
DiWA: Diffusion Policy Adaptation with
World Models

Akshay L Chandra1*, Iman Nematollahi1*, Chenguang Huang2, Tim Welschehold1, Abhinav Valada1

1University of Freiburg 2University of Technology Nuremberg *Equal contribution

Abstract—Fine-tuning diffusion policies with reinforcement
learning (RL) is challenging due to the long denoising sequence,
which impedes reward propagation, and the high sample require-
ments of standard RL. While prior work frames the denoising
process as a Markov Decision Process to enable policy updates,
it still relies heavily on costly environment interactions. We
propose DiWA, a novel framework that fine-tunes diffusion-based
robotic skills entirely offline using a world model and RL. Unlike
model-free methods that require extensive online interaction,
DiWA leverages a world model trained on just a few hours
of teleoperated play, enabling efficient and safe adaptation. On
the CALVIN benchmark, DiWA improves performance across
eight tasks using only offline adaptation, while baselines rely on
hundreds of thousands of real-world interaction steps. To our
knowledge, this is the first method to fine-tune diffusion policies
for real-world robotic skills using an offline world model.

I. INTRODUCTION

Diffusion models have proven effective for robot policy
learning, capturing complex multi-modal behaviors through
conditional denoising [1, 2]. However, when trained solely via
imitation learning, they inherit its core limitations—namely
poor generalization under distribution shift and reliance on
imperfect demonstrations [3]. Reinforcement learning (RL)
addresses these shortcomings by enabling agents to learn from
trial and error, improving robustness and generalization [4, 5,
6, 7, 8]. This fine-tuning paradigm, successful in language
and vision [9, 10, 11, 12], is particularly appealing in robotics.
However, fine-tuning in robotics is hampered by high costs,
safety risks, and sample inefficiency of real-world interactions.

Diffusion Policy Policy Optimization (DPPO) [13] adapts
diffusion models using Proximal Policy Optimization [14],
achieving strong performance in simulation. Yet, it demands
millions of environment steps and access to ground-truth
simulator states, limiting real-world applicability due to sim-to-
real gaps [15] and lack of low-level observations. In contrast,
humans leverage internal world models for efficient adaptation.
Inspired by this, learned world models [16, 17, 18] offer
an appealing alternative to simulators. They enable policy
improvement through imagined rollouts, bypassing costly
online trials. Recent work [19] shows that world model-trained
policies can transfer to the real world without further physical
fine-tuning.

We present DiWA, the first framework to fine-tune diffusion
policies fully offline using a learned world model. DiWA treats
the world model as a data-driven simulator, generating latent-
space rollouts to fine-tune pre-trained diffusion policies via on-
policy RL. This integration of diffusion expressiveness, policy
gradient stability, and world model imagination enables safe,

efficient robot skill adaptation. In summary, our contributions
are threefold:

• Offline Diffusion Fine-Tuning via World Models: We
introduce DiWA, the first method to fine-tune diffusion
policies offline using a learned world model, defining a
Dream Diffusion MDP with no real/simulated interaction.

• Sample-Efficient Adaptation: Trained on unstructured
play data, DiWA refines policies via imagined rollouts,
achieving superior sample efficiency on CALVIN.

• Zero-Shot Real-World Deployment: We show that
diffusion policies fine-tuned entirely within a world model
can be deployed on real robots with no additional physical
interaction.

II. PROBLEM FORMULATION

We investigate the problem of offline fine-tuning of diffusion
policies for robotic skill adaptation. We assume access to two
types of offline datasets: a small set of expert demonstrations
Dexp that are specific to the target skill, and a larger task-
agnostic dataset of unstructured play Dplay. We model the real
environment as a partially observable Markov Decision Process
Menv = (S,A, P,R, γ), where S is the state-observation space,
A the continuous action space, P (st+1 | st, at) the transition
dynamics, R(st, at) the reward function, and γ ∈ (0, 1) the
discount factor. A diffusion policy πθ(at | st) generates
actions by first sampling Gaussian noise āKt ∼ N (0, I), then
progressively denoising it through learned transitions:

āk−1
t ∼ πθ(ā

k−1
t | st, ākt), for k = K,K − 1, . . . , 1, (1)

where the final output ā0t is taken as the environment action
at. The diffusion policy πθ is first pre-trained via behavior
cloning on Dexp, imitating expert actions through denoising.
However, behavior cloning is limited by distribution shift and
the quality of demonstrations. To address this, we fine-tune the
pre-trained policy to maximize expected cumulative reward
in the real environment:

θ⋆ = argmax
θ

Eτ∼πθ

[∞∑
t=0

γtR(st, at)

]
. (2)

Direct fine-tuning in Menv is impractical due to high sample
complexity and real-world safety concerns. Instead, we train
a latent dynamics model on Dplay and define a world model
MDP Mwm = (Z,A, Pϕ, Rψ, γ), where Z is the learned
latent space. Fine-tuning is then performed entirely within
Mwm, allowing for efficient and safe offline policy adaptation
through imagined rollouts.

3. Reward Estimation

2. Diffusion Policy Training1. World Model Training

Robot Play Data

Expert Demos

State Latent State State

State

Action Transition Model Latent State

DecoderEncoder

State
Latent State

4. Dream Diffusion Markov Decision Process

Diffusion MDP

Transition Model

...

Latent State

Diffusion MDP

...

Transition Model Latent State

Diffusion MDP

...

...

Encoder

Success Verifier Training

Encoder

Diffusion Policy

conditioned on Latent

Denoised

Action

Latent State Reward

Encode State into Latent

Encoder

Reward & Update

...

Fig. 1: DiWA framework: (1) A world model is trained on robot play data to learn latent dynamics. (2) A diffusion policy is pre-trained on expert
demonstrations using latent representations. (3) A success classifier is trained on expert rollouts to estimate task rewards. (4) The diffusion policy is fine-tuned
entirely offline via imagined rollouts within the Dream Diffusion MDP, using policy gradients and classifier-based rewards.

III. OFFLINE ADAPTATION OF DIFFUSION POLICY

In this section, we introduce DiWA. The training process
consists of four phases: (1) learning a world model from an
unlabeled play dataset Dplay, (2) pretraining a diffusion policy
to imitate expert actions from latent representations of Dexp, (3)
training a reward classifier on those latents to equip the world
model with a task-specific reward, and (4) fine-tuning the policy
entirely within the latent space of the world model. At inference
time, the fine-tuned policy is deployed in the real environment
without any additional adaptation. Figure 1 provides an
overview of the approach. For details on hyperparameters and
architecture choices, please refer to the appendix.

A. World Model Learning

We train a latent dynamics model on the unlabeled play
dataset Dplay to enable offline policy adaptation. The learned
world model defines a latent-space MDP Mwm = (Z,A, Pϕ),
where Z is the learned latent space and Pϕ denotes the
transition dynamics. Following prior work [18, 19], we use
a recurrent state-space model architecture with an encoder,
dynamics model, and decoder. At each timestep t, the model
maintains a deterministic recurrent state ht updated by a
transition function fϕ, and samples a stochastic latent variable
zt from a posterior conditioned on the current observation xt:

Recurrent state: ht = fϕ(ŝt−1, at−1)

Representation model: zt ∼ qϕ(zt | ht, xt)
Dynamics predictor: ẑt ∼ pϕ(ẑt | ht)
Decoder: x̂t ∼ pϕ(x̂t | ŝt),

(3)

where the model state is ŝt = (ht, zt). The posterior qϕ and
prior pϕ are modeled as categorical distributions, optimized
using straight-through gradient estimators [20]. The model
parameters ϕ are trained by minimizing the negative variational
evidence lower bound (ELBO). After training, the world model
generates imagined trajectories by rolling out latent states
from the learned prior ẑt ∼ pϕ(ẑt | ht) without additional
observations.

B. Pre-training Diffusion Policies

We pre-train the diffusion policy via behavior cloning on
expert demonstrations from Dexp. Observations are encoded
into latents using the world model, and the policy learns to itera-
tively denoise random noise into expert actions. This maximizes
the likelihood of demonstrated behavior and provides the initial-
ization for offline fine-tuning within the Dream Diffusion MDP.

C. Latent Reward Estimation from Expert Demonstrations

The world model, trained on task-agnostic play data, lacks a
reward signal aligned with the target skill. To address this, we
train a binary classifier Cψ(zt) on latent states extracted from
expert demonstrations Dexp. Each observation st is encoded into
a latent zt using the world model encoder, and the classifier is
trained to predict task success by treating latents from annotated
successful frames as positives. During imagined rollouts in
Mwm, rewards are computed as Rψ(zt, at) := Cψ(zt+1),
where Cψ(zt+1) ∈ [0, 1] reflects the probability of success.
This results in an augmented MDP Mwm = (Z,A, Pϕ,Rψ, γ)
that supports fully offline fine-tuning in imagined trajectories.

D. Dream Diffusion MDP

As observed in prior work [13, 21, 22], a diffusion denoising
process can be represented as a multi-step MDP where the
likelihood at each step is accessible. We extend this formalism
by embedding the diffusion denoising process into the world
model MDP, forming the Dream Diffusion MDP MDD. Let
t̄(t, k) = tK+(K−k) index the denoising steps across world
model timesteps t and denoising steps k, where K is the total
number of denoising steps and k decreases lexicographically
from K to 1. At index t̄(t, k), the Dream Diffusion MDP
defines the state, action, and reward as

s̄t̄(t,k) = (zt, ā
k
t), āt̄(t,k) = āk−1

t ,

R̄t̄(t,k) =

{
Rψ(zt, ā

0
t), if k = 1,

0, otherwise.

(4)

Here, ākt denotes the intermediate action at denoising step
k. The transition dynamics are given by

P̄ (s̄t̄+1 | s̄t̄, āt̄) =

{
δ(zt, ā

k−1
t), if k > 1,

Pϕ(zt+1 | zt, ā0t)⊗N (0, I), if k = 1,

where δ(·) denotes a Dirac distribution. At denoising steps
k > 1, the diffusion policy iteratively denoises ākt into āk−1

t

while remaining at latent state zt. When k = 1, the final action
ā0t is produced, the world model transitions to zt+1, and a
new diffusion process begins from fresh noise. Following
Eq. (1), the policy at each inner step of the Dream Diffusion
MDP is parameterized as a Gaussian:

π̄θ(ā
k−1
t | zt, ākt) = N

(
āk−1
t ;µθ(zt, ā

k
t , k), σ

2
kI
)

(5)

where µθ is a neural network output. Since each denoising
step defines a Gaussian likelihood, the Dream Diffusion MDP
admits a well-defined policy gradient objective. Specifically,
we optimize

∇θJ̄ (π̄θ) = Eπ̄θ,P̄

∑
t̄≥0

∇θ log π̄θ(āt̄ | s̄t̄) r̄(s̄t̄, āt̄)

 (6)

where r̄(s̄t̄, āt̄) :=
∑
τ≥t̄ γ

τ R̄(s̄τ , āτ) denotes the return. This
objective corresponds to the expected cumulative reward over
denoising steps and enables gradient-based fine-tuning of
diffusion policies through rollouts in the imagined latent space.

E. Fine-tuning within Dream Diffusion MDP

We fine-tune the diffusion policy in the Dream Diffusion
MDP MDD using Proximal Policy Optimization (PPO) [14].
Inspired by the two-layer structure of DPPO [13], we adapt PPO
to operate entirely within imagined rollouts, alternating between
denoising steps and latent transitions. The PPO objective is
defined as

LPPO = Eπ̄θold
(s̄,ā)

[
min

(
ρθ(s̄, ā)Â(s̄, ā),

clip(ρθ(s̄, ā), 1− ϵ, 1 + ϵ)Â(s̄, ā)
)] (7)

where ρθ is the importance sampling ratio between the new
and old policies. The clipping threshold ϵ constrains the policy
update to ensure stability. We estimate the advantage at the
denoising step k as

Â(s̄t̄(t,k), āt̄(t,k)) = γkdenoise

(
r̄(s̄t̄, āt̄)− V̂ (zt)

)
(8)

where γdenoise ∈ (0, 1) downweights the contribution of earlier,
noisier denoising steps, and V̂ estimates the value from the
latent state zt.

To enhance stability and ensure reliable transfer to the real
environment, we augment the fine-tuning objective with a
behavior cloning (BC) regularization term. Although world
models trained on large play datasets capture environment
dynamics well, they may still contain subtle errors that the RL
agent can exploit. This results in policies that perform well in
imagination but fail in the real environment [23]. To address

this, we constrain the updated policy to remain close to the
pre-trained diffusion policy [24]. The resulting objective is

Lθ = LPPO − αBC Eπ̄θold

[
K∑
k=1

log πθpre(ā
k−1
t | zt, ākt)

]
(9)

where πθpre is the frozen pre-trained policy and αBC controls
the strength of the regularization.

IV. EXPERIMENTAL EVALUATION

We evaluate DiWA for fine-tuning diffusion policies in both
simulation and the real-world. Our goals are to: (i) assess
whether DiWA can effectively fine-tune policies entirely offline
and achieve high task success without additional environment
interaction; (ii) analyze the impact of world model fidelity and
reward classifier accuracy on adaptation performance; and (iii)
evaluate the approach’s ability to scale to real-world robotic
tasks and transfer zero-shot from imagination to physical
execution.

A. Simulation Results

We evaluate our method in environment D of the CALVIN
simulator [25], which features a 7-DoF Franka Emika Panda
robot performing diverse tabletop manipulation tasks. CALVIN
offers a teleoperated play dataset that is both broad in coverage
and easy to collect, making it ideal for training task-agnostic
world models. We train the world model on six hours of play
data (∼500,000 transitions) and use a small annotated subset
(50 demonstrations per skill) to pre-train individual diffusion
policies. Evaluation is conducted on eight tasks from the
benchmark.

Evaluation Protocol: We compare DiWA to Diffusion
Policy Policy Optimization (DPPO) [13], which fine-tunes
diffusion policies via PPO by framing the denoising process as
a multi-step MDP. Unlike DPPO, which requires direct interac-
tion with the environment, DiWA performs fine-tuning entirely
offline using imagined rollouts in the latent space of a learned
world model. For a fair comparison, both methods start from
the same pre-trained diffusion policies (one per skill) and use
the same latent input: DPPO encodes visual observations with
the same encoder used in DiWA (results with raw inputs are in
the appendix). A key distinction is reward supervision—DPPO
uses ground-truth rewards from the environment, while DiWA

Task Base Offline Fine-Tuning Online Fine-Tuning
DiWA (Ours) (DPPO) [13]

Success Success Env. Steps to Match DiWA

open-drawer 57.8 ± 3.9 74.4 ± 1.9 134k ± 27k
close-drawer 59.1 ± 5.1 92.0 ± 2.0 346k ± 28k
move-slider-left 62.2 ± 0.6 83.3 ± 1.8 271k ± 29k
move-slider-right 62.6 ± 3.6 82.8 ± 3.5 250k ± 9k
turn-on-lightbulb 60.6 ± 3.0 91.9 ± 1.8 303k ± 16k
turn-off-lightbulb 35.6 ± 2.0 77.0 ± 2.0 327k ± 14k
turn-on-LED 48.4 ± 3.7 86.2 ± 3.5 495k ± 46k
turn-off-LED 55.3 ± 4.8 82.3 ± 6.5 277k ± 32k

Total Physical Interactions 0 ∼2.5M

TABLE I: DiWA fine-tunes diffusion policies offline using imagined rollouts
in a learned world model. DPPO requires hundreds of thousands of online
interactions to reach similar performance. Results are averaged over three
seeds.

relies on a learned classifier trained from a small number of
demonstrations, making the task more challenging. We report
DiWA’s performance after 5 million offline fine-tuning steps
and compare it to the number of environment interactions
DPPO needs to reach the same performance.

Table I reports the average success rates of pre-trained
diffusion policies and their fine-tuned counterparts, averaged
over three random seeds. DiWA successfully fine-tunes all
evaluated robotic manipulation skills entirely offline, without
requiring any additional physical interaction. In contrast, the
DPPO baseline typically requires several hundred thousand
environment interactions to reach a similar level of performance.
Importantly, these interactions involve online exploration,
which is often unsafe or impractical in real-world robotic
settings. Overall, these results highlight that DiWA enables
effective skill adaptation using only offline data, offering a safer
and more sample-efficient alternative to model-free approaches.

To evaluate the impact of model components on fine-tuning,
we compare three variants: (i) DiWA (Vision WM), trained
solely on visual inputs; (ii) DiWA (Hybrid WM + Reward
Classifier), which incorporates scene state during training but
still uses a learned reward classifier; and (iii) DiWA (Hybrid
WM + Latent Decoder), which decodes latents into scene
state to compute rewards directly. Figure 2 summarizes the
differences. Comparing (i) and (ii), hybrid world models yield
faster, more stable fine-tuning, likely due to improved latent
dynamics from scene state supervision. Comparing (ii) and (iii),
decoding-based rewards further boost performance by enabling
more accurate reward estimation. While we use DiWA (Vision
WM) as our main variant for real-world compatibility, these
results highlight the benefits of richer world models and more
precise rewards for fine-tuning.

B. Real-World Results

To evaluate DiWA on real-world robotic skills, we conducted
experiments with a Franka Emika Panda robot operating in
a tabletop environment containing a cabinet and drawer. We
collected a play dataset comprising four hours of teleoperated
interaction (∼450,000 transitions) using a VR controller to
guide the robot. RGB observations were recorded from both a
static and a gripper-mounted camera. We evaluated the model
on three representative skills: opening the drawer, closing the

Fig. 2: Comparison of three DiWA variants on simulated fine-tuning tasks.
Blue uses only visual inputs, while green and red both incorporate scene state
supervision. Red further decodes rewards from latents instead of relying on a
learned classifier. Results demonstrate that more expressive world models and
more accurate reward signals lead to improved offline fine-tuning performance.

Fig. 3: Success rates before and after offline fine-tuning with DiWA, averaged
over 20 rollouts and three seeds. Values correspond to checkpoints saved
during fine-tuning. While pre-trained diffusion policies show limited initial
performance, DiWA enables significant improvement through imagination-
based reinforcement learning without physical interaction.

drawer, and pushing the cabinet slider to the right. To pre-
train the diffusion policies and reward classifiers, we collected
50 expert demonstrations per skill. We trained a generative
world model on the offline play dataset and found that it
was capable of accurate long-horizon predictions in held-
out trajectories. Qualitative rollout examples are provided
in the appendix. We then used the trained world model to
encode expert demonstrations into latent representations, which
were used to pre-train separate diffusion policies and reward
classifiers for each skill. Finally, we fine-tuned the pre-trained
policies for ∼2 million imagination steps entirely within the
latent space of the learned world model.

To evaluate performance, we executed 20 rollouts per skill
using fixed initial scene configurations and robot starting
positions, both with the pre-trained and fine-tuned policies.
Success rates, averaged over three random seeds, are reported
in Figure 3. We find that although the pre-trained diffusion
policies exhibit limited initial success across all three tasks,
DiWA substantially improves their performance through offline
fine-tuning within the learned world model. This demonstrates
effective real-world policy adaptation without requiring any
physical interaction.

V. CONCLUSION
We presented DiWA, a fully offline framework for adapting

diffusion policies using learned world models. By treating the
world model as a safe, data-driven simulator, DiWA enables
reinforcement learning entirely in imagination, avoiding the
cost and risk of online interactions. Our approach fine-tunes
pre-trained diffusion policies through long-horizon rollouts in
latent space, leveraging a compact and expressive representation
of environment dynamics. On the CALVIN benchmark, DiWA
achieves strong adaptation performance while requiring no
additional environment interaction, demonstrating substantial
gains in sample efficiency over model-free baselines. Our work
provides the first empirical evidence that diffusion policies
fine-tuned entirely offline within a learned world model trained
on real-world play data can transfer zero-shot to real-world
robotic systems.

ACKNOWLEDGEMENTS

This work was supported by the BrainWorlds initiative of
the BrainLinks-BrainTools center at the University of Freiburg.

REFERENCES

[1] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[3] Stéphane Ross and Drew Bagnell. Efficient reductions
for imitation learning. In Proceedings of the thirteenth
international conference on artificial intelligence and
statistics, pages 661–668, 2010.

[4] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey
Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359,
2020.

[5] Iman Nematollahi, Erick Rosete-Beas, Adrian Röfer, Tim
Welschehold, Abhinav Valada, and Wolfram Burgard.
Robot skill adaptation via soft actor-critic gaussian
mixture models. In International Conference on Robotics
and Automation (ICRA), pages 8651–8657, 2022.

[6] Fabian Schmalstieg, Daniel Honerkamp, Tim
Welschehold, and Abhinav Valada. Learning long-
horizon robot exploration strategies for multi-object
search in continuous action spaces. In The International
Symposium of Robotics Research, pages 52–66, 2022.

[7] Iman Nematollahi, Kirill Yankov, Wolfram Burgard, and
Tim Welschehold. Robot skill generalization via keypoint
integrated soft actor-critic gaussian mixture models. In
International Symposium on Experimental Robotics, pages
168–180, 2023.

[8] Daniel Honerkamp, Tim Welschehold, and Abhinav
Valada. N2 m2: Learning navigation for arbitrary mobile
manipulation motions in unseen and dynamic environ-
ments. IEEE Transactions on Robotics, 39(5):3601–3619,
2023.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

[10] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Train-
ing language models to follow instructions with human
feedback. Advances in neural information processing
systems, 35:27730–27744, 2022.

[11] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.

Learning transferable visual models from natural language
supervision. In International conference on machine
learning, pages 8748–8763, 2021.

[12] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 22500–
22510, 2023.

[13] Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony
Simeonov, Pulkit Agrawal, Anirudha Majumdar, Ben-
jamin Burchfiel, Hongkai Dai, and Max Simchowitz.
Diffusion policy policy optimization. arXiv preprint
arXiv:2409.00588, 2024.

[14] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[15] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk,
Miles Macklin, Jan Issac, Nathan Ratliff, and Dieter
Fox. Closing the sim-to-real loop: Adapting simulation
randomization with real world experience. In International
Conference on Robotics and Automation (ICRA), pages
8973–8979, 2019.

[16] David Ha and Jürgen Schmidhuber. World models. Neural
Information Processing Systems, 2018.

[17] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. Dream to control: Learning behaviors
by latent imagination. arXiv preprint arXiv:1912.01603,
2019.

[18] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi,
and Jimmy Ba. Mastering atari with discrete world models.
International Conference on Learning Representations,
2021.

[19] Iman Nematollahi, Branton DeMoss, Akshay L Chandra,
Nick Hawes, Wolfram Burgard, and Ingmar Posner.
Lumos: Language-conditioned imitation learning with
world models. In IEEE International Conference on
Robotics and Automation, 2025.

[20] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[21] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov,
and Sergey Levine. Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301,
2023.

[22] Michael Psenka, Alejandro Escontrela, Pieter Abbeel,
and Yi Ma. Learning a diffusion model policy from
rewards via q-score matching. International Conference
on Machine Learning, 2024.

[23] Robin Schiewer, Anand Subramoney, and Laurenz
Wiskott. Exploring the limits of hierarchical world models
in reinforcement learning. Scientific Reports, 14(1):26856,
2024.

[24] Marcel Torne, Anthony Simeonov, Zechu Li, April
Chan, Tao Chen, Abhishek Gupta, and Pulkit Agrawal.

Reconciling reality through simulation: A real-to-sim-to-
real approach for robust manipulation. arXiv preprint
arXiv:2403.03949, 2024.

[25] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and
Wolfram Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot ma-
nipulation tasks. IEEE Robotics and Automation Letters
(RA-L), 7(3):7327–7334, 2022.

[26] Volodymyr Mnih. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

[27] Victor Talpaert, Ibrahim Sobh, B Ravi Kiran, Patrick Man-
nion, Senthil Yogamani, Ahmad El-Sallab, and Patrick
Perez. Exploring applications of deep reinforcement
learning for real-world autonomous driving systems. arXiv
preprint arXiv:1901.01536, 2019.

[28] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario
Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for
legged robots. Science Robotics, 4(26):eaau5872, 2019.

[29] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-
real deep reinforcement learning: Continuous control
of mobile robots for mapless navigation. In IEEE/RSJ
international conference on intelligent robots and systems
(IROS), pages 31–36, 2017.

[30] Jonathan Booher, Khashayar Rohanimanesh, Junhong Xu,
Vladislav Isenbaev, Ashwin Balakrishna, Ishan Gupta,
Wei Liu, and Aleksandr Petiushko. Cimrl: Combining
imitation and reinforcement learning for safe autonomous
driving. arXiv preprint arXiv:2406.08878, 2024.

[31] Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bron-
stein, Rebecca Roelofs, Benjamin Sapp, Brandyn White,
Aleksandra Faust, Shimon Whiteson, et al. Imitation is
not enough: Robustifying imitation with reinforcement
learning for challenging driving scenarios. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 7553–7560. IEEE, 2023.

[32] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta,
Giulia Vezzani, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations.
arXiv preprint arXiv:1709.10087, 2017.

[33] Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan
Luo, Avinash Kumar, Matthias Loskyll, Juan Aparicio
Ojea, Eugen Solowjow, and Sergey Levine. Residual
reinforcement learning for robot control. In International
Conference on Robotics and Automation (ICRA), pages
6023–6029, 2019.

[34] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang,
Olivier Pietquin, Bilal Piot, Nicolas Heess, Thomas
Rothörl, Thomas Lampe, and Martin Riedmiller. Lever-
aging demonstrations for deep reinforcement learning on
robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017.

[35] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. Conservative q-learning for offline reinforcement
learning. Advances in Neural Information Processing

Systems, 33:1179–1191, 2020.
[36] Michael Janner, Justin Fu, Marvin Zhang, and Sergey

Levine. When to trust your model: Model-based policy op-
timization. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32,
2019.

[37] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben
Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels. In
International conference on machine learning, pages 2555–
2565, 2019.

[38] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal
difference learning for model predictive control. In
International Conference on Machine Learning, 2022.

[39] Iman Nematollahi, Erick Rosete-Beas, Seyed Mahdi B.
Azad, Raghu Rajan, Frank Hutter, and Wolfram Burgard.
T3vip: Transformation-based 3d video prediction. In
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2022.

[40] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy
Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[41] Branton DeMoss, Paul Duckworth, Nick Hawes, and
Ingmar Posner. Ditto: Offline imitation learning with
world models. arXiv preprint arXiv:2302.03086, 2023.

[42] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric A. Cousineau,
Benjamin Burchfiel, Siyuan Feng, Russ Tedrake, and
Shuran Song. Universal manipulation interface: In-the-
wild robot teaching without in-the-wild robots. Robotics:
Science and Systems, 2024.

[43] Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei
Chao, and Dieter Fox. Rvt: Robotic view transformer for
3d object manipulation. In Conference on Robot Learning,
pages 694–710, 2023.

[44] Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey
Levine. Nomad: Goal masked diffusion policies for navi-
gation and exploration. In IEEE International Conference
on Robotics and Automation (ICRA), pages 63–70, 2024.

[45] Zhou Xian, Nikolaos Gkanatsios, Theophile Gervet,
Tsung-Wei Ke, and Katerina Fragkiadaki. Chaineddiffuser:
Unifying trajectory diffusion and keypose prediction for
robotic manipulation. In Conference on Robot Learning,
volume 229, pages 2323–2339, 2023.

[46] Zhi Hou, Tianyi Zhang, Yuwen Xiong, Hengjun Pu,
Chengyang Zhao, Ronglei Tong, Yu Qiao, Jifeng Dai,
and Yuntao Chen. Diffusion transformer policy. arXiv
preprint arXiv:2410.15959, 2024.

[47] Octo Model Team, Dibya Ghosh, Homer Walke, Karl
Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey
Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An
open-source generalist robot policy. Robotics: Science
and Systems, 2024.

[48] Boyuan Chen, Diego Marti Monso, Yilun Du, Max
Simchowitz, Russ Tedrake, and Vincent Sitzmann. Diffu-
sion forcing: Next-token prediction meets full-sequence

diffusion. Advances in Neural Information Processing
Systems, 2024.

[49] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum,
Tommi Jaakkola, and Pulkit Agrawal. Is conditional
generative modeling all you need for decision-making?
International Conference on Learning Representations,
2023.

[50] Michael Janner, Yilun Du, Joshua B Tenenbaum, and
Sergey Levine. Planning with diffusion for flexible
behavior synthesis. International Conference on Machine
Learning, 2022.

[51] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and
Jun Zhu. Offline reinforcement learning via high-fidelity
generative behavior modeling. International Conference
on Learning Representations, 2023.

[52] Zihan Ding and Chi Jin. Consistency models as a
rich and efficient policy class for reinforcement learning.
International Conference on Learning Representations,
2024.

[53] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou.
Diffusion policies as an expressive policy class for offline
reinforcement learning. International Conference on
Learning Representations, 2023.

[54] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner,
Jakub Grudzien Kuba, and Sergey Levine. Idql: Implicit q-
learning as an actor-critic method with diffusion policies.
arXiv preprint arXiv:2304.10573, 2023.

[55] Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong,
Yiming Yang, Cong Fang, Shiting Wen, Binbin Zhou,
and Zhouchen Lin. Policy representation via diffusion
probability model for reinforcement learning. arXiv
preprint arXiv:2305.13122, 2023.

[56] Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang,
Mengke Zhang, and Hao Su. Policy decorator: Model-
agnostic online refinement for large policy model. arXiv
preprint arXiv:2412.13630, 2024.

[57] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. A Bradford Book, Cambridge,
MA, USA, 2018.

[58] Richard S. Sutton, David A. McAllester, Satinder Singh,
and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In Neural
Information Processing Systems, 1999.

[59] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu,
Moonkyung Ryu, Craig Boutilier, Pieter Abbeel, Mo-
hammad Ghavamzadeh, Kangwook Lee, and Kimin
Lee. Dpok: Reinforcement learning for fine-tuning text-
to-image diffusion models. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems,
volume 36, pages 79858–79885, 2023.

[60] Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi
Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon,
Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion
model alignment using direct preference optimization. In
Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 8228–8238, 2024.
[61] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising

diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[62] Daniel Morales-Brotons, Thijs Vogels, and Hadrien
Hendrikx. Exponential moving average of weights in
deep learning: Dynamics and benefits. arXiv preprint
arXiv:2411.18704, 2024.

[63] Kihyuk Sohn. Improved deep metric learning with multi-
class n-pair loss objective. Advances in neural information
processing systems, 29, 2016.

[64] John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[65] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations
in neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 5745–5753, 2019.

[66] Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh.
Imitation bootstrapped reinforcement learning. arXiv
preprint arXiv:2311.02198, 2023.

APPENDIX

S.1 Related Work

Reinforcement Learning for Robot Policy Adaptation:
Imitation learning (IL) provides a sample-efficient way to train
policies but often suffers from covariate shift and compounding
errors when encountering out-of-distribution states. In contrast,
Reinforcement Learning (RL) enables policy improvement
through interaction with the environment, using reward signals
to guide behavior. Since the success of deep Q-networks (DQN)
on Atari [26], RL has been widely adopted in robotics for
tasks ranging from locomotion to manipulation [27, 28, 29].
A common paradigm combines IL and RL, first pre-training a
base policy from demonstrations and then fine-tuning it using
either online interactions [5, 30, 31, 32, 33] or reward signals
extracted from offline data [34, 35]. In this work, DiWA extends
this two-stage framework to diffusion policies, enabling fine-
tuning of pre-trained policies entirely offline via a learned
world model.
Reinforcement Learning with World Models: Due to the high
cost and complexity of physical interactions in robotics, world
models have emerged as a promising alternative for enabling
sample-efficient reinforcement learning. These models [16] are
predictive representations of environment dynamics that allow
agents to plan and learn through imagined trajectories, reducing
the need for real-world interaction. World models have been
used for both (i) planning [36, 37, 38, 39] and (ii) model-based
rollouts to train policies [17, 18, 40]. However, most existing
approaches operate in a closed-loop online setting, where the
model is continuously updated using data collected by the learn-
ing agent, thereby tightly coupling the world model to the down-
stream task. An alternative paradigm is to learn general-purpose,
task-agnostic world models from unstructured, unlabeled data
such as play [19, 41]. These models can be reused across tasks
by providing auxiliary reward signals or simulating interactions.
DiWA follows this paradigm: it learns a general world model
once from offline play data, freezes it, and uses it to fine-tune
pre-trained policies entirely offline without any model updates.
Reinforcement Learning for Diffusion-Based Policies:
Diffusion-based policies (DPs) [1, 42, 43, 44, 45, 46, 47]
have recently achieved strong performance in robotic imitation
learning due to their stable training and capacity to model multi-
modal behaviors. However, their effectiveness is constrained by
the coverage and quality of expert demonstrations. To address
this, several approaches have explored extending DPs with
trajectory diffusion [48, 49, 50], offline Q-learning [51, 52, 53],
online reinforcement learning [22, 54, 55], and residual
learning [56]. Policy gradient methods [57, 58], which
directly optimize the expected return of a policy, have
also been applied to fine-tune diffusion models. This
includes recent work on fine-tuning text-to-image diffusion
models [59, 60], where the denoising process is treated as
a multi-step MDP [13, 21, 22]. Our work builds directly on
Diffusion Policy Policy Optimization (DPPO) [13], which first
demonstrated how to embed the diffusion denoising process
into the environment MDP and apply PPO [14] for fine-tuning

in control settings. While DPPO enables effective fine-tuning,
it relies on online interactions and ground-truth environment
signals. DiWA addresses this limitation by replacing the
environment MDP with a learned world model, enabling
offline fine-tuning entirely through imagined rollouts.

S.2 Hyperparameters and Training Details
S.2.1 World Model

Following the design introduced in LUMOS [19], we adopt a
DreamerV2-style latent dynamics model as the backbone of our
world model. While DreamerV2 was originally proposed for
Atari game environments [18], our setting focuses on robotic
manipulation using raw teleoperated play data. To accommodate
this domain shift, we integrate two separate visual encoders for
the static and wrist-mounted gripper cameras. Their encoded
features are concatenated and fused via a fully-connected
layer before being passed to the recurrent state-space model
(RSSM). This fusion allows the model to jointly reason over
both ego-centric and third-person viewpoints during prediction
and imagination. Our world model is trained by minimizing
the negative variational Evidence Lower Bound (ELBO):

min
ϕ

Eqϕ

[
T∑
t=1

− log pϕ(xt | ŝt)

+ β KL
(
qϕ(zt | ŝt) ∥ pϕ(ẑt | ht)

)] (10)

where ŝt = (ht, zt), and β controls the strength of KL
regularization. To stabilize learning, we apply KL balancing
to modulate gradient flow between the prior and posterior
distributions, following the formulation from Hafner et al. [18]:

KL(q ∥ p) = δKL(q ∥ sg(p))︸ ︷︷ ︸
posterior regularizer

+(1− δ)KL(sg(q) ∥ p)︸ ︷︷ ︸
prior regularizer

, (11)

where sg(·) denotes the stop-gradient operator. We found
KL balancing to be crucial for improving the sharpness and
consistency of imagined rollouts, as it accelerates the prior’s
convergence toward the richer posterior distribution.

The stochastic latent code zt is modeled using a discrete
representation composed of 32 categorical variables with 32
possible classes each. This leads to a sparse 1024-dimensional
one-hot vector, which we concatenate with the deterministic
hidden state ht of size 1024, yielding a total latent dimension-
ality of k = 2048. We train all components of the world model
jointly using sequences of 50 steps sampled from diverse
points in long-horizon play episodes. Due to the scarcity
of resets in such data, we reset the recurrent state of the
RSSM with a small probability ζ to encourage robustness
to initialization and better exploitation of temporal context.
All hyperparameters are kept identical across simulation and
real-world experiments, except for the KL loss scale β, which
is set to 0.3 in simulation and 1.0 in real-world training. To
maximize coverage of different scene transitions, we sample
training subsequences by selecting random start indices within
each episode, ensuring the sampled subsequence remains within

Name Symbol Value

Batch size B 50
Sequence length L 50
Deterministic latent state dimensions — 1024
Discrete latent state dimensions — 32
Discrete latent state classes — 32
Latent dimensions k 2048
KL loss scale β 0.3
KL balancing coefficient δ 0.8
RSSM reset probability ζ 0.01
World model learning rate — 3× 10−4

Gradient clipping — 100
Adam epsilon ϵ 10−5

Weight decay (decoupled) — 5× 10−2

TABLE S.2: Hyperparameters used for training the world model. All values
are shared across simulation and real-world experiments, except KL loss scale
β, which is 0.3 for simulation and 1.0 for real-world settings.

episode bounds. This configuration is used consistently across
both simulated and real-world settings unless otherwise noted
(See Table S.2).

S.2.2 Diffusion Policy

We adopt a denoising diffusion probabilistic model
(DDPM) [61] to parameterize our base policy. The diffusion
policy is trained to imitate expert trajectories using features
produced by our frozen world model encoder. Specifically, we
featurize each raw observation with the world model to obtain
2048-dimensional latent vectors, which serve as the input to
the policy πθ(· | zt). This featurization ensures compatibility
between the policy’s training and inference regimes, as the fine-
tuned policy will later be conditioned on imagined future latent
states. For each skill, we use N = 50 expert demonstration
trajectories, randomly selected from task-annotated episodes
in the CALVIN simulation [25] and manually collected in the
real-world environment. The diffusion model is trained with
K = 20 denoising steps, and follows a chunked prediction
strategy: given an observation horizon of 1 step, it predicts a
sequence of Tp = 4 future actions, of which the first Ta = 4
are executed in the environment. The policy is optimized using
a behavior cloning objective over the full denoising trajectory:

LBC(θ) = EDexp

[
T∑
t=1

K∑
k=1

− log πθ(a
k−1
t | zt, akt)

]
, (12)

where πθ predicts denoised actions conditioned on the current
latent state zt and noisy action akt .

The policy model is a multi-layer perceptron (MLP) with
three hidden layers of size 512, and we apply exponential
moving average (EMA) to the policy weights during training,
starting from epoch 20, to enhance stability [62]. All policies
are trained for 5000 epochs using the Adam optimizer. We
use an initial learning rate of 1× 10−4, decayed to 1× 10−5

using a cosine schedule. We apply a weight decay of 1× 10−6

and use a batch size of 256. These hyperparameters are kept
identical across all CALVIN tasks and our real-world skill
evaluations (See Table S.3).

When evaluating the DPPO baseline in the CALVIN
simulation environment, we also include a variant that
has access to ground-truth state information, which has

Parameter Symbol Value

Common Training Parameters (All Skills)
Observation Horizon — 1
Number of Demonstrations N 50
Planning Horizon Tp 4
Action Horizon Ta 4
Training Epochs — 5000
Diffusion Denoising Steps K 20
Initial Learning Rate — 1× 10−4

Final Learning Rate — 1× 10−5

Weight Decay — 1× 10−6

MLP Dimensions — [512, 512, 512]
EMA Decay — 0.995
EMA Start Epoch — 20
EMA Update Frequency — 10
Batch Size — 256

Observation Dimensions
DiWA — 2048
DPPO (Vision WM Encoder) — 2048
DPPO (Vision) — 64× 64× 6
DPPO (State) — 51

TABLE S.3: Training and model hyperparameters for diffusion policy across
all CALVIN and real-world tasks.

an observation dimensionality of 51. For the vision-based
variant, the input consists of RGB images from both the static
and gripper cameras, stacked along the channel dimension,
resulting in an input shape of 64× 64× 6.

S.2.3 Latent Reward Estimator

To learn a task-aligned reward signal, we train a latent
reward classifier Cψ using expert demonstration data Dexp.
Each observation xt is encoded into a latent state zt via the
frozen world model encoder. The classifier comprises two
components: a two-layer MLP fψ that maps latents to an
embedding space, and a subsequent two-layer MLP gψ that
predicts success or failure based on the embedding.

We jointly optimize the model using a combination of
contrastive and classification losses. For the contrastive com-
ponent, we employ the NT-Xent loss [63], which encourages
embeddings of positive pairs to be closer than those of negative
pairs. Given a batch of N samples, the NT-Xent loss for a
positive pair (i, j) is defined as:

LNT-Xent = − log
exp(sim(fψ(zi), fψ(zj))/τ)∑2N

k=1 ⊮[k ̸=i] exp(sim(fψ(zi), fψ(zk))/τ)
,

(13)
where sim(·, ·) denotes the cosine similarity, τ is a temperature
parameter, and ⊮[k ̸=i] is an indicator function excluding the
anchor sample from the denominator.

In parallel, the classification MLP gψ operates on the
embeddings to predict success labels, trained using standard
cross-entropy loss. The overall training objective combines
both terms:

Lreward = LNT-Xent + LCE. (14)

The resulting reward function is defined as Rψ(zt, at) :=
softmax(gψ(fψ(zt))), which outputs the predicted probability
of success given a latent observation.

Both MLPs use ReLU activations, and the model is trained
with the Adam optimizer for 100 epochs. See Table S.4 for
the full set of hyperparameters.

Parameter Value

Embedding MLP Dimensions [512, 512]
Classification MLP Dimensions [512, 512]
Activation Function ReLU
Output Activation Softmax
Training Epochs 100
Batch Size 32
Learning Rate 1× 10−6

Temperature Parameter 0.5
Loss Function Contrastive + Cross-Entropy
Positive Samples Annotated success frames
Negative Samples Distant/unsuccessful frames

TABLE S.4: Hyperparameters used for training the latent reward classifier.

S.2.4 Fine-tuning with DiWA
The full pseudocode for DiWA is shown in Algorithm 1.

DiWA fine-tunes a pre-trained diffusion policy πθ using
imagined rollouts from a learned world model Mϕ and reward
classifier Cψ, forming trajectories in the Dream Diffusion
MDP MDD. At each iteration, imagined transitions are stored
in a buffer Ditr, advantages are estimated using Generalized
Advantage Estimation (GAE) [64], and PPO-style updates [14]
are applied to the policy and value function. GAE is computed
at the final denoising step (k = 1) for each world model
timestep.

Âλt̄(t,1) =

∞∑
l=0

(γWMλ)
lδ̄t̄(t+l,1),

where δ̄t̄(t,1) = R̄t̄(t,1) + γWMVν(s̄t̄(t+1,1))− Vν(s̄t̄(t,1)).
(15)

To propagate this signal to earlier denoising steps, we
apply a denoising discount to obtain step-specific advantages
as Ât̄(t,k) = γkdenoiseÂt̄(t,1). The policy is fine-tuned using a
behavior-regularized PPO objective that augments the clipped
PPO loss with a behavior cloning (BC) regularization term.
This regularization encourages proximity to the pre-trained
diffusion policy πθpre , mitigating overfitting to model errors
during imagination [23, 24]. The full objective is:

Lθ = LPPO − αBC Eπ̄θold

[
K∑
k=1

log πθpre(ā
k−1
t | zt, ākt)

]
, (16)

where αBC controls the regularization strength and πθpre remains
frozen during fine-tuning. To restrict updates to the last K ′

denoising steps, we subsample Ditr to include only entries with
k ≤ K ′, keeping the base policy πθpre frozen for the initial
K −K ′ steps. The value function Vν is trained to regress the
future discounted sum of latent rewards:

Lν = EDitr

(T−t∑
l=0

γlWMR̄t̄(t+l,1) − Vν(zt)

)2
 , (17)

where Vν takes as input only the latent state zt from the
MDD. Table S.5 lists the fine-tuning hyperparameters shared
across all skills and experiments for both DiWA and the
baseline methods. We set the behavior cloning regularization
coefficient αBC = 0.05 for all tasks by default, except for
open-drawer, close-drawer, and turn-on-LED,
where we observed better performance with values of 0.10,
0.025, and 0.025, respectively.

Parameter Symbol Value

Planning Horizon (Environment) Tp 4
Planning Horizon (Actor) Ta 4
Denoising Steps K 20
Fine-tuned Denoising Steps K′ 10
Actor Learning Rate — 1× 10−5

Critic Learning Rate — 1× 10−3

Actor MLP Dimensions — [512, 512, 512]
Critic MLP Dimensions — [256, 256, 256]
Discount Factor (Env /World Model) γENV / γWM 0.999
Discount Factor (Diffusion Policy) γDP 0.99
GAE Smoothing Parameter λ 0.95
Behavior Cloning Coefficient (default) αBC 0.05
Batch Size — 7500

TABLE S.5: Fine-tuning hyperparameters shared across all skills for DiWA
and baseline methods.

S.3 Experimental Setup Details
S.3.1 7-DoF Action Framework

All experiments, both in simulation and in the real world,
use a 7-dimensional action space defined as:

[δx, δy, δz, δϕ, δθ, δψ, gripperAction]

The first six dimensions control the end-effector, with
(δx, δy, δz) specifying position changes and (δϕ, δθ, δψ)
specifying orientation changes via Euler angles. Each takes
continuous values in the range [−1, 1]. The final dimension,
gripperAction, controls the gripper state. Although the
environment expects discrete inputs (1.0 to close, −1.0 to
open), DiWA outputs a continuous value in [−1.0, 1.0], which
is thresholded before execution: values greater than or equal
to 0 trigger opening, and values less than 0 trigger closing.

S.3.2 Real-World Data Collection

We collected four hours of real-world teleoperation data
using a Franka Emika Panda robot controlled via an HTC
VIVE Pro headset in a 3D tabletop setting (see Figure S.4a).
The tabletop environment included a cabinet with a drawer
and a manipulable red cube to support diverse interaction
scenarios. During teleoperation, we recorded robot sensor data,
including proprioceptive signals (joint states and end-effector
pose), as well as multimodal visual observations. RGB images
of the full scene were captured at a resolution of 200× 200
using an Azure Kinect camera, while close-up RGB views of
the manipulated objects were obtained from a wrist-mounted
Realsense D415 camera (Figure S.4b). We also logged the
absolute control commands sent to the robot. For model
training, we computed relative actions as differences between
consecutive absolute commands. To reduce redundancy caused
by low inter-frame variation, the original 30 Hz recording rate
was downsampled by a factor of 4 to 7.5 Hz.

S.4 Data Preprocessing
In both simulation and real-world experiments, we use visual
observations from two sources: a static camera and a wrist-
mounted gripper camera. All images are first resized to a resolu-
tion of 64×64 pixels. We then convert the image tensors from
integer values in [0, 255] to floating-point values in [0.0, 1.0],
and subsequently normalize them. These transformations are

(a) Real-World Setup (b) Real-World Observations

Fig. S.4: (a) Real-world setup showing the Franka Panda robot, VR teleoperation interface (HTC VIVE controller and tracking system), and camera placements
(static Kinect and wrist-mounted Realsense). (b) Example observations from the static and gripper-mounted RGB cameras used during data collection.

applied to both static and gripper observations. In addition
to visual observations, we preprocess the robot state, which
includes the end-effector’s position and orientation. Since the
orientation is originally represented in Euler angles, we convert
it to a continuous 6D rotation representation [65] to avoid
discontinuities and singularities associated with Euler angles.

S.5 Additional Experiments

S.5.1 Comparing DPPO Input Modalities

Figure S.5 compares three DPPO configurations against
our offline method. DPPO (State) (gray) uses raw simulator
state as input, DPPO (Vision) (red) operates directly on
pixel observations using a Vision Transformer (ViT) based
encoder [66], and DPPO (Vision WM Encoder) (green) uses
visual inputs processed through the same frozen encoder
employed in our world model. Among these, the world
model latent variant, where DPPO operates on representations
produced by our recurrent state space model, often achieves the
highest performance, surpassing both raw vision and state-based
inputs. These latents combine a history-aware deterministic
hidden state with a stochastic component that captures resid-
ual uncertainty, providing a compact and dynamics-aligned
representation. In contrast to all online variants, DiWA (blue)
fine-tunes the policy entirely offline using imagined rollouts
in the learned latent space. Its performance is shown as a
horizontal band, as no physical interaction is required during
fine-tuning. While DPPO can eventually match or exceed our
results by leveraging ground truth dynamics and rewards, it
requires hundreds of thousands of real-world interactions per
skill. These interactions are costly, time-consuming, and can
pose safety risks. In comparison, DiWA achieves competitive
results using only a few hours of play data, offering a safer and
more sample-efficient approach to real-world skill adaptation.

Fig. S.5: Comparison of DiWA with three DPPO variants using different input
modalities. DiWA (blue) fine-tunes policies entirely offline using a learned
world model, requiring no physical interaction during adaptation. In contrast,
DPPO (gray, red, green) performs online reinforcement learning with access
to environment rewards and dynamics. The DPPO variant using latents from
the world model encoder (green) achieves the highest performance among the
three, but all require hundreds of thousands of real-world interactions per skill.

S.5.2 Impact of Behavior Cloning Regularization

To investigate the role of behavior cloning regularization
in fine-tuning, we ablate the BC loss coefficient αBC in DiWA
and evaluate performance across different settings. As shown
in Figure S.6, the choice of αBC has a significant impact on
performance.

When αBC = 0.0, meaning no regularization is applied, the
agent achieves high success rates during offline evaluation
within the imagined environment. However, this performance
does not transfer to the real environment, where success
rates drop considerably. This discrepancy suggests that
the agent overfits to inaccuracies in the world model by
exploiting artifacts that yield high imagined rewards but do
not correspond to meaningful success in reality [23]. On the
other hand, setting αBC too high, such as 0.5, leads to minimal
improvement over the pre-trained policy. In this case, strong
regularization prevents the policy from effectively adapting
to new task-specific feedback, resulting in stagnated learning.
Moderate values of αBC provide a better trade-off, enabling

Task Gaussian Policy

Pre-Trained Offline Fine-Tuned

open-drawer 50.00± 0.09 71.67 ± 2.36
close-drawer 55.17± 0.18 98.28 ± 2.44

move-slider-left 54.86± 4.70 82.64 ± 1.59
move-slider-right 55.52± 0.78 87.93 ± 7.31
turn-on-lightbulb 54.55± 3.03 95.96 ± 1.75
turn-off-lightbulb 62.07± 4.88 77.59 ± 2.44

turn-on-LED 44.83± 0.50 77.59 ± 7.31
turn-off-LED 40.94± 3.98 79.69 ± 2.21

Total Physical Interactions: 0

TABLE S.6: Offline fine-tuning improves a unimodal Gaussian policy across
all tasks. Success rates increase substantially without any additional real-world
interaction.

the policy to adapt while still maintaining alignment with the
pre-trained behavior. These results emphasize the importance
of tuning BC regularization to balance adaptation and stability
when fine-tuning policies with learned world models.

This issue is further compounded by the fact that the world
model is trained once on offline play data and remains fixed
during fine-tuning. While this avoids the cost and risk of
real-world interactions, any modeling errors or artifacts in the
learned dynamics persist and may be exploited by the policy.
Future work could explore hybrid approaches that incorporate
limited online interaction, allowing the world model to be
gradually refined with real-world feedback and reducing the
impact of such artifacts.

Fig. S.6: Ablation of behavior cloning regularization strength (αBC) during
fine-tuning. Without regularization (αBC = 0.0), the agent performs well in
imagination but fails in the real environment, indicating exploitation of world
model inaccuracies. Excessively high values (e.g., 0.5) prevent meaningful
adaptation. Intermediate values strike a balance, yielding robust transfer.

S.5.3 Fine-tuning a Unimodal Gaussian Policy

While the primary focus of this work is on fine-tuning diffu-
sion policies, which involve long denoising sequences that make
reward propagation particularly difficult, our method is not lim-
ited to this specific policy class. To demonstrate the generality
of our formulation, we replace the diffusion policy in DiWA
with a unimodal Gaussian policy parameterized by a mean and a
diagonal covariance. Unlike diffusion policies, this architecture
yields a much shorter Markov chain, allowing reward signals
and policy gradients from PPO to propagate more directly. As
shown in Table S.6, our fine-tuning procedure leads to con-
sistent improvements across all tasks. This supports the claim
that the underlying world model MDP, including the reward
estimation mechanism, is independent of the policy architecture.

S.5.4 World Model Rollouts in the Real World

We evaluate the predictive capabilities of our learned
world model on real-world hold-out trajectories. As illustrated

in Figure S.7, the model generates visually coherent and
temporally consistent rollouts over extended horizons. To
initiate the prediction, we encode the first two frames of an
unseen trajectory to establish the initial context. The model
then predicts forward for 80 steps in latent space using its
recurrent dynamics, despite being trained with sequences of
only 50 steps. The decoded reconstructions from the predicted
latents reveal that the world model can accurately track key
scene elements, such as the robot arm and manipulated objects,
even over long horizons. This highlights the model’s ability
to learn meaningful dynamics from play data and maintain
structured predictions beyond its training horizon.

Fig. S.7: Real-world rollout predictions from the learned world model. Each block shows a segment of a held-out trajectory for a specific skill, with static and
gripper camera views decoded from imagined latent states. The model produces accurate long-horizon predictions in real-world settings.

Algorithm 1 DiWA: Diffusion Policy Adaptation with World Models

1: Train world model Mϕ on play data Dplay using the ELBO objective (Eq. (10)), then freeze Mϕ.
2: Encode expert demonstrations into latents zt ∼ qϕ(zt | ht, xt) using the frozen world model.
3: Pre-train diffusion policy πθ on latent expert demonstrations via behavior cloning (Eq. (12)); freeze copy as πθpre .
4: Train reward classifier Cψ on latent expert demonstrations via reward loss (Eq. (14)).
5: Initialize value function Vν .
6: for iteration = 1, 2, . . . do
7: Initialize imagined rollout buffer Ditr.
8: Set πθold = πθ.
9: for imagination episode = 1, 2, . . . , N in parallel do

10: Sample initial observation x0 and encode to latent z0.
11: Initialize state s̄t̄(0,K) = (z0, ā

K
0) in MDD.

12: for imagined step t = 0, . . . , T − 1, denoising step k = K, . . . , 1 do
13: Sample intermediate action āk−1

t ∼ π̄θold(· | zt, ākt)
14: if k = 1 then
15: Run final action ā0t in the world model Mϕ

16: Update recurrent state: ht+1 = fϕ(ht, ā
0
t)

17: Sample next latent state: zt+1 ∼ pϕ(zt+1 | ht+1)
18: Predict reward: R̄t̄(t,1) = Rψ(zt, ā

0
t)

19: Sample new noisy action: āKt+1 ∼ N (0, I)
20: Set next state: s̄t̄(t+1,K) = (zt+1, ā

K
t+1)

21: else
22: Set reward: R̄t̄(t,k) = 0

23: Set next state: s̄t̄(t,k−1) = (zt, ā
k−1
t)

24: end if
25: Add (k, s̄t̄(t,k), āt̄(t,k), R̄t̄(t,k)) to Ditr.
26: end for
27: end for
28: Compute advantage estimates Aπθold (s̄t̄(t,1), āt̄(t,1)) using GAE (Eq. (15))
29: for update = 1, . . . , num updates do
30: for minibatch = 1, . . . , B do
31: Sample (k, s̄t̄(t,k), āt̄(t,k), R̄t̄(t,k)) and Aπθold (st̄(t,k), at̄(t,k)) from Ditr.
32: Compute denoising-discounted advantage Ât̄(t,k) = γkdenoiseA

πθold (st̄(t,0), at̄(t,0)).
33: Update πθ using regularized PPO loss (Eq. (16)).
34: Update Vν using value loss (Eq. (17)).
35: end for
36: end for
37: end for
38: return fine-tuned policy πθ.

	Introduction
	Problem Formulation
	Offline Adaptation of Diffusion Policy
	World Model Learning
	Pre-training Diffusion Policies
	Latent Reward Estimation from Expert Demonstrations
	Dream Diffusion MDP
	Fine-tuning within Dream Diffusion MDP

	Experimental Evaluation
	Simulation Results
	Real-World Results

	Conclusion
	Appendix
	Related Work
	Hyperparameters and Training Details
	World Model
	Diffusion Policy
	Latent Reward Estimator
	Fine-tuning with DiWA
	Experimental Setup Details
	7-DoF Action Framework
	Real-World Data Collection
	Data Preprocessing
	Additional Experiments
	Comparing DPPO Input Modalities
	Impact of Behavior Cloning Regularization
	Fine-tuning a Unimodal Gaussian Policy
	World Model Rollouts in the Real World

