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Abstract

Sparse Auto-Encoders (SAEs) are commonly employed in mechanistic inter-
pretability to decompose the residual stream into monosemantic SAE latents.
Recent work demonstrates that perturbing a model’s activations at an early layer
results in a step-function-like change in the model’s final layer activations. Further-
more, the model’s sensitivity to this perturbation differs between model-generated
(real) activations and random activations. In our study, we assess model sensitivity
in order to compare real activations to synthetic activations composed of SAE
latents. Our findings indicate that synthetic activations closely resemble real activa-
tions when we control for the sparsity and cosine similarity of the constituent SAE
latents. This suggests that real activations cannot be explained by a simple “bag
of SAE latents” lacking internal structure, and instead suggests that SAE latents
possess significant geometric and statistical properties. Notably, we observe that
our synthetic activations exhibit less pronounced activation plateaus compared to
those typically surrounding real activations.

1 Introduction

Neural networks often exhibit polysemanticity, where individual neurons fire for multiple features
[Olah et al., 2017]. This complexity poses a significant challenge for interpreting computation in
models, as it obscures the direct relationship between neuronal activations and specific semantic
concepts. To explain polysemanticity, the theory of superposition suggests that neural networks
represent more features than they have dimensions. These features are linearly represented as
directions in activation space which form an overcomplete basis [Elhage et al., 2022, Bricken et al.,
2023]. Although there is evidence for many linearly represented features, the claim that all features
of a neural network are represented directions remains more speculative [Engels et al., 2024, Smith,
2024, Olah, 2024].

Sparse Auto-Encoders (SAEs) decompose a model’s residual stream into a sparse set of features
[Sharkey et al., 2022]. SAEs have become increasingly popular as a method to represent model
activations in terms of more monosemantic and interpretable latents [Bricken et al., 2023, Cunningham
et al., 2023, Templeton et al., 2024]. As the community increases its reliance on SAEs to interpret
model behavior, it becomes more important to verify that decompositions generated by SAEs
accurately capture abstractions that are used by the model.

*Equal contribution. Correspondence to giglemiani@gmail.com

Workshop on Attributing Model Behavior at Scale at NeurIPS 2024.

mailto:giglemiani@gmail.com


Neural networks employing superposition to represent features must address the challenge of in-
terference to maintain performance [Hänni et al., 2024]. This necessitates an ability to accurately
extract individual features while mitigating noise from “nearby” features in the representation space.
Heimersheim and Mendel [2024] observed two key phenomena related to this: activation plateaus
and directional sensitivity. Both are characterized by changes in the L2 distance of model activations
at the final layer in response to early layer perturbations. Activation plateaus represent regions around
an activation within which perturbations do not affect the model output significantly, indicating
model robustness to small amounts of noise. Importantly, these activation plateaus are present
around model-generated activations (real activations) but not around random points sampled from
the distribution of model-generated activations (random activations). This suggests the presence of
an error correction mechanism that the model might be using to deal with interference. Directional
sensitivity refers to the variation in the model’s response to perturbations based on the direction of
the noise being added [Lindsey, 2024, Heimersheim and Mendel, 2024]. The model’s sensitivity to
a particular direction is characterized by the inverse of the perturbation magnitude required in that
direction to induce a step-function-like change (blowup) in the model output.

In this paper, we focus on generating synthetic activations composed of SAE latents and testing
whether they behave like real activations. We specifically test the “bag of SAE latents” hypothesis
and discover that arbitrary combinations of SAE latents do not produce activations that resemble real
activations. We find that controlling for the sparsity and the cosine similarity of SAE latents enables
us to create synthetic activations that most closely resemble the sensitivity of real activations. We test
whether these observations generalize to activation plateaus and find that synthetic activations don’t
behave like real activations.

Our contributions are:

1. We find that the “bag of SAE latents” approach is not sufficient to produce synthetic
activations that resemble model-generated (real) activations.

2. We find that the sparsity of the top SAE latent, the relative latent activations, and the cosine
similarity between the active latents and the top latent play an important role in determining
whether synthetic activations behave like real activations.

3. The performance of synthetic activations in the sensitivity experiment does not transfer to
the activation plateau experiment that we conduct. We find that synthetic activations do not
have activation plateaus around them like real activations do.

2 Background

Our experiments are based on the setup described in Heimersheim and Mendel [2024], wherein they
perturbed model activations at an early layer and measured the effect it had on the L2 distance of late-
layer activations. They investigated activation plateaus and sensitive directions in GPT-2, motivated
by the error correction mechanism predicted by computation in superposition. They explored
two key predictions: (1) model-generated activations should be resistant to small perturbations,
exhibiting "activation plateaus", and (2) perturbations towards model-generated activations should
affect model output more quickly than towards random directions. Their findings supported both of
their predictions, providing evidence for an error correction mechanism used by the model to suppress
small amounts of noise. This research aimed to better understand computation in superposition and
to find dataset-independent evidence for model features, potentially connecting to SAE research.

3 Related Work

Previous works have studied the model’s response to residual stream perturbations using different
experiments. We discuss the works that are the most relevant to ours below.

Janiak et al. [2024] identified stable regions (corresponding to activation plateaus) in the activation
space of transformer-based models, hypothesizing their role in error correction and semantic distinc-
tions. Our work primarily focuses on sensitive directions, though we study activation plateaus around
synthetic activations and compare them against real activations.

Gurnee [2024] found that substituting the model activation at an early layer with its SAE reconstruc-
tion causes a bigger jump in KL divergence of the model’s next-token prediction probabilities than
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substituting it with a random vector that is the same L2 distance away from the original activation as
the SAE reconstruction. While our work focuses on compositions of SAE latents, we study the effect
of SAE reconstruction error on our experiments (Appendix D).

Lee and Heimersheim [2024] found that SAE reconstruction errors are not pathologically large
when compared to more realistic baselines. They also found that end-to-end SAE latents do not
exhibit stronger effects on model output compared to traditional SAE latents. Their work focuses on
perturbations in individual SAE latent directions while we study compositions of SAE latents.

Lindsey [2024] found that ablating an SAE latent had a significantly larger effect on model perfor-
mance than doubling the latent’s activation. Additionally, they found that dampening latent activations
had almost as strong of an effect on the output distribution as latent ablation. In our study, we focus
on composing synthetic activations and studying SAE latent properties.

4 Method

Since model-generated (real) activations exhibit distinct behaviors in both experimental settings used
in Heimersheim and Mendel [2024], we test whether synthetic activations composed of SAE latents
do the same. We adapt these experimental settings to study relationships between SAE latents that are
important for generating synthetic activations that are in-distribution for the model. We discuss the
methodology for the directional sensitivity experiment in Section 4.1, and discuss the different types
of activations we test in Sections 4.2 and 4.3. Finally, we discuss the activation plateau experiment in
Section 4.4.

4.1 Perturbation Setup

For each perturbation, we only make changes to the activations at the last token position in the context
at layer 1 (blocks.1.hook_resid_pre). We refer to the original unperturbed activation as the base
activation, often denoted by A. We perturb the base activation A by slowly adding increments towards
a direction D:

Apert(n) = A + 0.5 · n ·D

where n is the step number, going from 0 to 100, and D is a unit vector. For all our perturbations, we
define the direction D as the normalised difference between a base activation and a target activation.
We use a step size of 0.5 because this makes the perturbation norm comparable to the typical norm of
activations, which is ≃ 56.

For each perturbation, we compute the L2 distance between the activations of the original and the
perturbed run after the final layer (blocks.11.hook_resid_post). We use this L2 distance to study
the effect of our perturbations instead of the KL divergence of the next-token prediction probabilities.
We focus on L2 distance because KL divergence plots tend to obscure the structure of activation
plateaus (we still include KL divergence based results in Appendix C for comparison to previous
work).

We test multiple metrics in order to formalize the location of the blowup in L2 distance, and we find
that the maximum slope of the L2 distance against the perturbation step curve represents it most
cleanly (shown in Figure 1; see Appendix B for the other metrics we test). For each perturbation, we
label the maximum slope (MS) step and use it to refer to the location of the blowup further in this
work.

For all our experiments, we use GPT2-small [Radford et al., 2019] and run inference on ran-
domly sampled prompts of sequence length 10 from the OpenWebText dataset* [Gokaslan and
Cohen, 2019], and we collect model-generated activations from the residual stream at Layer 1
(blocks.1.hook_resid_pre). We use GPT2-small SAEs [Bloom, 2024], sae-lens [Bloom and
Chanin, 2024] and TransformerLens [Nanda and Bloom, 2022] to perform our experiments and
generate synthetic activations.

*Using a tokenized version of this dataset available here.
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4.2 Non-SAE Baselines

In order to compare our setup to previous work [Heimersheim and Mendel, 2024], we run pertur-
bations towards model-generated (real) and random activations. We sample 1000 prompts from the
dataset and run inference on them to obtain the base activations, and perturb each base activation in
two directions:

1. Model-generated (real): Towards a randomly selected activation produced by the model.

2. Random: Towards a randomly sampled point from a normal distribution with the same mean
and covariance as model-generated activations (calculated using 32, 000 model-generated
activations).

We plot examples of perturbations towards real and random activations in Figure 1. The distribution
of distances between the base activation and the target are similar for both baselines, with a mean
of ≃ 40 in activation space. Additionally, we find that the average cosine similarity between two
model-generated activations with respect to the SAE decoder bias is ≃ 0.42.

Figure 1: The L2 distance after Layer 11 (left) and the KL divergence of the next-token prediction probabilities
(right) between the perturbed and unperturbed model, as three base activations at Layer 1 are slowly perturbed
towards model-generated activations (orange) and random points sampled from the distribution of model
activations (blue). The x-axis represents the total length of the perturbation broken into 100 steps of size 0.5
each. The dot on each solid line represents the maximum slope (MS) step for each perturbation. The dashed
lines represent the average L2 distance and KL divergence per step for 1000 perturbations of both types. The
linear part at the start of the curves represents the activation plateau, and the sharp rise in the curves represents
the blowup.

4.3 Synthetic Activations

We construct synthetic activations using three methods that each use different amounts of information
about SAE latents, and compare which ones match the behavior of real activations.

Our simplest approach (synthetic-random) randomly selects SAE latents and assigns them the same
latent activations as the active latents of the base activation. We consider this a weak approach to
compose synthetic activations and mainly focus on the next two methods, but we show the results for
this method in Appendix A.

Our second approach (synthetic-baseline) accounts for SAE latent sparsities along with latent
activations, matching the distribution of latent sparsities from the base activation:

1. We use the SAE to encode the base activation and obtain its active latents and their latent
activations.

2. We replace each active SAE latent with a new one sampled from 10 most similarly-sparse
latents and assign it the latent activation of the original active latent.

3. We decode the new latent activations to obtain the synthetic-baseline activation.
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For our third and final method (synthetic-structured) we capture and reproduce geometric properties
that SAE latents of real activations have. We get the best results when we control for sparsity of
latents and the cosine similarity relationship between latents. The procedure for the generation of
synthetic-structured activations is as follows:

1. We use the SAE to encode the base activation and obtain its active latents and their latent
activations. The active latent with the highest latent activation is the top latent of the base
activation (top_base).

2. We create a list of 100 non-dead SAE latents with the most similar sparsity to top_base.

3. Out of the 100 selected latents, we select one latent that has cosine similarity closest to
0.42 (mean cosine similarity between two real activations w.r.t. the SAE decoder bias) with
top_base.

4. This latent becomes the top latent for our synthetic activation (top_synth), and we give it
a latent activation value equal to that of top_base.

5. For each remaining active latent (l_base) in the base activation:

(a) We calculate its cosine similarity (l_top_cos_sim) with top_base.
(b) We select a latent (l_synth) that has cosine similarity with top_synth equal to

l_top_cos_sim.
(c) We assign l_synth a latent activation value equal to that of l_base.

6. We construct a latent activation vector with zeros for all latents except the latents selected
above, and decode it to obtain the synthetic-structured activation.

We perform 1000 perturbations towards synthetic-baseline and synthetic-structured activations each,
using the setup described in Section 4.1, where the direction D is the normalised difference between
the synthetic activation and the base activation.

4.4 Activation Plateaus

If our synthetic activations behave like real activations, they should not only reproduce directional
sensitivity behavior, but also exhibit activation plateaus. To test this, we use the following perturbation
approach:

1. We initiate perturbations from four distinct base activations: model-generated activations,
synthetic activations generated using SAE latents of similar sparsity to the base activation
(synthetic-baseline), synthetic activations generated using selected SAE latents based on
sparsity and cosine similarity relationship (synthetic-structured), and random points sampled
from the distribution described in Section 4.2 (random).

2. For all four starting points, we perturb towards a random activation.

3. We track how quickly L2 distance at Layer 11 increases near the start of the perturbation
by recording the activation plateau perturbation step (AP step) at which the L2 distance
between the unperturbed and perturbed models crosses a value of 20 (we found that a simple
threshold was enough to distinguish the behavior of different activations).

The AP step measures the flatness of the activation plateau around activations, with larger AP steps
signify flatter activation plateaus. We repeat this process for 1000 perturbations and collect the
distributions of AP steps for each activation type.

5 Results

We find that the behavior of synthetic activations as compared to random activations and real
activations differs for the two experiments we perform. This suggests that directional sensitivity
and activation plateaus point to different properties of SAE latents that make up real activations (see
Appendix E for details on properties that we account for). We now provide detailed results for each
of our experiments below.
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5.1 Directional Sensitivity

For this experiment, we perturb real activations towards different types of activations we construct
and study the model’s sensitivity to these perturbations. Figure 2 shows the distributions of max
slope (MS) steps for L2 distance for perturbations towards synthetic-baseline and synthetic-structured
activations compared to model-generated (real) and random activations. We also provide statistics for
the MS step distributions for perturbations towards all activations types in Table 1.

When comparing the MS steps (Table 1) for perturbations towards real and random activations, we
find that perturbations towards real activations cause earlier (lower mean) and more localized (lower
variance) blowups than perturbations towards random activations. This means that perturbing towards
real activations affects the model output more than perturbing towards random activations.

While synthetic-baseline activations do not fully replicate the behavior of real activations, they still
perform better than random activations (Figure 2). We calculate similarity between two MS step
distributions using the Kolmogorov Smirnov (KS) statistic [Smirnov, 1948]. This demonstrates
that the model is more sensitive to perturbations towards synthetic activations composed of SAE
latents than perturbations towards randomly sampled points from the distribution of model activations
(random). This suggests that SAE latents encode more information about model computation than
random directions do.

Importantly, perturbations towards synthetic-structured activations look a lot more similar to per-
turbations towards model-generated activations than perturbations towards synthetic-baseline and
random activations do (Figure 2, Table 1). This implies that relationships between SAE latents are
important, and that model-generated activations are not approximated well by “bags of SAE latents”.
Additionally, we find that synthetic-random activations perform worse than synthetic-baseline acti-
vations, confirming our decision to use the latter as a stronger baseline (see Appendix A for more
details on synthetic-random activations).

The distance between the base activation and the target activation varies for each perturbation we
perform, and we find that this can directly influence the location of the blowup in our setup. In
order to remove the effect of the distance on the MS step distribution, we also perform perturbations
with relative step size (see Appendix A for details). The gap between the synthetic-structured and
synthetic-baseline reduces in the relative step size setup. This is because synthetic-baseline activations
are further away from base activations than synthetic-structured activations, and hence cause blowups
later.

Figure 2: The distributions of the max slope (MS) steps for perturbations towards model-generated (orange),
random (blue), synthetic-baseline (purple), and synthetic-structured (green) activations. The left panel shows the
counts of MS steps occurring in different bins along the length of the perturbation, and the right panel shows
corresponding cumulative frequency. We find that perturbing towards synthetic-structured activations is more
similar to perturbing towards model-generated activations as compared to perturbing towards synthetic-baseline
activations.
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Max Slope (MS) step distribution statistics
Activation Type Mean Std dev KS

Model Generated 41.11 10.40 0.00
Random 52.49 10.21 0.45
Synthetic Baseline 49.61 13.25 0.28
Synthetic Structured 43.48 12.79 0.11

Table 1: When comparing perturbations towards different activations, we find that synthetic-structured activa-
tions behave more similar to model-generated activations than synthetic-baseline and random activations do. This
table contains the mean, standard deviation and KS statistic for MS step distributions for all the perturbations
we perform with fixed step size. The KS statistic is measured against perturbations towards model-generated
activations, with lower values indicating higher similarity.

5.2 Activation Plateaus

For this experiment, we perturb different types of activations towards random directions to assess
whether they have activation plateaus around them. Figure 3 shows the distributions of AP steps
for L2 distance for perturbations starting at synthetic-baseline and synthetic-structured activations
compared to model-generated and random activations.

Our findings reveal varying sizes of plateaus around different types of activations. Model-generated
activations exhibit more pronounced plateaus, indicating greater robustness to noise compared
to synthetic and random activations, which display less distinct plateau regions. The relatively
less pronounced plateaus around synthetic-baseline activations provide additional evidence against
the “bag of SAE latents” approach, as this behavior notably differs from that of model-generated
activations. While synthetic-structured activations show improvement, the differences in plateau
characteristics suggests that they may not fully capture all significant relationships between SAE
latents. To quantify the impact of SAE reconstruction error on the discrepancy between synthetic and
model-generated activations, we conducted tests detailed in Appendix D, which indicate that this
contribution is minimal.

Figure 3: The distributions of the activation plateau (AP) steps for perturbations starting at model-generated,
random, synthetic-baseline, and synthetic-structured activations. We perturb towards random activations in all
cases. The left panel shows the counts of AP steps occurring in different bins along the length of the perturbation,
and the right panel shows the cumulative frequency for the same. We find that model-generated activations
(orange) have flatter plateaus around them than all of the other activation types. We also see that synthetic-
baseline activations (purple) have the steepest plateaus around them, while plateaus around synthetic-structured
(green) and random (blue) activations look similar.

6 Limitations

The heuristics we use to construct synthetic activations leave room for improvement, as evidenced by
the gap between them and model-generated activations, especially for activation plateaus. We use
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cosine similarity between SAE latents to capture geometric relationships between them, but leave
accounting for latent co-occurrence and other relationships between latents for future work.

We find that the synthetic activations we construct do not match the cosine similarity distribution of
SAE latents in model-generated activations closely (see Appendix E). Our method also leverages
information from the base activation in order to construct synthetic activations. While this is not
ideal, we have verified that using information from a different model-generated activation for the
construction does not change our results.

The L2 distance curves across perturbation steps exhibit significant variability, potentially impacting
the effectiveness of our MS metric in identifying key steps. This metric assumes curve smoothness,
which may not hold in practice (Figure 1). More robust metrics could potentially produce clearer
results (see Appendix B for our exploration of other metrics).

Our study focuses solely on one layer of GPT2-small, necessitating further investigation across
different layers, models, and SAEs to establish broader applicability. Additionally, we confined
our perturbations to the final token position only. Exploring different context lengths is crucial to
assess the generalizability of our findings. These extensions would provide a more comprehensive
understanding of the observed phenomena.

7 Conclusion

We find additional evidence that GPT-2 is more sensitive to perturbations towards model-generated
activations than random directions, and that model-generated activations cannot simply be explained
by “bags of SAE latents”. We find that leveraging statistical and geometric properties of SAE
latents helps us create synthetic-structured activations which are more similar to model-generated
activations. Yet, these synthetic-structured activations lack the characteristic plateaus surrounding
model-generated activations, suggesting there may be additional SAE latent properties influencing
model computation.

This presents exciting avenues for future work on model sensitivity to perturbations:

• Coming up with better approaches to constructing synthetic activations that perform better
in both experimental settings.

• Checking for the existence of thresholds below which the model output does not respond to
changes in latent activations.

• Case studies which look at model sensitivity to perturbations in directions created using
interpretable SAE latents and take context into account.

• Zooming into latent ablation based perturbations further to study which latents contribute
the most to blowups.

8 Acknowledgements

Erin Robertson, Charlie Griffin and the whole LASR Labs team for making this research project
possible. Joseph Bloom for comments and SAEs used for this work; Daniel Lee for helpful discussions
and for pointing us towards using NL as a metric; Jake Mendel for fundamental discussions about
this research direction; Lawrence Chan, Nicholas Goldowsky-Dill, Bilal Chughtai, Daniel Tan, David
Krueger, Joe Needham, David Chanin, Tomáš Dulka and Diogo Cruz for review and comments.

References
Joseph Bloom and David Chanin. Saelens. https://github.com/jbloomAus/SAELens, 2024.

Joseph Isaac Bloom. Open source sparse autoencoders for all residual stream layers of gpt2-
small, Feb 2024. URL https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/
open-source-sparse-autoencoders-for-all-residual-stream.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,

8

https://github.com/jbloomAus/SAELens
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream


Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models, 2023. URL https://arxiv.org/
abs/2309.08600.

Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott Johnston, Sheer
ElShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny Hernandez, Amanda Askell, Kamal
Ndousse, Andy Jones, Dawn Drain, Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt, Zac
Hatfield-Dodds, Jackson Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath,
Josh Jacobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCandlish,
Dario Amodei, and Christopher Olah. Softmax linear units. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/solu/index.html.

Joshua Engels, Isaac Liao, Eric J. Michaud, Wes Gurnee, and Max Tegmark. Not all language model
features are linear, 2024. URL https://arxiv.org/abs/2405.14860.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Wes Gurnee. Sae reconstruction errors are (empirically) pathological, Mar
2024. URL https://www.alignmentforum.org/posts/rZPiuFxESMxCDHe4B/
sae-reconstruction-errors-are-empirically-pathological.

Stefan Heimersheim and Jake Mendel. Activation plateaus and sensitive directions in
gpt2, Jul 2024. URL https://www.alignmentforum.org/posts/LajDyGyiyX8DNNsuF/
interim-research-report-activation-plateaus-and-sensitive-1.

Kaarel Hänni, Jake Mendel, Dmitry Vaintrob, and Lawrence Chan. Mathematical models of compu-
tation in superposition, 2024. URL https://arxiv.org/abs/2408.05451.

Jett Janiak, Jacek Karwowski, Chatrik Singh Mangat, Giorgi Giglemiani, Nora Petrova, and Stefan
Heimersheim. Characterizing stable regions in the residual stream of llms, 2024. URL https:
//arxiv.org/abs/2409.17113.

Daniel J. Lee and Stefan Heimersheim. Investigating sensitive directions
in gpt-2: An improved baseline and comparative analysis of saes, Sep
2024. URL https://www.lesswrong.com/posts/dS5dSgwaDQRoWdTuu/
investigating-sensitive-directions-in-gpt-2-an-improved.

Jack Lindsey. How strongly do dictionary learning features influence model behavior? Transformer
Circuits Thread, 2024. https://transformer-circuits.pub/2024/april-update/index.html.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/TransformerLensOrg/
TransformerLens, 2022.

Chris Olah. What is a linear representation? what is a multidimensional feature? Transformer
Circuits Thread, 2024. https://transformer-circuits.pub/2024/july-update/index.html.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Lee Sharkey, Dan Braun, and Beren Millidge. Taking features out of superposition with sparse autoen-
coders, Dec 2022. URL https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/
interim-research-report-taking-features-out-of-superposition.

N. Smirnov. Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals
of Mathematical Statistics, 19(2):279 – 281, 1948. doi: 10.1214/aoms/1177730256. URL
https://doi.org/10.1214/aoms/1177730256.

9

https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2405.14860
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://www.alignmentforum.org/posts/rZPiuFxESMxCDHe4B/sae-reconstruction-errors-are-empirically-pathological
https://www.alignmentforum.org/posts/rZPiuFxESMxCDHe4B/sae-reconstruction-errors-are-empirically-pathological
https://www.alignmentforum.org/posts/LajDyGyiyX8DNNsuF/interim-research-report-activation-plateaus-and-sensitive-1
https://www.alignmentforum.org/posts/LajDyGyiyX8DNNsuF/interim-research-report-activation-plateaus-and-sensitive-1
https://arxiv.org/abs/2408.05451
https://arxiv.org/abs/2409.17113
https://arxiv.org/abs/2409.17113
https://www.lesswrong.com/posts/dS5dSgwaDQRoWdTuu/investigating-sensitive-directions-in-gpt-2-an-improved
https://www.lesswrong.com/posts/dS5dSgwaDQRoWdTuu/investigating-sensitive-directions-in-gpt-2-an-improved
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://doi.org/10.1214/aoms/1177730256


Lewis Smith. The ‘strong’ feature hypothesis could be wrong, Aug 2024.
URL https://www.alignmentforum.org/posts/tojtPCCRpKLSHBdpn/
the-strong-feature-hypothesis-could-be-wrong.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner,
Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees,
Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monoseman-
ticity: Extracting interpretable features from claude 3 sonnet. Transformer Circuits Thread,
2024. URL https://transformer-circuits.pub/2024/scaling-monosemanticity/
index.html.

A Analyzing different perturbations setups and synthetic activations

In the main paper we use absolute step size for perturbations, however blowup locations have a
dependence on the distance between the base and target activations, which can make the MS step
distributions with absolute step size misleading. We know that the blowup location does not solely
depend on the distance between the base and target activations, and in order to isolate this property,
we create a distance agnostic setup using relative step sizes. In the relative step size approach, our
perturbations always start at a base activation (A) and end at a target activation (T) using linear
interpolation:

Apert(n) =
(
1− n

100

)
·A+

n

100
· T

where n is the perturbation step, which goes from 0 to 100. This method ensures that we always
transition from the base activation to the target activation in a fixed number of steps, regardless of
the distance between them. By using relative step size, we remove the dependence of the blowup
location on distance, and instead compare the effect of perturbations purely in terms of the percentage
of base and target activations present at each step. For example, step 50 in this setup implies that the
perturbed activation is made up of 50% base activation and 50% target activation.

In the relative step size setup, we find that the MS step distribution for perturbations towards model-
generated activations peaks more strongly around step 50 than in the absolute step size setup. The
blowups are also localized between step 30 and 70, implying that blowups usually happen in the
middle of the perturbation (Figure A.1). We posit that until step 30, the model treats the interpolated
activation as the base activation. This is due to 70% of the interpolated activation coming from the
base activation, and the remaining 30% coming from the target activation being treated as noise. This
effect reverses at step 70, where the model starts treating the interpolated activation as the target
activation, and the 30% that comes from the base activation is considered noise.

Our analysis reveals that the MS step distribution for random activation perturbations exhibits
marginally higher variance than the absolute step size setup, with a rightward shift relative to the
distribution for model-generated activation perturbations (Table A.1). This suggests that stronger
perturbations towards random activations are required to induce a blowup compared to model-
generated activations. Furthermore, it indicates that the model is more resilient to random noise than
to noise directed towards another model-generated activation, requiring a greater magnitude of the
former to cause confusion in the model.

In this setup, comparing perturbations with synthetic-baseline and synthetic-structured activations
reveals that while synthetic-structured activations still more closely mimic model-generated acti-
vations, the disparity between the two has notably decreased (Figure A.1, Table A.1). This sug-
gests that synthetic-baseline activations less effectively align with the residual stream geometry of
model-generated activations compared to synthetic-structured ones, explaining the latter’s superior
performance in the absolute step size setup. Our findings indicate that considering latent sparsity is
important for synthetic activations to emulate model-generated activations in the relative step size
setup. Consequently, both synthetic-structured and synthetic-baseline outperform synthetic activations
created using the “bag of SAE latents” approach without accounting for sparsity (synthetic-random).

We find that when we construct synthetic-structured activations (Section 4.3), omitting the cosine
similarity constraint on the top latent and instead selecting based on sparsity similarity to the base
activation’s top latent yields the best-performing synthetic activations in the relative step size setup.
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However, these activations typically have greater distance from the base activation compared to
synthetic-structured activations. Consequently, their performance in the absolute step size scenario is
inferior to that of synthetic-structured activations.

Figure A.1: The distributions of the max slope (MS) steps for perturbations with relative step size towards model-
generated (orange), random (blue), synthetic-baseline (purple), and synthetic-structured (green) activations.
The left panel shows the counts of MS steps occurring in different bins along the length of the perturbation,
and the right panel shows the cumulative frequency for the same. We find that perturbing towards synthetic-
structured activations in the relative step size setup is slightly more similar to perturbing towards model-generated
activations than perturbing towards synthetic-baseline activations is.

Max Slope (MS) Step Distribution Statistics

Activation Type Absolute Step Size Relative Step Size

Mean Std dev KS Mean Std dev KS

Model Generated 41.21 10.32 0.00 51.65 7.42 0.00
Random 52.49 10.34 0.44 64.89 10.50 0.62
Synthetic Baseline 49.88 12.60 0.31 57.07 11.29 0.27
Synthetic Structured 43.45 12.78 0.11 55.69 11.31 0.22
Synthetic Random 51.30 10.25 0.39 55.25 8.74 0.19
Synthetic Structured (w/o cos sim) 50.17 11.96 0.31 54.47 10.68 0.17

Table A.1: We find that controlling for the sparsity of the top latent and the cosine similarity between the
active latents play an important role in making synthetic-structured activations perform well in both absolute and
relative step setups. This table contains the mean, standard deviation and KS statistic for MS step distributions
for all types of synthetic activations we tested. The KS statistic is measured against perturbations towards
model-generated activations, with a lower value meaning higher similarity. The entries in bold show the best
match with statistics for model-generated activations.
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B Metrics for analysing blowups

In our main analysis, we focus on the maximum slope (MS) as an indicator of the blowup step. In
this section we share findings using the Area Under the Curve (AUC) and Non Linear (NL) metrics
to represent important parts of the L2 distance vs perturbation step curve.

B.1 Area Under Curve (AUC)

Our experimental results reveal that certain L2 distance curves deviate from the expected step-
function-like pattern, causing the MS step to misrepresent the actual blowup location for these curves.
In contrast, the AUC metric provides a more comprehensive assessment of activation behavior across
the entire perturbation process. This approach not only identifies the steepest increase point but also
effectively screens out atypical curves that might otherwise evade detection. AUC calculates the step
at which the following ratio is maximized:

R = area of the triangle defined by (0,0), (x,0) and (f(x),x)/area under the curve f(x)

where f(x) is L2 distance as a function of the perturbation step x. This method is sensitive to the
concavity or convexity of the perturbation curve. For predominantly concave curves (where the rate
of change increases over time), the AUC blowup step tends to occur later, as the triangular area takes
longer to outpace the actual area under the curve. Conversely, for convex curves (where the rate of
change decreases over time), the AUC blowup step tends to occur earlier. This property allows the
AUC method to implicitly capture information about the shape of the perturbation.

The AUC metric serves as sanity check, confirming that most perturbations align with expectations.
Convex L2 distance curves yield early AUC peaks, and Figure B.1 demonstrates that the majority of
perturbations exhibit the anticipated concave shape. We find that our perturbation results hold for
AUC step distributions in the absolute step size setup (Table B.1), with structured-synthetic activations
more closely mimicking model-generated activations compared to synthetic-baseline activations. In
the relative step size setup (detailed in Appendix A), synthetic-structured and synthetic-baseline
activations perform similarly. This can be attributed to the higher prevalence of convex curves in
perturbations towards synthetic-structured activations versus synthetic-baseline activations.

Area Under Curve (AUC) Step Distribution Statistics

Activation Type Absolute Step Size Relative Step Size

Mean Std dev KS Mean Std dev KS

Model Generated 41.94 11.78 0.00 51.98 9.64 0.00
Random 52.73 13.66 0.43 64.97 16.01 0.59
Synthetic Baseline 49.31 14.20 0.25 56.66 13.20 0.22
Synthetic Structured 43.54 14.99 0.09 54.84 15.51 0.21

Table B.1: We find that our results for the AUC step distributions are similar to those for the MS step
distributions. This table contains the mean, standard deviation and KS statistic for AUC step distributions for
all the perturbations we perform. The KS statistic is measured against perturbations towards model-generated
activations, with a lower value meaning higher similarity.
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Figure B.1: The distributions of the AUC steps for perturbations with absolute step size (top) and relative
step size (bottom) towards model-generated (orange), random (blue), synthetic-baseline (purple), and synthetic-
structured (green) activations. The left column shows the counts of AUC steps occurring in different bins along
the length of the perturbation, and the right column shows the cumulative frequency for the same. We find that
our results for the AUC step distributions are similar to those for the MS step distributions.

B.2 Non-Linear (NL)

Using L2 distance to observe the perturbations reveals that the region before the blowup is not flat,
but linear with varying slopes (Figure 1). In order to study the size of the initial linear portion of the
curves, we use the Non-Linear (NL) metric, which points to the earliest step at which the slope of
the L2 distance vs perturbation step curve deviates from linearity by more than 10% of the initial
slope. We use this metric as an alternate measure for the size of the activation plateau around the
base activation along different perturbation directions.

We observe that perturbations towards model-generated activations cause the quickest deviation
from linearity followed by synthetic-structured activations, which is in line with our previous results
for blowup locations (Figure B.2, Table B.2). However, we find that the deviation from linearity
occurs the latest during perturbations towards synthetic-baseline activations, which suggests that L2
distance has a higher initial slope for these perturbations, giving more room for changes in the slope
before they are classified as a deviation from linearity. In this case, the behavior of synthetic-baseline
activations provides further evidence that local relationships between SAE latents are important to
approximate model-generated activations.
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Figure B.2: The distributions of the NL steps for perturbations with absolute step size (top) and relative step
size (bottom) towards model-generated (orange), random (blue), synthetic-baseline (purple), and synthetic-
structured (green) activations. The left column shows the counts of NL steps occurring in different bins along
the length of the perturbation, and the right column shows the cumulative frequency for the same. We find
that synthetic-structured activations and random activations behave more like model-generated activations than
synthetic-baseline activations do.

Non-Linear (NL) Step Distribution Statistics

Activation Type Absolute Step Size Relative Step Size

Mean Std dev KS Mean Std dev KS

Model Generated 24.17 8.87 0.00 29.98 9.95 0.00
Random 29.80 11.72 0.22 36.33 12.33 0.27
Synthetic Baseline 32.90 11.25 0.40 37.91 10.96 0.37
Synthetic Structured 26.72 12.25 0.11 33.69 13.44 0.17

Table B.2: In terms of NL step distributions, we find that synthetic-structured activations perform better than
random activations, but synthetic-baseline activations do not. This table contains the mean, standard deviation
and KS statistic for NL step distributions for all the perturbations we perform. The KS statistic is measured
against perturbations towards model-generated activations, with a lower value meaning higher similarity.

C KL Divergence

While previous works have predominantly used KL divergence as a measure of sensitivity, our
analysis revealed potential limitations of this approach. We observed that KL divergence produces a
step-function-like curve even when linear perturbations are performed at the final layer of the model
right before the unembedding. This behavior suggests that the step-function shape might be an artifact
of the KL divergence metric itself (or possibly due to softmax), rather than a true representation
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of activation plateaus. The logarithmic nature of KL divergence may amplify differences as they
become larger, leading to a more pronounced blowup region and a flatter initial plateau region.

With the mentioned caveats in mind, we perform perturbations at Layer 1 and observe their effect on
KL divergence of the logits distribution instead of L2 distance at Layer 11. Figure C.1 illustrates the
MS step distribution for KL divergence across different activation types. KL divergence blowups are
more localized in the relative step size setup than L2 distance blowups, suggesting that the model’s
output distribution is more robust to noise than the model’s final layer activations, only blowing up
when more than 40% of the base activation has been replaced. Similar to the results for L2 distance,
we find that perturbations towards synthetic-structured activations are more similar to perturbations
towards model-generated activations than synthetic-baseline activations are. The difference between
synthetic-structured and synthetic-baseline activations is more pronounced for KL divergence than
L2 distance.

Figure C.1: The distributions of the MS steps for KL divergence of next-token prediction probabilities for
perturbations with absolute step size (top) and relative step size (bottom) towards model-generated (orange),
random (blue), synthetic-baseline (purple), and synthetic-structured (green) activations. The left column shows
the counts of MS steps occurring in different bins along the length of the perturbation, and the right column
shows the cumulative frequency for the same. We find that our results for KL divergence are similar to those for
L2 distance.
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Max Slope (MS) Step Distribution Statistics for KL divergence

Activation Type Absolute Step Size Relative Step Size

Mean Std dev KS Mean Std dev KS

Model Generated 45.51 12.89 0.00 56.34 9.08 0.00
Random 58.54 12.33 0.47 71.83 11.75 0.69
Synthetic Baseline 54.79 14.02 0.32 62.41 12.05 0.32
Synthetic Structured 48.79 15.64 0.13 61.86 13.51 0.26

Table C.1: We find that our results for KL divergence of next-token prediction probabilities are similar to
those for L2 distance at Layer 11. This table contains the mean, standard deviation and KS statistic for MS step
distributions for all the perturbations we perform. The KS statistic is measured against perturbations towards
model-generated activations, with a lower value meaning higher similarity.

D Isolating the effect of SAE reconstruction error

We denote the reconstruction of an activation A with SAE(A) = decode(encode(A)). To isolate
the effect of SAE reconstruction error on the blowup location, we examine perturbations towards a
reconstruction of a model-generated target activation SAE(T). We compare these to perturbations
towards model-generated activations and find that they are very similar, with blowups occurring
slightly later for perturbations towards SAE reconstructions (Figure D.1, Table D.1). We also find
that reconstructions of model-generated activations also have plateaus around them. This shows that
the majority of the difference in our synthetic activations comes from the heuristics we use to select
latents, and not the SAE reconstruction error.

This similarity suggests that SAE reconstructions behave like model-generated activations for the
most part, and that the reconstruction error causes a small systematic shift in the blowup location.
This points to some information loss that causes the model to respond slightly less to perturbations
towards SAE reconstruction, which is relevant for interpreting experiments that use SAE latents.

Max Slope (MS) Step Distribution Statistics for SAE reconstructions

Activation Type Absolute Step Size Relative Step Size

Mean Std dev KS Mean Std dev KS

Model Generated 41.11 10.40 0.00 51.60 7.82 0.00
Random 52.49 10.21 0.45 65.01 11.19 0.61
SAE Reconstruction 41.49 11.34 0.02 53.34 8.39 0.11

Table D.1: We find that perturbations towards model-generated activations are almost identical to perturbations
towards their SAE reconstructions. This table contains the mean, standard deviation and KS statistic for MS step
distributions for all the perturbations we perform. The KS statistic is measured against perturbations towards
model-generated activations, with a lower value meaning higher similarity.
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Figure D.1: The distributions of the MS steps for perturbations with absolute step size (top) and relative
step size (bottom) towards random activations (blue), model-generated activations (orange), and their SAE
reconstructions (brown). The left column shows the counts of MS steps occurring in different bins along the
length of the perturbation, and the right column shows the cumulative frequency for the same. We find that
perturbations towards model-generated activations and perturbations towards their SAE reconstructions are
almost identical.

E Properties of SAE latents in model activations

We observe that model-generated activations with a low SAE reconstruction error contain approx-
imately 21 active SAE latents on average (Figure E.1 left). The distribution is narrow around the
mean and falls off very rapidly. The top latent represents around 49% of the total latent activation
norm average (Figure E.1 right). The norm falls off rapidly thereafter, with the second top latent
representing only around 10% on average. The distribution flattens out afterwards where latter ranks
have similar contribution to the norm.

Additionally, we find that model-generated activations are made up of SAE latents that have cosine
similarity to one another of approximately 0.29 on average (Figure E.2 left), with a distinct peak
at 0. SAE latents primarily have positive cosine similarity to the top SAE latent, with mean cosine
similarity of 0.18 (Figure E.2 right) and with a more pronounced peak at 0.
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Figure E.1: The distribution of the total number of active SAE latents per activation (left) and the distribution
of the percentage of the latent activation norm represented by the top 10 active latents (right) aggregated over
2000 activations.

Figure E.2: The distribution of cosine similarities between all active SAE latents per activation (left) and
distribution of cosine similarities that active SAE latents have with the top SAE latent (right) aggregated over
2000 activations.
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