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Abstract

Large Language Models revolutionized NLP001
and showed dramatic performance improve-002
ments across several tasks. In this paper, we003
investigated the role of such language mod-004
els in text classification and how they com-005
pare with other approaches relying on smaller006
pre-trained language models. Considering 32007
datasets spanning 8 languages, we compared008
zero-shot classification, few-shot fine-tuning009
and synthetic data based classifiers with clas-010
sifiers built using the complete human labeled011
dataset. Our results show that zero-shot ap-012
proaches do well for sentiment classification,013
but are outperformed by other approaches for014
the rest of the tasks, and synthetic data sourced015
from multiple LLMs can build better classi-016
fiers than zero-shot open LLMs. We also see017
wide performance disparities across languages018
in all the classification scenarios. We expect019
that these findings would guide practitioners020
working on developing text classification sys-021
tems across languages.022

1 Introduction023

Text classification is one of the evergreen problem024

in NLP and other related areas of research, with025

widespread applications across different real-world026

use cases and disciplines of study. Each classifica-027

tion use case is different, and collecting sufficient028

labeled data for each problem can be challenging.029

This resulted in the interest in the development030

of zero-shot text classification systems (Yin et al.,031

2019). Large Language Models can offer a solution,032

and their use as zero-shot (English) text classifiers033

(Gretz et al., 2023) has been explored in recent034

past. Synthetic data generation with LLMs has also035

been proposed to address the labeled data scarcity.036

Different from these two approaches, there is an037

established body of work on few-shot fine-tuning038

(e.g., Tunstall et al., 2022; Yehudai and Bandel,039

2024), to address situations where we have a very040

small amount of labeled data, which is not typi- 041

cally sufficient to build a classifier using standard 042

methods. 043

How does zero-shot text classification compare 044

with few-shot fine-tuning, synthetic data based clas- 045

sification, and building classifiers with full labeled 046

datasets? Although some parts of this broad ques- 047

tion received attention in the recent past, a more 048

comprehensive comparison is lacking in NLP re- 049

search. Further, most of the past research in this 050

direction has focused on English datasets and pro- 051

prietary LLMs. A detailed comparison across dif- 052

ferent classification methods spanning more lan- 053

guages and datasets will not only help us under- 054

stand the state of the art in text classification with 055

LLMs, but also provide guidance to practitioners 056

looking at solving real-world text classification use 057

cases across various tasks and languages. We ad- 058

dress these issues in this paper. 059

Concretely, we study the following research 060

questions in this paper, considering 32 datasets 061

covering 8 languages (4 datasets per language). 062

1. How well does zero-shot prompting of LLMs 063

(open and proprietary) fare compared to build- 064

ing classifiers with full training data? 065

2. Does few-shot fine-tuning offer any benefits 066

over zero-shot classification? 067

3. How well does a synthetic data based classifier 068

fare compared to zero-shot classification with 069

LLMs? 070

4. Is supervised/instruction fine-tuning of LLMs 071

the way to go for text classification? 072

Starting with an overview of related work (Sec- 073

tion 2), we proceed to the description of our 074

methodology (Section 3) and discuss the details 075

about the results (Section 4). After summarizing 076

the main conclusions (Section 5), we discuss the 077
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limitations (Section 6) and broader impacts (Sec-078

tion 7).079

2 Related Work080

Text classification, the task of classifying a given081

text into a pre-defined list of categories, is a well-082

studied problem. From bag-of-words features to083

the current state-of-the-art LLMs, numerous ap-084

proaches have been explored in the past. Access085

to large amounts of human labeled data has tra-086

ditionally played a significant role in improving087

text classifiers, and NLP research in the past two088

decades addressed this issue by looking at different089

solutions to learn from little or no labeled data.090

Zero-shot Pre-LLM Approaches: Some of the091

earlier classification approaches relied on using092

only label names to build "data less" text classifier093

(Liu et al., 2004; Li and Yang, 2018; Meng et al.,094

2020; Ye et al., 2020; Gera et al., 2022) and embed-095

ding the texts and labels in a shared space (Song096

and Roth, 2014; Luo et al., 2021; Chu et al., 2021;097

Sarkar et al., 2022; Gao et al., 2023; Wang et al.,098

2023). Yin et al. (2019) proposed to formulate099

zero-shot text classification as a textual entailment100

problem, although Ma et al. (2021) point to the101

limitations of this approach in terms of variabil-102

ity across datasets and reliance on spurious lexical103

patterns. Another practical approach for zero-shot104

classification is cross-lingual transfer i.e., train a105

classification model in one or more languages, and106

use it as a zero-shot classifier on the target lan-107

guage (Wang and Banko, 2021). Except (Wang108

and Banko, 2021), who studied sentiment and hate109

speech classification tasks, all the research has fo-110

cused primarily on English datasets.111

Few-shot fine-tuning: Approaches that can112

learn from a small amount of (< 20 samples per cat-113

egory) labeled examples have also been explored in114

the recent years (Schick et al., 2020; Dopierre et al.,115

2021; Ohashi et al., 2021; Zhang et al., 2022). Set-116

Fit (Tunstall et al., 2022) introduced an approach117

based on supervised contrastive learning, trans-118

forming a language model into a topic encoder119

using only a few examples per label, and demon-120

strated effectiveness with datasets where the num-121

ber of categories are low (under 5). FastFit (Yehu-122

dai and Bandel, 2024) proposed an approach that123

scales to many classes (50–150) effectively, and124

showed its usefulness with English datasets. Out of125

these only SetFit evaluated with a few non-English126

datasets. 127

Zero-shot Classification with LLMs: With 128

the arrival of Large Language Models, some re- 129

cent approaches explored proprietary models like 130

GPT3.5 and GPT4 for zero-shot or few-shot in- 131

context learning for text classification across sev- 132

eral datasets (Gretz et al., 2023; Sun et al., 2023; 133

Mozes et al., 2023; Tian and Chen, 2024). Ex- 134

tending this line of work, open LLMs were studied 135

in the context of intent classification (Ruan et al., 136

2024; Arora et al., 2024) and computational social 137

science (Mu et al., 2024). However, comparing 138

such zero-shot approaches with few-shot and full- 139

data based fine-tuning, (Edwards and Camacho- 140

Collados, 2024) show that smaller, fine-tuned clas- 141

sifiers outperform zero-shot approaches. Whether 142

supervised fine-tuning of LLMs offers any bene- 143

fit is an unexplored question. Surprisingly, except 144

(Tian and Chen, 2024), all these experiments have 145

been focused only on English datasets so far. We 146

expand this strand of work to 7 other languages, 147

and provide more detailed comparisons across dif- 148

ferent LLMs. 149

Synthetic Data: One approach to address the 150

labeled data problem is to augment existing data 151

by creating new data by applying text transforma- 152

tions such as replacing synonyms, paraphrasing, 153

back translation etc. Bayer et al. (2022) presents 154

a detailed survey of such data augmentation tech- 155

niques for text classification. An extension of this 156

idea is to directly synthesize the labeled data using 157

generative language models (Yu et al., 2023; Yue 158

et al., 2023; Kurakin et al., 2023; Choi et al., 2024). 159

In the recent past, Large Language Model based 160

synthetic data generation is increasingly observed 161

across different NLP tasks (Tan et al., 2024). GPT4 162

has been used for English (Li et al., 2023; Yamag- 163

ishi and Nakamura, 2024; Peng et al., 2024) and 164

code-mixed (Zeng, 2024) synthetic data generation 165

for text classification with mixed results. We ex- 166

tend this line of work by covering more languages 167

and exploring multiple LLMs as sources for syn- 168

thetic data instead of relying on one, and extending 169

to handle datasets with a larger label set. 170

Overall, we address several gaps in existing re- 171

search by comparing zero-shot classification, few- 172

shot fine-tuning, synthetic data based classification, 173

and classification with full data together, and also 174

study how the comparison works out once we go 175

beyond English. In this process, we also present 176

a comparison between different open and closed 177
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recent LLMs.178

3 Approach179

We experimented with zero-shot classification, few-180

shot fine-tuning, and synthetic data based classifi-181

cation, and compared them with classifiers trained182

on full amount of labeled data. Our methods are183

described below, followed by a description of the184

datasets used.185

3.1 Zero-shot Prompting186

We compared three open LLMs - Qwen2.5-7B187

(Team, 2024), Aya23-8B (Aryabumi et al., 2024)188

and Aya-Expanse-8B (Dang et al., 2024), which is189

a more recent, instruction tuned version of Aya23,190

and one proprietary LLM - GPT4 (Achiam et al.,191

2023) (gpt-4-0613) in a zero-shot prompting setup192

across all languages and classification tasks. Initial193

experiments showed a tendency to generate a lot194

of explanation for the prediction despite specifying195

not to in the prompt. So, we controlled for the196

output structure using Instructor.1 Further details197

on Instructor setup are mentioned in the Appendix198

(Figure 6). All LLMs still generated explanations199

beyond labeling, (as high as 10% for some open200

LLMs) which were treated as classification errors.201

All prompts were in English, as changing the lan-202

guage to the target language of the dataset resulted203

in poorer results in early experiments, which was204

also observed in some recent studies on other prob-205

lems/datasets (Dey et al., 2024; Jin et al., 2024).206

We did not attempt few-shot prompting, consider-207

ing the large label set with some of the datasets,208

but looked into few-shot fine-tuning, instead, as209

described below.210

3.2 Few-shot fine-tuning211

We performed few-shot fine-tuning with FastFit212

(Yehudai and Bandel, 2024) which integrates batch213

contrastive learning with a token similarity score to214

learn few-shot task specific representations for text215

classification. We used 10 examples per label in216

all cases, as that had the best result in the original217

FastFit paper.2 We experimented with another few-218

shot fine-tuning approach SetFit (Tunstall et al.,219

2022) but it quickly became intractable to train for220

some of the datasets with >10 categories. Hence,221

we reported results with only FastFit in this pa-222

per. Comparisons with SetFit for the datasets with223

1https://python.useinstructor.com/
2Base model: paraphrase-multilingual-mpnet-base-v2

under 10 categories can be seen in the Appendix 224

(Section B). 225

3.3 Synthetic Data Generation 226

We generated equal amounts of synthetic data 227

from three sources - GPT4, Qwen2.5-7B and Aya- 228

Expanse-8B, for all the classification tasks, across 229

all languages, to ensure diversity in the generated 230

text. Initial experiments showed that generating 231

data from multiple LLMs was beneficial than re- 232

lying on a single source, which is corroborated by 233

recent research on other tasks (Maheshwari et al., 234

2024). This is also useful for controlling the costs, 235

as the two open LLMs can be run locally on a 236

laptop and do not incur any inference costs (and 237

consumed less power). We used the same prompt 238

across all LLMs, changing the task/language as 239

needed. Details about the prompting strategy can 240

be seen in Appendix A. 241

3.4 Classification with Synthetic and Real 242

Data 243

We compared three approaches for text classifi- 244

cation with real or synthetic training data, listed 245

below: 246

1. A logistic regression classifier with the embed- 247

ding representations from a state-of-the-art 248

transformer model as the feature vector gener- 249

ator, without any further fine-tuning. We used 250

gte-multilingual-base (Zhang et al., 2024), a 251

305 million parameter multilingual model, as 252

our feature extractor. 253

2. A fine-tuned version of BERT (Devlin et al., 254

2019) with multilingual BERT as the base,3 255

trained for 5 epochs, across all languages and 256

datasets. 257

3. Instruction fine-tuning of Qwen-2.5-7B- 258

Instruct (Yang et al., 2024; Team, 2024) for 259

3 epochs on the training data (10 epochs for 260

TAXI1500, the smallest dataset) for all lan- 261

guages.4 262

All the classifiers were trained in two setups: first 263

only with real data, and then only with synthetic 264

data. More details on the experimental setup such 265

as parameters, time taken to train, GPU require- 266

ments etc are described in the Appendix (Sec- 267

tion A). 268

3https://huggingface.co/google-bert/
bert-base-multilingual-cased

4Early experiments showed superior performance with
Qwen compared to Aya-Expanse

3
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3.5 Datasets and Evaluation269

We experimented with four publicly available270

datasets and each dataset has eight language sub-271

sets for Arabic, English, French, German, Hindi,272

Italian, Portuguese and Spanish (i.e, 32 datasets in273

total) with official train-validation-test splits. Ara-274

bic and Hindi datasets are in their native scripts and275

all the other languages are in Roman script. Our276

choice of datasets primarily depended on finding277

all languages represented across all datasets. The278

datasets cover sentiment and topic classification,279

and are described below:280

1. Multilingual twitter sentiment (Barbieri et al.,281

2022) which we will refer to as SENTIMENT282

is a dataset of tweets manually labeled with283

positive/negative/neutral sentiment.284

2. Taxi 1500 (Ma et al., 2023) is a topic clas-285

sification dataset, manually labelled with 6286

categories - recommendation, faith, descrip-287

tion, sin, grace and violence that describe sen-288

tences from the bible. The dataset covers 1500289

languages in total, with a mapping between290

parallel sentences across bible versions that is291

used to build a labeled dataset from English292

labeled data. Some languages have multiple293

bibles, and we took the alphabetically first294

bible for that language to build our dataset.295

3. Amazon Massive (FitzGerald et al., 2023) is296

a one million sample dataset covering 51 lan-297

guages consisting of parallel virtual assistant298

commands classified into 60 intents spread299

across 18 domains ("scenario" field in the300

dataset). We modeled intent and scenario clas-301

sification as two separate tasks, which we refer302

to as INTENT and SCENARIO datasets respec-303

tively.304

Note that all the datasets contain short texts of305

different genres (tweets, bible sentences and com-306

mands to voice assistants). Table 1 shows a sum-307

mary of the datasets used.308

Dataset # categories # train # test
SENTIMENT 3 1839 870
TAXI1500 6 860 111
SCENARIO 18 12000 2974
INTENT 60 12000 2974

Table 1: Dataset statistics per language

For synthetic data generation, we aimed to gen- 309

erate datasets comparable to the size of the training 310

data for all dataset-language combinations except 311

in the case of TAXI1500 where we generated a 312

training set that is double the size of the original 313

human labeled training set owing to its small size 314

compared to others. Table 2 shows the sizes of the 315

generated datasets and the split between different 316

LLMs (GPT4, Aya-Expanse-8B, Qwen2.5-7B). 317

Dataset # train description
SENTIMENT 1800 200 per category, per LLM
TAXI1500 1800 100 per category, per LLM
INTENT 13500 75 per category, per LLM
SCENARIO 13500 from intent dataset

Table 2: Synthetic training data (per language)

Evaluation: We report classification accuracy 318

as the evaluation measure in this paper. Since two 319

of the datasets are imbalanced across categories 320

(TAXI1500 and SCENARIO), we considered report- 321

ing macro-F1 additionally. But considering the 322

fact that there is not much difference between the 323

measures and the order is always preserved (i.e., if 324

approach A gets a higher accuracy than approach 325

B, it always has a higher macro-F1 as well), we 326

decided to report only accuracy. 327

4 Results 328

We report results addressing the four research ques- 329

tions and also discuss the variation across lan- 330

guages and tasks in this section. Detailed per lan- 331

guage/per task/per method results can be seen in 332

Appendix B. 333

4.1 Zero-shot Classification 334

Figure 1 shows the zero-shot performance of vari- 335

ous LLMs, compared to a logistic regression clas- 336

sifier trained with full data and embeddings based 337

feature representation, averaged across all lan- 338

guages per task. 339

These results reveal some interesting insights: 340

For sentiment classification, GPT4 and Aya- 341

Expanse are better than a classifier trained on full 342

training data. But, for the other three tasks, GPT4 343

is clearly much better among the zero-shot meth- 344

ods, although we observe that a custom classifier is 345

much better, especially as the number of labels 346

in the dataset increases. The difference in per- 347

formance trends between sentiment classification 348

versus other tasks we studied here may indicate 349
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Figure 1: Zero-shot LLMs versus a logistic regression
classifier trained with full data

a more subjective versus topical task difference350

which would warrant further scrutiny. Interestingly,351

all the models performed poorly on French senti-352

ment classification compared to other languages,353

while Arabic was the language where most mod-354

els performed the worst for other tasks (see Tables355

6– 9 in Appendix B for details).356

4.2 Few-shot Classification357

Figure 2 shows how few-shot fine-tuning with Fast-358

Fit compares with zero-shot classification and train-359

ing with full data, taking GPT4 as the representa-360

tive zero-shot classifier, as that was the best among361

the zero-shot options we explored.362

Figure 2: Few-shot Fine-tuning

The results show that while few-shot fine-tuning363

is not useful for sentiment classification, there is364

a >5% improvement over zeroshot GPT4 for two365

tasks (TAXI1500 and SCENARIO) and similar per-366

formance for INTENT datasets. For TAXI1500, it367

even results in a small improvement over training368

with full labeled dataset, presumably due to the369

contrastive learning objective used for learning the370

representations for fine-tuning. While there are371

performance disparities across languages (See Fig-372

ure 7 in Appendix B for details), they are much373

larger for the datasets with a smaller number of cat- 374

egories (SENTIMENT and TAXI1500) compared 375

to the datasets with larger number of categories 376

(SCENARIO and INTENT).Some of this can be at- 377

tributed to the fact that the datasets with more cat- 378

egories see a larger sample of data during fine- 379

tuning (as we take 10 samples per category), which 380

is probably helping the model learn the task bet- 381

ter across languages, reducing disparities among 382

them in terms of overall accuracy. While we would 383

need further experiments with other datasets with 384

many classes (covering multiple languages), we 385

can conclude based on these results that few-shot 386

fine-tuning can be a viable alternative to zero-shot 387

classifiers if at least a small amount of labeled data 388

is available. 389

4.3 Synthetic Data and Text Classification 390

We now turn to the question of the usefulness of 391

synthetic data for text classification. Figure 3 392

shows a comparison between all the zero-shot 393

LLMs and a logistic regression model trained en- 394

tirely with synthetic data, averaged across lan- 395

guages and grouped by task. 396

Figure 3: Zero-shot versus synthetic data based Classifi-
cation

In all tasks except sentiment classification, we 397

notice that the synthetic data based classifier ei- 398

ther performs comparably or out-performs all the 399

open LLMs and outperforms GPT4 too in one task 400

(SCENARIO). We can infer that synthetic data can 401

be considered a viable option over zero-shot classi- 402

fication, from these results. In practical terms, that 403

can mean a one time cost (for building the synthetic 404

dataset) rather than an ongoing cost of prompting a 405

proprietary LLM as a zero-shot classifier instead. 406

Figure 4 compares among zero-shot, synthetic 407

data based, and real data based classifiers, taking 408

GPT4 as the zero-shot classifier. 409

We can observe from this figure that for at least 410
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Figure 4: zero-shot GPT4, synthetic data based, and real
data based classifiers

one task TAXI1500, synthetic data is performing at411

the same level as the other two approaches, whereas412

for the SCENARIO task, it show slightly better re-413

sults than zero-shot GPT4. Considering Figures 3414

and 4 together, we can conclude that synthetic data415

generated from multiple LLMs can be useful and416

sometimes, better than zero-shot classifiers, while417

being competitive compared to real-data in some418

cases.419

One versus Many Synthetic Data Sources420

Since we used three sources for synthetic data gen-421

eration, a natural next question to look into is what422

is a good source of data. To understand this, we423

compared different sources of synthetic data by us-424

ing only one source to build a logistic regression425

based classifier each time. Table 3 shows the sum-426

mary of these results. Note that these single-source427

datasets form only 1/3rd of the full dataset which428

uses all three sources together. Hence, we don’t429

compare with classifiers trained on full data here,430

and compare only one LLM versus another as a431

source of synthetic data.

Task GPT4 Aya-Expanse Qwen2.5
TWITTER 0.5 0.47 0.51
TAXI1500 0.43 0.4 0.43
INTENT 0.53 0.48 0.40
SCENARIO 0.65 0.64 0.59

Table 3: Average accuracy across languages of synthetic
data based classification

432
We can see that Qwen2.5 gave better results for433

the two datasets with smaller number of categories,434

but started to perform the worse of the three LLMs435

once we moved to datasets with larger number of436

categories. GPT4 consistently seems to be a rea-437

sonable source of synthetic data across all datasets.438

Aya-Expanse does better with datasets with larger 439

number of categories than smaller ones. Training 440

on the data from all sources consistently gives bet- 441

ter results despite these differences in individual 442

sources (Figure 3). Thus, we can conclude that 443

multi-source generation also potentially results in 444

more diverse data and using open LLMs as the 445

sources of synthetic data along with GPT4 can 446

be a cost effective way of synthetic data genera- 447

tion. Note that the open LLMs are both very small 448

(7B/8B) compared to GPT4 and can be used locally 449

on a laptop. 450

Classification with Real versus Synthetic Data 451

We compared three classification approaches: a 452

logistic regression classifier, which we used in 453

all the above described experiments to compare 454

against zero-shot and few-shot approaches, a clas- 455

sifier fine-tuned on the multilingual BERT model, 456

and an instruction tuned classifier built from the 457

Qwen2.5-7B-Instruct model. Figure 5 presents the 458

performance of these classifiers using both real 459

and synthetic datasets. With real datasets, we can 460

see the plain logistic regression model give the 461

best average performance for sentiment classifica- 462

tion over all languages. It falls behind other ap- 463

proaches (although not dramatically) with other 464

tasks. The Qwen2.5 and BERT fine-tuned mod- 465

els achieved similar accuracy across most tasks, 466

except for the INTENT dataset, where Qwen fine- 467

tuned model outperformed BERT by 5%. On the 468

synthetic datasets, BERT fine-tuned model consis- 469

tently had lower accuracy across tasks. The Qwen 470

finetuned model showed the best performance for 471

datasets with a large number of labels (INTENT 472

and SCENARIO). In summary, our results indicate 473

that instruction tuning is perhaps more effective for 474

synthetic datasets and tasks with more categories, 475

whereas logistic regression remains a strong choice 476

for simpler tasks with fewer categories. 477

4.4 Performance Differences Across 478

Languages 479

Across all tasks and methods, we noticed large dif- 480

ferences in performance across languages in these 481

experiments. Table 4 shows the performance dif- 482

ference between the best and worst performing lan- 483

guages for all methods averaged across the four 484

tasks. Exact language specific and task specific 485

details can be seen in the Appendix (Section B). 486

Zero-shot prompting, followed by synthetic data 487

based classification had relatively less variation 488
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(a) real data (b) synthetic data

Figure 5: Synthetic versus Real-Data

Method Difference
Zero-shot GPT4 13%
Zero-shot Qwen2.5-7B 15%
Zero-shot Aya-8B 13%
Zero-shot Aya-Expanse-8B 11%
FastFit 22%
Logistic Regression-Real 29%
BERT-FT-Real 23%
SFT-Real 17%
Logistic Regression-Synthetic 17%
BERT-FT-Synthetic 12%
SFT-Synthetic 17%

Table 4: Average (Absolute) Performance Difference
Across Languages for the different methods

across languages, although they are still in the 10-489

20% range. When we had some labeled data for490

all languages, we still had > 20% performance491

difference for few-shot finetuning and BERT fine-492

tuning, whereas a logistic regression classifier has493

an almost 30% average difference between best and494

worst performing languages. In specific cases, such495

as few-shot finetuning on TAXI1500, the difference496

between the best performing (French-69%) and497

least performing (Arabic-30%) was nearly 40%.498

Even when there was full access to training data,499

BERT fine-tuning had > 40% performance differ-500

ence between Italian (35%) and English (77%) for501

TAXI1500.502

Although this dataset has the least amount of503

training data, we observe similar trend in datasets504

where large amounts of training data is available.505

For example, the logistic regression classifier on506

SCENARIO dataset has 58% accuracy with Arabic,507

but 90% with English. All these may point to the508

insufficiency of the base multilingual embedding509

models in representing data across languages. It is 510

also possible that the difference in the script and the 511

writing direction is a contributing factor in some 512

cases (e.g., Arabic). 513

While the variance across languages is lesser 514

with synthetic data, as we noticed earlier, multilin- 515

gual synthetic data generation comes with other 516

challenges. For example, generation is much 517

slower for languages with a different script (Arabic 518

and Hindi in our data). The average number of to- 519

kens was also higher (in some cases, 3 times higher) 520

for non-Roman script based languages. This di- 521

rectly influences the costs involved in synthetic 522

data generation, especially with proprietary LLMs, 523

and may impose limitations on their use as syn- 524

thetic data generators for problems involving data 525

from non roman script based languages. 526

5 Discussion 527

We compared different ways of performing text 528

classification (zero-shot classification, few-shot 529

fine-tuning, using full labeled data, and using syn- 530

thetic data) across 32 datasets (8 languages, 4 531

datasets per language). Returning to our original 532

research questions, our findings are summarized 533

below: 534

RQ1: How well does zero-shot prompting of 535

LLMs (open and proprietary) fare compared to 536

building classifiers with full training data? 537

Zero-shot classifiers perform well in terms of 538

accuracy, but primarily for datasets with fewer cat- 539

egories, especially SENTIMENT, where GPT4 and 540

an open LLM Aya-Expanse-8B achieve compa- 541

rable results which are better than training with 542

full human labeled data. In all other cases, while 543

GPT4 has the best performance among the zero- 544

shot LLMs, it trails behind classifiers built with 545
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labeled datasets, especially as the number of cat-546

egories increases. With high amounts of labeled547

data, even a logistic regression classifier with text548

embedding representations performs much better,549

and is of course less resource and cost intensive.550

RQ2: Does few-shot fine-tuning offer any bene-551

fits over zero-shot classification?552

Few-shot fine-tuning generally offers higher ac-553

curacy (upto 10% gain) than zero-shot classifiers on554

3 out of 4 tasks. However, for the SENTIMENT task,555

which has fewer categories and can be perceived as556

a more subjective compared to topic classification,557

GPT-4 outperforms few-shot finetuning. Overall,558

considering the fast training and inference times,559

without any added costs, few-shot finetuning can560

be considered a reliable option as the number of561

categories increases, in the absence of sufficient562

labeled data.563

RQ3: How well does a synthetic data based564

classifier fare compared to zero-shot classification565

with LLMs?566

In all tasks except sentiment classification, the567

synthetic data-based classifier either performs on568

par (INTENT) or achieves a 5-10% improvement569

compared to zero-shot classification using open570

LLMs. It outperforms GPT-4 too in one task571

(SCENARIO). These results indicate that synthetic572

data can be a viable alternative to zero-shot classifi-573

cation with open LLMs when number of categories574

are more, as it involves a one-time cost for creating575

the dataset. In terms of what is a better source of576

synthetic data, in most cases, GPT4 and at least one577

open LLM achieve comparable performance as the578

single source of synthetic data. Over all, the best579

results are achieved by combining all data sources,580

which can also be a cost-effective solution.581

RQ4: Is supervised fine-tuning of LLMs the way582

to go for text classification?583

Excluding sentiment classification, we see that584

the best performance is with either BERT fine-585

tuned or an instruction fine-tuned classifier with586

real data, and supervised fine-tuning does better587

than other approaches with synthetic data. How-588

ever, it has to be noted that supervised fine-tuning589

is compute intensive both for training and inference590

across all languages and tasks (See Table 5 in the591

appendix for details on the time taken). On the592

other hand, we also notice a strong performance593

with a simple logistic regression based classifier too594

in some cases, although as the number of categories595

increases, the advantage seems to wane away. 596

Based on these results, we can summarize the 597

following guidelines for practitioners: 598

1. For sentiment classification, zero-shot classifi- 599

cation with LLMs is a better option than task 600

specific fine-tuning. 601

2. In all other cases, few-shot fine-tuning 602

achieves better performance than zero-shot 603

classification. So, collecting a handful of la- 604

beled data is useful. 605

3. Synthetic data based classifiers perform better 606

than zero-shot classification with open LLMs, 607

but are not always better than GPT4. However, 608

sourcing data from multiple LLMs is useful. 609

4. Despite all the recent advances, training classi- 610

fiers using high-quality labeled data still gives 611

the best performance, and SFT gives the best 612

performance, especially when dealing with a 613

large number of categories, and even a logistic 614

regression classifier can give a strong perfor- 615

mance in some cases when such datasets are 616

available. 617

While the datasets and languages covered are by 618

no means exhaustive, these results provide some 619

guidance on what methods work for what kinds 620

of data, what to expect in terms of language dis- 621

parities, and how to work with synthetic data from 622

multiple sources, across multiple languages. Future 623

directions can include increasing the coverage of 624

languages, and expanding to multi-label datasets, 625

to draw more comprehensive conclusions about 626

LLMs and the task of text classification. 627

6 Limitations 628

While the study allows us to draw a few concrete 629

conclusions based on our experiments, it is not 630

free from limitations. Firstly, we have limited our- 631

selves to one prompt for zero-shot models and one 632

prompt for synthetic data generation. While the 633

use of instructor for structured output generation 634

in the case of zero-shot classification automatically 635

adjusts the prompt during retries, essentially taking 636

care of prompt engineering, we cannot steer the in- 637

ternal prompt creation process ourselves. Few-shot 638

prompting (instead of few-shot fine-tuning) was 639

also not explored, as the benefits are unclear with 640

the increasing number of labels in some datasets. 641

Few-shot fine-tuning can be sample sensitive, and 642
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while we did not notice any variations across dif-643

ferent runs, we did not systematically explore that644

aspect. We also did not explore multilingual classi-645

fiers and all our classifiers are monolingual, built646

on top of pre-trained multilingual models. No647

language-specific choices were made (e.g., using648

a English embedding model may give better per-649

formance for English). We also did not do any650

qualitative analysis of the results or of the gener-651

ated synthetic data.652

Since our goal is to compare broadly across dif-653

ferent approaches, an extensive evaluation of fine-654

tuning options or parameter variations was not per-655

formed, nor did we repeat the experiments with dif-656

ferent initializations, to keep the number of experi-657

ments (and costs involved) in check. Additionally,658

all the datasets deal with only short texts (tweets,659

sentences, voice assistant commands) and hence,660

the results of this study might not extend to long661

texts. Finally, the question of potential data contam-662

ination is inevitable while discussing the zero-shot663

performance. While we don’t know the specifics664

of the training data for various LLMs, considering665

that the performance across all tasks (except sen-666

timent classification) is lower than models relying667

on full training data, perhaps it is not a serious668

concern for these experiments. In terms of the lan-669

guages covered, while there is some typological di-670

versity, 7/8 languages belong to the Indo-European671

language family (covering three sub-families: Ger-672

manic, Italic and Indo-Aryan). Thus, the extend-673

ability of these conclusions to other languages and674

language families is not guaranteed. Finally, the675

open LLMs we explored are much smaller in size676

(7B-8B parameters) compared to GPT4, and the677

results should not be seen as a verdict against the678

use of open LLMs for text classification.679

7 Ethics and Broader Impact680

We have used publicly available datasets and did681

not do any experiments involving human partici-682

pants. We have also used small, locally run LLMs683

for several experiments, and most of the exper-684

iments are run locally on a laptop (details in the685

appendix), thus, consuming less power and perhaps686

with less carbon footprint than fine-tuned models or687

larger LLMs that require GPUs for training and/or688

inference. We do not foresee any harms due to the689

approaches described in this paper and it is only690

helpful for those working on text classification in691

the real-world to give a more realistic perspective692

about working with LLMs, which can potentially 693

save time/money in a short/long run in terms of 694

choosing the solution space to explore. We also 695

share all the code and generated synthetic datasets 696

as supplementary material to support reproducible 697

research. 698
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A Details about the Experimental1019

Settings1020

Compute Infrastructure: All the zero-shot1021

prompting, few-shot fine-tuning, and logistic clas-1022

sifier training, and synthetic data generation exper-1023

iments were performed on an Apple M1 Pro lap-1024

top with 32GB memory. Open LLMs were down-1025

loaded and used locally using Ollama (https://1026

ollama.com/), and the OpenAI model was called1027

with their API. BERT-Finetuning for the datasets1028

with smaller number of categories (SENTIMENT1029

and TAXI1500) was done locally and for the other 1030

two datasets, it was done on a Google Colab T4 1031

GPU. Instruction fine-tuning was performed on a 1032

V100 GPU. Transformers5 and Unsloth6 were used 1033

for BERT-finetuning and instruction fine-tuning of 1034

Qwen2.5-7B respectively. All the implementation 1035

code is provided in the supplementary material. 1036

Zero-shot Prompting: Zero-shot prompt- 1037

ing controlling for the output structure was 1038

performed using Instructor (https://python. 1039

useinstructor.com/), which utilizes Pydan- 1040

tic (https://docs.pydantic.dev/) for efficient 1041

data validation. The code snippet to prompt an 1042

LLM with instructor is shown in Figure 6 below. 1043

The variable catnames contains the list of labels. 1044

More details on how structured output generation 1045

works can be seen in the code submitted as supple- 1046

mentary material and in the documentation for the 1047

library Instructor. 1048

Figure 6: Prompt for Zero-shot Classification

Synthetic Data Generation: The prompt 1049

used for synthetic data generation is specified as 1050

follows, where text_lang, text_genre, task_desc 1051

and list_of_cats[i] come from config files and are 1052

task-dataset specific. For example, for generating 1053

sentiment classification data for Arabic, text_lang 1054

= arabic, text_genre = tweets, task_desc = 1055

sentiment classification, list_of_cats = positive or 1056

negative or netural. 1057

1058

5https://github.com/huggingface/transformers
6https://github.com/unslothai/unsloth
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prompt = f"""generate a {text_lang} language
text that looks like {text_genre}
that can be categorized as {list_of_cats[i]}
in the context of {task_desc}.
The generated text should be under 50 words,
and ensure some diversity of vocabulary
in the generated texts.

"""

1059

Instruction fine-tuning: The fol-1060

lowing instruction format was used1061

for fine-tuning the Qwen2.5-7B model:1062
''' <s>[INST] Consider the text:

"{input_text}" Please select the
most relevant category for the
given text from following OPTIONS:
{all_categories}.
CHOICE: {response} </s>

'''

1063

Parameter settings: We used evaluation loss as1064

the metric for selecting the best model. Some train-1065

ing parameters are presented in Table 5. Instruction1066

tuning was done for 3 epochs each for SENTIMENT,1067

INTENT and SCENARIO datasets, and 10 epochs1068

for TAXI1500 dataset which has a smaller amount1069

of training data compared to the rest and did not1070

converge in 3 epochs.1071

Model epochs learning
rate

weight
decay

GPU/CPU
hours

FastFit 10 5e-5 0.01 5-15 min for
training; fast in-
ference

BERT 5 5e-5 0.01 0.5 hr for train-
ing; fast infer-
ence

Qwen2.5-
7B

3 1e-5 0.001 6hr for train-
ing; 3hr for in-
ference

Table 5: Parameter setting for fine tuning

More details can be seen in the code provided as1072

supplementary material.1073

B Additional Results1074

(a) FASTFIT

(b) SETFIT

Figure 7: Few-shot Fine-tuning Across Tasks and Lan-
guages
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Zero-shot Few-shot Real Data Synthetic Data
Language GPT4 Aya:8B Qwen2.5:7B Aya-Expanse:8B FastFit Logistic Reg. BERT-FT SFT Logistic Reg. BERT-FT SFT
Arabic 0.68 0.59 0.58 0.68 0.44 0.61 0.45 0.65 0.51 0.5 0.53
English 0.71 0.65 0.68 0.71 0.59 0.65 0.65 0.58 0.59 0.52 0.51
French 0.54 0.52 0.47 0.58 0.45 0.65 0.68 0.57 0.61 0.49 0.45
German 0.67 0.62 0.65 0.7 0.55 0.7 0.68 0.73 0.57 0.47 0.6
Hindi 0.62 0.53 0.56 0.61 0.34 0.41 0.33 0.36 0.47 0.38 0.46
Italian 0.72 0.58 0.6 0.71 0.57 0.59 0.59 0.64 0.61 0.49 0.59
Portuguese 0.69 0.6 0.61 0.69 0.62 0.7 0.54 0.68 0.58 0.49 0.59
Spanish 0.68 0.59 0.62 0.69 0.48 0.65 0.56 0.61 0.61 0.49 0.52

Table 6: All Results for TWITTER sentiment classification task

Zero-shot Few-shot Real Data Synthetic Data
Language GPT4 Aya:8B Qwen2.5:7B Aya-Expanse:8B FastFit Logistic Reg. BERT-FT SFT Logistic Reg. BERT-FT SFT
Arabic 0.58 0.22 0.23 0.44 0.3 0.36 0.5 0.69 0.32 0.48 0.61
English 0.53 0.35 0.4 0.43 0.66 0.74 0.77 0.69 0.54 0.51 0.33
French 0.54 0.23 0.34 0.41 0.69 0.57 0.73 0.67 0.55 0.5 0.62
German 0.44 0.32 0.33 0.41 0.64 0.54 0.72 0.72 0.44 0.43 0.57
Hindi 0.52 0.27 0.35 0.44 0.61 0.5 0.64 0.62 0.46 0.41 0.57
Italian 0.49 0.27 0.32 0.38 0.56 0.56 0.35 0.6 0.48 0.49 0.43
Portuguese 0.47 0.3 0.41 0.45 0.56 0.55 0.69 0.56 0.58 0.48 0.47
Spanish 0.56 0.23 0.4 0.52 0.59 0.47 0.72 0.56 0.52 0.48 0.37

Table 7: All Results for TAXI1500 Bible topic classification task

Zero-shot Few-shot Real Data Synthetic Data
Language GPT4 Aya:8B Qwen2.5:7B Aya-Expanse:8B FastFit Logistic Reg. BERT-FT SFT Logistic Reg. BERT-FT SFT
Arabic 0.6 0.31 0.46 0.49 0.57 0.74 0.79 0.81 0.44 0.3 0.51
English 0.72 0.44 0.6 0.6 0.74 0.87 0.88 0.89 0.58 0.43 0.62
French 0.67 0.4 0.54 0.56 0.6 0.83 0.86 0.87 0.58 0.46 0.56
German 0.66 0.37 0.54 0.56 0.69 0.8 0.84 0.86 0.51 0.43 0.58
Hindi 0.66 0.39 0.5 0.52 0.69 0.83 0.82 0.86 0.57 0.45 0.59
Italian 0.68 0.41 0.55 0.56 0.68 0.83 0.85 0.86 0.57 0.43 0.57
Portuguese 0.66 0.38 0.54 0.55 0.7 0.83 0.86 0.88 0.56 0.44 0.59
Spanish 0.66 0.37 0.54 0.54 0.7 0.84 0.86 0.85 0.54 0.44 0.61

Table 8: All Results for INTENT classification task

Zero-shot Few-shot Real Data Synthetic Data
Language GPT4 Aya:8B Qwen2.5:7B Aya-Expanse:8B FastFit Logistic Reg. BERT-FT SFT Logistic Reg. BERT-FT SFT
Arabic 0.59 0.43 0.52 0.45 0.672 0.58 0.86 0.86 0.58 0.54 0.696
English 0.67 0.5 0.66 0.52 0.77 0.9 0.9 0.94 0.74 0.54 0.77
French 0.64 0.47 0.59 0.49 0.73 0.81 0.9 0.9 0.7 0.59 0.72
German 0.64 0.46 0.6 0.5 0.71 0.79 0.9 0.91 0.68 0.59 0.82
Hindi 0.62 0.45 0.54 0.48 0.71 0.55 0.87 0.87 0.7 0.57 0.79
Italian 0.63 0.46 0.59 0.49 0.73 0.8 0.89 0.89 0.68 0.61 0.75
Portuguese 0.63 0.46 0.61 0.5 0.73 0.81 0.9 0.93 0.67 0.57 0.76
Spanish 0.63 0.46 0.6 0.48 0.72 0.79 0.89 0.9 0.68 0.56 0.74

Table 9: All Results for SCENARIO classification task
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