
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

HAP-E: HESSIAN-AWARE STRUCTURED PRUNING OF
LLMS FOR EFFICIENT INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) deliver strong performance across diverse tasks,
yet their heavy compute and memory demands make deployment on real-time
edge devices challenging. Structured pruning has become the standard approach
to reduce these costs, yet accurately estimating which blocks can be removed re-
mains challenging at scale. Second-order methods such as Optimal Brain Sur-
geon (OBS) are computationally intractable at LLM scale. Existing approaches
rely on static budgets that ignore cross-layer dependencies, and common proxies
like FLOPs misestimate real hardware latency. We introduce HAP-E, a scalable,
Hessian-aware pruning framework for post-training compression of LLMs. HAP-
E adaptively reallocates budgets across layers using global screening and selective
second-order analysis on a candidate set guided by cross-layer sensitivity estima-
tion. It further performs OBS-equivalent batch pruning that certifies and removes
multiple blocks at once while exactly matching the greedy OBS sequence, thereby
reducing weight updates and numerical drift. A lightweight latency predictor en-
sures that the compressed model satisfies inference-time constraints. Experiments
on LLaMA and OPT models show that HAP-E improves accuracy by up to 3%
over state-of-the-art structured pruning methods at comparable pruning ratios.

1 INTRODUCTION

Large language models (LLMs) have achieved state-of-the-art performance across diverse
tasks (Bommasani, 2021), but their substantial computational and memory demands hinder de-
ployment in latency-sensitive or resource-constrained environments (Zhou et al., 2024). In such
scenarios, achieving low inference latency, high energy efficiency, and preserving data privacy are
critical requirements (Wu et al., 2019). Structured pruning (Guo et al., 2025; Kwon et al., 2022;
An et al., 2024), which removes entire blocks such as attention heads or feed-forward neurons, has
become the standard approach to reduce these costs. By aligning naturally with existing hardware
and inference frameworks, structured pruning directly translates into tangible latency and memory
reductions. The central challenge lies in accurately estimating which blocks can be removed with
minimal impact, a problem that becomes increasingly difficult at the scale of modern LLMs (Kim
et al., 2024; Frantar & Alistarh, 2023).

Recent advances have shown that second-order (Hessian-based) information, as in Optimal Brain
Surgeon (OBS) (Hassibi & Stork, 1992; Frantar & Alistarh, 2022) inspired methods (Ling et al.,
2024; Wei et al., 2024), can effectively guide pruning by capturing the curvature of the loss land-
scape and making locally optimal choices. However, existing approaches face four major challenges
at LLM scale: (1) Computing and updating full Hessian inverses is memory- and compute-intensive,
and even incremental strategies require repeated inverse updates that are costly and introduce nu-
merical drift. (2) Standard OBS prunes one block at a time, demanding many sequential weight
updates that slow pruning and make it impractical for billion-parameter models. (3) Conventional
methods impose static, layer-wise pruning budgets fixed at the start of pruning, ignoring cross-layer
dependencies where pruning in one layer alters the importance of blocks in subsequent layers. (4)
Finally, they rely on proxy metrics such as FLOPs or sparsity ratios, which misrepresent real hard-
ware latency and require repeated tuning (Kurtić et al., 2023).

Contributions. To address these challenges, this paper introduces HAP-E, a scalable, Hessian-
aware structured pruning framework for post-training compression of LLMs. (i) HAP-E adaptively

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

reallocates pruning budgets across layers. To do so, it first performs inexpensive global screening
and then applies selective second-order analysis on a candidate set chosen dynamically. This pro-
cess is guided by cross-layer sensitivity estimation that captures both local and propagated effects
(Section 4.2). (ii) It introduces a greedy-consistent batch pruning mechanism. Each certified batch
matches exactly the sequence that greedy OBS would remove one-by-one, but is pruned jointly in
a single step. This yields the same accuracy with far fewer weight updates, reducing computational
overhead and mitigating numerical drift (Section 4.1). (iii) Finally, HAP-E integrates a lightweight
latency predictor into the pruning loop to ensure that the compressed model meets real inference-
time constraints (Section 4.3). Together, these components make OBS-style pruning tractable at
LLM scale, delivering up to 3% higher accuracy than state-of-the-art pruning methods at compara-
ble pruning ratios.

2 BACKGROUND: STRUCTURED OPTIMAL BRAIN SURGEON PRUNING

Given a small calibration dataset, we first collect representative input activations for each layer.
Consider a linear layer with input activations X ∈ RT×Cin and weight matrix W ∈ RCin×Cout ,
where T is the number of input tokens, and Cin, Cout are the input/output dimensions, respectively.
The structured pruning objective seeks compressed weights W̃ that approximate the original output
under a predefined structural constraint C:

min
W̃∈C

∥XW −XW̃∥2F (1)

Let H = X⊤X + λI denote the Hessian of Equation 1, where λ is a small positive constant
to improve numerical stability (Hassibi & Stork, 1993; Frantar & Alistarh, 2022). Suppose S ⊆
{1, . . . , Cout} denotes the indices of a candidate block containing k columns of weights (|S| = k),
e.g., sets of columns corresponding to an attention head. For any matrix A and index set S, AS,:,
A:,S , and AS,S denote row, column, and submatrix restrictions, respectively. The OBS then provides
closed-form solutions for the minimal error (E(S)) incurred by the pruning block S, along with the
optimal update ∆S applied to the remaining weights (Frantar & Alistarh, 2022; 2023):

E(S) =

Cin∑
i=1

Wi,S

(
(H−1)S,S

)−1
W⊤

i,S (2)

∆S = −W:,S

(
(H−1)S,S

)−1
(H−1)S,: (3)

To account for inter-block correlations, vanilla structured OBS pruning typically removes blocks
sequentially (Chen & et al., 2024; Li, 2024). At each step, it selects the block S with the smallest
E(S), applies ∆S the remaining weights, and updates H−1 using Gaussian elimination rather than
recomputing it from scratch:

H−1 ← H−1 − (H−1):,S
(
(H−1)S,S

)−1
(H−1)S,: (4)

This iterative approach yields locally optimal structured pruning decisions while maintaining com-
putational efficiency.

While theoretically appealing, such an approach is impractical for LLM-scale layers: storing and up-
dating H−1 ∈ Rd×d incursO(d2) memory andO(kd2) update cost, and each candidate additionally
requires submatrix extraction and inversion with no amortization. Repeated Gaussian elimination
downdates further introduce numerical drift, degrading importance accuracy, and weight updates.
These issues make naı̈ve structured OBS infeasible for layers with tens of thousands of columns,
motivating a redesign that localizes Hessian storage, batches updates, and avoids touching the full
inverse at every step.

3 RELATED WORK

Given the substantial computational and memory demands of LLMs, numerous compression tech-
niques have been explored, such as pruning (Zhang et al., 2024;?; Ma et al., 2023), quantization (Lin
et al., 2024), and low-rank decomposition (Yuan et al., 2023), to enable efficient deployment. Un-
structured pruning methods, including SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2023), and E-Sparse (Li et al., 2023), remove individual weights based on criteria such as Hessian-
based importance, combined weight–activation statistics, or information entropy. Although effective
in reducing parameters, these methods often require specialized hardware or software to achieve la-
tency gains, limiting their practical applicability (Ashkboos et al., 2024).

OBS-based Structured Pruning. OBS-based structured pruning leverages second-order informa-
tion to minimize post-pruning reconstruction error, offering strong theoretical guarantees and em-
pirical performance. SlimGPT (Ling et al., 2024) extends OBS to structured settings via grouped
Cholesky decomposition, which efficiently computes the joint importance of all columns within
a block, e.g., an attention head. However, it still requires updating the Hessian inverse and weight
magnitudes after pruning, inheriting OBS’s scaling bottlenecks. It further mitigates performance loss
through incremental, non-uniform layer-wise pruning rates, but remains fundamentally layer-local
and static in budget allocation, limiting its ability to exploit global inter-layer dynamics. SoBP (Wei
et al., 2024) uses global importance scores from first-order Taylor expansions to assign fixed prun-
ing ratios across layers, followed by local greedy refinement. Yet, its static allocation cannot adapt
during pruning, hindering its ability to capture evolving sensitivities and cross-layer interactions.

Low-Rank Decomposition. Low-rank methods, such as LoRD (Kaushal et al., 2024), ASVD (Yuan
et al., 2023), and recent advancements like MoDeGPT (Lin et al., 2025) and SVD-LLM (Wang et al.,
2025b;a), reduce parameter counts by approximating weight matrices via SVD or related techniques.
While effective for memory reduction, they typically achieve less latency reduction than structured
pruning on standard hardware. Furthermore, many of these approaches require substantial retraining
to restore accuracy, posing challenges for large-scale deployment.

Global and Adaptive Pruning. Recent works have explored global sparsity allocation to
mitigate cross-layer mismatch. Approaches
such as OWL (Yin et al., 2024) and
SparseLLM (Bai et al., 2024) formulate
global objectives; however, they typically
rely on static or one-shot sensitivity met-
rics computed prior to pruning. Similarly,
global gradient-based methods like LLM-
Pruner (Ma et al., 2023) and GBLM (Das
et al., 2023) utilize first-order Taylor approxi-
mations to estimate importance, but typically
fix the pruning mask or sparsity ratios at ini-
tialization. Because these budgets are deter-
mined prior to pruning, they cannot capture
how the loss landscape and parameter impor-
tance evolve as weights are removed. Fur-
thermore, calculating these global gradients
in methods like GBLM requires backpropaga-
tion through the entire network, which incurs
prohibitive memory costs for large models.
Other approaches, such as ECoFLaP (Sung
et al., 2024), adopt coarse-to-fine strategies
driven by zeroth-order heuristics, but likewise
lack explicit second-order curvature updates.
Finally, evolutionary methods such as Dar-
winLM (Tang et al., 2025) depend on search
over a precomputed configuration database,
which introduces computational overhead and
is limited by the static nature of the database.

Positioning of this work. HAP-E advances
OBS-based pruning along three axes. (i) It al-
locates candidates adaptively across layers via
recursive, second-order sensitivity, enabling
dynamic budget reallocation to capture evolv-
ing curvature and overcoming static or first

Algorithm 1: HAP-E Pruning Framework

Require: M (pre-trained model), Lattarget, Dcal

Ensure: Mpruned

Measure Lat(M)
while Lat(M) > Lattarget do
▷ 1. Lightweight importance estimation
Imp(Bi)←

√
1

|Wi|
∑

w∈Wi
w2

▷ 2. Layer sensitivity estimation (recursive)
S(ℓ)→(ℓ+1) ← Tr((X(ℓ+1))⊤X(ℓ+1) + λI)

S(ℓ) = S(ℓ)→(ℓ+1) + βS(ℓ+1)

▷ 3. Candidate budget allocation
CV(ℓ,τ) ← σ(ℓ,τ)/µ(ℓ,τ)

K(ℓ,τ) ← min(CK,N(ℓ,τ)) · CV(ℓ,τ)

S(ℓ)+ε

▷ 4. OBS scoring with partial inverse
Solve HX = EΠ for candidate panel Π
GΠ,Π ← (G:,Π)

⊤EΠ;
E(BS)←

∑
j W

⊤
S,j(GSS)

−1WS,j ;

Ẽ(BS)← S(ℓ) · E(BS)

Select K blocks with smallest Ẽ
▷ 5. Certify greedy-consistent batch and prune
A′

c ← Gcc −GcJG
−1
JJGJc;

E ′(c |J)← ∥(A′
c)

−1/2Wc,:∥2F ;
Grow J by repeatedly adding c⋆; set P ← J
∆WR ← −HRPH

−1
PPWP ; WP,: ← 0

▷ 6. Incremental Hessian update (sub-block only)
Q← Π \ P ;
G′

QQ ← GQQ −GQPG
−1
PPGPQ

▷ 7. Latency update
Measure Lat(M)

end while
return Mpruned

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

-order heuristics. (ii) It integrates a hardware-calibrated latency predictor directly into the pruning
loop, ensuring that pruning decisions satisfy real device constraints without relying on proxy met-
rics or repeated sweeps as in prior methods. (iii) It introduces a greedy-consistent batch pruning
mechanism with theoretical guarantees, certifying equivalence to the sequential OBS solution while
requiring far fewer updates.

4 PROPOSED METHOD

We propose HAP-E, an adaptive, Hessian-aware structured pruning framework that compresses large
language models to meet a user-specified hardware latency target while maintaining accuracy. The
method is entirely post-training and operates in an iterative loop, progressively removing the least
important structural blocks until the measured latency satisfies the constraint.

As shown in Algorithm 1, at a high level, each iteration of HAP-E proceeds in four stages: (1)
Lightweight importance estimation: assign each block, e.g., attention head and FFN neuron, an
inexpensive saliency score based on parameter magnitude. (2) Sensitivity analysis: estimate the tol-
erance of each layer to perturbations via a recursive Hessian-based approximation that captures both
local and propagated effects. (3) Candidate selection and refinement: allocate a candidate budget
across layers according to sensitivity and variability, then refine these candidates using exact OBS
scores computed efficiently from partial Hessian solves. (4) Greedy-consistent batch pruning: cer-
tify the largest set of blocks that greedy OBS would remove sequentially, then prune them jointly in
a single step. This guarantees equivalence to the one-by-one greedy OBS sequence while requiring
far fewer weight updates, followed by an incremental update of the relevant Hessian sub-blocks.

By combining coarse-grained heuristics for global ranking with selective, exact OBS for a small
candidate subset, HAP-E concentrates expensive second-order computation where it yields the most
benefit, avoids full Hessian recomputation, and terminates as soon as the latency target is achieved.
This yields a hardware-aware, scalable pruning algorithm that achieves high accuracy under strict
inference budgets.

4.1 HYBRID OPTIMAL BRAIN SURGEON FOR BATCHED PRUNING

To make second-order pruning tractable for LLMs, we introduce a method that preserves the exact-
ness of greedy OBS while avoiding its prohibitive computational and memory costs. Our approach
prunes batches of blocks at once, but guarantees that each batch coincides with the initial segment
of the greedy OBS sequence, that is, the same set of blocks that greedy OBS would have removed
sequentially up to that point. In this way, pruning them jointly yields exactly the same weights and
accuracy as performing greedy OBS step-by-step, while requiring far fewer weight updates.

Notation. Consider a depth-2 linear layer, e.g., the output projection of an MHA block, in mod-
ule τ ∈ {MHA, FFN} of Transformer layer ℓ, with input dimension d (number of input columns)
and block size k (number of columns per structural block). Let the current candidate set be
K(ℓ,τ) = {c1, . . . , cm}, where m = |K(ℓ,τ)| is the number of candidate blocks selected for module τ
of layer ℓ in the current iteration, and each cj represents k input columns (e.g., an attention head
in MHA). We define the panel index Π(K(ℓ,τ)) ⊆ {1, . . . , d} as the union of the column indices
belonging to K(ℓ,τ), with panel size |Π(ℓ,τ)(K(ℓ,τ))| = mk. Let W ∈ Rd×Cout be the weight matrix
of this linear layer, where Cout is the output dimension. Let H be the Hessian from Equation 1, and
define G := H−1 as its inverse. The subscripts in these matrices, e.g., HR,P , denote submatrices
formed by selecting the row and column indices corresponding to index sets R and P .

Panel construction via selective inverse computation. The primary bottleneck of OBS is explicitly
forming the d × d inverse Hessian G. We circumvent this by computing only the columns of G
relevant to our candidate set Ki:

HX = EΠ(K(ℓ,τ)), X ∈ Rd×(mk), (5)

where EΠ(K(ℓ,τ)) is the matrix selecting the panel indices. The solution X = G:,Π(K(ℓ,τ))
contains the required columns, from which we extract the inverse panel GK(ℓ,τ),K(ℓ,τ) ≡
GΠ(K(ℓ,τ)),Π(K(ℓ,τ)) ∈ R(mk)×(mk). This reduces memory from O(d2) to O(dmk). In terms of
computation, a full Cholesky factorization of H costs O(d3), whereas solving Equation 5 for mk

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

columns with a pre-computed Cholesky factor costsO(d2mk). Since m is bounded by the candidate
budget, in large LLM layers we have mk ≪ d, yielding substantial savings over full inversion while
still retaining exactness (in the edge case mk = d, the cost reduces to full inversion).

Conditioned scoring for sequential (batch) selection. Greedy OBS removes one block at a time,
recomputing scores after each update. To form a batch, we grow a set J ⊆ Ki of certified blocks,
blocks that greedy OBS would remove in this order, without updating the weights. For any c ∈
Ki \ J , we define the conditioned block metric via the Schur complement:

A′
c := Gcc −GcJG

−1
JJGJc ∈ Rk×k. (6)

The conditioned score is
E ′(c | J) = ∥(A′

c)
−1/2Wc∥2F , (7)

where Wc are the weights for block c. The score E ′(c | J) equals the OBS error that would be
computed if we actually updated the weights after pruning J . Therefore, the certification procedure
ranks candidates in exactly the same order as greedy OBS, ensuring that the certified set J matches
the greedy OBS sequence up to the stopping point (formal proof in Appendix A.1).

Incremental Cholesky for fast certification. Naively recomputing G−1
JJ for each certified set J

would cost O((|J |k)3). Instead, we maintain the Cholesky factorization GJJ = LJJL
⊤
JJ and

update it incrementally. When adding a new block c to J , the update proceeds in three steps: i) solve
two triangular systems with LJJ to obtain Y ⊤ = L−1

JJGJc, ii) form the Schur complement Sc =
Gcc−Y ⊤Y , iii) compute the Cholesky factorization of Sc. Each candidate score can then be updated
at Õ(k2|J |)+Õ(k3), and the appending of a block has the same complexity. This incremental update
is asymptotically cheaper in |J | than either recomputing G−1

JJ from scratch (O((|J |k)3)) or applying
it separately to each candidate block (O((|J |k)2) per candidate).

Maximal greedy-consistent prefix. Let Ki be the current candidate set and Jt = {c1, . . . , ct} the
certified prefix after t steps. Define the stopping index T as

T = min
{
t ≥ 1

∣∣∣ argmin
c∈Ki\Jt

E ′(c | Jt) ̸= argmin
c∈Ki\Jt

E(c |W (t))
}
, (8)

where W (t) is the weight matrix obtained by pruning Jt via OBS. The certified set JT is therefore the
largest prefix consistent with one-by-one greedy OBS; stopping here guarantees greedy equivalence
for the entire batch (formal proof in Appendix A.2). This equivalence holds strictly under the local
quadratic reconstruction objective utilized by OBS.

Joint weight update. Once P = J is certified, we perform a single joint OBS update using Equa-
tion 3. This joint update produces exactly the same final weights as applying the corresponding
sequence of single-block OBS updates in order (formal proof in Appendix A.3).

4.2 CANDIDATE BLOCK SELECTION

We begin candidate construction with a simple
proxy: the average L2 norm of each block’s
weights (Li et al., 2017; Molchanov et al.,
2017). Although this measure ignores second-
order effects, Figure 1 shows that it correlates
well with OBS, achieving Jaccard overlaps of
0.7–0.85 and expanding the pool by around
1.5× suffices to cover all OBS top-K blocks.
This suggests that L2 magnitudes, while imper-
fect, are adequate for inexpensive initial screen-
ing. The total number of candidates is then
set by a global hyperparameter and distributed
across layers according to their estimated sensi-
tivities (detailed in Section 4.2.1) and intra-layer
score variability (see Section 4.2.2). The re-
sulting compact but representative sets are then
passed to Hybrid-OBS (Section 4.1) for accu-
rate second-order scoring and batched pruning.

0.6

0.7

0.8

0.9

Ja
cc

ar
d@

K K=20% K=30% K=50%

L00 L08 L09 L15 L16 L30 L31
1

1.5

2

Layer

In
fla

tio
n
M
/K

Figure 1: Alignment of L2 and OBS rankings
across layers. Top: Jaccard@K similarity at
pruning ratios 20%, 30%, and 50%. Bottom:
Inflation M/K, the factor by which L2 candi-
date pools must expand to fully cover OBS top-
K. Higher Jaccard and lower inflation indicate
stronger agreement.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4.2.1 COMPUTING TRANSFORMER LAYER SENSITIVITY VIA HESSIAN APPROXIMATION

Initial importance scores ignore how pruning errors in one layer can propagate and amplify in later
layers, making it crucial to account for the sensitivity of the transformer layer when selecting can-
didate blocks. To account for this, we estimate layer sensitivity using an efficient second-order
approximation instead of the full Hessian, which is infeasible for large LLMs.

For consecutive Transformer layers ℓ and ℓ + 1, let h(ℓ) be the output of transformer layer ℓ and
f(ℓ)(·) denotes the function of the next transformer layer. For a perturbation ∆h(ℓ), the change in the
output of transformer layer ℓ+ 1 is quantified as

g(h(ℓ)) =
∥∥∥f(ℓ+1)(h(ℓ) +∆h(ℓ))− f(ℓ+1)(h(ℓ))

∥∥∥2
2

(9)

A second-order Taylor expansion for small ∆h(ℓ) gives g(h(ℓ)) ≈ 1
2 (∆h(ℓ))⊤H(ℓ+1)∆h(ℓ), where

H(ℓ+1) ≈ (X(ℓ+1))⊤X(ℓ+1) + λI is the Hessian approximation, X(ℓ+1) is the input to transformer
layer ℓ+ 1, and λ ensures stability. The local sensitivity between layers ℓ and ℓ+ 1 is given by the
Hessian trace Tr(·):

S(ℓ)→(ℓ+1) = Tr(H(ℓ+1)) (10)
To capture global effects without the full Hessian, we recursively propagate sensitivities backward
from the final transformer layer, with β controlling the influence of downstream layers on earlier
ones:

S(ℓ) = S(ℓ)→(ℓ+1) + βS(ℓ+1) (11)
This recursion efficiently captures how pruning perturbations propagate across the model, enabling
more informed candidate block selection.

4.2.2 SELECTING CANDIDATE BLOCKS AND DETERMINING BLOCKS TO PRUNE

To allocate candidates fairly across the model, we evaluate each module (MHA or FFN) within
layer ℓ separately. For a given module τ ∈ {MHA,FFN} of transformer layer ℓ, we define a
module-level metric that incorporates both the variability in block importances within the module
and the sensitivity of its parent layer:

R(ℓ,τ) =
CV(ℓ,τ)

S(ℓ) + ϵ
, with CV(ℓ,τ) =

σ(ℓ,τ)

µ(ℓ,τ)
, (12)

Here, µ(ℓ,τ) and σ(ℓ,τ) are the mean and standard deviation of block importance scores, and ϵ ensures
stability. The number of candidate blocks per module is

K(ℓ,τ) = min(C ·K, N(ℓ,τ)) · R(ℓ,τ)∑
ℓ′,τ ′ R(ℓ′,τ ′)

, (13)

This design favours modules where pruning is less risky (low Sℓ) and where block importances vary
widely (high CVℓ,τ), ensuring that the candidate pool adapts to both inter-layer sensitivity and intra-
layer variability. We then compute OBS scores for all candidates (Equation 2), rescale them by
the shared layer sensitivity Sℓ to penalize fragile layers, and globally rank blocks to figure out how
many blocks should be pruned in each module τ . We then compute OBS scores for all candidates
(Equation 2), rescale them by the shared layer sensitivity Sℓ to penalize fragile layers, and globally
rank blocks. Let r(τ)ℓ,m denote the number of blocks to prune from module τ in layer ℓ, such that∑

ℓ,τ r
(ℓ,τ) = K with r(ℓ,τ) ≤ Kℓ,τ . We repeat the certification and pruning steps in Section 4.1

until exactly r
(·)
ℓ,τ blocks have been removed from module τ of layer ℓ.

4.3 LATENCY ESTIMATION

We employ a learned latency model to guide pruning toward a target runtime without repeated on-
device profiling. For each Transformer module (MHA or FFN) in layer ℓ, we first measure its
execution time on the target hardware under different pruning configurations and record the features

x(ℓ) = [S, dmodel, h
(ℓ), dffn

(ℓ)], (14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

where S is the sequence length, dmodel denotes the hidden dimension, h(ℓ) shows the number of
active heads, and dffn

(ℓ) is the FFN intermediate dimension after pruning. We then train separate
regressors fMHA and fFFN using linear regression to predict module-level latencies.

For a pruned model A, the block-level predictions are aggregated using a lightweight linear model:

L̂tot(A) = α0 +

B∑
b=1

αb fτ(b)(xb) (15)

where τ(b) ∈ {MHA,FFN} indicates the block type and the coefficients αb are also fitted via linear
regression on end-to-end latency samples from pruned models. This two-stage design corrects for
non-additive effects such as memory allocation and kernel fusion, while also capturing variation
across sequence length and width, making the estimator tailored to Transformer architectures.

5 EXPERIMENTS

Setup. We implement HAP-E in PyTorch (Paszke et al., 2019) with HuggingFace Transform-
ers (Wolf et al., 2019). Following SlimGPT (Ling et al., 2024), we calibrate on 256 sample with
sequence length 2048 from C4 dataset. In all experiments, Pruning is strictly post-training with-
out any fine-tuning. All pruning experiments are conducted on a single NVIDIA A100 (80GB). For
edge deployment, models are compiled with ExecuTorch and benchmarked on Jetson Xavier NX and
HiKey970 CPUs at batch size 1, averaged over 10 runs with 2 warm-ups. Detailed hyper-parameters
are provided in Appendix K for reproducibility.

Models and Datasets. We evaluate models from the LLaMA family (Touvron et al., 2023),
OPT family (Zhang et al., 2022), and TinyLLaMA. Compressed models are assessed using
lm-eval-harness (Gao et al., 2024) on seven zero-shot benchmarks: ARC-c, ARC-e (Clark
et al., 2018), WinoGrande (Sakaguchi et al., 2021), BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), OpenBookQA (Mihaylov et al., 2018), and PIQA (Bisk et al., 2020). We report average
accuracy (%) across tasks, consistent with prior work. All results are averaged over four different
random seeds for pruning and calibration sample selection.

Baselines. We compare against six state-of-the-art compression methods: FLAP (An et al., 2024),
SliceGPT (Ashkboos et al., 2024), LLM-Pruner (Ma et al., 2023), SlimGPT (Ling et al., 2024),
SoBP (Wei et al., 2024), and ASVD (Yuan et al., 2023). The set includes both pruning-based and
decomposition-based methods to cover the dominant strategies for reducing LLM complexity.

5.1 RESULTS ON LLAMA AND OPT MODELS

Tables 1(a) and (b) summarize pruning results on LLaMA-7B/13B/30B and OPT-6.7B/13B/30B,
respectively. On the LLaMA family, our method consistently outperforms post-training baselines
across pruning ratios and model scales. At moderate pruning (20–30%), we achieve around 1.5%
higher accuracy than SoBP and SlimGPT. For instance, on LLaMA-13B at 20% pruning, our method
reaches 67.8%, compared to 66.9% (SoBP) and 66.4% (SlimGPT). At more aggressive pruning (40–
50%), the gap widens: on LLaMA-30B at 50% pruning we obtain 68.0%, roughly 2.5% higher than
SlimGPT and nearly 8% higher than LLM-Pruner. These results demonstrate that adaptive block
allocation with OBS reconstruction provides robustness under severe compression.

For OPT models, dense baselines start at lower accuracies, and the margins across methods are
smaller. Nonetheless, our method consistently preserves accuracy. At 10–20% pruning, we nearly
match dense performance (e.g., OPT-13B: 59.0% vs. 59.2% dense). At 30% pruning, our approach
still maintains the best accuracy among all methods, showing up to 3–4% improvements over ASVD.
These consistent gains highlight the effectiveness of our adaptive candidate allocation strategy in
maintaining model quality even when pruning larger OPT variants.

Extended Evaluations on Modern Families. To demonstrate the robustness and scalability of
HAP-E, we provide extensive additional results in the Appendices. Appendix E details LLaMA-2
evaluations against decomposition baselines (MoDeGPT, SVD-LLM v2) and reasoning benchmarks,
while Appendix G validates compatibility with recovery fine-tuning. Furthermore, Appendix F
validates performance on state-of-the-art architectures, including LLaMA-3.1-8B and Qwen-2.5-
14B.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: Average accuracy (%) on commonsense reasoning tasks under different pruning rates. (a)
LLaMA family. (b) OPT family. Per-task results are in Appendix I and Appendix J.

(a) LLaMA-7B/13B/30B

Model LLaMA-7B LLaMA-13B LLaMA-30B

Prune% Method #Params Avg↑ #Params Avg↑ #Params Avg↑

0% Dense 6.7B 66.05 13.0B 68.21 32.5B 71.92

20%

SliceGPT 6.1B 56.16 11.8B 60.66 29.5B 64.45
ASVD 5.4B 61.55 10.4B 65.29 26.1B 70.22
SoBP 5.4B 62.19 10.4B 66.96 26.1B 70.87

LLM-Pruner 5.4B 61.50 10.4B 65.68 26.0B 69.99
SlimGPT 5.4B 63.81 10.4B 66.37 26.0B 71.13
HAP-E 5.4B 65.01 10.4B 67.83 26.0B 71.88

30%

SliceGPT 5.3B 46.90 10.2B 54.26 25.5B 58.05
ASVD 4.8B 45.55 9.2B 57.47 22.9B 61.88
SoBP 4.8B 59.61 9.2B 64.50 22.9B 69.62

HAP-E 4.8B 61.21 9.2B 65.92 22.9B 71.02

40%

SliceGPT 4.5B 39.64 8.6B 47.00 21.5B 48.90
ASVD 4.1B 36.79 7.9B 40.13 19.7B 49.79
SoBP 4.1B 56.10 7.9B 60.34 19.7B 67.20

HAP-E 4.1B 58.40 7.9B 62.84 19.7B 69.50

50%
LLM-Pruner 3.4B 48.35 6.5B 53.22 16.3B 59.47

SlimGPT 3.4B 54.26 6.5B 59.89 16.3B 65.59
HAP-E 3.4B 56.66 6.5B 61.79 16.3B 67.99

(b) OPT-6.7B/13B/30B

Model OPT-6.7B OPT-13B OPT-30B

Prune% Method #Params Avg↑ #Params Avg↑ #Params Avg↑

0% Dense 6.7B 58.16 13.0B 59.15 30.0B 61.85

10%

FLAP 6.0B 57.31 11.6B 58.10 27.0B 59.26
SliceGPT 7.1B 57.07 13.5B 59.18 31.3B 61.61

ASVD 6.0B 55.18 11.6B 56.32 27.0B 59.11
HAP-E 6.0B 57.96 11.6B 59.11 27.0B 62.19

20%

FLAP 5.4B 54.72 10.3B 55.36 24.0B 56.52
SliceGPT 6.2B 55.50 11.9B 57.84 27.5B 60.86

ASVD 5.4B 45.11 10.3B 39.20 24.0B 49.48
HAP-E 5.4B 57.83 10.3B 59.02 24.0B 61.82

30%

FLAP 4.7B 52.77 9.1B 50.81 21.1B 52.61
SliceGPT 5.4B 54.16 10.3B 55.92 23.8B 59.49

ASVD 4.7B 37.86 9.1B 36.85 21.1B 41.12
HAP-E 4.7B 57.60 9.1B 58.46 21.1B 61.29

5.2 LATENCY MODEL VERIFICATION

We train a whole-model latency predictor on 1500 pruned configurations and evaluate on a 300-
sample held-out set. Each configuration varies the sequence length S ∈ {128, 256, 384, 512, 1024}
and structured sparsity.

To generate module- level features, we record
block runtimes on the target hardware: for
MHA, we measure execution time with
0, . . . , (Nheads − 1) heads pruned; for FFN, we
measure runtime as the intermediate dimension
shrinks by factors of 0.9i for i = 0, . . . , 42 (10%
relative steps up to 99% sparsity), following
prior work (Kurtić et al., 2023). All CPU ex-
periments use INT8 post-training quantization.
Predictor evaluations on Jetson Xavier NX and
HiKey970 use LLaMA-3.2-1B, while A100
experiments use LLaMA-7B at batch size 16.
We compare against a lookup-table baseline
that estimates whole-model latency by summing
layer-wise measurements (Kurtić et al., 2023).
This approximation ignores inter-layer effects
(e.g., fusion, scheduling), leading to weaker
prediction fidelity and reduced pruning accu-
racy. Figure 2 shows the target-attainment plot,
where the y-axis is the ratio of measured to tar-
get latency (ideal ≈ 1.0). Table 2 reports er-
ror metrics on the test set. Our predictor consis-
tently achieves R2≈0.97 with attainment ratios
close to 1.0, while the lookup baseline diverges
(R² < 0.91, up to 8% off target).

Table 2: Latency predictor accuracy on 200 test
samples.

Device / Method MSE (ms2) RMSE (ms) R2

Jetson NX (HAP-E) 190 13.8 0.972
Jetson NX (lookup) 510 22.6 0.889
HiKey970 (HAP-E) 270 16.4 0.968
HiKey970 (lookup) 640 25.3 0.884
A100-b16 (HAP-E) 310 17.6 0.965
A100-b16 (lookup) 780 27.9 0.902

1.3 1.5 1.7 1.9
0.9

0.95

1

1.05

1.1

Target speedup

A
tta

in
m

en
tr

at
io

Jetson NX (HAP-E) Jetson NX (lookup)
HiKey970 (HAP-E) HiKey970 (lookup)
A100-b16 (HAP-E) A100-b16 (lookup)

Figure 2: Target-attainment chart for end-to-
end latency. Ratios near 1.0 indicate predictor-
guided pruning meets runtime targets.

5.3 HARDWARE-AWARE LATENCY–ACCURACY EVALUATION

To validate the practical efficiency of our pruning strategy, we evaluate accuracy–latency trade-offs
across two distinct hardware regimes: low-power edge CPUs (Jetson Xavier NX, HiKey970) using
ExecuTorch, and high-performance GPUs (NVIDIA A100) using PyTorch.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

LLaMA-3.2-1B (HAP-E) TinyLLaMA-1.1B (HAP-E) OPT-1B (HAP-E)

1 1.2 1.4 1.6 1.8

45

50

55

Latency speedup (ExecuTorch, CPU)

A
vg

ac
cu

ra
cy

(%
)

(a) Jetson Xavier NX (CPU)

1 1.2 1.4 1.6 1.8

45

50

55

Latency speedup (ExecuTorch, CPU)

A
vg

ac
cu

ra
cy

(%
)

(b) HiKey970 big cluster (CPU)

LLaMA-3.2-1B (LLM-Pruner) TinyLLaMA-1.1B (LLM-Pruner) OPT-1B (LLM-Pruner)

Figure 3: Accuracy–latency trade-offs with ExecuTorch on (a) Jetson Xavier NX and (b) HiKey970
CPUs. Dashed = Ours, solid = LLM-Pruner.

9 10 11 12 13

50

55

60

65

50%

20%

50%

20%

50%

20%
Dense

Latency (ms)

A
ve

ra
ge

A
cc

ur
ac

y
(%

)

(a) LLaMA-7B

16 18 20 22 24

55

60

65

50%

20%

50%

20%

50%

20%Dense

Latency (ms)

HAP-E SlimGPT LLM-Pruner Dense

(b) LLaMA-13B

40 45 50 55

60

65

70
50%

20%

50%

20%

50%

20%Dense

Latency (ms)

(c) LLaMA-30B

Figure 4: Accuracy vs. Latency Comparison across LLaMA-7B, 13B, and 30B models at 20% and
50% pruning ratios.. HAP-E = red circles, SlimGPT = blue triangles, and LLM-Pruner = green
squares.

Edge CPU Deployment. We first benchmarked three small-scale LLMs—LLaMA-3.2-1B,
TinyLLaMA-1.1B, and OPT-1B—on the CPUs of the Jetson Xavier NX and the HiKey970 (big
cluster). We targeted aggressive latency speedups of 1.3×, 1.5×, 1.7×, and 1.9×, comparing HAP-
E directly against LLM-Pruner. As illustrated in Figure 3, our approach consistently yields higher
accuracy at every speedup level, with particularly significant gains on the weaker HiKey970 pro-
cessor. notably, at 1.9× speedup, HAP-E limits the accuracy degradation to approximately 4 per-
centage points, whereas LLM-Pruner suffers a much steeper drop across all models. These results
demonstrate that the adaptive second-order sensitivity modeled in HAP-E effectively preserves crit-
ical structures under strict end-to-end latency constraints, a crucial advantage for edge environments
where compute budgets are severely limited.

Scalability on GPUs. To assess scalability beyond edge devices, we conducted a comprehensive
latency evaluation on NVIDIA A100 GPUs. We measured the prefill latency (batch size 1, sequence
length 2048) for LLaMA-7B, 13B, and 30B models at 20% and 50% structured sparsity, compar-
ing against state-of-the-art baselines SlimGPT and LLM-Pruner. This setting reflects real-world
inference workloads where prefill latency is often a bottleneck.

As shown in Figure 4, HAP-E consistently pushes the Pareto frontier of accuracy versus latency
across all model sizes. Crucially, the performance margin of HAP-E over SlimGPT and LLM-Pruner
is maintained—and often widened—as model size increases to 30B parameters. This confirms that
our recursive Hessian-trace sensitivity and greedy-consistent batch updates remain robust even as
the curvature landscape becomes more complex in deeper networks. Furthermore, under identical
sparsity levels, HAP-E achieves lower wall-clock latency than the baselines while preserving higher
task accuracy. Overall, these experiments establish that the efficiency gains observed on edge CPUs
successfully translate to large-scale GPU deployments, validating HAP-E as a hardware-agnostic
solution that adapts robustly to diverse compute regimes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 3: Ablations on LLaMA models. Each cell = %Acc(±std)/Time(min)/Mem(GB).

Variant LLaMA-7B LLaMA-13B LLaMA-30B
1.3× 1.9× 1.3× 1.9× 1.3× 1.9×

HAP-E (ours) 64.9(0.31)/9.8/4.5 58.2(0.44)/22.0/4.5 67.7(0.29)/15.3/7.1 62.6(0.31)/34.4/7.1 71.8(0.24)/25.7/9.2 69.3(0.37)/58.0/9.2

w/o cross-layer adapt. 64.2(0.47)/8.4/4.4 55.9(0.62)/18.7/4.4 66.1(0.23)/13.0/7.0 60.0(0.41)/29.2/7.0 70.3(0.27)/22.0/9.0 67.7(0.39)/50.0/9.0
w/o greedy batch 64.8(0.58)/31.6/4.5 57.0(0.61)/74.5/4.5 66.7(0.52)/49.4/7.1 61.4(0.59)/116.3/7.1 71.0(0.35)/55.7/9.2 68.1(0.37)/130.2/9.2
w/o latency predictor 64.9(0.28)/12.3/4.5 58.1(0.51)/27.5/4.5 67.6(0.36)/19.8/7.1 62.5(0.42)/43.0/7.1 71.7(0.21)/32.0/9.2 69.2(0.33)/72.0/9.2
vanilla OBS 63.8(0.62)/43.0/8.0 56.4(0.69)/101.0/8.0 65.9(0.56)/67.0/12.3 60.6(0.51)/158.0/12.3 70.5(0.31)/79.6/21.1 67.6(0.38)/187.4/21.1

5.4 ABLATION: RUNTIME, MEMORY, AND ACCURACY OF OBS VARIANTS ON GPU

We evaluate HAP-E and controlled variants on an NVIDIA A100 (80GB), where all LLaMA-
7B/13B/30B models can be executed reliably. Variants include: (i) HAP-E (ours), with all compo-
nents enabled; (ii) w/o cross-layer adaptivity, which fixes layer budgets statically at the start; (iii)
w/o greedy batch, reverting to one-by-one OBS updates; (iv) w/o latency predictor, which requires
multiple pruning runs to meet a speedup target; and (v) vanilla OBS, a layer-by-layer baseline with
mk = d and no candidate screening. We target 1.3× and 1.9× end-to-end GPU latency reductions
relative to dense baselines, reporting average task accuracy, pruning runtime (including calibration),
and peak GPU memory during pruning. Table 3 shows the obtained results. As can be seen, HAP-E
consistently preserves accuracy while keeping runtime and memory practical on GPU. Cross-layer
adaptivity is most impactful under aggressive compression: at 1.9× speedup on LLaMA-7B, static
layer budgets reduce accuracy from 58.2% to 55.9%, showing that adaptive budget reallocation is
critical to avoid accuracy degradation. Greedy-consistent batching is the main efficiency driver. For
instance, on LLaMA-30B at 1.9×, HAP-E prunes in 58 minutes versus 130 minutes without batch-
ing, a >2× runtime reduction at equal accuracy. The latency predictor eliminates wasted sweeps:
without it, LLaMA-13B takes 43 minutes at 1.9× (three redundant pruning runs), compared to 34
minutes with predictor guidance. Finally, vanilla OBS underscores the scalability challenge: at 1.9×
on LLaMA-30B, it demands 187 minutes and 21 GB memory—over 3× slower and >2× the foot-
print of HAP-E—despite offering no accuracy benefit. Together, these results confirm that HAP-E is
the only configuration that achieves OBS-level accuracy while scaling efficiently on modern GPUs.
We further ablate prune fraction K and candidate pool ratio M/K (Appendix B), calibration budget
(Appendix C), and sensitivity coefficient β (Appendix D).

6 CONCLUSION

We introduced HAP-E, a scalable, Hessian-aware structured pruning framework that makes OBS-
style pruning tractable for large language models. By combining global screening with selective
second-order refinement, cross-layer sensitivity analysis, and greedy-consistent batch pruning, our
method achieves the same theoretical guarantees as greedy OBS while dramatically reducing com-
putational overhead and numerical drift. The integration of a lightweight latency predictor fur-
ther ensures that pruning decisions directly meet hardware-specific runtime constraints. Extensive
experiments on the LLaMA and OPT families demonstrate that HAP-E consistently outperforms
state-of-the-art pruning baselines across sparsity levels. On commonsense reasoning benchmarks, it
improves average accuracy by up to 2–3% over SlimGPT and SoBP at comparable pruning ratios,
while retaining robustness under aggressive 40–50% block removal. The latency predictor achieves
R2 ≈ 0.97 against measured runtimes, allowing the pruned model to meet target latencies in a single
pass without iterative sweeps. Hardware benchmarks confirm that our approach sustains accuracy
under strict latency budgets, while ablation results highlight the efficiency benefits of cross-layer
adaptivity and greedy batching.

Although our study prioritizes training-free post-training pruning, Appendix G demonstrates that
HAP-E models are inherently compatible with recovery fine-tuning. A minimal LoRA tuning
step yields substantial accuracy gains (+1.8%), confirming that our structured pruning preserves
a high-quality feature space suitable for further optimization. Extending HAP-E to training-aware
or continual-learning settings remains a promising direction for future work. Moreover, we consider
pruning in isolation, whereas extending the framework to hybrid pruning–quantization pipelines
could further enhance efficiency for deployment.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Guangji Bai, Yijiang Li, Chen Ling, Kibaek Kim, and Liang Zhao. Sparsellm: Towards global
pruning of pre-trained language models. Advances in Neural Information Processing Systems,
37:46203–46225, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Rishi Bommasani. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

Tianlong Chen and et al. Structured pruning of large language models. In International Conference
on Learning Representations (ICLR), 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape
pruning decisions in large language models. arXiv preprint arXiv:2311.04902, 2023.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pp. 10323–10337. PMLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Jialong Guo, Xinghao Chen, Yehui Tang, and Yunhe Wang. Slimllm: Accurate structured pruning
for large language models. In Forty-second International Conference on Machine Learning, 2025.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In IEEE International Conference on Neural Networks (ICNN), 1993.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

11

https://aclanthology.org/N19-1300/
https://zenodo.org/records/12608602

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Ayush Kaushal, Tejas Vaidhya, and Irina Rish. Lord: Low-rank decomposition of monolingual code
llms for one-shot compression. In ICML 2024 Workshop on Foundation Models in the Wild, 2024.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. CoRR,
2024.

Eldar Kurtić, Elias Frantar, and Dan Alistarh. Ziplm: Inference-aware structured pruning of lan-
guage models. Advances in Neural Information Processing Systems, 36:65597–65617, 2023.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for transformers. Advances in Neural Information
Processing Systems, 35:24101–24116, 2022.

et al. Li. Layer-wise optimal brain surgeon for efficient transformer pruning. In International
Conference on Learning Representations (ICLR), 2024.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017.

Yun Li, Lin Niu, Xipeng Zhang, Kai Liu, Jianchen Zhu, and Zhanhui Kang. E-sparse: Boost-
ing the large language model inference through entropy-based n: M sparsity. arXiv preprint
arXiv:2310.15929, 2023.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen,
Hongxia Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model
compression. In The Thirteenth International Conference on Learning Representations, 2025.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
6:87–100, 2024.

Gui Ling, Ziyang Wang, and Qingwen Liu. Slimgpt: Layer-wise structured pruning for large lan-
guage models. Advances in Neural Information Processing Systems, 37:107112–107137, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pp. 2381–2391, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL
https://aclanthology.org/D18-1260/.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International conference on machine learning, pp. 2498–2507. PMLR, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. Ecoflap: Efficient coarse-to-fine layer-wise pruning
for vision-language models. In The Twelfth International Conference on Learning Representa-
tions, 2024.

12

https://aclanthology.org/D18-1260/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Shengkun Tang, Oliver Sieberling, Eldar Kurtic, Zhiqiang Shen, and Dan Alistarh. Darwinlm:
Evolutionary structured pruning of large language models. arXiv preprint arXiv:2502.07780,
2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. Svd-llm v2: Optimizing singu-
lar value truncation for large language model compression. In Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 4287–4296, 2025a.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware singular value
decomposition for large language model compression. In The Thirteenth International Confer-
ence on Learning Representations, 2025b. URL https://openreview.net/forum?id=
LNYIUouhdt.

Jiateng Wei, Quan Lu, Ning Jiang, Siqi Li, Jingyang Xiang, Jun Chen, and Yong Liu. Structured
optimal brain pruning for large language models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 13991–14007, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, Kim
Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao,
Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Peter Vajda, Xiaodong Wang, Yanghan
Wang, Bram Wasti, Yiming Wu, Ran Xian, Sungjoo Yoo, and Peizhao Zhang. Machine learning
at facebook: Understanding inference at the edge. In 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 331–344, 2019. doi: 10.1109/HPCA.
2019.00048.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar
Jaiswal, Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. In International Conference on Machine Learning,
pp. 57101–57115. PMLR, 2024.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
LoRAPrune: Structured pruning meets low-rank parameter-efficient fine-tuning. In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Lin-
guistics: ACL 2024, pp. 3013–3026, Bangkok, Thailand, August 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.findings-acl.178. URL https://aclanthology.
org/2024.findings-acl.178/.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

13

https://openreview.net/forum?id=LNYIUouhdt
https://openreview.net/forum?id=LNYIUouhdt
https://aclanthology.org/2024.findings-acl.178/
https://aclanthology.org/2024.findings-acl.178/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A PROOFS OF LEMMAS IN SECTION 4

A.1 LEMMA 1 (GREEDY-EQUIVALENCE OF CERTIFIED BATCH)

Lemma 1 (Greedy-equivalence of certified batch). Let (c1, . . . , ct) be the blocks selected by the
certification procedure, where at step τ ,

cτ = arg min
c/∈Jτ−1

E′(c | Jτ−1), with Jτ−1 = {c1, . . . , cτ−1} (16)

Then this sequence matches the first t selections of standard greedy OBS for any t ≤ T , up to the
certification stopping point.

Proof. In greedy OBS, the block chosen at step τ after pruning Jτ−1 is

cgreedy
τ = arg min

c/∈Jτ−1

E
(
c
∣∣∣W (τ−1)

)
(17)

where W (τ−1) are the weights after applying the OBS update for Jτ−1. Let G = H−1 be the
inverse Hessian prior to pruning. Eliminating Jτ−1 updates the effective inverse sub-block for any
remaining c to the Schur complement

A′
c = Gcc −GcJG

−1
JJGJc (18)

and the OBS error for c after pruning Jτ−1 becomes

E
(
c
∣∣∣W (τ−1)

)
=

∥∥(A′
c)

−1/2Wc

∥∥2
F

= E′(c | Jτ−1) (19)

Thus, at every step the certification score E′(c | Jτ−1) equals the greedy-OBS score computed after
actually pruning Jτ−1. Therefore the argmin choices coincide step-by-step, and by induction the
sequences match up to the certification horizon T .

A.2 LEMMA 2 (BATCH = MAXIMAL GREEDY-CONSISTENT PREFIX)

Lemma 2 (Batch = maximal greedy-consistent prefix). If, during certification, the identity of the
next best block changes after appending a candidate, then the current J is the largest prefix that
matches the greedy OBS sequence. Stopping here preserves greedy equivalence for the entire certi-
fied batch.

Proof. Suppose after certifying Jt the certification rule selects
ĉ = argmin

c/∈Jt

E′(c | Jt) (20)

while greedy OBS, after actually pruning Jt, selects

c⋆ = argmin
c/∈Jt

E
(
c
∣∣∣W (t)

)
(21)

If ĉ ̸= c⋆, a divergence occurs at t+1. From Lemma A.1, for any prefix that matches greedy so far,
E′(c | Jt) ≡ E

(
c |W (t)

)
; hence the first possible mismatch is exactly at t+1. Therefore Jt is the

maximal prefix consistent with greedy OBS. Halting certification at this point guarantees that the
certified batch equals the greedy sequence prefix.

A.3 LEMMA 3 (BATCH UPDATE EQUIVALENCE)

Lemma 3 (Batch update equivalence). Applying a single joint OBS update for P = J yields the
same final weights as applying t one-by-one OBS updates sequentially for (c1, . . . , ct)

Proof. Let P = {c1, . . . , ct} and let R index the surviving blocks. The joint OBS update that zeroes
WP while minimizing the quadratic loss with Hessian H is

∆WR = −HRP H−1
PP WP (22)

This is precisely the block Gaussian-elimination solution obtained by eliminating P in one step.
On the other hand, sequential greedy OBS eliminates the same set P via a sequence of rank-k
Schur complements. Block Gaussian elimination is order-invariant with respect to the eliminated
set: eliminating the union P in any order (or jointly) produces the same reduced system over R
and the same solution for ∆WR. Hence the final weights after the joint update equal those after t
sequential single-block OBS updates.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

1.5 2 2.5 3 3.5
5

10

15

20

M/K

Pr
un

ed
pe

ri
te

r.
(%

)

(a) Accuracy (%)

52.2

52.4

52.6

52.8

A
cc

ur
ac

y
(%

)

1.5 2 2.5 3 3.5
5

10

15

20

M/K

Pr
un

ed
pe

ri
te

r.
(%

)

(b) Pruning runtime (min, A100)

10

15

20

M
in

ut
es

1.5 2 2.5 3 3.5
5

10

15

20

M/K

Pr
un

ed
pe

ri
te

r.
(%

)

(c) Calibration working set (GB)

2.5

3

3.5

G
B

Figure 5: Ablation at a fixed 1.3× latency target on Jetson Xavier NX (CPU) for LLaMA-3.2-
1B. Rows vary prune-per-iteration K; columns vary candidate pool ratio M/K. (a) Final absolute
accuracy (%) on lm-eval (avg). (b) Total pruning runtime (minutes) on A100 (80GB). (c) Peak
calibration working set (GB). The starred point (K=10%, M/K=2.5) achieves near-dense accuracy
(≈52.7%), ∼12 minutes runtime, and moderate memory while meeting the 1.3× budget.

B ABLATION ON CANDIDATE POOL RATIO AND PRUNE FRACTION

We study how the per-iteration prune fraction K and the candidate pool ratio M/K shape outcomes
when compressing LLaMA-3.2-1B to a fixed 1.3× latency speedup on Jetson Xavier NX (CPU) with
batch size 1 (ExecuTorch runtime). Figure 5 reports three metrics: (a) the final average accuracy (%)
across seven LM-Eval benchmarks after deployment; (b) the total pruning runtime on an NVIDIA
A100 (80GB); and (c) the peak calibration working set (GB) required during pruning.

The trends are consistent with structured OBS pruning. Accuracy improves (gently) as updates
become less aggressive (smaller K) and as the candidate pool widens (larger M/K), reflecting
better coverage of high-gain removals and fewer destabilizing steps. Runtime grows when K is
smaller (more iterations to reach the same global budget) and when M/K is larger (more candidates
to score each step). Memory increases smoothly with both K and M/K, since larger batches and
wider pools expand the active calibration set and per-iteration working set.

Overall, the configuration K=10%, M/K=2.5× (starred) offers the best balance: it reaches the
hardware-constrained 1.3× speedup with near-dense accuracy (≈52.7%, within 0.1–0.2 of the dense
Jetson baseline of 52.79%), completes pruning in ∼12 minutes on A100, and maintains a moderate
memory footprint. We adopt this setting throughout the main experiments, and we observe analo-
gous behavior on larger models and alternate targets.

C ABLATION ON CALIBRATION COUNT

We further analyze how calibration budget influences pruning outcomes when targeting a fixed 1.3×
end-to-end latency on Jetson Xavier NX (CPU) (batch=1, ExecuTorch). We vary the number of cali-
bration samples (64, 128, 256, 512), fixing the per-iteration prune fraction at K=10% and candidate
ratio at M/K=2.5×. We report: (a) final accuracy across seven lm-eval tasks, (b) pruning runtime
on an NVIDIA A100 (80GB), and (c) peak calibration working set during pruning.

Accuracy rises with more calibration but saturates quickly: 64 samples trail the dense baseline
(52.79%) by about one point, 128 nearly closes the gap, and 256 reaches 52.6–52.7%, effectively
matching dense. Going to 512 yields only marginal gains (∼0.1 points), well within variance. In
contrast, runtime and memory scale nearly linearly with calibration size: from 7 minutes / 3.0 GB at
64 samples to 21 minutes / 6.2 GB at 512. Overall, 256 samples strike the best trade-off, preserving
near-dense accuracy while keeping pruning practical on a single GPU.

D ABLATION ON SENSITIVITY PROPAGATION COEFFICIENT β

In Section 4.2.1, we introduced a coefficient β ∈ [0, 1] to control how strongly downstream sensi-
tivities influence earlier layers during recursive propagation:

S(ℓ) = S(ℓ)→(ℓ+1) + βS(ℓ+1).

When β = 0, sensitivities are purely local, i.e., layer ℓ only accounts for its immediate perturbation
effect S(ℓ)→(ℓ+1). When β = 1, full downstream influence is considered, effectively chaining sen-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

64 128 256 512
51.5

52

52.5

53

Calibration samples

A
cc

ur
ac

y

(a) Accuracy (%)

64 128 256 512
8

10

12

14

16

18

20

Calibration samples

R
un

tim
e

(m
in

)

(b) Pruning runtime (min)

64 128 256 512
3

4

5

6

Calibration samples

M
em

or
y

(G
B

)

(c) Calibration working set (GB)

Figure 6: Ablation over calibration sample count when pruning LLaMA-3.2-1B to 1.3× latency
on Jetson Xavier NX (CPU). (a) Accuracy compared to the dense baseline (dashed). (b) Pruning
runtime on A100 (80GB). (c) Peak calibration working set during pruning.

0 0.25 0.5 0.75 1
51.5

52

52.5

53

β

A
cc

ur
ac

y
(%

)

Figure 7: Effect of β on pruning LLaMA-3.2-1B to 1.3× latency on Jetson NX (CPU). Accuracy
improves as β increases up to 0.5–0.75, reflecting the benefit of incorporating downstream sensitiv-
ities. Runtime and memory remain essentially unchanged.

sitivities across the network. Intermediate values interpolate between these two extremes, balancing
local stability with global robustness.

We prune LLaMA-3.2-1B to a fixed 1.3× latency speedup on Jetson Xavier NX (CPU) and vary
β ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. Figure 7 reports average accuracy across seven common reasoning
benchamrks. As shown in the paper, β = 0.75 offers the best trade-off. Purely local sensitivities
(β = 0) underestimate error propagation and reduce accuracy, while β = 1.0 yields no further gains.

E EXTENDED RESULTS ON LLAMA-2 FAMILY

In this section, we provide extended comparisons against recent decomposition-based methods
(MoDeGPT, SVD-LLM v2) and evaluate robustness on complex reasoning tasks.

E.1 COMPARISON WITH DECOMPOSITION BASELINES

We benchmarked HAP-E against strong structured pruning and decomposition baselines on LLaMA-
2-7B and LLaMA-2-13B. As shown in Table 4 and Table 5, HAP-E achieves superior accuracy
across diverse zero-shot tasks, particularly at higher compression ratios (30%).

E.2 COMPLEX REASONING AND GENERATION

To demonstrate robustness beyond standard multiple-choice tasks, we evaluated MMLU (5-shot,
grouped by domain), GSM8K (Math), and WikiText-2 Perplexity (Generation). As shown in Table 6,
HAP-E significantly outperforms baselines, achieving the highest MMLU average and the lowest
perplexity.

F SCALABILITY TO MODERN ARCHITECTURES

To validate the generalizability of HAP-E to state-of-the-art architectures, we conducted experiments
on LLaMA-3.1-8B and Qwen-2.5-14B Instruct. We compare against DarwinLM (Tang et al., 2025),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 4: LLaMA-2-7B Results. Comparison against SoBP, MoDeGPT, SlimGPT, and SVD-LLM
v2 at 20% and 30% pruning ratios.

Pruning Method BoolQ PIQA HellaS. WinoG. ARC-e ARC-c OBQA
0% Dense 77.71 79.05 76.00 68.98 74.58 46.33 44.20

20%

SoBP 71.19 73.50 67.27 66.22 59.81 37.63 38.40
MoDeGPT – 74.05 69.05 68.03 69.07 42.06 –
SlimGPT 73.43 77.58 72.62 68.82 69.99 42.32 42.00
SVD-LLM v2 61.42 72.89 63.55 66.77 58.12 38.76 40.87
HAP-E (Ours) 75.24 78.61 74.29 69.77 71.86 44.03 43.68

30%

SoBP 71.19 73.50 67.27 66.22 59.81 37.63 38.40
MoDeGPT – 70.40 63.26 67.32 63.26 38.73 –
SVD-LLM v2 58.62 70.45 61.18 64.23 54.97 36.41 37.89
HAP-E (Ours) 71.82 76.73 70.68 68.04 68.47 41.98 43.59

Table 5: LLaMA-2-13B Results. Comparison at 20% and 30% pruning ratios.

Pruning Method ARC-c ARC-e BoolQ HellaS. OBQA PIQA WinoG.
0% Dense 49.23 77.48 80.58 79.37 45.20 80.52 72.30

20%
MoDeGPT 46.16 74.07 – 68.96 – 74.53 70.32
SVD-LLM v2 44.15 71.05 70.35 65.75 43.95 77.10 71.00
HAP-E (Ours) 49.75 77.95 82.30 78.82 47.55 80.25 74.10

30%

SoBP 47.78 74.45 79.45 74.55 43.20 76.50 71.82
MoDeGPT 43.60 71.93 – 68.21 – 73.94 71.90
SVD-LLM v2 42.63 69.17 68.47 63.38 41.72 75.41 70.26
HAP-E (Ours) 48.91 76.83 81.47 77.69 46.83 79.18 73.41

a recent evolutionary search-based global pruning method. HAP-E consistently achieves higher
accuracy across all 9 benchmark tasks on both model families.

G COMPATIBILITY WITH RECOVERY FINE-TUNING

While HAP-E targets the post-training setting, compatibility with recovery fine-tuning (RFT) is
critical for scenarios where a small computational budget is available to recover lost accuracy. Be-
cause HAP-E performs structured pruning (removing entire heads and neurons), the resulting model
is a standard dense Transformer architecture that is inherently compatible with standard training
pipelines.

To validate this, we performed recovery fine-tuning on LLaMA-2-7B at 30% sparsity using
LoRA (Hu et al., 2022). We utilized the Alpaca dataset for 1 epoch. We focused on the 30% pruning
regime, as the 20% model is already close to dense performance (< 1% gap), leaving minimal room
for recovery.

Results: As shown in Table 9, the pruned model responds effectively to fine-tuning. LoRA recovery
provides a substantial +1.8% accuracy boost (63.00%→ 64.80%), significantly narrowing the gap
to the unpruned Dense baseline. This confirms that HAP-E preserves a high-quality feature space
that serves as an excellent initialization for subsequent fine-tuning.

H QUANTITATIVE COMPARISON OF PRUNING OVERHEAD

To address questions regarding the computational cost of our method, we provide quantitative com-
parisons of runtime and peak memory usage on an NVIDIA A100 GPU for LLaMA-7B and 13B
models.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 6: MMLU & Reasoning Benchmarks (LLaMA-2-7B, 20% Pruning). Higher is better for all
metrics except WikiText-2 perplexity (PPL), where lower is better.

Method MMLU (5-shot) Math Generation
Humanities Social Sci STEM Other Avg GSM8K WikiText-2 (PPL) ↓

Dense 43.30 51.60 36.30 52.10 45.60 13.80 12.19
LLM-Pruner 25.70 23.60 24.20 26.80 25.20 2.30 17.00
SlimGPT 36.00 45.20 33.50 44.10 39.40 4.20 16.49
HAP-E (Ours) 39.46 47.73 34.49 47.20 42.72 8.69 15.63

Table 7: Results on LLaMA-3.1-8B. Comparison of HAP-E against DarwinLM (one-shot).

Method #Params BoolQ PIQA HellaS. WinoG. ARC-e ARC-c SciQ LogiQA MMLU
Dense 8B 84.0 81.2 81.7 74.3 81.4 58.2 96.3 31.1 65.2
DarwinLM 4.6B 62.2 69.4 44.6 57.3 59.6 34.2 84.9 24.1 28.5
HAP-E (ours) 4.6B 64.8 71.3 46.5 59.1 61.5 35.8 86.0 25.4 30.7

H.1 EFFICIENCY AT FIXED PRUNING RATIO (30%)

First, we compare the cost of a single pruning run to a fixed 30% sparsity target. As shown in
Table 10, HAP-E is significantly faster and more memory-efficient than both OBS-based baselines
(SlimGPT, Vanilla OBS) and decomposition methods (SliceGPT, MoDeGPT). Notably, it is orders
of magnitude faster than MoDeGPT (9 min vs. 4 hours). HAP-E is also ≈ 2× faster than Vanilla
OBS and SlimGPT even in a single pass, due to our greedy-consistent batching mechanism. It also
requires ≈ 50% less memory, enabling 7B/13B pruning on consumer GPUs.

H.2 EFFICIENCY IN REAL-WORLD LATENCY TARGETING

In practical deployment, users target a specific latency speedup (e.g., 1.9×), not a theoretical sparsity
ratio. Because sparsity and latency are not linearly related, methods without a predictor (SlimGPT,
OBS) typically require an iterative “guess-and-check” loop. For example, a user might first prune
to 40% sparsity, measure the speedup, adjust to 50% upon finding the result insufficient, and finally
refine to an intermediate value to meet the target.

This search process often requires multiple pruning sweeps to identify the correct sparsity config-
uration. In contrast, our latency predictor enables single-shot targeting, avoiding this loop entirely.
As shown in Table 11, when accounting for the practical necessity of hitting a latency target, HAP-E
is effectively ≈5× faster than the strongest baselines, while consuming half the memory.

I DETAILED RESULTS OF LLAMA FAMILY

We report per-task accuracies (BoolQ, PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, OBQA)
for LLaMA-7B, 13B, and 30B under different pruning rates, complementing the averages in Ta-
ble 1. Across scales, our method (Ours) maintains stronger per-task balance: at 20–30% pruning it
yields consistent gains over SlimGPT and SoBP, and at 50% pruning it preserves several points of
advantage on most tasks.

Table 8: Results on Qwen-2.5-14B Instruct. Comparison of HAP-E against DarwinLM (one-shot).

Method Params BoolQ PIQA HellaS. WinoG. ARC-e ARC-c SciQ LogiQA MMLU
Dense 14B 87.9 81.9 85.1 79.1 85.7 72.8 96.8 38.5 80.0
DarwinLM 8.4B 66.9 73.9 53.3 60.5 75.7 48.0 84.3 29.3 43.1
HAP-E (ours) 8.4B 69.2 75.5 55.1 61.9 77.3 49.7 85.4 30.2 44.9

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 9: Recovery Fine-Tuning on LLaMA-2-7B (30% Pruning). Applying LoRA (Alpaca, 1 epoch)
to the HAP-E pruned model recovers significant accuracy, demonstrating structural compatibility
with standard training frameworks.

Pruning Method BoolQ PIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg
0% Dense 77.71 79.05 76.00 68.98 74.58 46.33 44.20 66.69

30% HAP-E (Raw) 71.82 76.73 70.68 68.04 68.47 41.98 43.59 63.00
HAP-E + LoRA 74.77 77.89 73.34 68.51 71.53 43.72 43.83 64.80

Table 10: Runtime & Memory at 30% Pruning (Single Run). Comparison on NVIDIA A100.

Method LLaMA-7B (Time / Mem) LLaMA-13B (Time / Mem)

MoDeGPT 4h 09m / 23.0 GB 8h 26m / 41.0 GB
SliceGPT 26 min / 9.0 GB 45 min / 14.0 GB
Vanilla OBS 21 min / 8.0 GB 31 min / 12.0 GB
SlimGPT 16 min / 8.0 GB 26 min / 12.0 GB
HAP-E (Ours) 9 min / 4.5 GB 16 min / 7.1 GB

I.1 LLAMA-7B

At 20% pruning, SliceGPT and ASVD drop to 56.16% and 61.55% on average, while our method
holds 65.01%. At 30%, we surpass SoBP (61.21% vs. 59.61%). Even at 50% pruning, we retain
56.66%, nearly four points above SlimGPT.

I.2 LLAMA-13B

The advantage widens with scale. At 20% pruning, our method keeps 67.83%, ∼1.5 points above
SlimGPT/SoBP. At 30%, we remain ahead of SoBP (65.92% vs. 64.50%). At 50%, we retain
61.79%, about 4 points stronger than SlimGPT.

I.3 LLAMA-30B

At 20% pruning, our method nearly matches the dense model (71.88% vs. 71.92%), while SliceGPT
and ASVD are at 64.45% and 70.22%. At 30%, we keep 71.02%, exceeding SoBP by 1.4 points. At
50%, we are still at 67.99%, ∼2.5 points above SlimGPT and nearly 8.5 above LLM-Pruner.

J DETAILED RESULTS OF OPT FAMILY

We report per-task accuracies (BoolQ, PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, OBQA)
for OPT-6.7B, OPT-13B, and OPT-30B under different pruning rates, complementing the averages
in Table 1b. Across scales, our method consistently maintains higher accuracy than decomposition-
and pruning-based baselines, especially at moderate pruning levels (20–30%). At higher pruning
(30%), our approach preserves several points of advantage over ASVD and SliceGPT, showing
robustness under aggressive compression.

J.1 OPT-6.7B

Table 15 breaks down results at 20% and 30% pruning. At 20% pruning, SliceGPT and ASVD
average 55.50% and 45.11%, while our method retains 57.83%. At 30%, the gap over ASVD widens
dramatically (57.60% vs. 37.86%).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 11: Estimated Time to Target 1.9× Speedup. Comparison accounting for the iterative search
required by methods without a latency predictor.

Method Workflow LLaMA-7B Total Time LLaMA-13B Total Time

SlimGPT 3 Sweeps (Guess-and-Check) ∼48 min ∼78 min
HAP-E 1 Sweep (Predictor-Guided) 9 min 16 min

Table 12: Per-task accuracy (%) for LLaMA-7B.

Model #Params BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.
Prune% Method

0% Dense 6.7B 75.08 79.16 76.20 70.00 72.89 44.88 44.40 66.09

20%

SliceGPT 6.1B 62.14 74.06 60.18 63.92 59.07 35.26 38.49 56.16
ASVD 5.4B 70.84 76.21 66.37 66.82 64.63 39.91 46.07 61.55

LLM-Pruner 5.4B 66.76 78.45 71.44 63.77 66.41 39.85 43.80 61.50
SlimGPT 5.4B 75.93 77.58 73.07 67.96 68.60 41.72 41.80 63.81

Ours 5.4B 74.26 78.63 75.14 68.57 71.24 43.39 43.84 65.01

30%

SliceGPT 5.3B 37.83 64.31 45.68 62.12 53.37 31.40 33.60 46.90
ASVD 4.8B 64.01 60.72 42.71 53.75 40.28 28.16 29.20 45.55

Wanda-SP 4.8B 63.68 69.73 58.70 62.00 57.82 36.07 34.93 54.70
FLAP 4.8B 66.88 73.23 61.70 66.61 58.42 33.87 40.40 57.30
SoBP 4.8B 68.41 73.56 67.62 68.35 61.20 37.97 40.20 59.61
Ours 4.8B 71.46 75.57 70.33 67.42 61.78 40.53 41.38 61.21

50%
Wanda-SP 3.4B 51.83 55.55 30.87 54.11 33.82 24.85 24.72 39.39

FLAP 3.4B 61.65 68.22 54.45 60.10 53.65 32.30 37.30 50.37
LLM-Pruner 3.4B 60.21 68.88 47.86 54.62 43.94 27.73 35.20 48.35

SlimGPT 3.4B 65.87 70.35 54.62 59.59 49.71 31.06 34.40 52.23
Ours 3.4B 68.64 72.73 63.76 60.86 53.77 37.87 38.99 56.66

J.2 OPT-13B

As shown in Table 16, at 20% pruning, our method achieves 59.02%, slightly higher than SliceGPT
(57.84%) and far above ASVD (39.20%). At 30%, we maintain 58.46%, outperforming all other
baselines.

Table 13: Per-task accuracy (%) for LLaMA-13B.

Model #Params BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.
Prune% Method

0% Dense 13.0B 77.89 80.14 79.06 72.85 74.75 47.61 44.80 68.16

20%

SliceGPT 11.8B 67.93 75.41 66.08 68.87 63.92 39.97 42.44 60.66
ASVD 10.4B 74.12 78.49 74.05 71.03 70.07 46.52 42.75 65.29

LLM-Pruner 10.4B 79.38 77.36 71.47 70.32 70.54 44.88 45.80 65.68
SlimGPT 10.4B 77.06 79.82 76.94 72.61 69.78 44.80 43.60 66.37

Ours 10.4B 77.86 79.93 78.11 72.58 73.67 47.39 45.27 67.83

30%

SliceGPT 10.2B 55.20 67.30 54.06 68.19 60.40 36.69 38.00 54.26
ASVD 9.2B 70.58 73.34 63.04 63.38 58.50 35.84 37.60 57.47
SoBP 9.2B 71.50 77.09 74.92 71.35 70.41 43.86 42.40 64.50
Ours 9.2B 75.03 78.06 76.08 71.44 70.09 46.58 44.16 65.92

50%
LLM-Pruner 6.5B 62.35 72.74 58.43 55.88 51.89 33.02 38.20 53.22

SlimGPT 6.5B 69.14 74.32 64.57 65.82 57.74 35.15 38.00 57.82
Ours 6.5B 73.26 77.19 68.47 67.36 60.44 42.97 42.84 61.79

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 14: Per-task accuracy (%) for LLaMA-30B.

Model #Params BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.
Prune% Method

0% Dense 32.5B 82.69 82.26 82.60 75.85 78.91 52.90 48.20 71.92

20%

SliceGPT 29.5B 74.16 76.41 74.53 71.08 70.11 44.37 40.49 64.45
ASVD 26.1B 82.05 81.12 79.23 73.08 75.06 51.07 49.93 70.22

LLM-Pruner 26.0B 81.28 80.96 80.66 73.16 76.98 49.49 47.40 69.99
SlimGPT 26.0B 82.87 81.28 81.01 76.09 76.98 51.28 48.40 71.13

Ours 26.0B 82.57 82.16 81.46 75.43 78.47 53.16 49.91 71.88

30%

SliceGPT 25.5B 55.44 69.75 59.29 68.90 69.23 42.15 41.60 58.05
ASVD 22.9B 73.52 75.68 67.45 67.25 67.89 41.98 39.40 61.88
SoBP 22.9B 80.28 80.20 80.12 74.03 75.34 50.00 47.40 69.62
Ours 22.9B 81.63 81.27 80.86 75.14 76.53 51.86 49.85 71.02

50%
LLM-Pruner 16.3B 66.21 76.44 69.46 64.56 60.98 37.63 41.00 59.47

SlimGPT 16.3B 75.08 77.20 75.01 74.11 68.43 43.26 45.40 65.50
Ours 16.3B 78.96 79.44 77.87 73.17 72.13 48.02 46.34 67.99

Table 15: Per-task accuracy (%) for OPT-6.7B.

Model #Params BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Prune% Method

0% Dense 6.7B 66.06 76.50 67.19 65.19 60.14 34.64 37.40 58.16

20%

FLAP 6.1B 62.35 73.28 60.11 57.42 52.08 31.23 46.36 54.72
SliceGPT 6.1B 63.92 73.14 61.22 58.94 54.07 30.85 46.86 55.50

ASVD 5.4B 58.46 66.82 52.40 50.29 46.03 26.78 36.00 45.11
Ours 5.4B 66.37 74.55 66.27 63.15 56.40 33.58 45.91 57.83

30%

FLAP 4.8B 62.14 73.18 54.94 59.98 51.47 30.29 37.40 52.77
SliceGPT 5.3B 64.43 73.45 58.32 60.77 55.85 30.12 36.20 54.16

ASVD 4.8B 55.84 52.72 26.75 51.38 28.07 25.26 25.00 37.86
Ours 4.8B 67.11 74.22 65.38 61.27 56.09 33.84 45.30 57.60

J.3 OPT-30B

Table 17 shows analogous behavior at 30B. At 20% pruning, SliceGPT and ASVD average 60.86%
and 49.48%, while our method retains 61.82%. At 30%, we maintain 61.29%, outperforming all
other baselines by a clear margin.

Table 16: Per-task accuracy (%) for OPT-13B.

Model #Params BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Prune% Method

0% Dense 13.0B 65.72 76.82 69.86 65.11 61.87 35.67 39.00 59.15

20%

FLAP 10.3B 60.92 73.51 61.12 55.76 49.28 28.91 38.88 55.36
SliceGPT 11.9B 62.57 75.18 64.83 58.97 52.46 32.10 39.50 57.84

ASVD 10.3B 49.23 62.41 41.36 45.12 36.20 22.71 27.36 39.20
Ours 10.3B 65.08 76.23 68.92 62.57 60.26 34.73 44.56 59.02

30%

FLAP 9.1B 61.27 72.19 59.08 53.61 46.23 27.36 36.83 50.81
SliceGPT 10.3B 64.19 74.88 63.23 58.27 53.54 31.44 36.77 55.92

ASVD 9.1B 48.57 60.10 40.74 42.39 34.87 21.63 26.37 36.85
Ours 9.1B 66.82 75.72 68.40 61.91 59.43 33.08 44.33 58.46

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 17: Per-task accuracy (%) for OPT-30B.

Model #Params BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.

Prune% Method

0% Dense 30.0B 70.46 78.18 72.30 68.43 65.36 38.05 40.20 61.85

20%

FLAP 24.0B 64.12 75.08 63.74 59.87 52.92 33.56 35.78 56.52
SliceGPT 27.5B 68.21 77.02 68.13 65.44 59.86 36.42 41.45 60.86

ASVD 24.0B 56.18 65.74 52.34 48.21 44.32 27.86 32.18 49.48
Ours 24.0B 70.18 78.06 71.09 67.36 64.58 37.81 42.65 61.82

30%

FLAP 21.1B 62.17 73.07 59.30 58.88 47.69 28.75 38.40 52.61
SliceGPT 23.8B 67.93 76.40 67.18 64.05 59.47 35.52 41.45 59.49

ASVD 21.1B 54.06 63.18 50.46 47.11 42.37 26.29 32.56 41.12
Ours 21.1B 69.72 77.63 70.34 66.54 63.58 37.13 43.09 61.29

K IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

All code is implemented in PyTorch with HuggingFace transformers. Pruning experiments
(calibration, OBS solves, and pruning loops) were run on a single NVIDIA A100 (80GB). Edge
inference benchmarks were compiled with ExecuTorch and measured on Jetson Xavier NX and
HiKey970 CPUs (CPU-only). Calibration uses 256 samples from the C4 corpus with sequence
length 2048. Latency model training uses 1500 pruned configurations and is evaluated on a held-
out test set of 200 configurations. Batch sizes: A100 experiments use batch size 16; CPU edge
inference uses batch size 1. CPU inference is run with weight-only INT8 post-training quantization;
A100 experiments use FP16 where applicable. Unless noted otherwise, values below are fixed across
models and hardware targets.

Table 18: Hyper-parameter settings for HAP-E experiments.

Category Parameter Value / Notes

Calibration
Calibration dataset C4 (256 samples)
Sequence length 2048
Calibration usage Used for OBS solves and final pruning calibration (no fine-tuning)

Latency model
Training samples 1500 pruned configurations

Test (held-out) samples 200 configurations
Batch sizes A100: 16; CPU (Jetson/HiKey): 1

Candidate selection

Initial scoring Block L2 norm (coarse filter)
Candidate oversampling M/K 2.5 (i.e., C = 2.5×)

Sensitivity coefficient β 0.75 (used in recursive Sℓ)
Total prune per iteration K 10% of current remaining blocks (per-iteration global budget)

Hybrid-OBS / Certification

Hessian regularization λ 1 × 10−4 (stability for solves)
Max certified batch (attention heads) 6 (max number of attention-head blocks appended per batch)

Max certified batch (FFN blocks) 128
Cholesky strategy Incremental Cholesky updates for GJJ (see Sec. 4.1)

Quantization / Inference CPU inference precision INT8 weight-only post-training quantization
GPU inference precision FP16 (A100)

L LLM USAGE DISCLOSURE

In accordance with the ICLR 2026 policy on large language model usage, we disclose that LLMs
(ChatGPT) were used only to aid and polish the writing of some parts of this paper.

22

	Introduction
	Background: Structured Optimal Brain Surgeon Pruning
	Related Work
	Proposed Method
	Hybrid Optimal Brain Surgeon for Batched Pruning
	Candidate Block Selection
	Computing Transformer layer Sensitivity via Hessian Approximation
	Selecting Candidate Blocks and Determining Blocks to Prune

	Latency Estimation

	Experiments
	Results on LLaMA and OPT Models
	Latency Model Verification
	Hardware-Aware Latency–Accuracy Evaluation
	Ablation: Runtime, Memory, and Accuracy of OBS Variants on GPU

	Conclusion
	Proofs of Lemmas in Section 4
	Lemma 1 (Greedy-equivalence of certified batch)
	Lemma 2 (Batch = maximal greedy-consistent prefix)
	Lemma 3 (Batch update equivalence)

	Ablation on Candidate Pool Ratio and Prune Fraction
	Ablation on Calibration Count
	Ablation on Sensitivity Propagation Coefficient
	Extended Results on LLaMA-2 Family
	Comparison with Decomposition Baselines
	Complex Reasoning and Generation

	Scalability to Modern Architectures
	Compatibility with Recovery Fine-Tuning
	Quantitative Comparison of Pruning Overhead
	Efficiency at Fixed Pruning Ratio (30%)
	Efficiency in Real-World Latency Targeting

	Detailed Results of LLaMA Family
	LLaMA-7B
	LLaMA-13B
	LLaMA-30B

	Detailed Results of OPT Family
	OPT-6.7B
	OPT-13B
	OPT-30B

	Implementation Details and Hyper-parameters
	LLM Usage Disclosure

