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ABSTRACT

Large language models (LLMs) deliver strong performance across diverse tasks,
yet their heavy compute and memory demands make deployment on real-time
edge devices challenging. Structured pruning has become the standard approach
to reduce these costs, yet accurately estimating which blocks can be removed re-
mains challenging at scale. Second-order methods such as Optimal Brain Sur-
geon (OBS) are computationally intractable at LLM scale. Existing approaches
rely on static budgets that ignore cross-layer dependencies, and common proxies
like FLOPs misestimate real hardware latency. We introduce HAP-E, a scalable,
Hessian-aware pruning framework for post-training compression of LLMs. HAP-
E adaptively reallocates budgets across layers using global screening and selective
second-order analysis on a candidate set guided by cross-layer sensitivity estima-
tion. It further performs OBS-equivalent batch pruning that certifies and removes
multiple blocks at once while exactly matching the greedy OBS sequence, thereby
reducing weight updates and numerical drift. A lightweight latency predictor en-
sures that the compressed model satisfies inference-time constraints. Experiments
on LLaMA and OPT models show that HAP-E improves accuracy by up to 3%
over state-of-the-art structured pruning methods at comparable pruning ratios.

1 INTRODUCTION

Large language models (LLMs) have achieved state-of-the-art performance across diverse
tasks (Bommasanil, 2021), but their substantial computational and memory demands hinder de-
ployment in latency-sensitive or resource-constrained environments (Zhou et al. 2024). In such
scenarios, achieving low inference latency, high energy efficiency, and preserving data privacy are
critical requirements (Wu et al., 2019). Structured pruning (Guo et al., [2025}; [Kwon et al., 2022;
An et al.| [2024)), which removes entire blocks such as attention heads or feed-forward neurons, has
become the standard approach to reduce these costs. By aligning naturally with existing hardware
and inference frameworks, structured pruning directly translates into tangible latency and memory
reductions. The central challenge lies in accurately estimating which blocks can be removed with
minimal impact, a problem that becomes increasingly difficult at the scale of modern LLMs (Kim
et al.,[2024; Frantar & Alistarh, 2023)).

Recent advances have shown that second-order (Hessian-based) information, as in Optimal Brain
Surgeon (OBS) (Hassibi & Storkl |1992; [Frantar & Alistarhl 2022) inspired methods (Ling et al.,
2024; |Wet et al.l [2024)), can effectively guide pruning by capturing the curvature of the loss land-
scape and making locally optimal choices. However, existing approaches face four major challenges
at LLM scale: (1) Computing and updating full Hessian inverses is memory- and compute-intensive,
and even incremental strategies require repeated inverse updates that are costly and introduce nu-
merical drift. (2) Standard OBS prunes one block at a time, demanding many sequential weight
updates that slow pruning and make it impractical for billion-parameter models. (3) Conventional
methods impose static, layer-wise pruning budgets fixed at the start of pruning, ignoring cross-layer
dependencies where pruning in one layer alters the importance of blocks in subsequent layers. (4)
Finally, they rely on proxy metrics such as FLOPs or sparsity ratios, which misrepresent real hard-
ware latency and require repeated tuning (KurtiC et al.,|[2023)).

Contributions. To address these challenges, this paper introduces HAP-E, a scalable, Hessian-
aware structured pruning framework for post-training compression of LLMs. (i) HAP-E adaptively



reallocates pruning budgets across layers. To do so, it first performs inexpensive global screening
and then applies selective second-order analysis on a candidate set chosen dynamically. This pro-
cess is guided by cross-layer sensitivity estimation that captures both local and propagated effects
(Section[4.2). (ii) It introduces a greedy-consistent batch pruning mechanism. Each certified batch
matches exactly the sequence that greedy OBS would remove one-by-one, but is pruned jointly in
a single step. This yields the same accuracy with far fewer weight updates, reducing computational
overhead and mitigating numerical drift (Section[4.T). (iii) Finally, HAP-E integrates a lightweight
latency predictor into the pruning loop to ensure that the compressed model meets real inference-
time constraints (Section d.3). Together, these components make OBS-style pruning tractable at
LLM scale, delivering up to 3% higher accuracy than state-of-the-art pruning methods at compara-
ble pruning ratios.

2 BACKGROUND: STRUCTURED OPTIMAL BRAIN SURGEON PRUNING

Given a small calibration dataset, we first collect representative input activations for each layer.
Consider a linear layer with input activations X € R7*%n and weight matrix W € R%nxCou,
where T is the number of input tokens, and Cj,, Cy are the input/output dimensions, respectively.
The structured pruning objective seeks compressed weights W that approximate the original output
under a predefined structural constraint C:

min | XW — XW |3 (1)
wec

Let H = XX + A denote the Hessian of Equation |1, where ) is a small positive constant
to improve numerical stability (Hassibi & Stork] [1993} [Frantar & Alistarhl [2022)). Suppose S C
{1,..., Cou} denotes the indices of a candidate block containing & columns of weights (|S| = k),
e.g., sets of columns corresponding to an attention head. For any matrix A and index set S, Ag .,
A, s,and Ag g denote row, column, and submatrix restrictions, respectively. The OBS then provides
closed-form solutions for the minimal error (£(S)) incurred by the pruning block S, along with the
optimal update Ag applied to the remaining weights (Frantar & Alistarh| 2022} [2023)):
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To account for inter-block correlations, vanilla structured OBS pruning typically removes blocks
sequentially (Chen & et al.| 2024} [Li, [2024). At each step, it selects the block .S with the smallest
E(S), applies A the remaining weights, and updates H ~! using Gaussian elimination rather than
recomputing it from scratch:

H™ e H = (HY). s ((H )ss)
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This iterative approach yields locally optimal structured pruning decisions while maintaining com-
putational efficiency.

While theoretically appealing, such an approach is impractical for LLM-scale layers: storing and up-
dating H~1 € R¥?incurs O(d?) memory and O(kd?) update cost, and each candidate additionally
requires submatrix extraction and inversion with no amortization. Repeated Gaussian elimination
downdates further introduce numerical drift, degrading importance accuracy, and weight updates.
These issues make naive structured OBS infeasible for layers with tens of thousands of columns,
motivating a redesign that /localizes Hessian storage, batches updates, and avoids touching the full
inverse at every step.

3 RELATED WORK

Given the substantial computational and memory demands of LLMs, numerous compression tech-
niques have been explored, such as pruning (Zhang et al.| [ 2024;?; Ma et al.,[2023), quantization (Lin
et al.,[2024), and low-rank decomposition (Yuan et al.,2023)), to enable efficient deployment. Un-
structured pruning methods, including SparseGPT (Frantar & Alistarh, [2023)), Wanda (Sun et al.,



2023)), and E-Sparse (Li et al., [2023)), remove individual weights based on criteria such as Hessian-
based importance, combined weight—activation statistics, or information entropy. Although effective
in reducing parameters, these methods often require specialized hardware or software to achieve la-
tency gains, limiting their practical applicability (Ashkboos et al., [2024).

OBS-based Structured Pruning. OBS-based structured pruning leverages second-order informa-
tion to minimize post-pruning reconstruction error, offering strong theoretical guarantees and em-
pirical performance. SlimGPT (Ling et al., 2024) extends OBS to structured settings via grouped
Cholesky decomposition, which efficiently computes the joint importance of all columns within
a block, e.g., an attention head. However, it still requires updating the Hessian inverse and weight
magnitudes after pruning, inheriting OBS’s scaling bottlenecks. It further mitigates performance loss
through incremental, non-uniform layer-wise pruning rates, but remains fundamentally layer-local
and static in budget allocation, limiting its ability to exploit global inter-layer dynamics. SoBP (Wei
et al} |2024) uses global importance scores from first-order Taylor expansions to assign fixed prun-
ing ratios across layers, followed by local greedy refinement. Yet, its static allocation cannot adapt
during pruning, hindering its ability to capture evolving sensitivities and cross-layer interactions.

Low-Rank Decomposition. Low-rank methods, such as LoRD (Kaushal et al.,[2024)), ASVD (Yuan
et al.||2023)), and recent advancements like MoDeGPT (Lin et al.,|2025) and SVD-LLM (Wang et al.}
2025bja), reduce parameter counts by approximating weight matrices via SVD or related techniques.
While effective for memory reduction, they typically achieve less latency reduction than structured
pruning on standard hardware. Furthermore, many of these approaches require substantial retraining
to restore accuracy, posing challenges for large-scale deployment.

Global and Adaptive Pruning. Recent works have explored global sparsity allocation to
mitigate cross-layer mismatch. Approaches
such as OWL (Yin et al, [2024) and
SparseLLM (Bai et al., [2024) formulate
global objectives; however, they typically
rely on static or one-shot sensitivity met-
rics computed prior to pruning. Similarly,
global gradient-based methods like LLM-
Pruner (Ma et al.l [2023) and GBLM (Das
et al., [2023)) utilize first-order Taylor approxi-
mations to estimate importance, but typically
fix the pruning mask or sparsity ratios at ini-
tialization. Because these budgets are deter-
mined prior to pruning, they cannot capture
how the loss landscape and parameter impor-
tance evolve as weights are removed. Fur-

Algorithm 1: HAP-E Pruning Framework

Require: M (pre-trained model), Latiarget, Decal
Ensure: My uned
Measure Lat(M)
while Lat(M) > Latiarget do
> 1. Lightweight importance estimation

Imp(B;) + 4 /Wli\ Dwew,; W

> 2. Layer sensitivity estimation (recursive)
S(Z)%(ZJﬁl) — T\I_((X(é+l))TX(Z+1) + )\I)
50 — gO—(t+1) +ﬁs(eH)

> 3. Candidate budget allocation

Cv(l,'r) « o,(é,ﬂ')/,u(l,f)

K%™) « min(CK, Nt47) . ovtr)

thermore, calculating these global gradients
in methods like GBLM requires backpropaga-
tion through the entire network, which incurs
prohibitive memory costs for large models.
Other approaches, such as ECoFLaP (Sung
et all 2024), adopt coarse-to-fine strategies
driven by zeroth-order heuristics, but likewise
lack explicit second-order curvature updates.
Finally, evolutionary methods such as Dar-
winLM (Tang et al) 2025) depend on search
over a precomputed configuration database,
which introduces computational overhead and
is limited by the static nature of the database.

Positioning of this work. HAP-E advances
OBS-based pruning along three axes. (i) It al-
locates candidates adaptively across layers via
recursive, second-order sensitivity, enabling
dynamic budget reallocation to capture evolv-
ing curvature and overcoming static or first

SO te
> 4. OBS scoring with partial inv+erse
Solve HX = Exj for candidate panel IT
Gnn + (G.n)" Em;
E(Bs) + Y, W4 ,;(Gss) ' Ws,j
E(Bs) « S . E(Bs)
Select K blocks with smallest
> 5. Certify greedy-consistent batch and prune
Al ¢ Gee — GegG1G e
E'e|J) + (A2 We, |15
Grow J by repeatedly adding ¢*; set P +— .J
AWg < —HrpHppWp; Wp. + 0
> 6. Incremental Hessian update (sub-block only)
Q<+ II\ P;
Goq + Goq — GorGrpGrq
> 7. Latency update
Measure Lat(M)

end while
return Mpruned




-order heuristics. (ii) It integrates a hardware-calibrated latency predictor directly into the pruning
loop, ensuring that pruning decisions satisfy real device constraints without relying on proxy met-
rics or repeated sweeps as in prior methods. (iii) It introduces a greedy-consistent batch pruning
mechanism with theoretical guarantees, certifying equivalence to the sequential OBS solution while
requiring far fewer updates.

4 PROPOSED METHOD

We propose HAP-E, an adaptive, Hessian-aware structured pruning framework that compresses large
language models to meet a user-specified hardware latency target while maintaining accuracy. The
method is entirely post-training and operates in an iterative loop, progressively removing the least
important structural blocks until the measured latency satisfies the constraint.

As shown in Algorithm [I] at a high level, each iteration of HAP-E proceeds in four stages: (1)
Lightweight importance estimation: assign each block, e.g., attention head and FFN neuron, an
inexpensive saliency score based on parameter magnitude. (2) Sensitivity analysis: estimate the tol-
erance of each layer to perturbations via a recursive Hessian-based approximation that captures both
local and propagated effects. (3) Candidate selection and refinement: allocate a candidate budget
across layers according to sensitivity and variability, then refine these candidates using exact OBS
scores computed efficiently from partial Hessian solves. (4) Greedy-consistent batch pruning: cer-
tify the largest set of blocks that greedy OBS would remove sequentially, then prune them jointly in
a single step. This guarantees equivalence to the one-by-one greedy OBS sequence while requiring
far fewer weight updates, followed by an incremental update of the relevant Hessian sub-blocks.

By combining coarse-grained heuristics for global ranking with selective, exact OBS for a small
candidate subset, HAP-E concentrates expensive second-order computation where it yields the most
benefit, avoids full Hessian recomputation, and terminates as soon as the latency target is achieved.
This yields a hardware-aware, scalable pruning algorithm that achieves high accuracy under strict
inference budgets.

4.1 HYBRID OPTIMAL BRAIN SURGEON FOR BATCHED PRUNING

To make second-order pruning tractable for LLMs, we introduce a method that preserves the exact-
ness of greedy OBS while avoiding its prohibitive computational and memory costs. Our approach
prunes batches of blocks at once, but guarantees that each batch coincides with the initial segment
of the greedy OBS sequence, that is, the same set of blocks that greedy OBS would have removed
sequentially up to that point. In this way, pruning them jointly yields exactly the same weights and
accuracy as performing greedy OBS step-by-step, while requiring far fewer weight updates.

Notation. Consider a depth-2 linear layer, e.g., the output projection of an MHA block, in mod-
ule 7 € {MHA, FFN} of Transformer layer ¢, with input dimension d (number of input columns)
and block size k£ (number of columns per structural block). Let the current candidate set be
K™ = {ecy,...,cm}, where m = | K(“7)| is the number of candidate blocks selected for module 7
of layer £ in the current iteration, and each c; represents & input columns (e.g., an attention head
in MHA). We define the panel index IT1(K“7)) C {1,...,d} as the union of the column indices
belonging to K“7), with panel size [TI¢7) (K 7))| = mk. Let W € R%*Cou be the weight matrix
of this linear layer, where Coy is the output dimension. Let H be the Hessian from Equation [I] and
define G := H~! as its inverse. The subscripts in these matrices, e.g., H g p, denote submatrices
formed by selecting the row and column indices corresponding to index sets R and P.

Panel construction via selective inverse computation. The primary bottleneck of OBS is explicitly
forming the d x d inverse Hessian G. We circumvent this by computing only the columns of G
relevant to our candidate set K;:

H X = Epgen), X e RIx(mk) (5)
where Epy ey is the matrix selecting the panel indices. The solution X = G, (g,
contains the required columns, from which we extract the inverse panel Ggw.r) gery =

Gy (ke € R(mk)x(mk) = This reduces memory from O(d?) to O(dmk). In terms of
computation, a full Cholesky factorization of H costs O(d?), whereas solving Equation [5| for mk



columns with a pre-computed Cholesky factor costs O(d*mk). Since m is bounded by the candidate
budget, in large LLM layers we have mk < d, yielding substantial savings over full inversion while
still retaining exactness (in the edge case mk = d, the cost reduces to full inversion).

Conditioned scoring for sequential (batch) selection. Greedy OBS removes one block at a time,
recomputing scores after each update. To form a batch, we grow a set J C K of certified blocks,
blocks that greedy OBS would remove in this order, without updating the weights. For any ¢ €
K; \ J, we define the conditioned block metric via the Schur complement:

Al = Gee — GoyG ;G g € RF¥E, (6)

The conditioned score is
E'(c] ) = lI(A) AWl (7
where W, are the weights for block c. The score £'(c¢ | J) equals the OBS error that would be
computed if we actually updated the weights after pruning J. Therefore, the certification procedure

ranks candidates in exactly the same order as greedy OBS, ensuring that the certified set J matches
the greedy OBS sequence up to the stopping point (formal proof in Appendix [A.T)).

Incremental Cholesky for fast certification. Naively recomputing G;} for each certified set J
would cost O((|J|k)3). Instead, we maintain the Cholesky factorization G;; = Ly L}, and
update it incrementally. When adding a new block c to J, the update proceeds in three steps: i) solve
two triangular systems with L to obtain YT = L;}G Je, 1) form the Schur complement S, =

G..—Y 'Y, iii) compute the Cholesky factorization of S.. Each candidate score can then be updated
at O(k?|.J|)+O(k?), and the appending of a block has the same complexity. This incremental update
is asymptotically cheaper in |.J| than either recomputing G } from scratch (O((|.J|k)?)) or applying
it separately to each candidate block (O((|J|k)?) per candidate).

Maximal greedy-consistent prefix. Let K; be the current candidate set and J; = {c1,...,¢} the
certified prefix after ¢ steps. Define the stopping index 7" as
T = min{t >1| argmin&'(c|J;) # argminé(c | W(t))}, (8)

ceK;\J¢ ceK;\J¢

where () is the weight matrix obtained by pruning .J; via OBS. The certified set J- is therefore the
largest prefix consistent with one-by-one greedy OBS; stopping here guarantees greedy equivalence

for the entire batch (formal proof in Appendix [A.2)). This equivalence holds strictly under the local
quadratic reconstruction objective utilized by OBS.

Joint weight update. Once P = J is certified, we perform a single joint OBS update using Equa-
tion |3} This joint update produces exactly the same final weights as applying the corresponding
sequence of single-block OBS updates in order (formal proof in Appendix[A.3).

4.2 CANDIDATE BLOCK SELECTION

We begin candidate construction with a simple s 0.9} L K=20% =+ K=30% - K=50% |
proxy: the average L2 norm of each block’s €.} ]
weights (Li et al.l [2017; Molchanov et al., §0.7—
2017). Although this measure ignores second- o6l
order effects, Figure E] shows that it correlates 5 of
well with OBS, achieving Jaccard overlaps of =
0.7-0.85 and expanding the pool by around  § L5
1.5x suffices to cover all OBS top-K blocks. 2 4|
=

This suggests that L2 magnitudes, while imper-
fect, are adequate for inexpensive initial screen-
ing. The total number of candidates is then

L00 L08 LO09 LI5 LI6 L30 L3l
Layer

set by a global hyperparameter and distributed
across layers according to their estimated sensi-
tivities (detailed in Sectiond.2.T) and intra-layer
score variability (see Section 4.2.2). The re-
sulting compact but representative sets are then
passed to Hybrid-OBS (Section 1)) for accu-
rate second-order scoring and batched pruning.

Figure 1: Alignment of L2 and OBS rankings
across layers. Top: Jaccard@K similarity at
pruning ratios 20%, 30%, and 50%. Bottom:
Inflation M /K, the factor by which L2 candi-
date pools must expand to fully cover OBS top-
K. Higher Jaccard and lower inflation indicate
stronger agreement.



4.2.1 COMPUTING TRANSFORMER LAYER SENSITIVITY VIA HESSIAN APPROXIMATION

Initial importance scores ignore how pruning errors in one layer can propagate and amplify in later
layers, making it crucial to account for the sensitivity of the transformer layer when selecting can-
didate blocks. To account for this, we estimate layer sensitivity using an efficient second-order
approximation instead of the full Hessian, which is infeasible for large LLMs.

For consecutive Transformer layers ¢ and ¢ + 1, let A*) be the output of transformer layer ¢ and
f9(-) denotes the function of the next transformer layer. For a perturbation AX), the change in the
output of transformer layer ¢ 4 1 is quantified as

2
g(HY) = Hf<e+1><h<e> + ARD) - f<4+1>(h<e>)H2 )

A second-order Taylor expansion for small AR gives g(K9) ~ L(AKY)THHD AN, where
HAD ~ (XD X+ 1 AT is the Hessian approximation, X(“*1) is the input to transformer
layer ¢ + 1, and X ensures stability. The local sensitivity between layers ¢ and £ + 1 is given by the
Hessian trace Tr(-):

SO E+1) _ (gD (10)

To capture global effects without the full Hessian, we recursively propagate sensitivities backward
from the final transformer layer, with /3 controlling the influence of downstream layers on earlier

ones:
S([) — S([)*)([“rl) +/65(4+1) (11)

This recursion efficiently captures how pruning perturbations propagate across the model, enabling
more informed candidate block selection.

4.2.2 SELECTING CANDIDATE BLOCKS AND DETERMINING BLOCKS TO PRUNE

To allocate candidates fairly across the model, we evaluate each module (MHA or FFN) within
layer ¢ separately. For a given module 7 € {MHA, FFN} of transformer layer ¢, we define a
module-level metric that incorporates both the variability in block importances within the module
and the sensitivity of its parent layer:

%) o)
Z,T) _ : Z,‘r) _
RO = < with CVhm) = pal

Here, ;£%7) and o{7) are the mean and standard deviation of block importance scores, and € ensures
stability. The number of candidate blocks per module is

12)

RZ,T)

4,r) . . £,T)Y .
Kt = min(C K, Nt ) 7212/’7,%@,77,),

13)

This design favours modules where pruning is less risky (low S¢) and where block importances vary
widely (high cvhT), ensuring that the candidate pool adapts to both inter-layer sensitivity and intra-
layer variability. We then compute OBS scores for all candidates (Equation [2), rescale them by
the shared layer sensitivity S* to penalize fragile layers, and globally rank blocks to figure out how
many blocks should be pruned in each module 7. We then compute OBS scores for all candidates
(Equation , rescale them by the shared layer sensitivity S* to penalize fragile layers, and globally

rank blocks. Let Tl(z,Tsz denote the number of blocks to prune from module 7 in layer ¢, such that

Doon W67 = K with 167) < K%7. We repeat the certification and pruning steps in Section
()

4 blocks have been removed from module 7 of layer £.

until exactly r

4.3 LATENCY ESTIMATION

We employ a learned latency model to guide pruning toward a target runtime without repeated on-
device profiling. For each Transformer module (MHA or FFN) in layer ¢, we first measure its
execution time on the target hardware under different pruning configurations and record the features

X(e) = [57 dmodela h(f), dﬁn(e)]a (14)



where S is the sequence length, d;;,o401 denotes the hidden dimension, K9 shows the number of
active heads, and dg,(*) is the FFN intermediate dimension after pruning. We then train separate
regressors fya and frpy using linear regression to predict module-level latencies.

For a pruned model .4, the block-level predictions are aggregated using a lightweight linear model:

B
Liot(A) = a0 + Y oy fr (v (X) (15)
b=1
where 7(b) € {MHA, FFN} indicates the block type and the coefficients «, are also fitted via linear
regression on end-to-end latency samples from pruned models. This two-stage design corrects for
non-additive effects such as memory allocation and kernel fusion, while also capturing variation
across sequence length and width, making the estimator tailored to Transformer architectures.

5 EXPERIMENTS

Setup. We implement HAP-E in PyTorch (Paszke et al., 2019) with HuggingFace Transform-
ers (Wolf et al.l [2019). Following SlimGPT (Ling et al., [2024)), we calibrate on 256 sample with
sequence length 2048 from C4 dataset. In all experiments, Pruning is strictly post-training with-
out any fine-tuning. All pruning experiments are conducted on a single NVIDIA A100 (80GB). For
edge deployment, models are compiled with ExecuTorch and benchmarked on Jetson Xavier NX and
HiKey970 CPUs at batch size 1, averaged over 10 runs with 2 warm-ups. Detailed hyper-parameters
are provided in Appendix [K]for reproducibility.

Models and Datasets. We evaluate models from the LLaMA family (Touvron et al., [2023),
OPT family (Zhang et all 2022)), and TinyLLaMA. Compressed models are assessed using
lm-eval-harness (Gao et al.l |2024) on seven zero-shot benchmarks: ARC-c, ARC-e (Clark
et al., 2018), WinoGrande (Sakaguchi et al.,|2021)), BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al.,2019), OpenBookQA (Mihaylov et al.,[2018)), and PIQA (Bisk et al.,|2020). We report average
accuracy (%) across tasks, consistent with prior work. All results are averaged over four different
random seeds for pruning and calibration sample selection.

Baselines. We compare against six state-of-the-art compression methods: FLAP (An et al., |[2024),
SliceGPT (Ashkboos et al., |2024), LLM-Pruner (Ma et al., |2023), SimGPT (Ling et al., |2024)),
SoBP (Wei et al., [2024), and ASVD (Yuan et al.| |2023). The set includes both pruning-based and
decomposition-based methods to cover the dominant strategies for reducing LLM complexity.

5.1 RESULTS ON LLAMA AND OPT MODELS

Tables [If(a) and (b) summarize pruning results on LLaMA-7B/13B/30B and OPT-6.7B/13B/30B,
respectively. On the LLaMA family, our method consistently outperforms post-training baselines
across pruning ratios and model scales. At moderate pruning (20-30%), we achieve around 1.5%
higher accuracy than SoBP and SlimGPT. For instance, on LLaMA-13B at 20% pruning, our method
reaches 67.8%, compared to 66.9% (SoBP) and 66.4% (SlimGPT). At more aggressive pruning (40—
50%), the gap widens: on LLaMA-30B at 50% pruning we obtain 68.0%, roughly 2.5% higher than
SlimGPT and nearly 8% higher than LLM-Pruner. These results demonstrate that adaptive block
allocation with OBS reconstruction provides robustness under severe compression.

For OPT models, dense baselines start at lower accuracies, and the margins across methods are
smaller. Nonetheless, our method consistently preserves accuracy. At 10-20% pruning, we nearly
match dense performance (e.g., OPT-13B: 59.0% vs. 59.2% dense). At 30% pruning, our approach
still maintains the best accuracy among all methods, showing up to 3—4% improvements over ASVD.
These consistent gains highlight the effectiveness of our adaptive candidate allocation strategy in
maintaining model quality even when pruning larger OPT variants.

Extended Evaluations on Modern Families. To demonstrate the robustness and scalability of
HAP-E, we provide extensive additional results in the Appendices. Appendix [E|details LLaMA-2
evaluations against decomposition baselines (MoDeGPT, SVD-LLM v2) and reasoning benchmarks,
while Appendix [G] validates compatibility with recovery fine-tuning. Furthermore, Appendix [F]
validates performance on state-of-the-art architectures, including LLaMA-3.1-8B and Qwen-2.5-
14B.



Table 1: Average accuracy (%) on commonsense reasoning tasks under different pruning rates. (a)
LLaMA family. (b) OPT family. Per-task results are in Appendix |I| and Appendix El

(a) LLaMA-7B/13B/30B (b) OPT-6.7B/13B/30B
Model | LLaMA-7B | LLaMA-13B | LLaMA-30B Model | OPTL67B | OPLI3B |  OPT-30B

Prune%  Method | #Params Avg? | #Params Avg? | #Params Avg? Prune% Method | #Params Avg? | #Params Avg? | #Params Avg?t

0% Dense | 67B  66.05| 13.0B 6821 | 3258 7192 0%  Dense | 67B 5816 | 130B 59.15| 30.0B 6185

SliceGPT 6.1B 56.16 11.8B  60.66 | 29.5B  64.45 FLAP 6.0B 57.31 11.6B  58.10 | 27.0B  59.26

ASVD 5.4B 61.55 104B  65.29 | 26.1B  70.22 10% SliceGPT 7.1B 57.07 13.5B  59.18 | 31.3B  61.61

20% SoBP 5.4B 62.19 104B  66.96 | 26.1B  70.87 ASVD 6.0B 55.18 11.6B 5632 | 27.0B 59.11

LLM-Pruner 5.4B 61.50 104B  65.68 | 26.0B  69.99 HAP-E 6.0B 57.96 11.6B  59.11 27.0B  62.19
SIimGPT 5.4B 63.81 104B  66.37 | 26.0B 71.13

HAP-E 54B 65.01 104B  67.83 | 260B 71.88 FLAP 5.4B 54.72 10.3B 5536 | 24.0B  56.52

20% SliceGPT 6.2B 55.50 11.9B 57.84 | 27.5B  60.86

SliceGPT 5.3B 46.90 102B  54.26 | 25.5B  58.05 ASVD 5.4B 45.11 10.3B 3920 | 24.0B  49.48

30% ASVD 4.8B 45.55 9.2B 5747 | 229B 61.88 HAP-E 5.4B 57.83 103B  59.02 | 24.0B 61.82
SoBP 4.8B 59.61 9.2B 64.50 | 229B  69.62

HAP-E 4.8B 61.21 9B 65.92 | 229B  71.02 FLAP 4.7B 52.77 9.1B 50.81 21.1B  52.61

30% SliceGPT 5.4B 54.16 103B 5592 | 23.8B 59.49

SliceGPT 4.5B 39.64 8.6B 47.00 | 21.5B  48.90 ASVD 4.7B 37.86 9.1B 36.85 | 21.1B  41.12

0% ASVD 4.1B 36.79 7.9B 40.13 19.7B  49.79 HAP-E 4.7B 57.60 9.1B 5846 | 21.1B  61.29
SoBP 4.1B 56.10 7.9B 60.34 19.7B  67.20
HAP-E 4.1B 58.40 7.9B 62.84 19.7B  69.50
LLM-Pruner 3.4B 48.35 6.5B 53.22 16.3B 5947
50% SIimGPT 34B 54.26 6.5B 59.89 16.3B  65.59
HAP-E 3.4B 56.66 6.5B 61.79 16.3B  67.99

5.2 LATENCY MODEL VERIFICATION

We train a whole-model latency predictor on 1500 pruned configurations and evaluate on a 300-
sample held-out set. Each configuration varies the sequence length S € {128, 256, 384, 512, 1024}

and structured sparsity.

To generate module- level features, we record
block runtimes on the target hardware: for
MHA, we measure execution time with
0,..., (Vheags — 1) heads pruned; for FEN, we
measure runtime as the intermediate dimension
shrinks by factors of 0.9 fori = 0, ..., 42 10%
relative steps up to 99% sparsity), following
prior work (Kurti¢ et al.l 2023). All CPU ex-
periments use INTS8 post-training quantization.
Predictor evaluations on Jetson Xavier NX and
HiKey970 use LLaMA-3.2-1B, while A100
experiments use LLaMA-7B at batch size 16.
We compare against a lookup-table baseline
that estimates whole-model latency by summing
layer-wise measurements (Kurti¢ et al., 2023)).
This approximation ignores inter-layer effects
(e.g., fusion, scheduling), leading to weaker
prediction fidelity and reduced pruning accu-
racy. Figure 2] shows the rarger-attainment plot,
where the y-axis is the ratio of measured to tar-
get latency (ideal ~ 1.0). Table 2] reports er-
ror metrics on the test set. Our predictor consis-
tently achieves R? ~0.97 with attainment ratios
close to 1.0, while the lookup baseline diverges
(R%2 < 0.91, up to 8% off target).

Table 2: Latency predictor accuracy on 200 test
samples.

Device / Method MSE (ms?) RMSE (ms)  R?
Jetson NX (HAP-E) 190 13.8 0.972
Jetson NX (lookup) 510 22.6 0.889
HiKey970 (HAP-E) 270 16.4 0.968
HiKey970 (lookup) 640 253 0.884
A100-b16 (HAP-E) 310 17.6 0.965
A100-b16 (lookup) 780 279 0.902
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Figure 2: Target-attainment chart for end-to-
end latency. Ratios near 1.0 indicate predictor-
guided pruning meets runtime targets.

5.3 HARDWARE-AWARE LATENCY—ACCURACY EVALUATION

To validate the practical efficiency of our pruning strategy, we evaluate accuracy—latency trade-offs
across two distinct hardware regimes: low-power edge CPUs (Jetson Xavier NX, HiKey970) using
ExecuTorch, and high-performance GPUs (NVIDIA A100) using PyTorch.
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Figure 4: Accuracy vs. Latency Comparison across LLaMA-7B, 13B, and 30B models at 20% and
50% pruning ratios.. HAP-E = red circles, SimGPT = blue triangles, and LLM-Pruner = green
squares.

Edge CPU Deployment. We first benchmarked three small-scale LLMs—LLaMA-3.2-1B,
TinyLLaMA-1.1B, and OPT-1B—on the CPUs of the Jetson Xavier NX and the HiKey970 (big
cluster). We targeted aggressive latency speedups of 1.3x, 1.5x, 1.7x, and 1.9x, comparing HAP-
E directly against LLM-Pruner. As illustrated in Figure 3] our approach consistently yields higher
accuracy at every speedup level, with particularly significant gains on the weaker HiKey970 pro-
cessor. notably, at 1.9x speedup, HAP-E limits the accuracy degradation to approximately 4 per-
centage points, whereas LLM-Pruner suffers a much steeper drop across all models. These results
demonstrate that the adaptive second-order sensitivity modeled in HAP-E effectively preserves crit-
ical structures under strict end-to-end latency constraints, a crucial advantage for edge environments
where compute budgets are severely limited.

Scalability on GPUs. To assess scalability beyond edge devices, we conducted a comprehensive
latency evaluation on NVIDIA A100 GPUs. We measured the prefill latency (batch size 1, sequence
length 2048) for LLaMA-7B, 13B, and 30B models at 20% and 50% structured sparsity, compar-
ing against state-of-the-art baselines SimGPT and LLM-Pruner. This setting reflects real-world
inference workloads where prefill latency is often a bottleneck.

As shown in Figure ] HAP-E consistently pushes the Pareto frontier of accuracy versus latency
across all model sizes. Crucially, the performance margin of HAP-E over SlimGPT and LLM-Pruner
is maintained—and often widened—as model size increases to 30B parameters. This confirms that
our recursive Hessian-trace sensitivity and greedy-consistent batch updates remain robust even as
the curvature landscape becomes more complex in deeper networks. Furthermore, under identical
sparsity levels, HAP-E achieves lower wall-clock latency than the baselines while preserving higher
task accuracy. Overall, these experiments establish that the efficiency gains observed on edge CPUs
successfully translate to large-scale GPU deployments, validating HAP-E as a hardware-agnostic
solution that adapts robustly to diverse compute regimes.



Table 3: Ablations on LLaMA models. Each cell = % Acc(+std)/Time(min)/Mem(GB).

Variant LLaMA-7B LLaMA-13B LLaMA-30B
1.3x 1.9x 1.3x 1.9x 1.3x 1.9x

HAP-E (ours) ‘ 64.9(0.31)/9.8/4.5 58.2(0.44)/22.0/4.5 ‘ 67.7(0.29)/15.3/7.1  62.6(0.31)/34.4/7.1 ‘ 71.8(0.24)/25.7/19.2  69.3(0.37)/58.0/9.2

w/o cross-layer adapt. | 64.2(0.47)/8.4/4.4 55.9(0.62)/18.7/4.4 | 66.1(0.23)/13.0/7.0  60.0(0.41)/29.2/7.0 | 70.3(0.27)/22.0/9.0 = 67.7(0.39)/50.0/9.0
w/o greedy batch 64.8(0.58)/31.6/4.5 57.0(0.61)/74.5/4.5 | 66.7(0.52)/49.4/7.1 61.4(0.59)/116.3/7.1 | 71.0(0.35)/55.7/9.2  68.1(0.37)/130.2/9.2
w/o latency predictor |64.9(0.28)/12.3/4.5 58.1(0.51)/27.5/4.5 | 67.6(0.36)/19.8/7.1 ~ 62.5(0.42)/43.0/7.1 | 71.7(0.21)/32.0/9.2  69.2(0.33)/72.0/9.2
vanilla OBS 63.8(0.62)/43.0/8.0 56.4(0.69)/101.0/8.0 [ 65.9(0.56)/67.0/12.3 60.6(0.51)/158.0/12.3|70.5(0.31)/79.6/21.1 67.6(0.38)/187.4/21.1

5.4 ABLATION: RUNTIME, MEMORY, AND ACCURACY OF OBS VARIANTS ON GPU

We evaluate HAP-E and controlled variants on an NVIDIA A100 (80GB), where all LLaMA-
7B/13B/30B models can be executed reliably. Variants include: (i) HAP-E (ours), with all compo-
nents enabled; (ii) w/o cross-layer adaptivity, which fixes layer budgets statically at the start; (iii)
w/o greedy batch, reverting to one-by-one OBS updates; (iv) w/o latency predictor, which requires
multiple pruning runs to meet a speedup target; and (v) vanilla OBS, a layer-by-layer baseline with
mk = d and no candidate screening. We target 1.3x and 1.9x end-to-end GPU latency reductions
relative to dense baselines, reporting average task accuracy, pruning runtime (including calibration),
and peak GPU memory during pruning. Table[3|shows the obtained results. As can be seen, HAP-E
consistently preserves accuracy while keeping runtime and memory practical on GPU. Cross-layer
adaptivity is most impactful under aggressive compression: at 1.9x speedup on LLaMA-7B, static
layer budgets reduce accuracy from 58.2% to 55.9%, showing that adaptive budget reallocation is
critical to avoid accuracy degradation. Greedy-consistent batching is the main efficiency driver. For
instance, on LLaMA-30B at 1.9x, HAP-E prunes in 58 minutes versus 130 minutes without batch-
ing, a >2x runtime reduction at equal accuracy. The latency predictor eliminates wasted sweeps:
without it, LLaMA-13B takes 43 minutes at 1.9x (three redundant pruning runs), compared to 34
minutes with predictor guidance. Finally, vanilla OBS underscores the scalability challenge: at 1.9x
on LLaMA-30B, it demands 187 minutes and 21 GB memory—over 3 x slower and >2x the foot-
print of HAP-E—despite offering no accuracy benefit. Together, these results confirm that HAP-E is
the only configuration that achieves OBS-level accuracy while scaling efficiently on modern GPUs.
We further ablate prune fraction K and candidate pool ratio M /K (Appendix , calibration budget
(Appendix [C), and sensitivity coefficient 3 (Appendix D).

6 CONCLUSION

We introduced HAP-E, a scalable, Hessian-aware structured pruning framework that makes OBS-
style pruning tractable for large language models. By combining global screening with selective
second-order refinement, cross-layer sensitivity analysis, and greedy-consistent batch pruning, our
method achieves the same theoretical guarantees as greedy OBS while dramatically reducing com-
putational overhead and numerical drift. The integration of a lightweight latency predictor fur-
ther ensures that pruning decisions directly meet hardware-specific runtime constraints. Extensive
experiments on the LLaMA and OPT families demonstrate that HAP-E consistently outperforms
state-of-the-art pruning baselines across sparsity levels. On commonsense reasoning benchmarks, it
improves average accuracy by up to 2-3% over SIimGPT and SoBP at comparable pruning ratios,
while retaining robustness under aggressive 40-50% block removal. The latency predictor achieves
R? ~ 0.97 against measured runtimes, allowing the pruned model to meet target latencies in a single
pass without iterative sweeps. Hardware benchmarks confirm that our approach sustains accuracy
under strict latency budgets, while ablation results highlight the efficiency benefits of cross-layer
adaptivity and greedy batching.

Although our study prioritizes training-free post-training pruning, Appendix |G| demonstrates that
HAP-E models are inherently compatible with recovery fine-tuning. A minimal LoRA tuning
step yields substantial accuracy gains (+1.8%), confirming that our structured pruning preserves
a high-quality feature space suitable for further optimization. Extending HAP-E to training-aware
or continual-learning settings remains a promising direction for future work. Moreover, we consider
pruning in isolation, whereas extending the framework to hybrid pruning—quantization pipelines
could further enhance efficiency for deployment.
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A PROOFS OF LEMMAS IN SECTION 4]

A.1 LEMMA 1 (GREEDY-EQUIVALENCE OF CERTIFIED BATCH)

Lemma 1 (Greedy-equivalence of certified batch). Let (cy,...,c;) be the blocks selected by the
certification procedure, where at step T,
¢, = arg Ir}in E'(c| Jr—1), withJ,—1 ={c1,...,cr_1} (16)
cEdr—1

Then this sequence matches the first t selections of standard greedy OBS for any t < T, up to the
certification stopping point.

Proof. In greedy OBS, the block chosen at step 7 after pruning J-_1 is
&Y — arg §;nim E(c ) W(T_l)) (17
c¢dr_1
where (=1 are the weights after applying the OBS update for .J,_;. Let G = H~! be the

inverse Hessian prior to pruning. Eliminating .J._; updates the effective inverse sub-block for any
remaining c to the Schur complement

A/c = Gcc - GCJG;}GJC (18)
and the OBS error for c after pruning J._; becomes
E(C‘W(T_l)) = (A 2w = (e Je) (19)

Thus, at every step the certification score E’(c | J,_1) equals the greedy-OBS score computed after
actually pruning J,_;. Therefore the arg min choices coincide step-by-step, and by induction the
sequences match up to the certification horizon 7T'. O

A.2 LEMMA 2 (BATCH = MAXIMAL GREEDY-CONSISTENT PREFIX)

Lemma 2 (Batch = maximal greedy-consistent prefix). If, during certification, the identity of the
next best block changes after appending a candidate, then the current J is the largest prefix that
matches the greedy OBS sequence. Stopping here preserves greedy equivalence for the entire certi-
fied batch.

Proof. Suppose after certifying J; the certification rule selects
¢ = argmin E'(c | J;) (20)
CQJf,

while greedy OBS, after actually pruning J;, selects
¢ = argmin F (c
c J;
If ¢ # ¢*, a divergence occurs at t+ 1. From LemmalA.T] for any prefix that matches greedy so far,
E'(c| Ji) = E(c| W®); hence the first possible mismatch is exactly at ¢+ 1. Therefore .J; is the
maximal prefix consistent with greedy OBS. Halting certification at this point guarantees that the
certified batch equals the greedy sequence prefix. O

W“)) 1)

A.3 LEMMA 3 (BATCH UPDATE EQUIVALENCE)

Lemma 3 (Batch update equivalence). Applying a single joint OBS update for P = J yields the
same final weights as applying t one-by-one OBS updates sequentially for (c1, ..., ct)

Proof. Let P = {c1,...,c:} andlet R index the surviving blocks. The joint OBS update that zeroes
W p while minimizing the quadratic loss with Hessian H is

AWg = — Hpp Hpp Wp (22)
This is precisely the block Gaussian-elimination solution obtained by eliminating P in one step.
On the other hand, sequential greedy OBS eliminates the same set P via a sequence of rank-k
Schur complements. Block Gaussian elimination is order-invariant with respect to the eliminated
set: eliminating the union P in any order (or jointly) produces the same reduced system over R
and the same solution for AWg. Hence the final weights after the joint update equal those after ¢
sequential single-block OBS updates. O
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Figure 5: Ablation at a fixed 1.3x latency target on Jetson Xavier NX (CPU) for LLaMA-3.2-
1B. Rows vary prune-per-iteration K'; columns vary candidate pool ratio M /K. (a) Final absolute
accuracy (%) on Ilm-eval (avg). (b) Total pruning runtime (minutes) on A100 (80GB). (c) Peak
calibration working set (GB). The starred point (K =10%, M/ K=2.5) achieves near-dense accuracy
(=52.7%), ~12 minutes runtime, and moderate memory while meeting the 1.3x budget.

B ABLATION ON CANDIDATE POOL RATIO AND PRUNE FRACTION

We study how the per-iteration prune fraction K and the candidate pool ratio M /K shape outcomes
when compressing LLaMA-3.2-1B to a fixed 1.3 x latency speedup on Jetson Xavier NX (CPU) with
batch size 1 (ExecuTorch runtime). Figure|§|reports three metrics: (a) the final average accuracy (%)
across seven LM-Eval benchmarks after deployment; (b) the total pruning runtime on an NVIDIA
A100 (80GB); and (c) the peak calibration working set (GB) required during pruning.

The trends are consistent with structured OBS pruning. Accuracy improves (gently) as updates
become less aggressive (smaller K) and as the candidate pool widens (larger M/K), reflecting
better coverage of high-gain removals and fewer destabilizing steps. Runtime grows when K is
smaller (more iterations to reach the same global budget) and when M/ K is larger (more candidates
to score each step). Memory increases smoothly with both K and M /K, since larger batches and
wider pools expand the active calibration set and per-iteration working set.

Overall, the configuration K=10%, M/K=2.5x (starred) offers the best balance: it reaches the
hardware-constrained 1.3 x speedup with near-dense accuracy (/252.7%, within 0.1-0.2 of the dense
Jetson baseline of 52.79%), completes pruning in ~12 minutes on A100, and maintains a moderate
memory footprint. We adopt this setting throughout the main experiments, and we observe analo-
gous behavior on larger models and alternate targets.

C ABLATION ON CALIBRATION COUNT

We further analyze how calibration budget influences pruning outcomes when targeting a fixed 7.3 x
end-to-end latency on Jetson Xavier NX (CPU) (batch=1, ExecuTorch). We vary the number of cali-
bration samples (64, 128, 256, 512), fixing the per-iteration prune fraction at K'=10% and candidate
ratio at M/ K=2.5x. We report: (a) final accuracy across seven Im-eval tasks, (b) pruning runtime
on an NVIDIA A100 (80GB), and (c) peak calibration working set during pruning.

Accuracy rises with more calibration but saturates quickly: 64 samples trail the dense baseline
(52.79%) by about one point, 128 nearly closes the gap, and 256 reaches 52.6-52.7%, effectively
matching dense. Going to 512 yields only marginal gains (~0.1 points), well within variance. In
contrast, runtime and memory scale nearly linearly with calibration size: from 7 minutes / 3.0 GB at
64 samples to 21 minutes / 6.2 GB at 512. Overall, 256 samples strike the best trade-off, preserving
near-dense accuracy while keeping pruning practical on a single GPU.

D ABLATION ON SENSITIVITY PROPAGATION COEFFICIENT [3

In Section we introduced a coefficient 3 € [0, 1] to control how strongly downstream sensi-
tivities influence earlier layers during recursive propagation:

SO — §O=E+) | gt
When 3 = 0, sensitivities are purely local, i.e., layer £ only accounts for its immediate perturbation

effect S)—=(+1) When 8 = 1, full downstream influence is considered, effectively chaining sen-

15



(@) Accuracy (%) (b) Pruning runtime (min) (c) Calibration working set (GB)

Accuracy
Runtime (min)
Memory (GB)

6‘4 1&8 25‘6 5‘12 6‘4 1‘28 25‘6 5]‘2 6‘4 12‘8 2‘56 5‘12
Calibration samples Calibration samples Calibration samples
Figure 6: Ablation over calibration sample count when pruning LLaMA-3.2-1B to 1.3x latency

on Jetson Xavier NX (CPU). (a) Accuracy compared to the dense baseline (dashed). (b) Pruning
runtime on A100 (80GB). (c) Peak calibration working set during pruning.
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Figure 7: Effect of 8 on pruning LLaMA-3.2-1B to 1.3x latency on Jetson NX (CPU). Accuracy
improves as /3 increases up to 0.5—0.75, reflecting the benefit of incorporating downstream sensitiv-
ities. Runtime and memory remain essentially unchanged.

sitivities across the network. Intermediate values interpolate between these two extremes, balancing
local stability with global robustness.

We prune LLaMA-3.2-1B to a fixed 1.3x latency speedup on Jetson Xavier NX (CPU) and vary
B € {0.0,0.25,0.5,0.75,1.0}. Figurereports average accuracy across seven common reasoning
benchamrks. As shown in the paper, 5 = 0.75 offers the best trade-off. Purely local sensitivities
(8 = 0) underestimate error propagation and reduce accuracy, while 8 = 1.0 yields no further gains.

E EXTENDED RESULTS ON LLAMA-2 FAMILY

In this section, we provide extended comparisons against recent decomposition-based methods
(MoDeGPT, SVD-LLM v2) and evaluate robustness on complex reasoning tasks.

E.1 COMPARISON WITH DECOMPOSITION BASELINES
We benchmarked HAP-E against strong structured pruning and decomposition baselines on LLaMA-

2-7B and LLaMA-2-13B. As shown in Table [f] and Table 5] HAP-E achieves superior accuracy
across diverse zero-shot tasks, particularly at higher compression ratios (30%).

E.2 COMPLEX REASONING AND GENERATION
To demonstrate robustness beyond standard multiple-choice tasks, we evaluated MMLU (5-shot,
grouped by domain), GSM8K (Math), and WikiText-2 Perplexity (Generation). As shown in Table[6]

HAP-E significantly outperforms baselines, achieving the highest MMLU average and the lowest
perplexity.

F SCALABILITY TO MODERN ARCHITECTURES

To validate the generalizability of HAP-E to state-of-the-art architectures, we conducted experiments
on LLaMA-3.1-8B and Qwen-2.5-14B Instruct. We compare against DarwinLM (Tang et al.,|2025)),
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Table 4: LLaMA-2-7B Results. Comparison against SOBP, MoDeGPT, SlimGPT, and SVD-LLM
v2 at 20% and 30% pruning ratios.

Pruning | Method | BoolQ PIQA HellaS. WinoG. ARC-e ARC-c OBQA

0% ‘ Dense ‘ 7771 79.05 76.00 68.98 74.58 46.33 44.20
SoBP 71.19  73.50 67.27 66.22 59.81 37.63 38.40
MoDeGPT - 74.05 69.05 68.03 69.07 42.06 -

20% SlimGPT 7343 7758 72.62 68.82 69.99 42.32 42.00

SVD-LLM v2 6142 72.89  63.55 66.77 58.12 38.76 40.87
HAP-E (Ours) | 7524 78.61  74.29 69.77 71.86 44.03 43.68

SoBP 71.19 7350  67.27 66.22 59.81 37.63 38.40

30% MoDeGPT - 70.40 63.26 67.32 63.26 38.73 -
SVD-LLM v2 58.62  70.45 61.18 64.23 54.97 36.41 37.89
HAP-E (Ours) | 71.82 76.73 70.68 68.04 68.47 41.98 43.59
Table 5: LLaMA-2-13B Results. Comparison at 20% and 30% pruning ratios.
Pruning | Method | ARC-c ARC-e BoolQ HellaS. OBQA PIQA WinoG.
0% \ Dense \ 49.23 77.48 80.58 79.37 4520  80.52 72.30
MoDeGPT 46.16 74.07 - 68.96 - 74.53 70.32
20% SVD-LLM v2 44.15 71.05 70.35 65.75 4395  77.10 71.00
HAP-E (Ours) | 49.75 77.95 82.30 78.82 4755  80.25 74.10
SoBP 47.78 74.45 79.45 74.55 4320  76.50 71.82
30% MoDeGPT 43.60 71.93 - 68.21 — 73.94 71.90
¢ SVD-LLM v2 42.63 69.17 68.47 63.38 4172 7541 70.26
HAP-E (Ours) | 48.91 76.83 81.47 77.69 46.83  79.18 73.41

a recent evolutionary search-based global pruning method. HAP-E consistently achieves higher
accuracy across all 9 benchmark tasks on both model families.

G COMPATIBILITY WITH RECOVERY FINE-TUNING

While HAP-E targets the post-training setting, compatibility with recovery fine-tuning (RFT) is
critical for scenarios where a small computational budget is available to recover lost accuracy. Be-
cause HAP-E performs structured pruning (removing entire heads and neurons), the resulting model
is a standard dense Transformer architecture that is inherently compatible with standard training
pipelines.

To validate this, we performed recovery fine-tuning on LLaMA-2-7B at 30% sparsity using
LoRA 2022). We utilized the Alpaca dataset for 1 epoch. We focused on the 30% pruning
regime, as the 20% model is already close to dense performance (< 1% gap), leaving minimal room
for recovery.

Results: As shown in Table[J] the pruned model responds effectively to fine-tuning. LoRA recovery
provides a substantial +1.8% accuracy boost (63.00% — 64.80%), significantly narrowing the gap
to the unpruned Dense baseline. This confirms that HAP-E preserves a high-quality feature space
that serves as an excellent initialization for subsequent fine-tuning.

H QUANTITATIVE COMPARISON OF PRUNING OVERHEAD

To address questions regarding the computational cost of our method, we provide quantitative com-
parisons of runtime and peak memory usage on an NVIDIA A100 GPU for LLaMA-7B and 13B
models.

17



Table 6: MMLU & Reasoning Benchmarks (LLaMA-2-7B, 20% Pruning). Higher is better for all
metrics except WikiText-2 perplexity (PPL), where lower is better.

Method MMLU (5-shot) ‘ Math Generation
Humanities  Social Sci  STEM  Other \ Avg | GSMSK | WikiText-2 (PPL) |
Dense 43.30 51.60 36.30 52.10 | 45.60 13.80 12.19
LLM-Pruner 25.70 23.60 2420 26.80 | 25.20 2.30 17.00
SlimGPT 36.00 45.20 33.50 44.10 | 39.40 4.20 16.49
HAP-E (Ours) 39.46 47.73 34.49 47.20 | 42.72 8.69 15.63

Table 7: Results on LLaMA-3.1-8B. Comparison of HAP-E against DarwinLM (one-shot).

Method | #Params | BoolQ PIQA HellaS. WinoG. ARC-e ARC-c SciQ LogiQA MMLU
Dense 8B 84.0 81.2 81.7 74.3 81.4 58.2 96.3 31.1 65.2
DarwinLM 4.6B 62.2 69.4 44.6 57.3 59.6 34.2 84.9 24.1 28.5
HAP-E (ours) 4.6B 64.8 71.3 46.5 59.1 61.5 35.8 86.0 254 30.7

H.1 EFFICIENCY AT FIXED PRUNING RATIO (30%)

First, we compare the cost of a single pruning run to a fixed 30% sparsity target. As shown in
Table [I0} HAP-E is significantly faster and more memory-efficient than both OBS-based baselines
(SlimGPT, Vanilla OBS) and decomposition methods (SliceGPT, MoDeGPT). Notably, it is orders
of magnitude faster than MoDeGPT (9 min vs. 4 hours). HAP-E is also ~ 2Xx faster than Vanilla
OBS and SlimGPT even in a single pass, due to our greedy-consistent batching mechanism. It also
requires = 50% less memory, enabling 7B/13B pruning on consumer GPUs.

H.2 EFFICIENCY IN REAL-WORLD LATENCY TARGETING

In practical deployment, users target a specific latency speedup (e.g., 1.9x), not a theoretical sparsity
ratio. Because sparsity and latency are not linearly related, methods without a predictor (SlimGPT,
OBS) typically require an iterative “guess-and-check” loop. For example, a user might first prune
to 40% sparsity, measure the speedup, adjust to 50% upon finding the result insufficient, and finally
refine to an intermediate value to meet the target.

This search process often requires multiple pruning sweeps to identify the correct sparsity config-
uration. In contrast, our latency predictor enables single-shot targeting, avoiding this loop entirely.
As shown in Table[TT} when accounting for the practical necessity of hitting a latency target, HAP-E
is effectively /5 x faster than the strongest baselines, while consuming half the memory.

I DETAILED RESULTS OF LLAMA FAMILY

We report per-task accuracies (BoolQ, PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, OBQA)
for LLaMA-7B, 13B, and 30B under different pruning rates, complementing the averages in Ta-
ble[T} Across scales, our method (Ours) maintains stronger per-task balance: at 20-30% pruning it
yields consistent gains over SlimGPT and SoBP, and at 50% pruning it preserves several points of
advantage on most tasks.

Table 8: Results on Qwen-2.5-14B Instruct. Comparison of HAP-E against DarwinLM (one-shot).

Method | Params | BoolQ PIQA HellaS. WinoG. ARC-e ARC-c SciQ LogiQA MMLU
Dense 14B 87.9 81.9 85.1 79.1 85.7 72.8 96.8 38.5 80.0
DarwinLM 8.4B 66.9 73.9 53.3 60.5 75.7 48.0 84.3 29.3 43.1
HAP-E (ours) 8.4B 69.2 75.5 55.1 61.9 71.3 49.7 85.4 30.2 44.9
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Table 9: Recovery Fine-Tuning on LLaMA-2-7B (30% Pruning). Applying LoRA (Alpaca, 1 epoch)
to the HAP-E pruned model recovers significant accuracy, demonstrating structural compatibility
with standard training frameworks.

Pruning | Method | BoolQ PIQA HellaS. WinoG. ARC-e ARC-c OBQA | Avg
0% ‘ Dense ‘ 77.71 79.05 76.00 68.98 74.58 46.33 44.20 ‘ 66.69
30% HAP-E (Raw) ‘ 71.82  76.73 70.68 68.04 68.47 41.98 43.59 | 63.00

HAP-E +LoRA | 7477 7789  73.34 68.51 71.53 43.72 43.83 | 64.80

Table 10: Runtime & Memory at 30% Pruning (Single Run). Comparison on NVIDIA A100.

Method | LLaMA-7B (Time / Mem) | LLaMA-13B (Time / Mem)
MoDeGPT 4h 09m / 23.0 GB 8h 26m/41.0 GB
SliceGPT 26 min/ 9.0 GB 45 min / 14.0 GB
Vanilla OBS 21 min/ 8.0 GB 31 min/ 12.0 GB
SlimGPT 16 min / 8.0 GB 26 min/ 12.0 GB
HAP-E (Ours) 9 min /4.5 GB 16 min /7.1 GB

I.1 LLAMA-7B

At 20% pruning, SliceGPT and ASVD drop to 56.16% and 61.55% on average, while our method
holds 65.01%. At 30%, we surpass SoBP (61.21% vs. 59.61%). Even at 50% pruning, we retain
56.66%, nearly four points above SlimGPT.

.2 LLAMA-13B

The advantage widens with scale. At 20% pruning, our method keeps 67.83%, ~1.5 points above
SIimGPT/SoBP. At 30%, we remain ahead of SoBP (65.92% vs. 64.50%). At 50%, we retain
61.79%, about 4 points stronger than SlimGPT.

.3 LLAMA-30B

At 20% pruning, our method nearly matches the dense model (71.88% vs. 71.92%), while SliceGPT
and ASVD are at 64.45% and 70.22%. At 30%, we keep 71.02%, exceeding SoBP by 1.4 points. At
50%, we are still at 67.99%, ~2.5 points above SlimGPT and nearly 8.5 above LLM-Pruner.

J DETAILED RESULTS OF OPT FAMILY

We report per-task accuracies (BoolQ, PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, OBQA)
for OPT-6.7B, OPT-13B, and OPT-30B under different pruning rates, complementing the averages
in Table[Tb] Across scales, our method consistently maintains higher accuracy than decomposition-
and pruning-based baselines, especially at moderate pruning levels (20-30%). At higher pruning
(30%), our approach preserves several points of advantage over ASVD and SliceGPT, showing
robustness under aggressive compression.

J.1 OPT-6.7B
Table [T3] breaks down results at 20% and 30% pruning. At 20% pruning, SliceGPT and ASVD

average 55.50% and 45.11%, while our method retains 57.83%. At 30%, the gap over ASVD widens
dramatically (57.60% vs. 37.86%).
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Table 11: Estimated Time to Target 1.9x Speedup. Comparison accounting for the iterative search
required by methods without a latency predictor.

Method | Workflow | LLaMA-7B Total Time | LLaMA-13B Total Time
SIimGPT | 3 Sweeps (Guess-and-Check) ~48 min ~78 min
HAP-E 1 Sweep (Predictor-Guided) 9 min 16 min

Table 12: Per-task accuracy (%) for LLaMA-7B.

Model | #Params | BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA | Ave.

Prune% Method | | |
0% Dense | 67B | 7508 7916 7620 7000 7289 4488 4440 | 66.09
SliceGPT | 6.1B | 6214 7406 60.18 6392 5907 3526 3849 | 56.16
ASVD S4B | 7084 7621 6637 6682 6463 3991 4607 | 61.55
b0, LLMPruner | S4B | 6676 7845 7144 6377 6641 3985 4380 | 6150
SEmGPT | 54B | 7593 7758 7307 6796 6860 4172 41.80 | 63.81
Ours S4B | 7426 78.63 7514 6857 7124 4339 43384 | 65.01
SliceGPT | 53B | 37.83 6431 4568 6212 5337 3140 33.60 | 46.90
ASVD 48B | 6401 6072 4271 5375 4028 2816 2920 | 45.55
00,  WandaSP | 48B | 6368 6973 5870 6200 5782 3607 3493 | 5470
FLAP 48B | 6688 7323 6170 6661 5842 3387 4040 | 57.30
SoBP 48B | 6841 7356 67.62 6835 6120 3797 4020 | 59.61
Ours 48B | 7146 7557 7033 6742 6178 4053 4138 | 61.21
Wanda-SP | 34B | 5183 5555 3087 5411 3382 2485 2472 | 39.39
50% FLAP 34B | 6165 6822 5445 6010 5365 3230 3730 | 50.37
LLM-Pruner | 34B | 6021 68.88 4786 5462 4394 2773 3520 | 4835
SEmGPT | 34B | 6587 7035 5462 5959 4971 31.06 3440 | 52.23
Ours 34B | 6864 7273 6376 60.86 5377 37.87 3899 | 56.66

J.2 OPT-13B

As shown in Table[I6] at 20% pruning, our method achieves 59.02%, slightly higher than SliceGPT
(57.84%) and far above ASVD (39.20%). At 30%, we maintain 58.46%, outperforming all other
baselines.

Table 13: Per-task accuracy (%) for LLaMA-13B.

Model | #Params | BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA | Ave.
Prune% Method | | |

0% Dense | 130B | 77.89 8014 7906 7285 7475 4761 4480 | 68.16

SliceGPT | 11.8B | 6793 7541 6608 6887 6392 3997 4244 | 60.66

ASVD 104B | 7412 7849 7405 7103 7007 4652 4275 | 6529

20% LLM-Pruner 10.4B 79.38 7736 7147 7032 70.54 4488  45.80 | 65.68
SlimGPT 10.4B 7706 79.82 7694  72.61 69.78 4480  43.60 | 66.37

Ours 10.4B 77.86  79.93  78.11 72.58 73.67 4739 4527 | 67.83

SliceGPT 10.2B 5520 67.30 54.06  68.19 60.40  36.69 38.00 | 54.26

30% ASVD 9.2B 70.58 7334 63.04  63.38 5850 3584  37.60 | 57.47
i SoBP 9.2B 71.50  77.09 7492 7135 70.41 43.86 4240 | 64.50
Ours 9.2B 75.03 78.06 76.08  71.44 70.09  46.58  44.16 | 65.92

LLM-Pruner 6.5B 6235 7274 5843 5588 51.89 33.02  38.20 | 53.22
50% SlimGPT 6.5B 69.14 7432 6457  65.82 57.74 35.15 38.00 | 57.82
Ours 6.5B 7326 7719 6847  67.36 60.44 4297 4284 | 61.79
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Table 14: Per-task accuracy (%) for LLaMA-30B.

Model | #Params | BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA | Avg.
Prune% Method | | |
0% Dense ‘ 32.5B ‘ 82.69 82.26 82.60 75.85 78.91 52.90 48.20 ‘ 71.92
SliceGPT 29.5B 74.16  76.41 < 74.53 71.08 70.11 44.37 40.49 | 64.45
ASVD 26.1B 82.05 81.12 79.23 73.08 75.06 51.07 49.93 | 70.22
20% LLM-Pruner 26.0B 81.28 80.96 80.66 73.16 76.98 49.49 47.40 | 69.99
SlimGPT 26.0B 82.87 81.28 81.01 76.09 76.98 51.28 48.40 | 71.13
Ours 26.0B 82.57 82.16 81.46 75.43 78.47 53.16 4991 71.88
SliceGPT 25.5B 5544 69.75 59.29 68.90 69.23 42.15 41.60 | 58.05
30% ASVD 22.9B 73.52 75.68 67.45 67.25 67.89 41.98 3940 | 61.88
‘ SoBP 22.9B 80.28 80.20 80.12 74.03 75.34 50.00 4740 | 69.62
Ours 22.9B 81.63 81.27 80.86 75.14 76.53 51.86 49.85 | 71.02
LLM-Pruner 16.3B 66.21 7644 69.46 64.56 60.98 37.63 41.00 | 59.47
50% SlimGPT 16.3B 75.08 77.20 75.01 74.11 68.43 43.26 4540 | 65.50
Ours 16.3B 78.96 79.44  77.87 73.17 72.13 48.02 46.34 | 67.99
Table 15: Per-task accuracy (%) for OPT-6.7B.
Model | #Params | BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA | Avg.
Prune%  Method | | |
0% Dense ‘ 6.7B ‘ 66.06 76.50 67.19 65.19 60.14 34.64 37.40 ‘ 58.16
FLAP 6.1B 62.35 7328 60.11 57.42 52.08 31.23 46.36 | 54.72
20% SliceGPT 6.1B 63.92 73.14 61.22 58.94 54.07 30.85 46.86 | 55.50
° ASVD 5.4B 5846 66.82 5240 50.29 46.03 26.78 36.00 | 45.11
Ours 5.4B 66.37 7455 66.27 63.15 56.40 33.58 4591 | 57.83
FLAP 4.8B 62.14 73.18 5494 59.98 51.47 30.29 37.40 | 52.77
30% SliceGPT 5.3B 64.43 7345 58.32 60.77 55.85 30.12 36.20 | 54.16
‘ ASVD 4.8B 55.84 5272 26.75 51.38 28.07 25.26 25.00 | 37.86
Ours 4.8B 67.11 7422 65.38 61.27 56.09 33.84 45.30 | 57.60
J.3 OPT-30B

Table[17{shows analogous behavior at 30B. At 20% pruning, SliceGPT and ASVD average 60.86%
and 49.48%, while our method retains 61.82%. At 30%, we maintain 61.29%, outperforming all
other baselines by a clear margin.

Table 16: Per-task accuracy (%) for OPT-13B.

Model | #Params | BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA | Avg.
Prune%  Method | | |

0% Dense 13.0B ‘ 65.72 76.82 69.86 65.11 61.87 35.67 39.00 ‘ 59.15

FLAP 10.3B 60.92 73,51 61.12 55.76 49.28 28.91 38.88 | 55.36

20% SliceGPT 11.9B 62.57 75.18 64.83 58.97 52.46 32.10 39.50 | 57.84

¢ ASVD 10.3B 4923 6241 41.36 45.12 36.20 22.71 27.36 | 39.20

Ours 10.3B 65.08 76.23 68.92 62.57 60.26 34.73 44.56 | 59.02

FLAP 9.1B 61.27 72.19 59.08 53.61 46.23 27.36 36.83 | 50.81

30% SliceGPT 10.3B 64.19 7488 63.23 58.27 53.54 31.44 36.77 | 55.92

¢ ASVD 9.1B 48.57 60.10 40.74 42.39 34.87 21.63 26.37 | 36.85

Ours 9.1B 66.82 75.72 68.40 61.91 59.43 33.08 44.33 | 58.46
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Table 17: Per-task accuracy (%) for OPT-30B.

Model | #Params | BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA | Avg.
Prune%  Method | | |

0% Dense ‘ 30.0B ‘ 7046  78.18 72.30 68.43 65.36 38.05 40.20 ‘ 61.85

FLAP 24.0B 64.12 75.08 63.74 59.87 52.92 33.56 3578 | 56.52

20% SliceGPT 27.5B 68.21 77.02 68.13 65.44 59.86 36.42 4145 | 60.86

° ASVD 24.0B 56.18 65.74 52.34 48.21 44.32 27.86 32.18 | 4948

Ours 24.0B 70.18 78.06  71.09 67.36 64.58 37.81 42.65 | 61.82

FLAP 21.1B 62.17 73.07 59.30 58.88 47.69 28.75 38.40 | 52.61

30% SliceGPT 23.8B 6793 7640 67.18 64.05 59.47 35.52 4145 | 59.49

° ASVD 21.1B 54.06 63.18 50.46 47.11 42.37 26.29 32.56 | 41.12

Ours 21.1B 69.72 77.63 70.34 66.54 63.58 37.13 43.09 | 61.29

K IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

All code is implemented in PyTorch with HuggingFace t ransformers. Pruning experiments
(calibration, OBS solves, and pruning loops) were run on a single NVIDIA A100 (80GB). Edge
inference benchmarks were compiled with ExecuTorch and measured on Jetson Xavier NX and
HiKey970 CPUs (CPU-only). Calibration uses 256 samples from the C4 corpus with sequence
length 2048. Latency model training uses 1500 pruned configurations and is evaluated on a held-
out test set of 200 configurations. Batch sizes: A100 experiments use batch size 16; CPU edge
inference uses batch size 1. CPU inference is run with weight-only INTS8 post-training quantization;
A100 experiments use FP16 where applicable. Unless noted otherwise, values below are fixed across
models and hardware targets.

Table 18: Hyper-parameter settings for HAP-E experiments.

Category | Parameter | Value / Notes
Calibration dataset C4 (256 samples)
Calibration Sequence length 2048

Calibration usage

Used for OBS solves and final pruning calibration (no fine-tuning)

Latency model

Training samples
Test (held-out) samples
Batch sizes

1500 pruned configurations
200 configurations
A100: 16; CPU (Jetson/HiKey): 1

Candidate selection

Initial scoring
Candidate oversampling M / K
Sensitivity coefficient 3
Total prune per iteration '

Block L2 norm (coarse filter)
25(@Ge,C = 2.5%)
0.75 (used in recursive S[')
10% of current remaining blocks (per-iteration global budget)

Hybrid-OBS / Certification

Hessian regularization A
Max certified batch (attention heads)
Max certified batch (FFN blocks)
Cholesky strategy

1 x 10~ % (stability for solves)
6 (max number of attention-head blocks appended per batch)
128
Incremental Cholesky updates for G ; (see Sec.@

Quantization / Inference

CPU inference precision
GPU inference precision

INTS8 weight-only post-training quantization
FP16 (A100)

L LLM USAGE DISCLOSURE

In accordance with the ICLR 2026 policy on large language model usage, we disclose that LLMs
(ChatGPT) were used only to aid and polish the writing of some parts of this paper.
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