigenvalue error is small:
1297

1298
$$\frac{|\nu - \hat{\nu}|}{|\nu|} \vee \frac{|\nu' - \hat{\nu}'|}{|\nu'|} \leq \varepsilon < \frac{1}{2}. \quad (52)$$

1299

1300 Under equation 52 we have $|\hat{\nu}| \geq (1 - \varepsilon)|\nu|$ and therefore
1301

1302
$$u := \frac{|\nu - \hat{\nu}|^2}{4|\nu||\hat{\nu}|} \leq \frac{\varepsilon^2}{4(1 - \varepsilon)} < 1,$$

1303

1304 so the argument of $\arcsin(\cdot)$ lies in $(0, 1)$ as required. Moreover, since $\arcsin(x)$ is Lipschitz near 0 and
1305 $\arcsin(x) \leq (\pi/2)x$ for all $x \in [0, u]$, we get
1306

1307
$$\arcsin \left(\frac{|\nu - \hat{\nu}|^2}{4|\nu||\hat{\nu}|} \right) \leq \frac{\pi}{2} \frac{|\nu - \hat{\nu}|^2}{4|\nu||\hat{\nu}|}.$$

1308

1309 Hence
1310

1311
$$\|(\tau, \omega) - (\hat{\tau}, \hat{\omega})\|_2^2 \leq |\nu - \hat{\nu}|^2 \left(1 + \frac{\pi}{8|\nu||\hat{\nu}|} \right) \leq |\nu - \hat{\nu}|^2 \left(1 + \frac{\pi}{8(1 - \varepsilon)|\nu|^2} \right),$$

1312

1316 and therefore

$$1318 \quad \|(\tau, \omega) - (\hat{\tau}, \hat{\omega})\|_2 \leq |\nu - \hat{\nu}| \sqrt{1 + \frac{\pi}{8(1-\varepsilon)|\nu|^2}} \leq \sqrt{2} \frac{|\nu - \hat{\nu}|}{|\nu|}, \quad (53)$$

1320 since $|\nu| \leq 1$ for all transfer operator eigenvalues.

1321 Apply the same bound to $(\nu', \hat{\nu}')$ and combine with the first display to obtain, for each matched pair of
1322 eigenvalues,

$$1324 \quad |d_{val}(\nu, \nu') - d_{val}(\hat{\nu}, \hat{\nu}')| \lesssim \left(\frac{|\nu - \hat{\nu}|}{|\nu|} + \frac{|\nu' - \hat{\nu}'|}{|\nu'|} \right).$$

1326 Now apply this inequality to every eigenvalue pairs $i \neq j \in [r]$. In view of equation 50, we get

$$1328 \quad |d_{val}(\nu_i, \nu_j) - d_{val}(\hat{\nu}_i, \hat{\nu}_j)| \lesssim \left(\frac{\|\xi_i\| \|\psi_i\|}{|\nu_i|} + \frac{\|\xi_j\| \|\psi_j\|}{|\nu_j|} \right) \varepsilon_0, \quad \forall i \neq j \in [r], \quad (54)$$

1331 For the Grassmannian part, we have for any $i \neq j \in [r]$

$$1333 \quad \left| \|P_i - P_j\| - \|\hat{P}_i - \hat{P}_j\| \right| \leq \|P_i - \hat{P}_i - (P_j - \hat{P}_j)\| \leq 2\sqrt{2} \left(\frac{\|\xi_i\| \|\psi_i\|}{\text{gap}_i} \vee \frac{\|\xi_j\| \|\psi_j\|}{\text{gap}_j} \right) \varepsilon_1.$$

1336 Combining the last two displays gives the first result. The second result follows from a similar and actually
1337 simpler argument. \square

1339 **Lemma 1.** *Let $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$ be complex numbers in polar form with $r_1, r_2 \geq 0$ and
1340 $\theta_1, \theta_2 \in [0, 2\pi)$. Then*

$$1342 \quad |z_1 - z_2|^2 = (r_1 - r_2)^2 + 2r_1 r_2 (1 - \cos(\theta_1 - \theta_2)) = (r_1 - r_2)^2 + 4r_1 r_2 \sin^2\left(\frac{\theta_1 - \theta_2}{2}\right).$$

1344 *Proof.* Write the difference and compute its squared modulus:

$$1346 \quad |z_1 - z_2|^2 = |r_1 e^{i\theta_1} - r_2 e^{i\theta_2}|^2 = (r_1 e^{i\theta_1} - r_2 e^{i\theta_2})(r_1 e^{-i\theta_1} - r_2 e^{-i\theta_2}).$$

1348 Expanding yields

$$1349 \quad |z_1 - z_2|^2 = r_1^2 + r_2^2 - r_1 r_2 (e^{i(\theta_1 - \theta_2)} + e^{-i(\theta_1 - \theta_2)}).$$

1351 Using $e^{i\phi} + e^{-i\phi} = 2 \cos \phi$ with $\phi = \theta_1 - \theta_2$ gives

$$1353 \quad |z_1 - z_2|^2 = r_1^2 + r_2^2 - 2r_1 r_2 \cos(\theta_1 - \theta_2).$$

1354 Rearrange the first two terms as a perfect square plus a correction:

$$1356 \quad r_1^2 + r_2^2 - 2r_1 r_2 \cos \phi = (r_1^2 + r_2^2 - 2r_1 r_2) + 2r_1 r_2 (1 - \cos \phi) = (r_1 - r_2)^2 + 2r_1 r_2 (1 - \cos \phi).$$

1358 Finally, apply the trigonometric identity $1 - \cos x = 2 \sin^2(x/2)$ to obtain

$$1360 \quad 2r_1 r_2 (1 - \cos \phi) = 4r_1 r_2 \sin^2\left(\frac{\phi}{2}\right),$$

1362 which yields the claimed expression. \square

1363 F COMPARISON WITH OTHER SIMILARITY MEASURES
13641365 F.1 EXPERIMENT PROTOCOL
1366

1367 **Simulated system and shifts.** We consider a referent linear oscillatory system that is the sum of two
1368 simple harmonic oscillators with frequencies 0.5Hz and 1.0Hz, respectively, with a noisy trajectory of length
1369 4001 samples sampled at 200Hz, which is an additive Gaussian noise with standard deviation of $1e - 2$.
1370 We compare the Koopman operator of the referent system with those of shifted systems according to four
1371 scenarios:
1372

- 1373 (a) **Frequency shift**, changes the 1Hz harmonic frequency from 0.6Hz to 2.5Hz in 39 evenly spaced
1374 frequencies.
1375
- 1376 (b) **Decay rate shift**, changes the 1Hz harmonic decay rate from -0.3 (diverging) to 3.0 (converging)
1377 in 67 evenly spaced rates.
1378
- 1379 (c) **Subspace shift (rank)** gradually transforms the 1Hz sine wave into a 1Hz square wave signal using
1380 a Fourier Decomposition of a square wave signal with increasing order up to 50. Series formulation
1381 of a square wave signal: $s(t) = \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{2n+1} \sin((2n+1)t)$.
1382
- 1383 (d) **Sampling frequency shift** where the system is sampled at different sampling frequencies ranging
1384 from 100Hz to 300Hz instead of the reference 200Hz. Performed in 19 evenly spaced sampling
1385 frequencies.
1386

1387 Koopman operators are estimated from sampled trajectories in each scenario with the RRR method (Kostic
1388 et al., 2022). We consider the linear kernel, the context (sliding window) is set to one second, the operators'
1389 rank is always fixed to twice the number of harmonic oscillators, and the Tikhonov regularization is set to
1390 $1e - 8$.
1391

1392 **Compared similarity measures.** We consider our proposed metric SGOT set with $\eta = 0.5$. SOT, an
1393 OT-based similarity comparing eigenvalues (Redman et al., 2024). GOT, an OT-based similarity comparing
1394 eigensubspaces with a Grassmannian metric and weighted by the normalized eigenvalues (Antonini &
1395 Cavalletti, 2021). Note that compared to its theoretical definition, we extend the similarity to non-normal
1396 operators by taking the absolute value of eigenvalues. We also included the metrics induced by the Hilbert-
1397 Schmidt and Operator norms, and the Martin similarity (Martin, 2002), which compares poles of LDS trans-
1398 fer functions.
1399

1400
1401 F.2 ABLATION STUDY FOR PARAMETER η OF SGOT
1402

1403 Following the same protocol presented in the previous paragraph, we compare our proposed metric
1404 SGOT with the parameter controlling the balance between eigenvalues and eigensubspaces η ranging in
1405 $[0.1, 0.2, \dots, 0.9]$. Results are presented in Figure 6. In scenarios (a,b,c) for any η , SGOT behaves piece-
1406 wise linearly, where the ascent gets steeper for scenario (a,b) as η decreases (eigensubspaces have more
1407 weights in the cost function). For scenario (c), SGOT behaves similarly for all η . Finally, SGOT becomes
1408 slightly more sensitive to the sampling frequency as η decreases. In (d), the metric scale is not normalized,
1409 and the metric values remain relatively small.

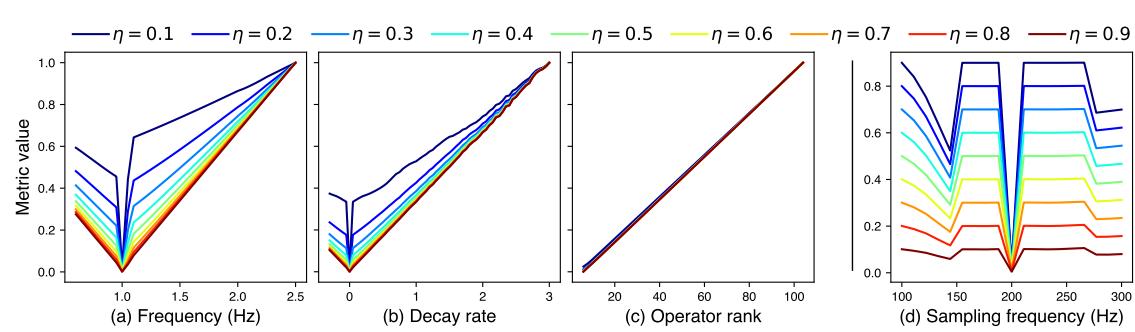


Figure 6: Influence of the η parameter in SGOT under four scenarios of shifts of a linear oscillatory system: (a) frequency shift, (b) decay rate shift, (c) operator rank/subspace shift, (d) sampling frequency variation. In scenarios (a,b,c), metric values are normalized by their maximum.

G MACHINE LEARNING ON DYNAMICAL SYSTEMS

G.1 EXPERIMENTAL PROTOCOL

We evaluate similarity performances on a time series classification task. We selected 14 multivariate datasets from the UEA database (Ruiz et al., 2021) whose main characteristics are described in Table 4. For each dataset, we estimate operators for individual time series of n samples with the RRR method (Kostic et al., 2022), with the linear kernel, a Tikhonov regularization of $1e-2$, an arbitrary sampling frequency $f_{samp} \triangleq \min(100, (n/2) * 0.2)$ and a context window $w_{len} \triangleq \min(50, n/2)$. Once all operators are estimated, we perform a 10-iteration Monte-Carlo cross-validation with a 0.7/0.3 train/test split without any preprocessing step. To perform classification, we consider K-Nearest Neighbors (K-NN) estimators defined with similarities: Hilbert-Schmidt, Operator, Martin (Martin, 2002), SOT (Redman et al., 2024), GOT (Antonini & Cavalletti, 2021), and our metric SGOT. Note that the initialization-invariant Binet-Cauchy similarity has been excluded from this experiment as it relates to the Martin distance. At each cross-validation iteration, the number of neighbors (K) and the parameter η for SGOT metric are set by grid search with a 5-fold cross-validation on the train set. K peaked between 1 and 10 and $\eta \in [0.001, 0.01, 0.1, 0.5, 0.9, 0.99]$. Scores are evaluated in terms of accuracy, and a training time limit has been set to 5 hours per dataset/metric pair. The experiment has been seeded for reproducibility.

1457

1458 Table 4: Datasets main characteristics: *Size*: number of time series, *Channels*: number of dimensions per
1459 time series, *Length*: time series length, *Classes*: number of classes.

		#Size	#Channels	Length	#Classes
1461	AtrialFibrillation	30	2	640	3
1462	BasicMotions	80	6	100	4
1463	Cricket	180	6	1197	12
1464	EigenWorms	259	6	17984	5
1465	Epilepsy	275	3	206	4
1466	ERing	300	4	65	6
1467	FingerMovements	416	28	50	2
1468	HandMovementDirection	234	10	400	4
1469	Handwriting	1000	3	152	26
1470	Heartbeat	409	61	405	2
1471	NATOPS	360	24	51	6
1472	SelfRegulationSCP1	561	6	896	2
	StandWalkJump	27	4	2500	3
	UWaveGestureLibrary	440	3	315	8

1473

1474

1475 **G.2 LINEAR KERNEL: ADDITIONAL RESULTS**

1476

1477 **Classification accuracy table.** In addition to scores comparison plots between our metric SGOT and com-
1478 petitive similarities in the main body (see Figure 3), Table 5 provides mean and standard deviation of accu-
1479 racy scores per dataset and metric computed over the 10 iterations. Our metric SGOT is the best performer
1480 on all datasets, followed by GOT, another OT-based metric that only refers to eigensubspaces in its cost func-
1481 tion. Also, SOT, a third OT-based similarity comparing operator, only from eigenvalues, performs poorly.
1482 Incorporating eigenvalues and eigensubspaces within the cost function improves performance on numerous
1483 datasets. By being more conservative (see Figure 1), Hilbert-Schmidt and Operator underperform compared
1484 to SGOT. Note that the Operator norm times out on Heartbeat. Lastly, Martin distance performs poorly and
1485 fails on some datasets due to its ill-definedness in some settings.

1486

1487 Table 5: Classification accuracy scores. Transfer operators are estimated with the finite dimensional linear
1488 kernel. Datasets on rows and similarities on columns. Best and second best performers are highlighted.
1489 Accuracy scores are denoted: $\langle \text{mean} \rangle \pm \langle \text{std} \rangle$.

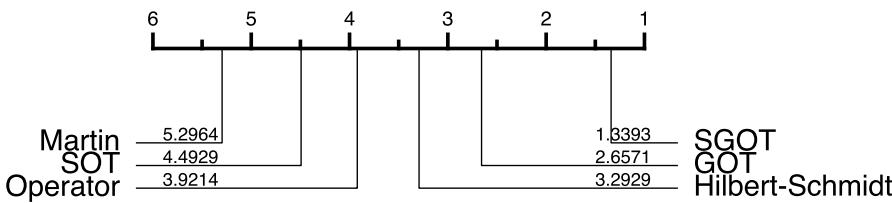
	Hilbert-Schmidt	Operator	Martin	SOT	GOT	SGOT
1491	AtrialFibrillation	0.31 ± 0.07	0.32 ± 0.13	0.27 ± 0.09	0.24 ± 0.14	0.4 ± 0.12
1492	BasicMotions	0.48 ± 0.15	0.51 ± 0.13	0.3 ± 0.06	0.35 ± 0.1	0.8 ± 0.07
1493	Cricket	0.33 ± 0.05	0.28 ± 0.05	0.07 ± 0.03	0.11 ± 0.04	0.63 ± 0.04
1494	ERing	0.79 ± 0.04	0.74 ± 0.05	0.15 ± 0.04	0.39 ± 0.04	0.85 ± 0.01
1495	EigenWorms	0.6 ± 0.04	0.57 ± 0.04	\emptyset	0.57 ± 0.06	0.71 ± 0.04
1496	Epilepsy	0.46 ± 0.05	0.52 ± 0.06	\emptyset	0.34 ± 0.04	0.78 ± 0.04
1497	FingerMovements	0.51 ± 0.05	0.54 ± 0.03	\emptyset	0.51 ± 0.05	0.51 ± 0.05
1498	HandMovementDirection	0.23 ± 0.04	0.23 ± 0.03	0.27 ± 0.04	0.21 ± 0.05	0.24 ± 0.05
1499	Handwriting	0.12 ± 0.02	0.12 ± 0.02	0.05 ± 0.01	0.05 ± 0.01	0.21 ± 0.02
1500	Heartbeat	0.7 ± 0.04	\emptyset	0.71 ± 0.04	0.69 ± 0.02	0.7 ± 0.04
1501	NATOPS	0.76 ± 0.04	0.73 ± 0.05	0.25 ± 0.04	0.41 ± 0.04	0.74 ± 0.04
1502	SelfRegulationSCP1	0.57 ± 0.02	0.56 ± 0.03	\emptyset	0.57 ± 0.05	0.56 ± 0.03
1503	StandWalkJump	0.5 ± 0.15	0.41 ± 0.13	\emptyset	0.39 ± 0.13	0.3 ± 0.13
	UWaveGestureLibrary	0.24 ± 0.04	0.21 ± 0.05	\emptyset	0.13 ± 0.02	0.47 ± 0.03
	avg. rank (lower is better)	3.29 ± 1.02	3.92 ± 1.1	5.3 ± 1.31	4.49 ± 1.15	2.66 ± 1.18
						1.34 ± 0.79

1504 **Computation times.** During the classification experiment, we kept track of all metric computation time,
 1505 which we average per metric in Table 6. Operator norm is the least efficient metric, followed by the Hilbert-
 1506 Schmidt. The most efficient similarities are Martin and SOT; however, they performed poorly. SGOT and
 1507 GOT are slightly less effective than Martin and SOT but much more efficient than Hilbert-Schmidt and
 1508 Operator.

1512 **Table 6: Average computation time per similarity on all validation folds.**

Hilbert-Schmidt	Operator	Martin	SOT	GOT	SGOT
4.96ms	13.04ms	0.02ms	0.03ms	0.14ms	0.12ms

1516 **Critical diagram difference.** Considering results from all 10 iterations of the Monte Carlo cross-
 1517 validation, we compute the critical diagram difference to statistically compare all metric performances based
 1518 on rank. The diagram is depicted in Figure 7. The test significance level is set to 0.05. We use Friedman’s
 1519 test to reject the null hypothesis (All metrics’ performances are similar) and compute the critical differences
 1520 using the Nemenyi post-hoc test. Results show that SGOT is the best performer and statistically different
 1521 from the second performer (SGOT).
 1522



1535 Figure 7: Critical diagram difference for comparing metrics’ performances on a classification task. The
 1536 classifiers are K-NN defined with the metrics: *Hilbert-Schmidt*, *Operator*, *Martin*, *SOT*, *GOT*, and *SGOT*
 1537 (*ours*). Computed from the performance of all 10 iterations of the Monte Carlo cross-validation. The
 1538 test significance level is set to 0.05, the null hypothesis is rejected with Friedman’s test, and the critical
 1539 differences are computed using Nemenyi post-hoc test.

1540
 1541
 1542 **2D T-SNE embeddings.** We illustrate the dimensionality reductions capabilities of the different similarity
 1543 measures. We selected 5 datasets from fields including human activity recognition, motion recognition, and
 1544 biomedical applications. For the 5 selected datasets and all similarities, dataset samples are embedded as a
 1545 2D vector with the T-distributed Stochastic Neighbor Embedding (T-SNE) Maaten & Hinton (2008) method
 1546 fitted on the cross-distance matrix estimated with the similarities: Hilbert-Schmidt, Operator, Martin, SOT,
 1547 GOT, and SGOT. Figure 8 displays the embeddings for all 5 datasets and metrics. On the Eigenworms and
 1548 Epilepsy datasets, Martin is ill-defined, and the similarity values cannot be computed. No clusters or classes
 1549 can be identified for Hilbert-Schmidt, Operator, Martin, and SOT. Regarding other OT-based metrics, GOT
 1550 better identifies classes; however, they do not form distinct clusters as obtained with our metric SGOT.

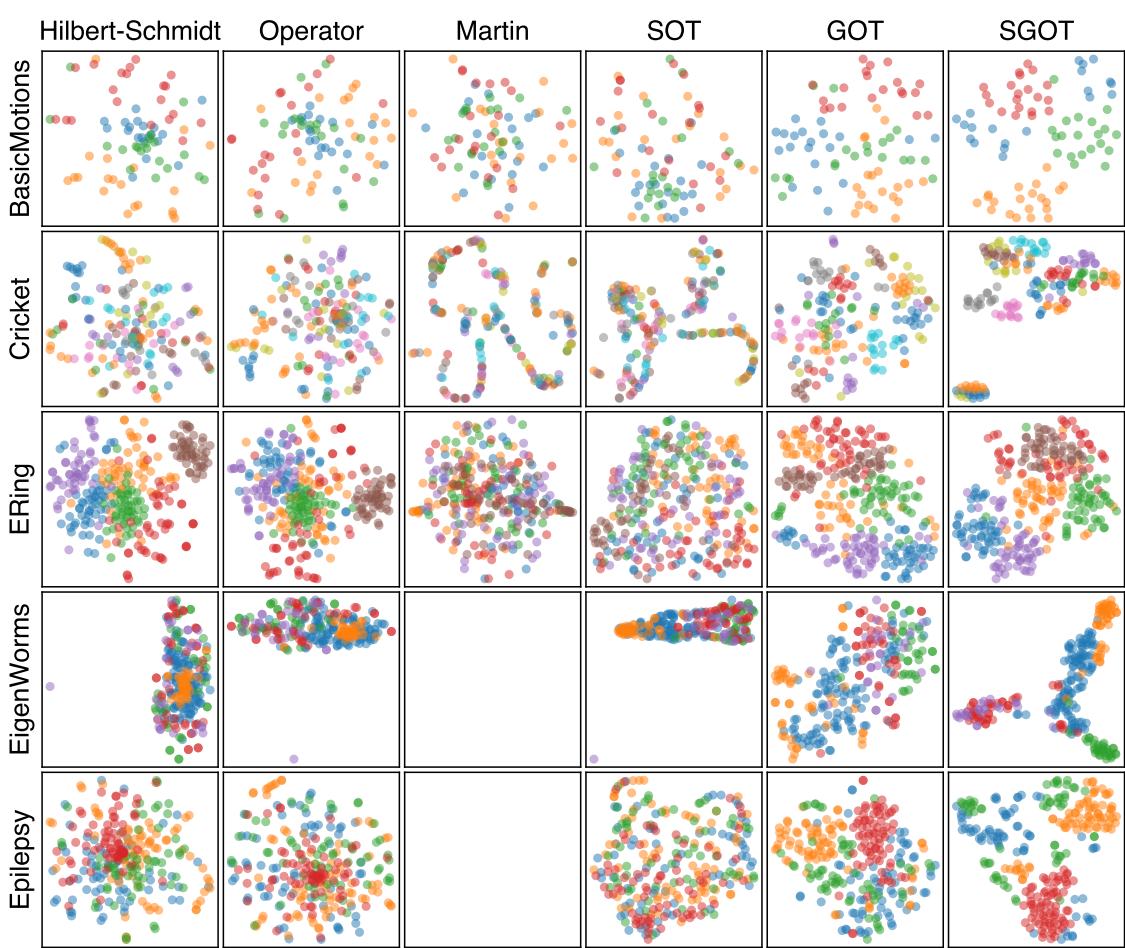


Figure 8: T-SNE 2D-embeddings of the classification datasets: *BasicMotions*, *Cricket*, *Ering*, *EigenWorms*, *Epilepsy* based on similarities: *Hilbert-Schmidt*, *Operator*, *Martin*, *SOT*, *GOT* and *SGOT* (ours). Each point represents a dataset sample (a time series) whose color corresponds to its class. The Martin similarity is ill-defined on *EigenWorms* and *Epilepsy* datasets; thus, the corresponding T-SNEs are missing.

G.3 GAUSSIAN KERNEL: RESULTS

Experimental setup. The experimental protocol follows the same procedure as for the linear kernel described in appendix G.1, with the following modifications:

1. **Estimating transfer operators with Gaussian kernels:** The linear kernel is replaced by the Gaussian kernel, $\kappa(x, y) \triangleq \exp(-\|x - y\|^2/\sigma^2)$, such that for each datasets the kernel's scale parameter σ is set according to the heuristic:

$$\sigma = \sqrt{(\text{number of dimension}) * (\text{context window length})}$$

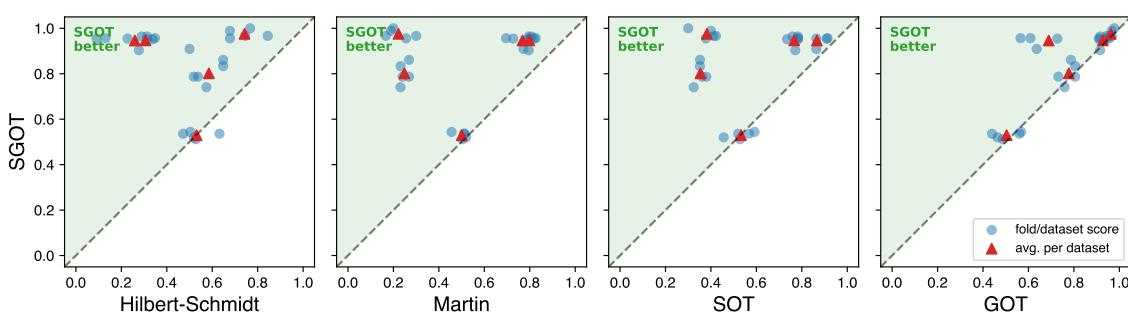


Figure 9: Classification performance (accuracy) comparison between SGOT and competitive metrics for transfer operators estimated with Gaussian kernels. Each point represents a dataset accuracy, with SGOT on the y-axis and the competing metrics on the x-axis.

2. **Experiment scalability.** Due to the computational cost of estimating transfer operators in infinite-dimensional kernel spaces, experiments are restricted to the five smallest datasets: **BASICMOTIONS**, **ERING**, **EPILEPSY**, **FINGERMOVEMENTS**, and **NATOPS**. Additionally, the nested Monte-Carlo cross-validation is limited to 5 iterations, and the Operator metric is omitted.

Table 7: Classification accuracy scores. The transfer operators are estimated with the infinite dimensional Gaussian kernel. Datasets on rows and similarities on columns. **Best** and second best performers are highlighted. Accuracy scores are denoted: $\langle \text{mean} \rangle \pm \langle \text{std} \rangle$.

	Hilbert-Schmidt	Martin	SOT	GOT	SGOT
BasicMotions	0.26 ± 0.17	0.77 ± 0.06	0.87 ± 0.05	0.69 ± 0.14	0.95 ± 0.02
ERing	0.74 ± 0.07	0.22 ± 0.05	0.38 ± 0.05	<u>0.96 ± 0.01</u>	0.98 ± 0.02
Epilepsy	0.31 ± 0.02	0.8 ± 0.01	0.77 ± 0.02	<u>0.93 ± 0.02</u>	0.95 ± 0.02
FingerMovements	0.53 ± 0.06	0.5 ± 0.03	0.53 ± 0.05	0.5 ± 0.06	0.53 ± 0.01
NATOPS	0.59 ± 0.06	0.25 ± 0.02	0.35 ± 0.02	<u>0.78 ± 0.03</u>	0.8 ± 0.05
avg. rank (lower is better)	3.74 ± 1.27	4.02 ± 0.98	3.28 ± 1.15	<u>2.48 ± 1.19</u>	1.48 ± 0.7

Results. Table 7 reports the average accuracy over the 5-iterations of Monte-Carlo cross-validation for each dataset/metric pair. Figure 9 summarizes the comparative performance of our metric, SGOT, against several competitive alternatives: Hilbert-Schmidt, Martin, SOT, and GOT. Finally, Figure 10 presents the critical difference diagram obtained using a significance level of 0.05; the null hypothesis was rejected using Friedman’s test, and pairwise comparisons were performed with the Nemenyi post-hoc test.

As in the linear-kernel setting, SGOT achieves the best performance across all five datasets, followed by GOT, which compares eigen-subspaces via optimal transport. This ranking is further supported by the critical difference diagram, which shows that SGOT statistically outperforms the other metrics. Moreover, in comparison to the linear kernel case, when transfer operators are estimated in an infinite-dimensional kernel space, classification accuracy increases with SGOT but decreases with the Hilbert-Schmidt metric. This highlights the limitations of the Hilbert-Schmidt metric for high-dimensional representations, in contrast to the greater robustness exhibited by SGOT.

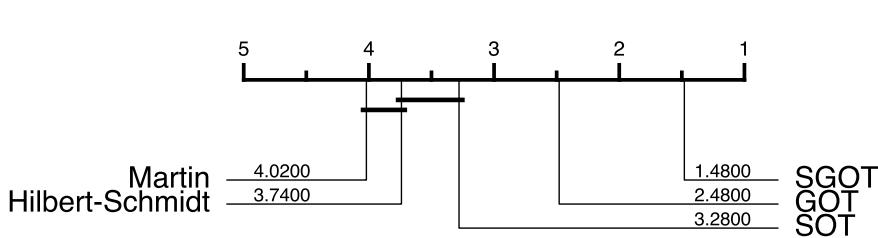


Figure 10: Critical diagram difference between metrics when transfer operators are estimated with the infinite dimensional Gaussian kernel. The classifiers are K-NN defined with the metrics: *Hilbert-Schmidt*, *Martin*, *SOT*, *GOT*, and *SGOT* (ours). Computed from the performance of all 5 iterations of the Monte Carlo cross-validation. The test significance level is set to 0.05, the null hypothesis is rejected with Friedman’s test, and the critical differences are computed using Nemenyi post-hoc test.

1670 G.4 DEEP-LEARNING EMBEDDINGS: RESULTS.

1675 **Experimental setup.** The experimental protocol follows the same procedure as for the linear kernel de-
 1676 scribed in appendix G.1, with the following modification:

- 1683 • **Transfer operator estimation using kernels defined by learned deep features:** The linear kernel
 1684 is replaced by a kernel of the form $\kappa(x, y) = \langle \phi_\theta(x), \phi_\theta(y) \rangle$ where $\phi_\theta : \mathcal{X} \mapsto \mathbb{R}^d$ is an embedding
 1685 map parameterized by a neural network. The network architecture is a Multi-Layer Perceptron
 1686 (MLP) with two hidden layers of dimension 128, a 32-dimensional output layer, and LeakyReLU
 1687 activations with negative slope 0.01. For each dataset, after data augmentation using the context
 1688 window, an embedding map is trained on the training set by following the strategy of (Kostic
 1689 et al., 2024b) which is designed to learn invariant representations of time-homogeneous stochastic
 1690 dynamical systems. Gradient descent is run for 4000 iterations; at each iteration, a window of
 1691 length $\min(200, n.\text{samples}/2)$ is randomly extracted from a time series sampled uniformly from
 the training dataset.

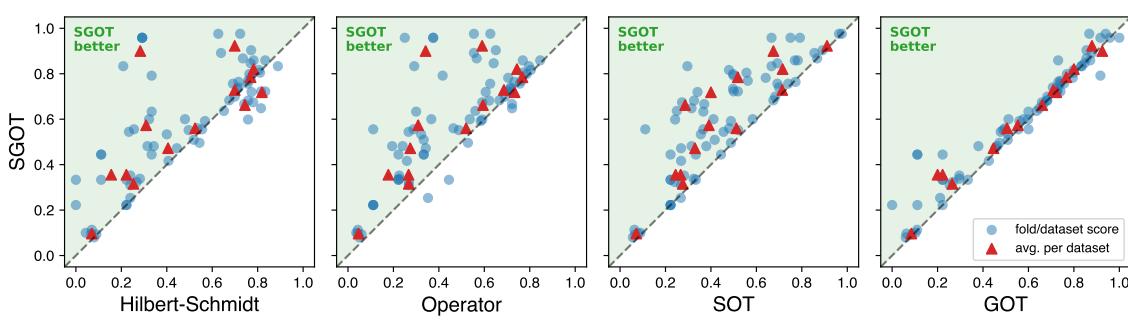


Figure 11: Classification performance (accuracy) comparison between SGOT and competitive metrics for transfer operators estimated with kernels defined by deep-functions. Each point represents a dataset accuracy, with SGOT on the y-axis and the competing metrics on the x-axis.

Table 8: Classification accuracy scores. The transfer operators are estimated with a finite kernel defined with deep-functions. Datasets on rows and similarities on columns. **Best** and second best performers are highlighted. Accuracy scores are denoted: $\langle \text{mean} \rangle \pm \langle \text{std} \rangle$.

	Hilbert-Schmidt	Operator	Martin	SOT	GOT	SGOT
AtrialFibrillation	0.22 ± 0.21	0.18 ± 0.1	0.24 ± 0.14	0.24 ± 0.09	0.2 ± 0.21	0.36 ± 0.14
BasicMotions	0.28 ± 0.05	0.34 ± 0.07	0.81 ± 0.06	0.68 ± 0.11	0.92 ± 0.06	0.9 ± 0.08
Cricket	0.82 ± 0.05	0.73 ± 0.04	\emptyset	0.4 ± 0.1	0.72 ± 0.07	0.72 ± 0.07
ERing	0.31 ± 0.07	0.31 ± 0.04	\emptyset	0.39 ± 0.04	0.55 ± 0.06	0.57 ± 0.04
EigenWorms	0.78 ± 0.03	0.74 ± 0.08	\emptyset	0.72 ± 0.06	0.8 ± 0.06	0.82 ± 0.05
Epilepsy	0.7 ± 0.06	0.59 ± 0.05	\emptyset	0.91 ± 0.06	0.88 ± 0.04	0.92 ± 0.05
FingerMovements	0.52 ± 0.04	0.52 ± 0.05	0.48 ± 0.05	0.51 ± 0.04	0.51 ± 0.03	0.56 ± 0.04
HandMovementDirection	0.25 ± 0.02	0.27 ± 0.05	0.23 ± 0.05	0.28 ± 0.03	0.26 ± 0.04	0.32 ± 0.04
Handwriting	0.07 ± 0.02	0.05 ± 0.01	\emptyset	0.07 ± 0.01	0.08 ± 0.02	0.1 ± 0.01
Heartbeat	0.7 ± 0.02	0.69 ± 0.04	0.72 ± 0.04	0.71 ± 0.04	0.71 ± 0.03	0.73 ± 0.04
NATOPS	0.41 ± 0.08	0.27 ± 0.06	0.3 ± 0.06	0.33 ± 0.07	0.45 ± 0.05	0.47 ± 0.03
SelfRegulationSCP1	0.77 ± 0.04	0.77 ± 0.03	0.51 ± 0.03	0.52 ± 0.04	0.77 ± 0.03	0.78 ± 0.03
StandWalkJump	0.16 ± 0.13	0.27 ± 0.13	\emptyset	0.27 ± 0.1	0.22 ± 0.08	0.36 ± 0.09
UWaveGestureLibrary	0.74 ± 0.05	0.59 ± 0.02	\emptyset	0.29 ± 0.04	0.66 ± 0.05	0.66 ± 0.05
avg. rank (lower is better)	3.33 ± 1.56	4.14 ± 1.27	5.06 ± 1.48	3.84 ± 1.34	2.94 ± 1.33	1.71 ± 0.77

Results. Table 8 reports the average accuracy over the 5-iterations of Monte-Carlo cross-validation for each dataset/metric pair. Figure 11 summarizes the comparative performance of our metric, SGOT, against several competitive alternatives: Hilbert-Schmidt, Operator, SOT, and GOT. Finally, Figure 12 presents the critical difference diagram obtained using a significance level of 0.05; the null hypothesis was rejected using Friedman’s test, and pairwise comparisons were performed with the Nemenyi post-hoc test.

When transfer operators are estimated using kernels built from learned deep features, the performance of all metrics decreases compared to the linear-kernel setting. This drop is attributable to the limited size of the datasets, which constrains the training of sufficiently representative deep features, a well-documented issue in operator embedding learning Lusch et al. (2018). Nevertheless, SGOT still achieves the highest performance on 11 out of the 14 datasets and ranks second or third on the remaining ones. This advantage is further confirmed by the critical-difference diagram, which indicates that SGOT statistically outperforms the competing metrics.

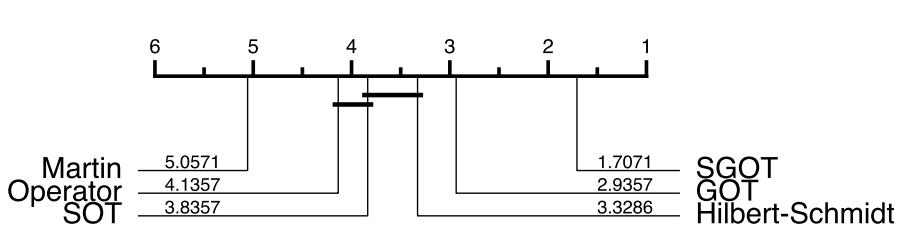


Figure 12: Critical diagram difference between metrics when transfer operators are estimated with a finite dimensional kernel defined with deep-functions. The classifiers are K-NN defined with the metrics: *Hilbert-Schmidt*, *Martin*, *SOT*, *GOT*, and *SGOT* (ours). Computed from the performance of all 5 iterations of the Monte Carlo cross-validation. The test significance level is set to 0.05, the null hypothesis is rejected with Friedman’s test, and the critical differences are computed using Nemenyi post-hoc test.

1755 G.5 SENSITIVITY ANALYSIS TO THE COST WEIGHTING PARAMETER

1756 **Goal.** We evaluate how the weighting parameter $\eta \in (0, 1)$ affects the classification performances. This
 1757 parameter controls the trade-off between the eigenvalue term and the eigensubspace term in the cost of the
 1758 Wasserstein SGOT metric defined in Theorem 1.

1760 **Experimental setup.** The experimental protocol follows the procedure described in appendix G.1. Transfer
 1761 operators are estimated using linear kernels, and classification scores are computed for SGOT metrics
 1762 with $\eta \in \{0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99\}$. All results are obtained using a 5-
 1763 iteration Monte-Carlo cross-validation.

1765 **Results.** Figure 13 reports the mean classification accuracy for each value of η . The vertical dashed line
 1766 marks the heuristic value $\tilde{\eta} = (1 + f_c/\sqrt{2})^{-1} = (1 + f_{\text{samp}}/(2\sqrt{2}))^{-1}$, where $f_c = f_{\text{samp}}/2$ is the Nyquist
 1767 frequency. This value corresponds to equal weighting of the eigenvalue and eigensubspace terms the cost of
 1768 the Wasserstein SGOT metric (see Theorem 1).

1769 Overall, Figure 13 shows that SGOT’s performance varies smoothly with η , with optimal values typically
 1770 favoring stronger emphasis on the eigensubspace cost. This trend suggests that the search range for η can
 1771 be substantially reduced in practice. In particular, the heuristic $\tilde{\eta}$ consistently lies near regions of high
 1772 accuracy, and optimal values generally fall within $(0, \tilde{\eta})$ across datasets. Consequently, $\tilde{\eta}$ provides both a
 1773 practical initial choice and a principled bound for restricting the grid-search budget.

1775 H BARYCENTER OF DYNAMICAL SYSTEMS

1777 H.1 INTERPOLATION BETWEEN 1D DYNAMICAL SYSTEMS

1779 **Experimental settings.** In this experiment, we compare the interpolation between dynamical systems
 1780 through weighted Fréchet barycenters of their Koopman operators, estimated with a linear kernel, for dif-
 1781 ferent metrics. The two systems are linear oscillatory systems, each being the sum of two simple harmonic
 1782 oscillators with different frequencies and decay rates, and additive Gaussian noise. The first system $\mathbf{T}^{(0)}$
 1783 combines a convergent low frequency oscillator ($\omega = 1.7\text{Hz}$, $\rho = -0.2$, amplitude=1.0) with a divergent
 1784 high frequency oscillator ($\omega = 4.7\text{Hz}$, $\rho = 0.2$, amplitude=0.2). The second system $\mathbf{T}^{(1)}$ is reversed; it
 1785 combines a divergent low frequency oscillator ($\omega = 0.7\text{Hz}$, $\rho = 0.2$, amplitude=1) with a convergent high

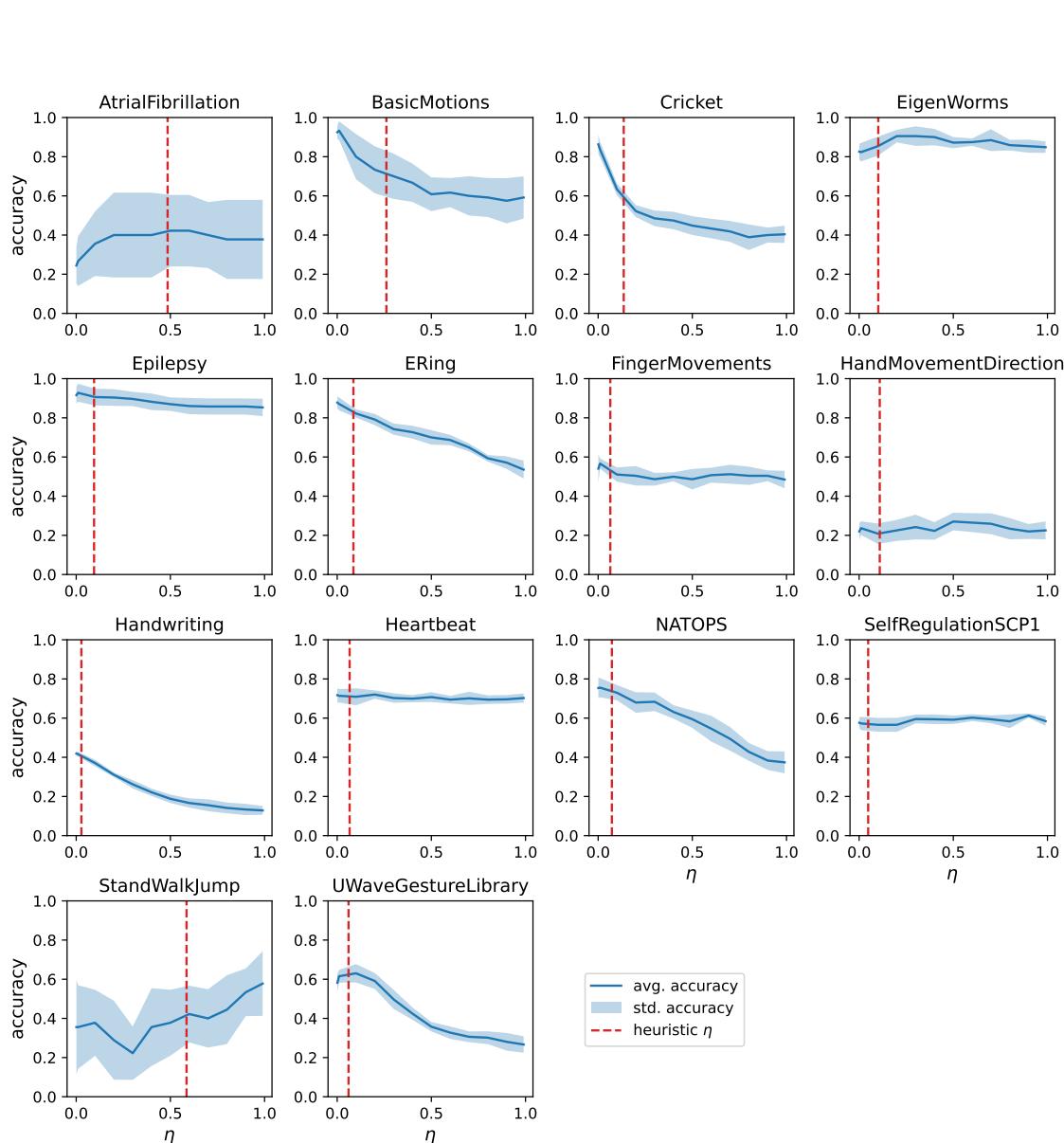


Figure 13: Sensitivity of SGOT's classification accuracy to the parameter η across all datasets. The dark blue curve shows the mean accuracy over the 5-iteration Monte-Carlo cross-validation, and the light blue band indicates one standard deviation. The vertical dotted red lines mark the heuristic values $\tilde{\eta} = (1 + f_{\text{samp}}/(2\sqrt{2}))^{-1}$ which give equal weight to the eigenvalue and eigensubspace cost terms in the SGOT definition (see Theorem 1).

frequency oscillator ($\omega = 11.3\text{Hz}$, $\rho = -0.2$, amplitude=1). Both systems are noisy with a Gaussian noise with variance $\sigma^2 = 1e - 4$. The systems Koopman operators are estimated with the RRR methods (Kostic et al., 2022) from trajectories of length 5000 samples at 800Hz. RRR estimator is set to estimate a rank 4 operator with context window of 400 samples, a linear kernel, and Tikhonov regularization of $1e - 8$. The interpolation is controlled by a ratio parameter γ going from 0 to 1 in 0.1 steps. At each interpolation step, the weights in the Fréchet mean (see equation 7) are $(1 - \gamma, \gamma)$. We compare (a) the Hilbert-Schmidt metric without spectral decomposition constraints given by $\mathbf{T}_{\text{bar}} = (1 - \gamma)\mathbf{T}^{(0)} + \gamma\mathbf{T}^{(1)}$, (b) the Hilbert-Schmidt metric with spectral decomposition constraints, and (c) our proposed metric SGOT. For (b) and (c), the barycentric operators are estimated with the proposed optimization scheme described in appendix D. In both cases, the initialization of the barycenter corresponds to the average of eigenvalues and eigenfunctions. For the Hilbert-Schmidt (b), the barycenter optimizer is set with a $3e - 5$ learning rate, a maximal number of iterations of 2000, with 1 gradient descent per coordinate at each iteration, the stopping criteria corresponds to a consecutive metric error lower than $1e - 6$. For the SGOT (c), $\eta = 0.9$, and the barycenter optimizer is set with a $1e - 2$ learning rate, a maximal number of iterations of 200, with 10 gradient descent per coordinate at each iteration, the stopping criteria corresponds to a consecutive metric error lower than $1e - 6$. Finally, for displaying the predicted signals from the interpolated barycenter in Figure 4, all predictions started with the same initialization set, being the first 400 samples of a linear system that is the sum of 4 harmonic oscillators of the systems to interpolate.

Additional results. For all constrained Hilbert-Schmidt (b) and SGOT (c) interpolated barycenters, we kept track of the decay rate and frequency of the two associated harmonic oscillators, the loss values, and the computation time. Figure 14 displays the normalized losses decrease per gradient descent step for each metric and interpolation step. The representation is in gradient descent step as the number of iterations and gradient descent step per cycle differ from metric to metric. In Figure 15 we display the decays and frequencies of the interpolated barycenters. In particular, Figure 14 shows that the barycenter algorithm has converged for any metric and interpolation step. However, Figure 15 shows that constrained Hilbert-barycenter (b) remains stuck in a local minima close to the initialization. In contrast, the SGOT barycenter perfectly (linearly) interpolates the decay and frequency between the source and target systems. Furthermore, the average computation time per gradient descent step is 13.11ms for the constrained Hilbert-Schmidt, while being 2.29ms for our metric SGOT, meaning that the barycenter algorithm is approximately 6x faster with the SGOT metric compared to the Hilbert-Schmidt.

H.2 FLUID DYNAMIC INTERPOLATION

Experimental settings. We aim to compute the barycenter of two fluid dynamics systems. To that end, we consider the *Flow past a bluff object* dataset (Tali et al., 2025), which gathers trajectories of time-varying 2D velocity and pressure fields of incompressible Navier-Stokes fluids flowing around static objects. We select two trajectories, one with a cylinder object (Huggingface dataset file: harmonic/93) and the other with a triangular object (Huggingface dataset file: skeleton/48). For each trajectory, we only kept the velocity field along the flow direction, leading to trajectories containing 242 samples of 1024x256 grids, which we down-sampled to grids with a 256x64 resolution. We estimate a Koopman operator with a linear kernel using the RRR method from each trajectory sampled at 100Hz with a context window of 1, and a Tikhonov regularization of 1. The operators are restricted to the fourth leading eigenvalues and eigenfunctions. We compute the SGOT barycenter with the optimization scheme described in Appendix D with an initialization being the average of eigenvalues and eigenfunctions. For the SGOT (c), $\eta = 0.01$, and the barycenter optimizer is set with a $1e - 4$ learning rate, a maximal number of iterations of 100, with 10 gradient descent per coordinate at each iteration, the stopping criteria corresponds to a consecutive metric error lower than $1e - 6$.

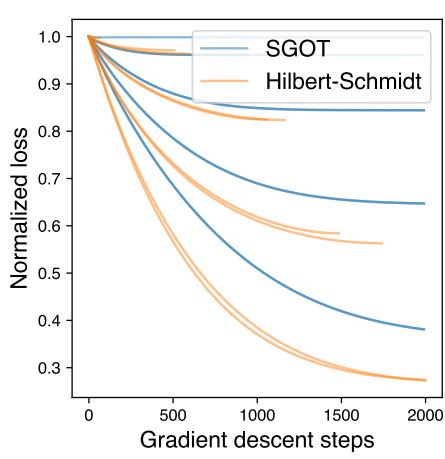


Figure 14: Normalized loss value per gradient descent step for the constrained Hilbert-Schmidt (b) and SGOT (c) barycenter for any interpolation step.

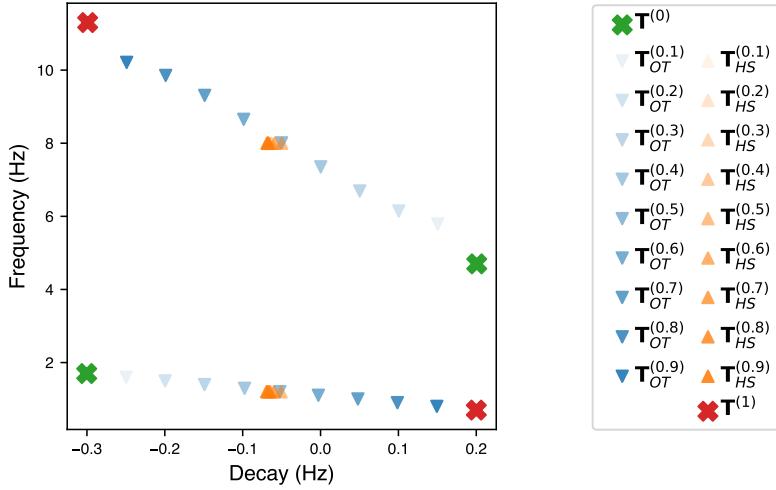


Figure 15: Decay rates and frequencies of the two harmonic oscillators associated with the interpolated barycenters for the constrained Hilbert-Schmidt (b) and the SGOT (c) metrics. The source system harmonic oscillator is in red, and the target system harmonic oscillator is in green.