
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAN TRANSFORMERS REALLY DO IT ALL?
ON THE COMPATIBILITY OF INDUCTIVE
BIASES ACROSS TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers are remarkably versatile and their design is largely consistent across
a variety of applications. But are they optimal for any given task or dataset? The
answer may be key for pushing AI beyond the mere scaling of current designs.

Method. We present a method to optimize a transformer architecture for a given
dataset, which we use as a tool to study optimal task-specific inductive biases. The
method replaces the most important non-linearities (GeLUs, softmax) with com-
ponents optimized on held out data. We then use each resulting new architecture
with other datasets as a way to evaluate the compatibility between pairs of tasks.

Findings. On a range of popular algorithmic tasks, our method identifies new
architectures with dramatic improvements in learning speed, generalization, and
stability across seeds. These designs prove very task-specific, which means that
the tasks require inductive biases very different from those of standard transform-
ers. On a range of code and language modeling datasets, we also find architectures
with consistent, yet smaller improvements. These designs now transfer much bet-
ter across datasets, domains (English vs. computer code), and tokenizations.

Implications. These results show that standard transformers are rarely a local op-
timum in the space of architectures. We show that alternative designs can perform
better, but they often sacrifice universality. This calls for future work on architec-
tures that could serve multiple objectives such as fluency and robust reasoning.

1 INTRODUCTION

Inductive biases of transformers. The recent history of machine learning has seen a uniformization
of models across tasks and modalities. Most state-of-the-art models for vision, language, and speech
for example are based on transformers, barring only relatively minor differences (Vaswani et al.,
2017). The success of this general solution over task-specific designs has prompted the hypothesis
that transformers implement very generic inductive bias1 such as a simplicity bias akin to Occam’s
razor (Goldblum et al., 2023). The simplicity bias of neural networks depends on architectural
choices such as their activation functions (Teney et al., 2024; 2025). Yet, considering the space of
all possible architectures, the following question remains (Q1).

Are transformers a unique and optimal solution endowed with generic inductive biases?

Uneven performance across domains. Transformers perform remarkably well for many applica-
tions, e.g. when trained as large language models (LLMs). Paradoxically, they also fail to learn
elementary tasks such as arithmetic operations (Nikankin et al., 2024). These failures demon-
strate limitations of transformers and have motivated new designs such as positional encodings (Cai
et al., 2025; Jelassi et al., 2024) and alternative attention mechanisms (Katharopoulos et al., 2020;
Saratchandran et al., 2024b; Schlag et al., 2021). But these new designs are rarely adopted beyond
toy tasks. This suggests that the inductive biases of standard transformers are not as well suited
to domains as different as e.g. natural language and arithmetic. This raises another question (Q2).

Should we even seek to address such different domains with the same learning method?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

GeLU Softmax

Learned
non-linearities

Multi-head
attention MLP (…)

Decimal addition MANO (Allen-Zhu et al.)

Standard
transformer

Optimized
architecture

Figure 1: Our approach to discover better task-specific inductive biases. (Left) We replace the
main non-linearities in a transformer (softmax, GeLUs) with parametrized components optimized
for specific tasks. (Right) The optimized architectures allow us to train models with dramatically bet-
ter convergence, generalization, and stability across seeds, on algorithmic tasks and code/language
modeling datasets. We also mix-and-match the new architectures across tasks (not pictured) to eval-
uate the compatibility of inductive biases across tasks.

The above questions matter for developing future learning systems. Although recent progress in AI
stems from scaling up models and data (Mayilvahanan et al., 2025), this growth is not infinitely sus-
tainable, and better learning efficiency seems possible given the capabilities of biological systems.
This fundamentally requires improving the inductive biases of our learning methods. Understanding
the inductive biases of transformers (Q1) is a step in this direction. And understanding the compati-
bility of different tasks (Q2) will help select better proxies and incentives for future progress.

Our approach. We address the above questions with a method that optimizes the inductive biases
for a specific task by tweaking the transformer architecture. We replace non-linearities (GeLUs,
softmax) with parametrized ones, optimized on held-out data. This yields new architectures that
match or surpass standard transformers. The improvement in learning speed and/or generalization
indicates how far the standard transformer is from a local optimum in the space of architecture for
a specific task (Q1). We also mix-and-match these new architectures across tasks to assess how the
inductive biases tuned for one task perform for another, thus assessing their compatibility (Q2).

Findings. We study two domains: algorithmic skills and language modeling. For algorithmic skills,
we use toy tasks commonly used to evaluate architectures, see e.g. Allen-Zhu (2025). For nearly
all considered tasks, our approach finds architectures that dramatically improve learning speed, gen-
eralization, and stability across random seeds (Section 3.1). Task-specific variants of transformers
can thus be vastly superior to standard designs, using only minor modifications like replacing
the GeLUs. Our cross-task evaluation also reveals that the new architectures are quite task-specific.
This can explain why many hand-crafted components from the literature (e.g. attention mechanisms,
positional encodings) are rarely adopted beyond toy tasks. It also challenges the view that a single
architecture can be optimal for a vast set of tasks (Goldblum et al., 2023).

For language modeling, we evaluate multiple datasets of natural language and computer code. In
most cases, we also find optimized architectures that slightly improve over a baseline transformer.
We stress that these improvements are practically not directly useful, because standard compo-
nents are more computationally efficient. But they matter indirectly, because they are evidence that
standard transformers are neither a unique nor a local optimum in the space of architectures.
In contrast to algorithmic tasks, the cross-task evaluation shows that the improvements can transfer
across natural language datasets and tokenization levels (character vs. subword). Overall, the results
suggest that standard transformers are intrinsically better suited to modeling natural language than
code, and clearly ill-equipped to learn algorithmic skills.

Our contributions are summarized as follows.
• A method to optimize a transformer architecture for any given dataset (Section 2). We replace

GeLUs and softmaxes with parametrized components optimized on held-out data. The optimized
architecture can then be used with standard training to evaluate its suitability to any other dataset.

1The inductive biases of a learning algorithm correspond to a prior over the space of functions (Mitchell, 1980;
Mingard et al., 2021) that favors particular (types of) functions among the many that fit the data. We focus on
biases encoded in architectures, rather than choices of optimizer, objective function, initialization, etc.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• An application to algorithmic tasks (Section 3). We find that optimized architectures dramat-
ically improve learning speed, generalization, and stability across seeds. They also prove very
task-specific, showing the utility of inductive biases very different from standard transformers’.

• An application to language modeling (Section 4). We obtain small, albeit consistent improve-
ments, showing that standard transformers are neither unique nor optimal designs, even for com-
mon code and natural language modeling tasks.

We discuss implications for the development of future learning systems in Section 6.

2 PROPOSED METHOD TO OPTIMIZE AND EVALUATE ARCHITECTURES

Goal. We consider, as a baseline architecture, a standard decoder-only transformer (GPT-2-style,
see details in Appendix B). Our goal is to evaluate whether this choice is optimal for specific tasks
and datasets. We also seek to identify better variants, as a proxy for identifying the inductive biases
best suited to each task. Evaluating the new architectures across tasks can then measure the compat-
ibility of pairs of tasks. All the tasks we consider are formulated as sequence completion of natural
language, computer code, or abstract tokens.

Replacing non-linearities with parametrized functions. We replace the main non-linearities in a
transformer with parametrized components that can be optimized (see Figure 1). Indeed, the main
difference between a transformer and a simple linear model hinge on a few non-linear operations in
the attention and MLP layers, which we will alter to obtain different inductive biases.
• An MLP layer is defined as: x←W ′ ϕ

(
Wx + b

)
+ b′ where x is a vector of activations, W ,

W ′, b, b′ learned weights and biases, and ϕ :R→R an element-wise non-linearity. In the baseline
architecture, ϕ is a GeLU. In our model, ϕθMLP

is a 1D linear spline parametrized by learnable
keypoints θMLP, capable of approximating a variety of functions (details in Appendix B).

• An attention layer in the baseline transformer is defined as: x← softmax
(
QK⊤) V, where x is

the output vector of activations and Q,K,V are linear projections of the input. This is a special
case of the kernel version of attention: x ←

∑n
j=1 K(Qi,Kj)Vj

/∑n
j=1 K(Qi,Kj) where

the similarity between Q and K is measured with a kernel function K(Q,K). In the baseline
transformer, Ksmax(Q,K) = exp

(
Q⊤K/

√
d
)
. In our model, we introduce a learnable non-

linearity ϕ′ : R→ R giving K(Q,K) = ϕ′(Q)⊤ϕ′(K). We implement ϕ′ as a linear spline ϕ′
θA

with keypoints θA that can be optimized.

Two-stage setting. Our experiments proceed in two stages. In stage I, we optimize the architecture
for a chosen dataset D by training both the model’s weights and its parametrized non-linearities
(θA,θMLP) on D. In stage II, the non-linearities are frozen, and we retrain the model in a standard
manner from scratch on any dataset D′. The models obtained from stage II are thus fairly comparable
with the baseline architecture.2 When D′ ̸= D, i.e. a “mix-and-match” setting, stage II serves to
evaluate whether the inductive biases optimized for D suit the learning of D′.

Optimizing architectures. Our method may seem similar to prior work about learning activation
functions (e.g. (Alexandridis et al., 2025)) but their goals are very different. These works seek to
improve performance by continuously updating the activation during training. Whereas we seek
to identify inductive biases that can remain hard-encoded in the architecture and further reused to
train new models with other seeds and datasets (stage II). We make this possible with a two-loss
training. During stage I, we hold out a fraction of the training data (e.g. 20%) that we use solely for
optimizing the non-linearities, while we optimize the weights in a standard manner on the training
set. This prevents a co-adaptation, that could make the non-linearities overfit particular weights or
seed. This is particularly important for our experiments on algorithmic toy tasks, and even more
so for improving length generalization3 (Section 3.1). In this latter case, we hold out an out-of-
distribution (OOD) split of data (see Section 3.1), such that the weights are optimized for one range
of sequence lengths, and the architecture for a different wider range. This forces the architecture to
capture an inductive bias for length generalization. In stage II, the non-linearities are frozen, and the
model weights are trained in a standard manner on the whole training split of the target dataset.

2In stage II, (θA,θMLP) are frozen and better viewed as pre-tuned hyperparameters than extra model capacity.
3The benefit of the two-loss training is smaller for language modeling because the models are heavily over-
parametrized and never at risk of overfitting the training data.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A second innovation to prevent the co-adaptation of weights and non-linearities in stage I is multi-
model training. We train M models in parallel (e.g. M = 4) that use different seeds but share
the non-linearities being optimized. The resulting optimized architecture is naturally more likely to
generalize in stage II to other weights and datasets (see Appendix D). This also proves particularly
helpful for algorithmic tasks because the variance across seeds of the baseline architecture is often
high. We provide a complete description of our method as Algorithm 1 in the appendix.

Rational for splines. We parametrize our non-linearities as linear splines because they offer the
most unbiased tractable parametrization for an R→R function. For example, a spline can represent
the identity function as easily as a step function or a sine wave. Prior work on trainable activation
functions enforces priors of smoothness or monotonicity e.g. with small MLPs (Apicella et al., 2021;
Greydanus & Kobak, 2020)). These would struggle to capture sharp transitions like in Figure 6. We
also favor linear splines over higher-order (e.g. cubic) ones because they behave nearly identically
while being much cheaper, as evaluated by Teney et al. (2025, Appendix D).

3 EXPERIMENTS ON ALGORITHMIC REASONING TASKS

In this section, we apply the proposed method to a set of tasks commonly used to evaluate the
algorithmic skills of transformers, detailed in Table 1. These tasks are elementary but remarkably
challenging and often used to highlight limitations of transformers. All the tasks are formulated as
sequence completion. Each sequence comprises an “input” part, followed by a separator then an
“output” part. The models are trained with a next-token prediction objective on the latter part of
training sequences. Unless otherwise noted we use i.i.d. sets of training, validation, and test data.

Experimental setup. For each task D, we first train the baseline architecture and tune its hyper-
parameters (width, depth, learning rate, batch size, etc.) for high accuracy and fast convergence on
the validation set. We then run the proposed method (stage I, M = 8) to optimize the architecture
for D. We then re-train a model from scratch with the optimized architecture (stage II), keeping the
same hyperparameters (we saw no further improvements by re-tuning them). In Section 3.2, we also
re-train models on other tasks D′ as a way to evaluate the generality of the optimized architecture
and the compatibility of D and D′. All results are averages over 6 random seeds.

Table 1: Algorithmic tasks used in our experiments. They are similarly-sized in term of complexity
and required model capacity, except for MANO (Allen-Zhu, 2025) which is relatively more complex.

Task Examples

MEMORIZE. Simple memorization of a mapping between a two-integer key and an integer value,
with all integers in [1,32]. Each sequence consists of the key, a separator, and the value. This
task has no test set: performance is simply the training accuracy (Zhong & Andreas, 2024).

23 12 | 10
11 32 | 27
31 19 | 18

PARENTHESES. Recognition of Dyck language. Each sequence contains parentheses followed
by a separator and a marker indicating whether they are balanced or not. Sequences lengths are in
[1,20] in the training set, and [21,40] in the validation and test sets (Zhong & Andreas, 2024).

() (| <unbalanced>
(() ()) | <balanced>
) () () | <unbalanced>

ADDMOD. Modular addition modN , with 95% of the N2 examples used for training (Zhong
& Andreas, 2024). We use N=97.

12 3 | 15
96 2 | 1

HAYSTACK. Needle-in-a-haystack recall. The model gets a sequence [m1, c1...mk, ck,mu]
of markers mk and values ck . It must search for the first occurrence of mu and return its
successor cu (Zhong & Andreas, 2024). We use k∈ [1,10] and mk, ck∈ [1,64].

2 p 9 k 3 b 9 | k
8 a 2 b 8 | a
2 p 9 k 3 b 5 x 5 | x

ADD. Decimal addition of 4-digit numbers with digit-wise tokens. (Zhong & Andreas, 2024). 1 0 0 9 + 1 0 9 2 | 2 1 0 1

ADDREVERSED. ADD with reversed numbers, known to be easier to learn (Lee et al., 2023) . 9 0 0 1 + 2 9 0 1 | 1 0 1 2

COPY. Repeating the input. Elementary but unsolved for length generalization (Cai et al., 2025).
Tokens in [1,8]. Seq. lengths in [2,10] for training, [2,15] for validation, [16,20] for testing.

2 8 | 2 8
9 4 8 7 8 3 | 9 4 8 7 8 3

MANO. Synthetic task proposed by Allen-Zhu (2025) to evaluate large pretrained models. Each
sequence specifies nested arithmetic operations modN with number-level tokens. Our scaled-
down version uses N=7 and a number of operations per sequences in [1,3].

(1*3)+4 | 0
(2-(6-1))*3 | 5
(3*(5-6))-1 | 3

3.1 IMPROVEMENTS ON INDIVIDUAL TASKS

Faster convergence. The most striking improvement with optimized architectures is the learning
speed (Figure 2). For the ADD and MANO tasks for example, convergence occurs 2 –3× faster. The
learning rate of the baseline was tuned to its maximum stable value for every task.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Baseline Ours Baseline Ours

HAYSTACK

0 800
0

1

0 800
0

1

COPY

0 2000
0

1

0 2000
0

1

ADDREVERSED

0 700
0

1

0 700
0

1

MANO

0 5000
0

1

0 5000
0

1

Figure 2: Training curves (test accuracy vs. training step, one curve per random seed) of models
trained on algorithmic tasks with a baseline transformer or our optimized architectures. The latter
converge much faster and show less variance across seeds. See Appendix C for other tasks.

Reduced variance. On some tasks, baseline transformers show huge variance in accuracy and
training speed across random seeds. This suggest tasks that are underspecified (Teney et al., 2021;
2022) and misaligned with the model’s inductive biases (Zhou et al., 2024). In these cases, the
optimized architectures eliminate the problem and make the training much more reliable (Figure 2).

Better generalization. For some tasks, baseline transformers do not reach perfect test accuracy
though they perfectly fit the training data. This shows again a misalignment between the target func-
tion and the inductive biases. Optimized architectures solve this problem (see e.g. MANO, Figure 2).

Improved length generalization. An outstanding challenge for transformers is the generaliza-
tion to sequences longer than seen during training. Even the COPY task is unsolved and a baseline
transformer completely fails on unseen lengths (Figure 3). Among the plethora of existing partial
solutions, the Alibi positional encodings (Press et al., 2021) bring non-trivial accuracy on slightly
longer sequences. We use our method to optimize the Alibi architecture. We use the two-loss mech-
anism of Algorithm 1 to optimize the transformer weights on lengths 2–10 and the non-linearities on
2–15. This forces the optimized architecture to capture an inductive bias for length generalization.
As a result, a model trained with the optimized architecture reaches higher accuracies on longer
sequences. While this is not a complete solution to length generalization, it shows that inappropriate
inductive biases in the base architecture are one of the obstacles to length generalization.

Test accuracy
(sequence-wise, in %,

shading shows +/-1 std. dev.)

2 Training 10 Val. 15 OOD Test lengths 30
0

1

■ Baseline

■ Alibi (Press et al., 2021)

■ Alibi + Ours w/o two losses

■ Alibi + Ours

Sequence length

Figure 3: Length generalization on the COPY task. The baseline completely fails on unseen
lengths (≫10). Alibi positional encodings (Press et al., 2021) help. Optimizing the Alibi archi-
tecture with our method further improves the accuracy and extends the benefits to longer sequences.

Performance with smaller models. We train models of different widths for each task. Results in
Figure 4 show that the accuracy drops more sharply on some tasks with the baseline architecture
than optimized ones. Intuitively, when the architecture is already aligned with the task, less capacity
is needed in its weights. Equivalently, a fixed number of parameters offers more capacity.

Better accuracy on small models No clear difference

Te
st

ac
cu

ra
cy

(%
)

4 8 12 16 32
0.8

1

8 12 16 32
0.7

1

8 16 32 64 128
0.6

1

8 16 32 64 128
0.2

1

8 16 32 64 128
0.4

1

48 56 64 96 128
0.3

1

PARENTHESES MEMORIZE ADDREVERSED HAYSTACK ADD ADDMOD

Figure 4: Test accuracy of models of different widths (X axis). On some tasks, optimized architec-
tures (■) maintain higher accuracy than the baseline (■) when reducing the width of the model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 COMPATIBILITY OF OPTIMIZED ARCHITECTURES ACROSS ALGORITHMIC TASKS

We now train models on each task D using architectures optimized for any other task D′ to evaluate
the pairwise compatibility of their inductive biases. The results in Figure 5 show that the optimized
architectures are very task-specific. Few of the benefits transfer across tasks, mostly across closely
related tasks like ADD and ADDREVERSED. Many perform worse than a standard transformer. This
shows that the specialization to our algorithmic tasks comes at the cost of universality. These tasks
are very narrow however and it remains an open question whether the negative impact is inevitable.
A future step to study this question could be a multi-task optimization in Algorithm 1.

Architectures
optimized for
specific tasks

M
em
or
ize

Ad
dM
od

Ad
d

Ad
dR
ev
er
se
d

M
an
o

H
ay
st
ac
k

Co
py

Pa
re
nt
he
se
s

Memorize

AddMod

Add

AddReversed

Mano

Haystack

Copy

Parentheses

+43 +0 +9 +13 -4 -10 -15 +0

+16 +16 +14 +21 -1 -9 +6 -4

+17 +7 +15 +18 +29 +7 +13 +0

+14 +6 +14 +17 +29 +6 +12 +1

+9 +3 +9 +12 +22 +13 +17 +0

+1 +3 -8 -2 -6 +12 +15 -0

-0 +3 -11 -3 -11 +11 +19 -1

+7 +5 +9 +10 +13 +11 +13 +0 Worse

Baseline

Better

Target tasks

Figure 5: Compatibility of architectures across algorithmic tasks. We plot the absolute difference in
test accuracy (%) with the baseline after a fixed number of steps (details in Appendix B). The best
option per task (column) is usually on the diagonal, meaning that the optimized architectures are
quite task-specific, while still yielding some positive transfer.

MEMORIZE PARENTHESES ADDMOD HAYSTACK ADD ADDREVERSED COPY MANO

Figure 6: MLP non-linearities optimized for each algorithmic task.

Take-away. On algorithmic tasks, optimized architectures can dramatically outperform standard
transformers, but the benefits are quite task-specific. This means that these tasks require inductive
biases very different from those of standard transformers.

4 EXPERIMENTS ON LANGUAGE MODELING TASKS

We now apply the same experimental setup as Section 3 to language modeling. We use datasets
for computer code (English, Java) and natural language of various complexity levels (Table 2). Our
goal is to understand whether different type of data benefit from different inductive biases. Current
practices for building LLMs show that data diversity is beneficial (Longpre et al., 2024) and that
code is complementary to natural language (Aryabumi et al., 2024; Petty et al., 2024). But because
all kinds of data are mixed during training, it is unknown whether they could each exploit or elicit
different mechanisms in a model. We also consider versions of the datasets tokenized at the character
or subword level (BPE; details in Appendix B). These choices are motivated by Mayilvahanan et al.
(2025) who showed that LLM performance is mostly determined by data diversity and tokenization.

4.1 IMPROVEMENTS ON INDIVIDUAL DATASETS

TINYSTORIES. We compare in Figure 7 models trained with baseline or optimized architectures.
The latter do slightly better. The improvement is small but consistent at different model sizes. Train-
ing curves (Figure 15) show that the improvement is larger early during training then diminishes. We

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Datasets used in our experiments for language modeling (see Appendix B for details).

Dataset Excerpt

TINYSTORIES. Children stories generated with GPT-3.5. It was designed to capture core aspects
of natural language (syntax, coherence, compositionality) with a limited vocabulary. This allows
smaller-scale experiments than web-scale open-domain corpora (Eldan & Li, 2023).

Once upon a time, there was
a clever little dog named
Max. Max loved to run (...)

SHAKESPEARE. Plays and sonnets by William Shakespeare, often used in early research on
language modeling. It includes recognizable patterns of grammar, rhythm, and vocabulary, as
well as a unique structure because of the speaker labels and dialogue formatting (Karpathy, 2015).

BENVOLIO: Good-morrow,
cousin. ROMEO: Is the day
so young? BENVOLIO: But (...)

ENWIK8. First 100 M bytes of the English Wikipedia (Mahoney, 2006). We use the clean version
from Yong (2025) with only text visible to human readers, without links and meta data. This data
provides dense, real-world text with a mix of vocabulary, syntax, and formatting.

anarchism originated as a
term of abuse first used
against early working (...)

CODESEARCHNET-JAVA & -PYTHON. Dataset of computer code originally created to support
research on code search and code–text understanding (Husel et al., 2019). We discard comments
and descriptions in natural language following Lu et al. (2021) to focus exclusively on code.

batch, limit = 100,
self. next limit()
it = iter(it) (...)

Transformer width

Num. layers

128 256 512 1024

1

2

4

+0.3 +0.2 +0.1 +0.4

+0.5 +0.6 -0.1 +2.2

+0.5 +0.3 +0.3 +2.4

Worse

Baseline

Better

Optimized from scratch Optimized from a GeLU

Figure 7: (Left) Absolute improvements in token prediction accuracy (%) of the best optimized
architectures on TINYSTORIES compared to our baseline transformer. The accuracy is consistently
slightly better at different model sizes. (Right) Visualization of MLP non-linearities optimized from
scratch (results on the left) or from a GeLU initialization (GeLU + Ours in Figure 8). Although they
resemble generic wavelets, we show in Appendix D that fine details in these functions matter.

find it best to optimize non-linearities only in MLPs (i.e. replacing GeLUs; see Figure 8). Replac-
ing softmaxes with learned components barely matches or underperforms the baseline, indicating a
difficult optimization. We experimented with alternative parametrizations that exactly mimic a soft-
max at initialization. This solution would barely move away from this initialization (not reported in
tables), suggesting that a softmax is close to a local optimum.

We visualize in Figure 7 (right) the optimized MLP non-linearities, which are remarkably similar to
sine wavelets. We evaluate a non-exhaustive selection of activation functions and attention variants
from the literature in Table 3. None of them works better than ours. The gated linear units (GLUs)
are a popular design that adds multiplicative interactions to the MLPs. We show that we can also
improve them by introducing our learned spline in GLUs in lieu of their internal Swish activations.
This provides similar improvements as over standard MLPs, cf. GLU/Swish and GLU/Ours in Table 3.
We also evaluate in Appendix D the importance of fine details in the learned non-linearities. We try
to make them more periodic or symmetric, but they then always perform worse.

Table 3: Performance of models trained on TINYSTORIES with existing alternative attention and
MLP designs (2 layers, width 256). None works better than ours. See Appendix D for references.

Attention smax smax smax smax smax smax smax smax smax smax P1 P3 Adaptive NormSmax
MLP Linear GeLU Ours GLU/Swish GLU/Ours ReLU ReLU2 TanH Sinc Gaussian GeLU GeLU GeLU GeLU

Tr. perplexity 1.78 1.58 1.57 1.59 1.58 1.60 1.60 1.71 2.50 1.64 1.62 1.60 1.58 1.58
Val. acc. (%) 59.9 63.7 64.4 63.7 64.0 63.5 63.6 61.2 47.7 62.8 63.0 63.7 63.7 63.7

SHAKESPEARE & ENWIK8. These datasets differ from TinyStories in their richer vocabulary and
sentence structure. SHAKESPEARE also follows a particular formatting presenting dialogues with
speaker labels (see Table 2). The results in Figures 8 & 13 show that some optimized architectures
slightly improve over the baseline. Optimizing non-linearities in the MLPs is again more useful
than in the attention. However, differences with the baseline are small, which suggests that standard
transformers are inherently well suited to language modeling.

The improvement is slightly clearer on character-level datasets than on tokenized ones (marked
-CHAR in Figure 8). We hypothesize that the target function to be learned by the transformer layers
for character-level language modeling is more complex, because of the lesser capacity available

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

TINYSTORIES SHAKESPEARE-CHAR SHAKESPEARE ENWIK8-CHAR ENWIK8 CSN-JAVA CSN-PYTHON

Tr
.p

er
pl

ex
ity

1.2

1.8 +.27

0 -.01
+.02 +.02

-.01

0.4

1.6 +.48

0

-.22

-.04

-.32 -.31

0

1.6 +1.33

0 -.02 +.01 +.01 -.00

0.9

1.6 +.25

0 -.02 -.01 -.02 -.04

3.7

4.4
+.29

0

+.16

-.00

+.13

+.03

2

2.7 +.20

0
-.03

+.12
+.07

-.13

3.1

3.9 +.33

0 +.02
+.08

+.01

-.06

Attention:
■

smax
■

smax
■

smax
■

Ours
■

Ours
■

smax
MLP: Linear GeLU GeLU + Ours GeLU Ours Ours

Figure 8: Perplexity on code and natural language (lower is better; numbers on bars correspond to
the difference with the baseline architecture). Some optimized architectures perform slightly better
than the baseline, often simply with optimized MLP non-linearities (■). Datasets of code (CSN-
JAVA, CSN-PYTHON) also benefit relatively more than datasets of natural language.

in the model’s token embeddings (embeddings can otherwise make up a significant fraction of the
model parameters for tokenized datasets). This could be the reason why learned non-linearities are
particularly helpful, since they can help learn and represent complex functions (Teney et al., 2025).

We also evaluate a version of our optimized MLP non-linearities initialized as a GeLU rather than
a constant zero (GeLU + Ours in Figure 8). With this, the model starts stage I with a non-linearity
known to perform well. And because the optimization is non-convex, the optimized solution remains
in the local search space near GeLUs (see Figure 7, right). The models trained with these non-
linearities perform in-between GeLUs and those optimized from scratch. This means that GeLUs
are usually not an optimal solution, not even a local one. But note also that our best solutions are
not guaranteed to be globally optimal and better ones may exist.

CODESEARCHNET (CSN-JAVA, CSN-PYTHON). The results in Figure 8 show that our optimized
non-linearities in MLPs improve again over the baseline. The gains are larger for code than natural
language, relative to the gap between the baselines with linear and GeLU MLPs. These larger gains
may reflect the larger importance of systematic structure and compositionality in code than natural
language. The task of modeling code may thus resemble some of the algorithmic tasks of Section 3,
which benefited greatly from optimized architectures. Therefore, the architectures best suited to
natural language may not be simultaneously optimal for code.

4.2 COMPATIBILITY OF OPTIMIZED ARCHITECTURES ACROSS LANGUAGE DATASETS

Our final results examine the compatibility of the optimized architectures across language modeling
datasets. We consider our seven datasets plus MANO, the most complex of our algorithmic tasks.
We train models for every task D using architectures optimized for any other task D′. The results in
Figure 9 show that the variations across architectures are very small. This contrasts with the results
on algorithmic tasks (Figure 5). These optimized architectures thus encode much less task-specific
specialization. This suggests that the skills required across code and language modeling datasets are
much more uniform. We discuss the implications of these results in Section 6.

Architectures
optimized for
specific tasks

Ti
ny
St
or
ies

Sh
ak
es
pe
ar
e-
ch
ar

Sh
ak
es
pe
ar
e

en
wi
k8
-c
ha
r

en
wi
k8

Cs
n-
Ja
va

Cs
n-
Py
th
on

Mano

TinyStories

Shakespeare-char

Shakespeare

enwik8-char

enwik8

Csn-Java

Csn-Python

+23 +37 +358 +23 +13 +13 +15

-.3 -13 +.4 -4 -7 -7 -9

+.4 -13 +1 -4 -6 -7 -8

+1 -12 +.4 -4 -6 -7 -7

-.7 -11 -.8 -4 -8 -9 -12

+4 +.9 +18 -1 +.5 -3 -6

-1 -10 +2 -3 -7 -9 -10

+.3 -7 +2 -3 -3 -5 -6 Better

Baseline

Worse

Target tasks

Figure 9: Compatibility of archi-
tectures across code and language
datasets (relative difference in per-
plexity with the baseline in %, lower is
better). The differences are much less
dramatic than with algorithmic tasks
(Figure 5), indicating smaller benefit
in dataset-specific specialization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Take-away. For code and natural language modeling, the optimized architectures improve much
less than for algorithmic tasks. This means that standard transformers are intrinsically closer to a
local optimum in the space of architecture for these tasks than for learning algorithmic skills.

5 RELATED WORK

Understanding inductive biases in NNs. Much of the prior on understanding neural net-
works (NNs) has focused on their simplicity bias, i.e. their preference for representing functions
of low Kolmogorov (Zhou et al., 2023) or spectral complexity (Bhattamishra et al., 2022). The
simplicity bias depends primarily on the choice of activation function (Mingard et al., 2019; Teney
et al., 2024), and its suitability was questioned (Domingos, 1999) by evaluating alternative activation
functions in MLPs (Teney et al., 2024). We extend this inquiry to transformers and larger settings.
In particular, we introduce a method to optimize non-linearities in both attention and MLP layers,
and apply it to tasks relevant to the state of the art (code, natural language, algorithmic reasoning).

Improving transformers. Current LLMs all use very similar architectures, and Mayilvahanan et al.
(2025) show that small design differences play little role in their performance. Prior work has
however studied at length the impact of various components of transformers including their nonlin-
earities (Jha & Reagen, 2025; Newhouse et al., 2025). Proposed improvements include alternative
attention mechanisms (Katharopoulos et al., 2020; Saratchandran et al., 2024b; Schlag et al., 2021;
Tamayo-Rousseau et al., 2025; Veličković et al., 2024) and activation functions for MLPs (Hu et al.,
2025; Teney et al., 2025) and transformers (Mirzadeh et al., 2023; So et al., 2021a). This motivates
our work by suggesting that standard transformers are not a uniquely optimal choice of architecture.

Architecture search. Our method to optimize architectures is reminiscent of neural architecture
search (NAS) (Goyal et al., 2019; Hong, 2025; Liu et al., 2018; Manessi & Rozza, 2018; Ramachan-
dran et al., 2018; Zoph & Le, 2017). The goals and approach are different though. NAS uses RL
or evolutionary algorithms to search through pre-defined design choices. We directly use gradient
descent to optimize a relatively unrestricted parametrization of the non-linearities of transformers.
Our goal is not to find better models (our designs are often computationally expensive). Instead, our
method is a tool to understand the compatibility of the inductive biases required for various tasks.

6 DISCUSSION

We have presented a method to optimize a transformer architecture for specific datasets and used
it to study the compatibility of inductive biases across tasks. We found that standard transformers
are often suboptimal, but minor tweaks (replacing GeLUs and softmax operations) can substantially
improve training speed, generalization, capacity, and stability across random seeds.

Our results show that different tasks benefit from different inductive biases, aligning with the no-
free-lunch theorem (Wolpert, 1996). Yet, transformers seem uniquely suitable to a vast range of
applications (Goldblum et al., 2023): our results can be seen as probing the limits of this hypothesis.

Architecture vs. scale. Prior work showed that the choice of architecture can become less important
with scale (Bachmann et al., 2023; Tay et al., 2022). But this also means that the current need
to build ever-larger models may be due to suboptimal inductive biases. In this work, we tweaked
transformers to explore the space of inductive biases, but similar effects may be achievable with other
means e.g. completely different architectures, initializations (Shinnick et al., 2025), or optimizers.

Do we need domain-specific models? Our results show a higher compatibility across lan-
guage/code than algorithmic tasks, which are often used to highlight limitations e.g. for length
generalization. If these toy tasks really represent desirable capabilities in LLMs, perhaps new ar-
chitectures are required to combine language and algorithmic capabilities. A future step could be to
apply our method to optimize architectures for multiple tasks simultaneously.

Other domains. An extension of this work could examine possible improvements to transformers
for other domains such as vision and speech, and whether the improvements transfer across domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Limitations. First, our search space of architectures is limited. Complex forms of attention
(Hashemi et al., 2025) or interactions like gated linear units (GLU, Shazeer (2020)) cannot be rep-
resented in our formulation. Further gains are possible with a larger search space, the optimization
also becomes more challenging. Second, the scale of our experiments is tiny relative to state-
of-the-art LLMs. The effects of different architectures may vanish with more data, but improving
data efficiency is a key objective of this line of work. So the effects at small scale are particularly
relevant. Third, our architectures with optimized non-linearities are computationally costly. Our
claims are not centered on the performance of these architecture though. They serve instead to better
understand the landscape of possible designs for future AI models.

REPRODUCIBILITY STATEMENT

Appendix B provides a formal description of the proposed method with the values of all hyperpa-
rameters. Code is available at http://github.com/anonymized/anonymized.

REFERENCES

Konstantinos Panagiotis Alexandridis, Jiankang Deng, Anh Nguyen, and Shan Luo. Adaptive para-
metric activation. In ECCV, 2025.

Zeyuan Allen-Zhu. Physics of Language Models: Part 4.1, Architecture Design and the Magic of
Canon Layers. SSRN Electronic Journal, May 2025.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. NeurIPS, 2022.

Andrea Apicella, Francesco Isgro, and Roberto Prevete. A simple and efficient architecture for
trainable activation functions. Neurocomputing, 2019.

Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Prevete. A survey on
modern trainable activation functions. Neural Networks, 2021.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. NeurIPS, 2019.

Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien Morisot, Ivan Zhang, Acyr Locatelli, Marzieh
Fadaee, Ahmet Üstün, and Sara Hooker. To code, or not to code? exploring impact of code in
pre-training. arXiv:2408.10914, 2024.

Gregor Bachmann, Sotiris Anagnostidis, and Thomas Hofmann. Scaling MLPs: A tale of inductive
bias. arXiv:2306.13575, 2023.

Samuel James Bell and Levent Sagun. Simplicity bias leads to amplified performance disparities.
In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, pp.
355–369, 2023.

Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in transformers
and their ability to learn sparse boolean functions. arXiv:2211.12316, 2022.

Garrett Bingham, William Macke, and Risto Miikkulainen. Evolutionary optimization of deep learn-
ing activation functions. In Genetic and Evolutionary Computation Conference, 2020.

Ziyang Cai, Nayoung Lee, Avi Schwarzschild, Samet Oymak, and Dimitris Papailiopoulos. Ex-
trapolation by association: Length generalization transfer in transformers. arXiv:2506.09251,
2025.

Irit Chelly, Shahaf E Finder, Shira Ifergane, and Oren Freifeld. Trainable highly-expressive activa-
tion functions. In ECCV. Springer, 2024.

CodeGPT. Microsoft CodeGPT (available on HuggingFace), 2024. https://huggingface.
co/microsoft/CodeGPT-small-py.

10

http://github.com/anonymized/anonymized
https://huggingface.co/microsoft/CodeGPT-small-py
https://huggingface.co/microsoft/CodeGPT-small-py

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Giacomo De Palma, Bobak Kiani, and Seth Lloyd. Random deep neural networks are biased towards
simple functions. NeurIPS, 2019.

Kamaludin Dingle, Chico Q Camargo, and Ard A Louis. Input–output maps are strongly biased
towards simple outputs. Nature communications, 2018.

Pedro Domingos. The role of occam’s razor in knowledge discovery. Data mining and knowledge
discovery, 1999.

Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in deep
learning: A comprehensive survey and benchmark. Neurocomputing, 2022.

Stanislas Ducotterd, Alexis Goujon, Pakshal Bohra, Dimitris Perdios, Sebastian Neumayer, and
Michael Unser. Improving lipschitz-constrained neural networks by learning activation functions.
Journal of Machine Learning Research, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. NeurIPS, 36, 2023.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv:2305.07759, 2023.

Richard Futrell and Kyle Mahowald. How linguistics learned to stop worrying and love the language
models. Annual Review of Linguistics, 2023.

Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38, 1994.

Gallant. There exists a neural network that does not make avoidable mistakes. In IEEE International
Conference on Neural Networks. IEEE, 1988.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2020.

Micah Goldblum, Marc Finzi, Keefer Rowan, and Andrew Gordon Wilson. The no free
lunch theorem, kolmogorov complexity, and the role of inductive biases in machine learning.
arXiv:2304.05366, 2023.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition.
Proceedings of the Royal Society A, 2022.

Mohit Goyal, Rajan Goyal, and Brejesh Lall. Learning activation functions: A new paradigm of
understanding neural networks. arXiv:1906.09529, 2019.

Sam Greydanus and Dmitry Kobak. Scaling down deep learning with MNIST-1D. arXiv preprint
arXiv:2011.14439, 2020.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers?
arXiv:2402.09963, 2024.

Michael Hahn, Dan Jurafsky, and Richard Futrell. Sensitivity as a complexity measure for sequence
classification tasks. Transactions of the ACL, 2021.

Baran Hashemi, Kurt Pasque, Chris Teska, and Ruriko Yoshida. Tropical attention: Neural algorith-
mic reasoning for combinatorial algorithms. arXiv:2505.17190, 2025.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GeLUs). arXiv:1606.08415, 2016.

Katherine L Hermann and Andrew K Lampinen. What shapes feature representations? exploring
datasets, architectures, and training. arXiv:2006.12433, 2020.

Jinwook Hong. Asnn: Learning to suggest neural architectures from performance distributions.
arXiv:2507.20164, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sara Hooker. The hardware lottery. CACM, 64(12):58–65, 2021.

Leyang Hu, Matteo Gamba, and Randall Balestriero. Curvature tuning: Provable training-free model
steering from a single parameter. arXiv:2502.07783, 2025.

Hamel Husel, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search. arXiv:1909.09436, 2019.

Ameya D Jagtap and George Em Karniadakis. How important are activation functions in regression
and classification? a survey, performance comparison, and future directions. Journal of Machine
Learning for Modeling and Computing, 4(1), 2023.

Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. Journal of Computational
Physics, 2020.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv:2402.01032, 2024.

Nandan Kumar Jha and Brandon Reagen. Entropy-guided attention for private llms.
arXiv:2501.03489, 2025.

Zixuan Jiang, Jiaqi Gu, and David Z Pan. Normsoftmax: Normalizing the input of softmax to
accelerate and stabilize training. In IEEE International Conference on Omni-layer Intelligent
Systems (COINS). IEEE, 2023.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,
You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:
Speedrunning the nanogpt baseline, 2024. URL https://github.com/KellerJordan/
modded-nanogpt.

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak,
and Haofeng Zhang. SGD on neural networks learns functions of increasing complexity. NeurIPS,
2019.

Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks. http://
karpathy.github.io/2015/05/21/rnn-effectiveness/, 2015.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In ICML. PMLR, 2020.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. NeurIPS,
2023.

Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A taxonomy.
arXiv:1710.10686, 2017.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv:2307.03381, 2023.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L.
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In 15th
European Conference on Computer Vision (ECCV), 2018.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv:2404.19756,
2024.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, et al. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage, quality, & toxicity. In Proceedings of the
Conference of the North American Chapter of the Association for Computational Linguistics,
2024.

12

https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. CodeXGlue: A machine learning bench-
mark dataset for code understanding and generation. arXiv:2102.04664, 2021.

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
Margin maximization and simplicity bias. NeurIPS, 2021.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In ICML, 2013.

Matt Mahoney. enwik8: First 100m bytes of english wikipedia. Available at https://
mattmahoney.net/dc/textdata.html, 2006.

Franco Manessi and Alessandro Rozza. Learning combinations of activation functions. In Interna-
tional Conference on Pattern Recognition (ICPR), 2018.

Prasanna Mayilvahanan, Thaddäus Wiedemer, Sayak Mallick, Matthias Bethge, and Wieland Bren-
del. Llms on the line: Data determines loss-to-loss scaling laws. arXiv:2502.12120, 2025.

Raphaël Millière. Language models as models of language. Mind & Language, 2024.

Chris Mingard, Joar Skalse, Guillermo Valle-Pérez, David Martı́nez-Rubio, Vladimir Mikulik, and
Ard A Louis. Neural networks are a priori biased towards boolean functions with low entropy.
arXiv:1909.11522, 2019.

Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A Louis. Is SGD a bayesian sampler?
well, almost. Journal of Machine Learning Research, 2021.

Chris Mingard, Henry Rees, Guillermo Valle-Pérez, and Ard A Louis. Do deep neural networks
have an inbuilt occam’s razor? arXiv:2304.06670, 2023.

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, Carlo C Del Mundo, Oncel Tuzel, Golnoosh
Samei, Mohammad Rastegari, and Mehrdad Farajtabar. Relu strikes back: Exploiting activation
sparsity in large language models. arXiv:2310.04564, 2023.

Tom M Mitchell. The need for biases in learning generalizations. Rutgers University CS tech report
CBM-TR-117, 1980.

Aaron Mueller and Tal Linzen. How to plant trees in language models: Data and architectural effects
on the emergence of syntactic inductive biases. Transactions of the ACL, 2022.

Laker Newhouse, R Preston Hess, Franz Cesista, Andrii Zahorodnii, Jeremy Bernstein, and Phillip
Isola. Training transformers with enforced lipschitz constants. arXiv:2507.13338, 2025.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algo-
rithms: Language models solve math with a bag of heuristics. arXiv:2410.21272, 2024.

Isabel Papadimitriou and Dan Jurafsky. Injecting structural hints: Using language models to study
inductive biases in language learning. In Proceedings of ACL, 2022.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. NeurIPS, 2024.

Jackson Petty, Sjoerd van Steenkiste, and Tal Linzen. How does code pretraining affect language
model task performance? arXiv:2409.04556, 2024.

Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guil-
laume Lajoie. Gradient starvation: A learning proclivity in neural networks. NeurIPS, 2021.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Aahlad Manas Puli, Lily Zhang, Yoav Wald, and Rajesh Ranganath. Don’t blame dataset shift!
shortcut learning due to gradients and cross entropy. NeurIPS, 2023.

13

https://mattmahoney.net/dc/textdata.html
https://mattmahoney.net/dc/textdata.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In ICML. PMLR, 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Swish: a self-gated activation function.
arXiv:1710.05941, 2017.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. In ICLR,
2018.

Riccardo Rende, Federica Gerace, Alessandro Laio, and Sebastian Goldt. A distributional simplicity
bias in the learning dynamics of transformers. NeurIPS, 37, 2024.

Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan,
and Richard G Baraniuk. Wire: Wavelet implicit neural representations. In CVPR, 2023.

Hemanth Saratchandran, Sameera Ramasinghe, Violetta Shevchenko, Alexander Long, and Si-
mon Lucey. A sampling theory perspective on activations for implicit neural representations.
arXiv:2402.05427, 2024a.

Hemanth Saratchandran, Jianqiao Zheng, Yiping Ji, Wenbo Zhang, and Simon Lucey. Rethinking
softmax: Self-attention with polynomial activations. arXiv:2410.18613, 2024b.

Simone Scardapane, Steven Van Vaerenbergh, Simone Totaro, and Aurelio Uncini. Kafnets: Kernel-
based non-parametric activation functions for neural networks. Neural Networks, 2019.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In ICML. PMLR, 2021.

Noam Shazeer. Glu variants improve transformer. arXiv:2002.05202, 2020.

Zachary Shinnick, Liangze Jiang, Hemanth Saratchandran, Anton van den Hengel, and Damien
Teney. Transformers pretrained on procedural data contain modular structures for algorithmic
reasoning. arXiv preprint arXiv:2505.22308, 2025.

David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching
for efficient transformers for language modeling. NeurIPS, 34, 2021a.

David R So, Wojciech Manke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Primer:
Searching for efficient transformers for language modeling, 2022. arXiv:2109.08668, 2021b.

Leon René Sütfeld, Flemming Brieger, Holger Finger, Sonja Füllhase, and Gordon Pipa. Adaptive
blending units: Trainable activation functions for deep neural networks. In Intelligent Computing:
Proceedings of the Computing Conference. Springer, 2020.

Remi Tachet, Mohammad Pezeshki, Samira Shabanian, Aaron Courville, and Yoshua Bengio. On
the learning dynamics of deep neural networks. arXiv:1809.06848, 2018.

Camilo Tamayo-Rousseau, Yunjia Zhao, Yiqun Zhang, and Randall Balestriero. Your attention
matters: to improve model robustness to noise and spurious correlations. arXiv:2507.20453,
2025.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao, Sharan
Narang, Vinh Q Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures:
How does inductive bias influence scaling? arXiv:2207.10551, 2022.

Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton van den Hengel. Evading the simplic-
ity bias: Training a diverse set of models discovers solutions with superior ood generalization.
arXiv:2105.05612, 2021.

Damien Teney, Maxime Peyrard, and Ehsan Abbasnejad. Predicting is not understanding: Recog-
nizing and addressing underspecification in machine learning. In ECCV. Springer, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Damien Teney, Armand Mihai Nicolicioiu, Valentin Hartmann, and Ehsan Abbasnejad. Neural
redshift: Random networks are not random functions. In CVPR, 2024.

Damien Teney, Liangze Jiang, Florin Gogianu, and Ehsan Abbasnejad. Do we always need the
simplicity bias? looking for optimal inductive biases in the wild. In CVPR, 2025.

Guillermo Valle-Perez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes because the
parameter-function map is biased towards simple functions. arXiv:1805.08522, 2018.

Bhavya Vasudeva, Deqing Fu, Tianyi Zhou, Elliott Kau, Youqi Huang, and Vatsal Sharan. Simplicity
bias of transformers to learn low sensitivity functions. arXiv:2403.06925, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Petar Veličković, Christos Perivolaropoulos, Federico Barbero, and Razvan Pascanu. softmax is not
enough (for sharp out-of-distribution). arXiv:2410.01104, 2024.

Alex Warstadt and Samuel R Bowman. What artificial neural networks can tell us about human
language acquisition. Trends in Cognitive Sciences, 2020.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, De-
badeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers.
arXiv:2301.08727, 2023.

David H Wolpert. The lack of a priori distinctions between learning algorithms. Neural computation,
1996.

David H Wolpert. The supervised learning no-free-lunch theorems. Soft computing and industry:
Recent applications, 2002.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv:1901.06523, 2019.

Xiulin Yang et al. (anything) goes? a crosslinguistic study of (im)possible language learning in lms.
In Proceedings of ACL, 2024.

York Yong. Clean version of the wikipedia. Available at https://www.kaggle.com/api/
v1/datasets/download/yorkyong/text8-zip, 2025.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI, 2023.

Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu. Initial-
ization is critical to whether transformer fits composite function by inference or memorizing.
arXiv:2405.05409, 2024.

Ziqian Zhong and Jacob Andreas. Algorithmic capabilities of random transformers.
arXiv:2410.04368, 2024.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv:2310.16028, 2023.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. arXiv preprint arXiv:2402.09371,
2024.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR,
2017.

15

https://www.kaggle.com/api/v1/datasets/download/yorkyong/text8-zip
https://www.kaggle.com/api/v1/datasets/download/yorkyong/text8-zip

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL RELATED WORK

Inductive biases in deep learning are due to choices of architecture (Goyal & Bengio, 2022) and
of the learning algorithm (optimizer, objective, regularizers (Kukačka et al., 2017)). We focus on
the former. The simplicity bias has been studied from both aspects. Most explanations attribute
it to loss functions (Pezeshki et al., 2021) and gradient descent (Arora et al., 2019; Hermann &
Lampinen, 2020; Lyu et al., 2021; Tachet et al., 2018). But work on untrained networks shows that
it can be explained with architectures alone (De Palma et al., 2019; Goldblum et al., 2023; Mingard
et al., 2019; Teney et al., 2024; Valle-Perez et al., 2018). Teney et al. (2024) showed that the choice
of activation function can modulate the simplicity bias. The spectral bias (Rahaman et al., 2019;
Kalimeris et al., 2019) or frequency principle (Xu et al., 2019) is a related but different effect related
to training dynamics: NNs approximate low-frequency components of the target function earlier
during training with SGD.

Simplicity bias in transformers. The hypothesis of a simplicity bias in NNs has also been studied
specifically in transformers. Hahn et al. (2021) shows that common models in NLP are biased to
learn low-sensitivity functions. Bhattamishra et al. (2022) shows that transformers are more biased
for simplicity than LSTMs. Dziri et al. (2023) examine large pretrained models and determine that
that tend rely on shortcut learning on simple reasoning tasks. Zhou et al. (2023) focus on length
generalization and show that transformers learn the shortest program in the RASP language that fits
the training data –a specific form of the simplicity bias. Rende et al. (2024) study BERT-like models
and find that they learn simple functions first during the course of training. Zhang et al. (2024) find
that the scale of initialization can influence a transformer’s learning of a generalizing or memorizing
solution. Vasudeva et al. (2024) further study the bias of transformers for learning low-sensitivity
functions using the NTK theory. Hahn & Rofin (2024) show that sensitive functions are hard to
learn for transformers because they correspond to sharp solutions in their optimization landscape as
a side-effect of the simplicity bias.

Activation functions are key for introducing non-linearities in NNs. Many options were considered
early on, e.g. sine activations in the Fourier Neural Networks from 1988 (Gallant, 1988). ReLUs are
often credited for enabling the rise of deep learning by avoiding vanishing gradients (Maas et al.,
2013). However they are also essential in inducing the simplicity bias (Teney et al., 2024) which may
be just as important. The research community has slowly converged towards smooth handcrafted
variants of ReLUs such as GeLUs (Dubey et al., 2022; Hendrycks & Gimpel, 2016; Ramachandran
et al., 2017). Some works proposed learning activation functions using extra parameters optimized
alongside the weights of the network (Alexandridis et al., 2025; Apicella et al., 2019; 2021; Bingham
et al., 2020; Chelly et al., 2024; Ducotterd et al., 2024; Jagtap et al., 2020; Scardapane et al., 2019;
Sütfeld et al., 2020). See Jagtap & Karniadakis (2023) for a comprehensive review. The goal is to
better fit the training data with an activation function that can evolve during training. In contrast,
we use meta learning to find an activation function that induces better inductive biases, such that
training with this fixed activation provides better generalization. This requires bi-level optimization,
episodic training, and unbiased parametrization that allows us to learn activations very different from
existing ones. Kolmogorov-Arnold Networks (Liu et al., 2024) parametrize the connections in a
NN, which is equivalent to learning different activation functions across channels and layers. They
use a parametrization as splines similar to ours. Their benefits in physics-related problems likely
result from the alterations to the inductive biases studied in this paper. Our method differs from
neural architecture search (White et al., 2023) in its ability to discover novel activation functions
from scratch, rather than selecting from predefined candidates (Sütfeld et al., 2020) or from a narrow
set of parametric functions (Alexandridis et al., 2025).

Length generalization refers to the ability of a model to generalize to sequences longer than seen
during training, especially for algorithmic tasks (e.g. arithmetic operations on numbers with more
digits). This remains a challenge despite extensive work on positional encodings, which only par-
tially address the problem (Anil et al., 2022; Kazemnejad et al., 2023; Zhou et al., 2024). This paper
shows that other aspects of the architecture can be important. We use the COPY task as proof of
concept and show that different MLP activation functions can bring a significant improvement to the
existing Alibi encodings (Press et al., 2021).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Learnability and inductive biases. The learnability of any given task is a fundamental question
in machine learning. It is well know that inductive biases are indispensable for generalization to
unseen data (Mitchell, 1980) and that no learning algorithm is universally useful, as per one of
the no-free lunch theorems (Wolpert, 2002)). Meanwhile, neural networks have nevertheless proved
widely successful. The broad applicability of transformers, in particular, suggests that their inductive
bias has a broad relevance to real-world data (Goldblum et al., 2023). The simplicity bias is a
broad and vague characterization of these properties. Various studies have established however that
the simplicity bias is not universally beneficial (Domingos, 1999; Teney et al., 2025; Zeng et al.,
2023) and even responsible for failure cases such as shortcut learning (Geirhos et al., 2020; Puli
et al., 2023; Teney et al., 2021) or the amplification of biases and performance disparities (Bell &
Sagun, 2023). Even the underlying principle supporting the simplicity bias, known as Occam’s
razor, has long been debated in the philosophical literature because it lacks a justification from first
principles (Mingard et al., 2023, Appendix A). A prominent argument for simplicity is rooted in
algorithmic information theory (Dingle et al., 2018) with results stating essentially that “a bias in
the distribution of target functions must be towards low complexity”. However, this only means that
simplicity is a good prior on average, but not necessarily the best choice for any task or dataset.

Studies in linguistics and cognitive science have also examined the question of learnability. This
includes studies on the influence of architectures and data on generalization during language ac-
quisition, both for humans and machines (Futrell & Mahowald, 2023; Millière, 2024; Warstadt &
Bowman, 2020). This explains how syntactic and structural biases arise and how they can be con-
trolled (Mueller & Linzen, 2022; Papadimitriou & Jurafsky, 2022; Yang et al., 2024). Our paper
complements this line of work since it helps clarify the impact of architectures on generalization.
Our approach is quite different though. Our method allows searching through the space of archi-
tectures via the optimization of non-linearities. This matters because current popular designs (e.g.
transformers) are contingent on external factors, cf. the Hardware Lottery (Hooker, 2021)).

Connection with prior work. This paper is a follow-up the study by Teney et al. (2025) that
uses trainable non-linearities to study whether the simplicity bias of standard neural architectures
is always desirable. It was however limited to MLPs and toy data, and relied on an expensive
optimization method unsuitable to modern architectures. In comparison, our main innovations are:
• a formulation of trainable non-linearities that applies to transformers’ MLPs and attention layers;
• a tractable optimization method replacing the expensive bi-level approach from prior work;
• the study of mainstream domains (language modeling, algorithmic reasoning);
• the study of cross-task compatibility, whereas prior work focuses on individual datasets;
• a demonstration of massive improvements on algorithmic tasks;
• a PyTorch implementation that allows swapping standard activation functions for optimized ones

with a few lines of code, available at https://github.com/anonymized/anonymized.

17

https://github.com/anonymized/anonymized

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

Proposed method. We provide a formal description of our method in Algorithm 1.

Algorithm 1 Proposed method (stage I) to optimize a transformer architecture for a specific task.

Input:
Training data D = {si}ni=1 as token sequences s ∈ S.
Baseline architecture T instantiable as next-token prediction model Tθ : S→S of weights θ.
L(·, ·): Loss function. α: Fraction of held-out data. M : Number of parallel models.

Method:
Define a new architecture T̂ θA θMLP

by replacing
− softmaxes with Σj K(Qi,Kj)Vj

/
Σj K(Qi,Kj), where K(Q,K)=ϕθA

(Q)⊤ϕθA
(K).

− GeLUs with a linear spline ϕθMLP ,
where architecture hyperparameters θA and θMLP specify the value of splines ϕ at their keypoints.
Instantiate M untrained models of architecture T̂ as T̂ 1

θ1
... T̂M

θM
.

Split D into Darch and Dwts of sizes αn and (1−α)n.

while not converged SGD training loop
Sample mini-batch D0 from Darch and D1 ... DM from Dwts

Eval. loss of each individual model on its own data Dm: Lm
wts ← Σs∈Dm L

(
T̂m
θm

(s), s
)

Eval. combined loss of all models together on D0: Larch ← Σm Σs∈D0 L
(
T̂m
θm

(s), s
)

Update weights of each model: ∀m, θm ← SGD(θm,∇θL
m
wts)

Update architecture: (θA,θMLP)← SGD((θA,θMLP),∇(θA,θMLP)Larch)

(θ⋆
A, θ

⋆
MLP) ← (θA, θMLP).

Output: optimized architecture T̂ θ⋆
A θ⋆

MLP

Now T̂ can be used like any other architecture, treating θ⋆
A and θ⋆

MLP as fixed hyperparameters.

Baseline transformer architecture. Our baseline is a GPT-2-style architecture (Radford et al.,
2019). It uses standard multi-head attention, GeLU activation functions in the MLPs, post-norm
layers, learned absolute positional embeddings, and a width multiplier of 4 in the MLP hidden
layers. All weights are initialized from Gaussians of standard deviation 0.02 truncated at 2 standard
deviations.

Parametrization of non-linearities as linear splines. We want a search space free of priors such
as the smoothness and monotonicity enforced in similar work on the learning of activation functions
(e.g. Apicella et al. (2019); Chelly et al. (2024)). We therefore choose to learn a non-linearity as
a linear spline ϕθ : R→ R with control points defined by θ. We define nc points spread regularly
in an interval [a, b], typically nc =122 points in [−20,+20] for a spacing of 1/3 between points
(see hyperparameters in Table 4). Then ϕ represents piecewise linear segments interpolating values
specified in the learned parameters θ := [ϕθ(a), . . . ϕθ(b))] ∈ Rnc . The function ϕ can represent
simple and complex functions, including smooth curves, periodic functions, sharp transitions, etc.

Datasets for algorithmic tasks. For most tasks, we generated data with code adapted from Zhong
& Andreas (2024): https://github.com/fjzzq2002/random_transformers. While
this prior work generates some of the data on-the-fly, we pre-generate all the data to ensure that the
training/validation/test splits are strictly disjoint.

For MANO, we re-implemented the data generation based on the description by Allen-Zhu (2025).
Compared to this prior work, we scaled down the task to allow using smaller models. We generated
1e5 training examples, with a number of operations in each sequence in [1,3], a modulus of 7, and
without tokens signaling the number of operations.

For all algorithmic tasks, we use a test set of 1e3 examples, strictly disjoint from the training set.

18

https://github.com/fjzzq2002/random_transformers

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Datasets for language modeling. For datasets tokenized at the character level, every character or
symbol in the data simply corresponds to one token. For the TINYSTORIES, SHAKESPEARE, and
ENWIK8 datasets tokenized at the subword level, we use the byte-pair encoding (BPE, Gage (1994))
tokenizer from GPT-2 Radford et al. (2019). We consider it a consistent choice suitable to our
different datasets since it was originally trained on very diverse data. For the CODESEARCHNET
datasets, we use the tokenizer of the CodeGPT model (CodeGPT, 2024). For each dataset, we
discard tokens with fewer than 200 training occurrences. This significantly reduces the vocabulary
size and training costs. This should not undermine the results of our experiments: if anything,
including more rare tokens could reveal larger differences across datasets.

Metrics. For the algorithmic tasks, we measure performance as the token-wise accuracy of the “out-
put” part of the generated sequences (the same part of the sequences as used to compute the training
loss). This allows a finer-grained evaluation of partial success than the sequence-wise accuracy.

For the COPY task, we use the sequence-wise accuracy because the token-wise accuracy can remain
falsely high when a model fails at length generalization.

For the language modeling tasks, we measure performance using the training perplexity (exponential
of cross-entropy loss) as well as token-wise accuracy on validation data as a more intuitive measure
of performance. For the accuracy, we measure it on the latter half of the context window to ensure
that we evaluate predictions with enough conditioning.

For the compatibility across algorithmic tasks (Figure 5), we plot the difference in test accuracy
with the baseline after a fixed number of steps. We adapt the number of steps to each task to capture
improvements in generalization and/or training speed depending on the task. This is because both
the baseline and optimized architectures saturate at perfect accuracy for multiple tasks, hence the
final accuracy alone is not informative.
• MEMORIZE: 150 steps.
• PARENTHESES: 300 steps.
• ADDMOD: 300 steps.
• HAYSTACK: 400 steps.
• ADD: 700 steps.
• ADDREVERSED: 350 steps.
• COPY: 2,000 steps.
• MANO: 3,000 steps.

Hyperparameters. We tuned the hyperparameters in Table 4 for a standard transformer on each
task, to make sure that our optimized architectures are compared against strong baselines. For
example, we use the Canon layers proposed by Allen-Zhu (2025) for many tasks (sequence-wise 1D
convolutions) because they clearly improve the performance of the baseline.

Table 4: Hyperparameters used for each task.

MEMORIZE PARENTHESES ADDMOD HAYSTACK ADD ADDREVERSED COPY MANO Language datasets

Num. layers 2 4

Num. att. heads 2 2 2 2 2 2 8 4 4

Width 32 32 32 128 128 128 128 128 512

Tied embeddings No Yes

Canon layers No Yes

Num. tr. steps 500 500 1,000 1,000 1,000 1,000 2,000 5,000 3,000

Peak LR .005 .001 .02 .001 .001 .001 .004 .001 .001

Batch size 512 64

Optimizer Adam

Adam (β1,β2) (0.9, 0.999) (0.92, 0.98) (0.9, 0.999)

LR schedule 5% linear warm-up, 50% cosine cool-down (not necessary for algorithmic tasks; used on all tasks for consistency)

Weight decay 0 (better on all tasks than using any weight decay)

Dropout rate 0

Parallel models M 8 3

Spline range [a,b] [−20, 20]

Spline spacing nc 1/9 1/3

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C ADDITIONAL RESULTS ON ALGORITHMIC TASKS

Training curves. Figure 10 shows that the optimized architectures (2nd and 3rd columns) always
converge significantly faster than a baseline transformer (1st column) and show less variance across
seeds. There is little difference between the 2nd and 3rd columns, which means that most of the
benefits come from optimizing the non-linearity within the MLP layers rather than the attention.

Attention: smax smax Ours
MLP: GeLU Ours Ours

MEMORIZE

0 500
0

1

0 500
0

1

0 500
0

1

PARENTHESES

0 500
0

1

0 500
0

1

0 500
0

1

ADDMOD

0 1100
0

1

0 1100
0

1

0 1100
0

1

HAYSTACK

0 800
0

1

0 800
0

1

0 800
0

1

ADD

0 1000
0

1

0 1000
0

1

0 1000
0

1

ADDREVERSED

0 700
0

1

0 700
0

1

0 700
0

1

COPY

0 2000
0

1

0 2000
0

1

0 2000
0

1

MANO

0 5000
0

1

0 5000
0

1

0 5000
0

1

Figure 10: Training curves (test accuracy vs. training steps, one curve per seed) of models trained
on algorithmic tasks with a baseline transformer (first column) or optimized architectures (second
and third columns).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Compatibility of architectures across algorithmic tasks. We present below the full results fol-
lowing the format of Figure 5. We show the effect when optimizing the non-linearities in MLP or
attention layers, or both. Optimizing the non-linearities in the attention proves to be really challeng-
ing, and the best results are usually obtained by optimizing only the MLPs.

Architectures
optimized for
specific tasks

M
em
or
ize

Ad
dM
od

Ad
d

Ad
dR
ev
er
se
d

H
ay
st
ac
k

Pa
re
nt
he
se
s

Memorize

AddMod

Add

AddReversed

Haystack

Parentheses

+43 +0 +9 +13 -10 +0

+16 +16 +14 +21 -9 -4

+17 +7 +15 +18 +7 +0

+14 +6 +14 +17 +6 +1

+1 +3 -8 -2 +12 -0

+7 +5 +9 +10 +11 +0 Worse

Baseline

Better

M
em
or
ize

Ad
dM
od

Ad
d

Ad
dR
ev
er
se
d

H
ay
st
ac
k

Pa
re
nt
he
se
s

Memorize

AddMod

Add

AddReversed

Haystack

Parentheses

-0 +0 -10 +2 -7 +2

-2 -0 -11 +0 -7 -1

+0 +1 -0 +0 -0 -0

-0 +0 -2 +1 -0 -1

+1 +1 +0 +0 -0

-2 -0 -11 +0 -7 -1 Worse

Baseline

Better

M
em
or
ize

Ad
dM
od

Ad
d

Ad
dR
ev
er
se
d

H
ay
st
ac
k

Pa
re
nt
he
se
s

Memorize

AddMod

Add

AddReversed

Haystack

Parentheses

+40 +2 -6 +11 -10 +1

-6 +3 -18 -6 -11 -24

+12 +7 +45 +17 +3 -0

+14 +12 +16 +18 -5 +1

+1 +6 -6 -1 +11 -0

+14 -0 -8 +6 -8 -0 Worse

Baseline

Better

Target tasks Target tasks Target tasks

Optimized MLPs Optimized att. Optimized MLP & att.

Figure 11: Compatibility of architectures across algorithmic tasks (difference in test accuracy with
the baseline after a fixed number of steps).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS ON LANGUAGE MODELING

Manipulating optimized non-linearities. In these experiments, we slightly modify the optimized
MLP non-linearities to understand the importance of their fine details. Since they often look like
sinusoidal wavelets, perhaps an even more regular version of them could perform better. We auto-
mate a “cleaning” process of the optimized non-linearities as follows. We take the optimized spline,
reverse it along the X and/or Y axis (yielding three different versions), then align it with the original
one by maximizing their cross-correlation. We then keep the average of the two. Among the three
versions, we retain the one with the highest cross-correlation (i.e. similarity) with the original spline.
The result is symmetric or anti-symmetric with fewer irregularities than the original one. We visual-
ize this effect in Figure 12 on MLP non-linearities optimized for TINYSTORIES and various model
sizes. We train models with these, but in almost every case, they perform worse than the original
ones. This shows that fine details in the original optimized non-linearities matter.

1 layer, dim. 128 1 layer, dim. 256 1 layer, dim. 512 2 layers, dim. 128 2 layers, dim. 256 2 layers, dim. 512 4 layers, dim. 128 4 layers, dim. 256

Original

Test acc. (%) 59.0 62.0 63.6 60.8 64.3 65.6 62.5 65.5

Modified

Test acc. (%) 58.8 61.8 63.4 60.9 64.0 65.8 62.1 65.4
(-0.2) (-0.2) (-0.2) (+0.1) (-0.3) (+0.2) (-0.4) (-0.1)

Figure 12: MLP non-linearities optimized for TINYSTORIES and versions modified to enforce sym-
metry. Almost all of these perform worse than the original ones, whose fine details therefore matter.

Multi-model training. We compare in Table 5 architectures for TINYSTORIES obtained with the
proposed method and M =1 or M =6 models in parallel. The latter are slightly better, and the
optimized non-linearities look slightly more regular.

Table 5: Models for TINYSTORIES with architectures optimized with M=1 or 6 parallel models.

(Models with
2 layers,
width 256)

Attention smax smax smax smax
MLP Linear GeLU Ours,M=1 Ours,M=6

Tr. perplexity 1.78 1.58 1.59 1.57
Val. acc. (%) 59.9 63.7 63.8 64.3

M=1 M=6

(Models with
4 layers,
width 256)

Attention smax smax smax smax
MLP Linear GeLU Ours,N=1 Ours,N=6

Tr. perplexity 1.73 1.53 1.53 1.52
Val. acc. (%) 60.8 65.1 65.3 65.4

Existing methods. Below are references for the attention and MLP designs evaluated in Table 3.
• Adaptive softmax: Veličković et al. (2024).
• NormSoftmax: Jiang et al. (2023).
• Polynomial attention P1: (Q⊤K)/

√
seqLength: Saratchandran et al. (2024b).

• Polynomial attention P3: (Q⊤K)3/
√
seqLength: Saratchandran et al. (2024b).

• GLU: Shazeer (2020).
• ReLU2: So et al. (2021b).
• Sinc: Saratchandran et al. (2024a).
• Gaussian: Saragadam et al. (2023).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Full results on Shakespeare. We present below results on the SHAKESPEARE dataset for various
model sizes, in the same format as Figure 7. The best configuration is to optimize the MLP non-
linearities while keeping the original softmax attention (second panels from the left).

128 256 512

1

2

4

-.02 -.02 -.04

-.05 -.05 -.11

-.06 -.09 -.16

Better

Baseline

Worse

128 256 512

1

2

4

-.02 -.02 -.04

-.03 -.05 -.14

-.05 -.10 -.25

Better

Baseline

Worse

128 256 512

1

2

4

+.03 +.02 -.02

+.02 +.02 -.03

+.02 +.02 -.03

Better

Baseline

Worse

128 256 512

1

2

4

-.00 -.00 -.03

-.01 -.05 -.14

-.04 -.10 -.25

Better

Baseline

Worse

128 256 512

1

2

4

-.00 -.00 -.03

-.01 -.05 -.14

-.04 -.10 -.25

Better

Baseline

Worse

Attention: smax smax Ours Ours
MLP: GeLU + Ours Ours GeLU Ours

Figure 13: Absolute improvements in training perplexity on character-level SHAKESPEARE for
models of different sizes (number of layers × width).

128 256 512

1

2

4

-.06 -.10 -.04

-.06 -.14 -.02

-.17 -.09 -.01

Better

Baseline

Worse

128 256 512

1

2

4

-.04 -.10 -.01

-.05 -.11 -.00

-.20 -.06 -.00

Better

Baseline

Worse

128 256 512

1

2

4

+.04 +.09 +.14

+.07 +.13 +.02

+.08 +.08 +.01

Better

Baseline

Worse

128 256 512

1

2

4

+.00 -.01 +.18

+.02 -.01 +.01

-.13 +.00 +.00

Better

Baseline

Worse

128 256 512

1

2

4

-.00 -.00 -.03

-.01 -.05 -.14

-.04 -.10 -.25

Better

Baseline

Worse

Attention: smax smax Ours Ours
MLP: GeLU + Ours Ours GeLU Ours

Figure 14: Same as Figure 13 with subword-level tokenization.

Training curves on language datasets. Figure 15 shows that the optimized architectures (■) show
a larger improvement over a baseline transformer early during training, which then diminishes.

TINYSTORIES TINYSTORIES SHAKESPEARE-CHAR SHAKESPEARE-CHAR

Te
st

ac
cu

ra
cy

(%
)

0 3000
0.4

0.7

Tr
ai

ni
ng

lo
ss

(l
o
g

)

0 3000

2

8

Te
st

ac
cu

ra
cy

(%
)

0 2000
0

0.7
Tr

ai
ni

ng
lo

ss
(l
o
g

)

0 2000

2

4

Figure 15: Training curves on language datasets with baseline (■) and optimized (■) architectures.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E RESULTS WITH LARGER LANGUAGE MODELS

On the suggestions of reviewers, we perform additional experiments to evaluate the improvements
from the optimized non-linearities at various scales. We repeat experiments on language modeling
as in Section 4 with the following differences.
• We use the FINEWEB dataset (Penedo et al., 2024), a popular high-quality dataset of cleaned

and deduplicated English text from CommonCrawl.
• We implement our method on top of a very strong baseline, the NanoGPT Speedrun (Jordan

et al., 2024). This is a competitive repository where contributors specifically push the implemen-
tation and data efficiency of the model on the FINEWEB dataset. We specifically build on top of
record #16, which includes rotary embeddings, QK normalization, the Muon optimizer, sliding-
window attention, mixed-precision training, etc. The code was designed for 8 H100 GPUs but
we adapted it to enable experiments with a single Nvidia RTX 4090 laptop GPU. Our results are
therefore not directly comparable with the official Speedrun competition. See our code for details:
https://github.com/anonymized/anonymized.

• We first run stage I of our method to optimize the MLP non-linearities of a small model, since this
stage is computationally more expensive (2 layers, width 256, 4 attention heads). We then re-use
the optimized non-linearity to run stage II (i.e. standard training) with models of various sizes
from 2 to 12 layers. This setup therefore evaluates how the optimized non-linearities transfer
across models of different depths.

• We train similar models (with 2 to 12 layers) with a ReLU, which is the best baseline for this
codebase. We always use a standard attention with a softmax since we found in Section 4 that it
was difficult to improve upon.

Results. The results in Table 6 show that our optimized non-linearities perform similarly or better
than the baselines. There is little improvement at the smallest scale (probably because the model
is very weak overall) but we get a consistent improvements at all other scales up to 12 layers,
surpassing both the ReLU and GeLU baselines in most cases.

Regarding the computational cost of the optimized non-linearities, our implementation (Listing 1)
is as fast or faster than a ReLU in very small models. In larger models however, they become much
more expensive. We propose in Appendix F a polynomial approximation. Table 6 shows that this
approximation performs about as well as the original spline and about as fast as a ReLU.

Table 6: Evaluation of models of various depths trained on FINEWEB (average over 3 seeds).

Validation loss (FINEWEB)

Number of layers 2 4 8 10 12
Number of parameters (M) 91 105 133 148 162

Linear 4.21 4.05 3.93 3.90 3.88
ReLU 4.01 3.87 3.78 3.75 3.73
GeLU 4.00 3.89 3.72 3.75 3.72

Ours: linear spline 4.00 3.82 3.72 3.68 3.69
Ours: polynomial approx. (n=18) 4.01 3.82 3.72 3.70 3.68

Training time (sec)

Number of layers 2 4 8 10 12

Linear 1,440 1,920 2,940 3,540 19,680
ReLU 1,500 1,980 3,120 13,080 28,020
GeLU 1,440 1,920 3,090 20,580 34,020

Ours: linear spline 1,500 2,070 8,520 26,700 81,720
Ours: polynomial approx. (n=18) 1,440 2,040 3,180 14,070 29,100

24

https://github.com/anonymized/anonymized

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F EFFICIENT IMPLEMENTATION OF SPLINES

Exact implementation. Our non-linearities are parametrized as linear splines. We first provide an
exact efficient implementation (Listing 1) that we find to be as fast as standard activations such as
GeLUs for small models. However, depending on the architecture and GPU used, this function can
quickly get bandwidth-constrained and become significantly slower. Therefore we propose a faster
approximation with polynomials to be used when the spline has already been optimized and is used
as a frozen non-linearity (i.e. for standard training, as in stage II of our experiments).

Evaluate, at points x (typically in bfloat16), a 1D function defined as the
linear interpolation of knots, of coordinates 'knotPos' and values 'knotVals'
(both typically in float32).
@torch.compile(dynamic=False)
def eval_spline(x, knotPos, knotVals):

idx = torch.bucketize(x, knotPos) - 1 # Find the interval each x falls into
idx = idx.clamp(0, len(knotPos) - 2)

stepSize = knotPos[1] - knotPos[0]
x0 = knotPos[0] + idx * stepSize
frac = (x - x0) / stepSize
frac = frac.clamp(0.0, 1.0) # Constant extrapolation beyond the knots

y0 = knotVals[idx]
y1 = knotVals[idx + 1]
out = y0 + frac * (y1 - y0) # Linear interpolation
return out.to(x.dtype) # Back to bfloat16; knotPos/frac/out were float32

Listing 1: Exact evaluation of a linear spline, used for stages I and II of most of our experiments.

Approximation with polynomials. The splines learned in our experiments with language models
are quite smooth (unlike with algorithmic tasks in Section 3). It is therefore reasonable to approx-
imate them with polynomials, which are much simpler and faster to evaluate. Concretely, given a
linear spline optimized in stage I of our method, we determine an approximation through a least-
squares fit of a polynomial of chosen degree n on the spline values at its knots, on its support that
has non-zero values. We choose a high degree (n = 18 typically) to ensure high fidelity with the
original spline and to avoid ringing artifacts near the support boundaries. Beyond the boundaries,
the polynomial is clamped to 0. For efficiency, we evaluate the polynomial with Horner’s method,
and implement it in a compiled function using TorchsSscript (see Listing 2).

@torch.jit.script
def eval_polynomial(x: torch.Tensor) -> torch.Tensor:

x = x.clamp(-79.52, 71.65) # Clamp for constant extrapolation
x = x / 79.52 # Normalize to get values within [-1,1] for numerical stability
return ((((((((((((((((((29327.20)*x + 18324.92)*x - 41591.43)*x - 12376.90)*x -
14822.88)*x - 29015.27)*x + 33452.63)*x + 10354.57)*x + 21105.54)*x + 45592.25)*x -
47565.33)*x - 47925.56)*x + 26296.37)*x + 18216.14)*x - 6145.61)*x - 2660.53)*x +
522.13)*x + 66.86)*x - 0.63 # Evaluate polynomial with Horner's method

Listing 2: Example of polynomial approximation of a spline (best one from Table 7). It uses Horner’s
method with hard-coded coefficients and is compiled with TorchScript for efficiency.

Importance of high degree polynomials. We tried reducing the maximum degree of the polyno-
mials. This creates smoother functions that look appealing, but they perform systematically worse
than high-degree polynomials or than the original spline. This shows the importance of fine details
in the optimized splines. We also tried to suppress noise and artifacts near the support boundaries,
by analytically enforcing null derivatives (up to 4th derivatives) of the polynomial at the boundaries.
The functions are again visually appealing but they do not necessarily work better when training
models with them. The data-driven optimization is clearly superior to our hand-crafted tweaks. One
possible improvement that we have not implemented is an approximation with Chebyshev polyno-
mials. These are known to provide better approximations of functions with finite supports, with less
artifacts and better numerical stability.

Do we need splines at all? We tried to do away with splines entirely and directly optimize coeffi-
cients of a polynomial in stage I of our method. This completely fails however. Even though splines
and polynomials can represent similar sets of functions, the different parametrization apply different
inductive biases on the learned non-linearities. As discussed in Section 2, splines are particularly
effective because they correspond to the most uniform prior on the space of functions.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Evaluation of polynomial approximations. We train small language models on FINEWEB with
a different non-linearity for the MLP layers. We keep all hyperparameters identical and similar to
Section E. Here, we use 6 layers, a width of 256, 4 attention heads, ∼20M parameters, and ∼80M
training tokens. The results in Table 7 show that our spline performs best and slightly better than a
ReLU. As expected, the polynomial approximations are increasingly effective as we increase the
degree. The approximation then becomes very close to the exact spline. Low-degree polynomials
yield smoother functions that are visually appealing but do not work as well. This shows that the
parametrization as a spline is important to capture subtle important details.

Table 7: Models trained on FINEWEB with various MLP non-linearities. Our optimized spline
works best. Approximations with high-degree polynomials are effective as they faithfully approxi-
mate the spline.

Validation loss (FINEWEB)

Linear

ReLU

Spline (exact)

Approx. (n=3)

Approx. (n=4)

Approx. (n=5)

Approx. (n=10)

Approx. (n=12)

Approx. (n=14)

Approx. (n=15)

Approx. (n=17)

Approx. (n=18)

4 5

4.82

4.65

4.64

4.79

4.73

4.70

4.69

4.67

4.68

4.63

4.59

4.66

26

	Introduction
	Proposed Method to Optimize and Evaluate Architectures
	Experiments on Algorithmic Reasoning Tasks
	Improvements on Individual Tasks
	Compatibility of Optimized Architectures Across Algorithmic Tasks

	Experiments on Language Modeling Tasks
	Improvements on Individual Datasets
	Compatibility of Optimized Architectures Across Language Datasets

	Related Work
	Discussion
	Additional Related Work
	Implementation Details
	Additional Results on Algorithmic Tasks
	Additional Results on Language Modeling
	Results with Larger Language Models
	Efficient Implementation of Splines

