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ABSTRACT

Addressing expensive multiobjective optimization problems (EMOPs) poses a sig-
nificant challenge due to the high cost of objective evaluations. We propose FS-
MOEA, a scalable and efficient framework that enhances surrogate-assisted mul-
tiobjective evolutionary algorithms (SMOEAs) by introducing foresighted surro-
gate models. FSMOEA captures population-level context to improve surrogate
prediction accuracy, leverages a low-dimensional latent space to accelerate evo-
lutionary search, and employs lightweight models to reduce computational over-
head. Designed for plug-and-play integration, the foresight model can be embed-
ded into existing contrastive (i.e., classification- and relation-based) SMOEAs,
improving performance on scaling-up EMOPs. We provide theoretical analysis
that formalizes the benefits of population-aware representation and latent-space
optimization. Extensive experiments on 107 benchmarks show that FSMOEA
consistently outperforms state-of-the-art methods in both convergence speed and
optimization quality. Source code is attached and will be available at Linkxxx.

1 INTRODUCTION

Multi-objective optimization problems (MOPs) arise in diverse domains such as neural architecture
search (Zhou et al.|[2023)), deep learning (Chen & Kwok}[2022)), multitask learning (Sener & Koltun,
2018)), aerodynamic design (Jin et al.,[2018]), and drug discovery (Nicolaou & Brownl 2013), where
practitioners seek to optimize multiple conflicting objectives simultaneously. Solving these prob-
lems yields a Pareto front (PF) — a set of trade-off solutions where no objective can be improved
without degrading another (Cai et al., 2023). Gradient-free multiobjective evolutionary algorithms
(MOEAs5) have been extensively applied to these problems due to their population-based nature and
robustness to non-convex, multimodal search spaces (Huang et al}[2024). These algorithms alter-
nate between generating candidate solutions (using a generator), evaluating them (by a evaluator),
and selecting the most promising ones (with a discriminator), gradually evolving towards a well-
distributed approximation of the PF (Zhang et al.| 2021)). However, a key limitation of conventional
MOEAs is their reliance on a large number of expensive objective function evaluations (Liu et al.,
2022a), making them impractical for real-world scenarios involving high-fidelity simulations. This
has motivated the development of surrogate-assisted MOEAs (SMOEAs), which approximate ob-
jective functions using cheaper predictive models such as Kriging (Song et al.| [2021)), radial basis
function (Yu et al., 2019), support vector regression, or neural networks (Guo et al., [2021). These
surrogates accelerate convergence while preserving solution quality (Li et al., 2022]).

A principled way to address expensive black-box optimization is through Bayesian optimization
(BO), which treats the objective as a random function and iteratively refines its belief over the func-
tion using Gaussian processes or other uncertainty-aware models (Xie et al.| 2024} Tay et al.|[2023).
BO is data-efficient, balancing exploration and exploitation via acquisition functions such as ex-
pected improvement (EI) or upper confidence bound, and has seen significant success in single-
objective settings (Ament et all [2023). However, extending BO to expensive MOPs (EMOPs)
is challenging due to the high-dimensional trade-off space and the difficulty of maintaining well-
calibrated uncertainty estimates across all objectives (Lin et al.l 2022b; |Wei et al.,[2024). SMOEAs
can be viewed as a scalable, population-based counterpart to BO, enabling better exploration of large
and complex search spaces through surrogate-guided evolutionary search (Zhou et al., [2024)).
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Existing SMOEAs for EMOPs fall into two broad categories: regression-based and contrastive
(including classification-based and relation-based) SMOEAs. Regression-based methods directly
model the objective values and use them to guide search and selection (Chugh et al., | 2016; Knowles,
2006; |[Zhao & Zhang, [2023), but often suffer from modeling inaccuracies in high-dimensional or
sparse-data regimes. Contrastive SMOEAs instead model pairwise performance relationships, e.g.,
which of two solutions is better, and leverage lightweight classifiers to perform surrogate selection
(Yuan & Banzhaf] 2021} |Hao et al.,[2022; |Zhang et al.,[2022). This bypasses the need to predict ex-
act objective values and is often more robust under data scarcity (Sonoda & Nakatal 2022). Despite
their promise, contrastive SMOEAs face two critical challenges (Yang et al., |2023)). First, exist-
ing models typically lack context-awareness — that is, they treat each comparison independently
without considering the population-wide distribution. This limits their ability to generalize selection
pressure across dynamic evolutionary landscapes. Second, scalability remains a bottleneck: perfor-
mance degrades substantially as the problem dimensionality increases, hampering their applicability
to scaling-up EMOPs (e.g., with many-objective and large-scale search space).

In this work, we propose a foresighted surrogate framework to address these issues. Our method
introduces three key innovations: 1) In-context foresight: a context-aware head learns population-
level embeddings to better capture selection dynamics; 2) Low-dimensional code space learn-
ing: a learned latent representation facilitates more efficient and generalizable comparisons; 3)
Lightweight surrogate architecture: our method remains scalable and computationally efficient
across problem sizes. These design choices collectively yield improved convergence, robustness,
and computational efficiency on challenging scaling-up EMOPs.

2 RELATED WORK AND MOTIVATION

2.1 EXPENSIVE MULTIOBJECTIVE OPTIMIZATION

An MOP with m objectives to be minimized is generally formulated as:

min F(x) = (f1(x), fa(X), ..., fmx)", st.x€Q (1

where x = (71,%2,...,7,)T is a candidate solution in an n-dimensional decision space 2, and
F(x) denotes a vector of m potentially conflicting objective functions. The goal is to identify
the Pareto set: a collection of non-dominated solutions that map to the PF in objective space. In
computationally intensive settings, where each evaluation of the objective vector F'(x) incurs a
significant cost, this task becomes markedly more challenging. Let ¢r denote the computational
cost of a single evaluation of F'(x), and let F'E,;,, be the maximum number of evaluations allowed
under a fixed budget Tyygeer. We model this constraint as: Thugger = tF X F'Epax. This constraint
motivates the development of strategies that prioritize high-utility evaluations and avoid wasteful
exploration (Li et al.,[2025). Please see SectionE]in the Appendix for more details of an MOP.

EMOPs are pervasive in domains like robotics, materials science, and automated machine learning,
where simulation or experiment-driven evaluations dominate the runtime (Jin et al., 2018)). Tradi-
tional MOEAs operate in an evaluation-hungry manner, relying on the sheer volume of function
calls to ensure convergence. When ¢ is large, however, the allowable F'E,, ., often drops by or-
ders of magnitude — making naive MOEA strategies ineffective. This has led to a surge in interest
around SMOEAs, where a learned model substitutes the true objective evaluator for most candidate
solutions (Khaldi & Draal, 2024).

2.2 SURROGATE-ASSISTED MOEAS (SMOEAS)

To alleviate the cost of evaluating expensive objective functions, SMOEAs incorporate learned ap-
proximations (or surrogates) to filter and prioritize candidate solutions. These surrogates are in-
tegrated into the standard MOEA pipeline, which typically consists of a generator, evaluator, and
selector (Liu et al., 2023). While the generator explores new regions of the search space using
evolutionary operators such as crossover and mutation, the evaluator estimates objective values (or
rankings) of the generated candidates, and the selector identifies the most promising solutions for
survival and reproduction. In the SMOEA context, the evaluator is replaced or augmented by a sur-
rogate model trained on a limited archive of truly evaluated solutions. This model acts as a proxy to
the expensive function F'(x), providing fast but approximate predictions to guide the search. Only
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a small subset of the most promising candidates, as estimated by the surrogate, are selected for real
evaluation. This mirrors the role of acquisition functions in Bayesian optimization, which determine
where to sample next based on model uncertainty and expected improvement. SMOEAs can be
broadly categorized into three types based on the nature of the surrogate:

Regression-based surrogates learn a direct mapping from x — F(x) using models such as Krig-
ing, support vector regression, radial basis functions, or neural networks (Si et al.| [2023} |[Li et al.,
2024b; |Si et al}, [2023; |Gu et al. [2024). After prediction, a standard selection criterion (e.g., domi-
nance, decomposition, or indicator-based) is applied to identify elite solutions. While effective under
dense training data, regression models often struggle when data is sparse or high-dimensional, lead-
ing to unreliable estimates. Classification-based surrogates sidestep the need for precise function
prediction by instead learning to classify solutions as promising or non-promising (Pan et al.,|2018;
Hao et al., 2021} [Li et al., [2024a). This binary simplification is more robust under limited data and
reduces the modeling complexity. Classifiers can be trained using pairwise comparisons or labels
derived from environmental selection criteria. Relation-based surrogates further generalize classi-
fication by predicting relative rankings between pairs of solutions (Hao et al.|[2022; |Chen & Zhang,
2024; Hao et al.,|2025)). Rather than absolute labels, these models estimate which solution in a pair
is likely superior, enabling fine-grained selection even when objective values are unknown or noisy.
A representative framework is shown in Fig[I] where
the surrogate assists the evolutionary process by pri-
oritizing candidates for real evaluation. As illus-
trated in Fig[2] these models are trained on pre-
viously evaluated solutions, refined iteratively, and
queried during offspring generation to guide the evo-
lutionary trajectory. Importantly, surrogate models |-~ =75 \:E/,
must be computationally lightweight — their infer-
ence and update time must remain negligible com-
pared to the cost of real evaluations.
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ity over time. Moreover, improper model guidance
can cause premature convergence or population col-
lapse — particularly when the surrogate’s prediction

top depicts a standard MOEA loop with
real evaluations, while the bottom illustrates
how a learned surrogate pre-selects promis-

errors are not well-calibrated. Finally, while surro-
gate models used in SMOEAs may appear function-
ally similar to those in BO, their usage context dif-
fers. Bayesian multi-objective optimization (MOBO) typically employs Gaussian processes and
acquisition functions to drive sample selection (Daulton et al.| 2020} Konakovic Lukovic et al.
2020; Belakaria et al., [2019). While highly data-efficient, MOBO methods scale poorly in many-
objective and high-dimensional settings due to computational bottlenecks in surrogate training and
acquisition function optimization (Tu et al.,2022;Wang et al.|[2023;|Ozaki et al.,|2024). In contrast,
SMOEAs scale more naturally due to their population-based nature, implicit diversity maintenance,
and parallel search capabilities.

ing candidates for expensive evaluation, re-
ducing computational cost.

2.3 INSIGHT AND MOTIVATIONS

Regression-based surrogates remain mainstream in high-dimensional optimization, yet they face
two critical challenges in expensive settings: (i) dimensionality reduction often degrades the accu-
racy required for reliable regression, and (ii) data scarcity makes accurate function approximation
infeasible. By contrast, contrastive surrogates (including classification- and relation-based models)
are more tolerant to information loss, require fewer samples, and can exploit richer relational data
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(e.g., O(N?) pairwise labels from N evaluations). These properties make them particularly suit-
able for SMOEAs. Despite these advantages, existing contrastive surrogates still exhibit limitations
in large-scale or evolving populations. First, they lack population context-awareness: labels are
derived from global criteria (e.g., dominance or decomposition), but predictions are made in iso-
lation without modeling the surrounding population. As distributions drift, this mismatch leads to
biased or inconsistent predictions (L1 et al., [2024b)). Second, scalability remains problematic: as
objective and search spaces dimensionality grows, surrogate complexity scales linearly or worse,
limiting responsiveness in iterative updates (Liu et al., [2024). Third, surrogate quality is tightly
linked to search efficiency: poor discrimination in early generations can stall exploration, especially
in high-dimensional landscapes where informative features are sparse. To overcome these issues, we
propose a foresighted surrogate architecture that (i) integrates population context via a learned la-
tent space, (ii) enables efficient low-dimensional search, and (iii) employs lightweight classifiers for
scalability. This design improves surrogate accuracy, robustness, and overall efficiency in solving
scaling-up EMOPs. For dimensionality reduction, while similar in spirit to PCA as studied in (Lin
et al., [2022a} |Gu et al., 2024), our method differs fundamentally by embedding population-aware
context into the dimensionality reduction process. This allows the latent space to evolve with the
search, making it directly useful for surrogate modeling and evolutionary guidance.

3 THE PROPOSED ALGORITHM

We propose FSMOEA, a foresight-enhanced SMOEA, which augments traditional contrastive
SMOEAs with a foresight model Mg to improve scalability and context-awareness in solving
EMOPs. FSMOEA introduces a population-aware encoding-decoding mechanism via M, an au-
toencoder trained on the current population. As illustrated in Figure 2, M consists of an encoder
and decoder, with a hidden layer of size k < n, where n is the dimensionality of the decision space.
The encoder projects solutions into a compact latent space, while the decoder reconstructs them.
Training minimizes the reconstruction loss (mean squared error) using standard backpropagation.
The autoencoder is trained exclusively on the

current population P; so that its representation ot [ et e e

s s : _ § Search | sampling X o | Learning
reflects the geometry and distribution of solu Ls_,,_afi__T»- T
tions at that generation. This design explicitly - —
captures the phenomenon of population drift, = §~ .

i.e., the gradual shift in neighborhood struc-
ture and decomposition-based scalarization val-
ues across generations. Once trained, the en-
coder serves as a frozen foresight head that cap-
tures the structural features of the current pop-
ulation. FSMOEA uses this head in two key
ways: 1) to enhance surrogate predictions via
context-aware representation, and 2) to conduct
evolutionary search directly in the learned la-
tent space, improving both efficiency and scal-
ability. To ensure stable encoding under small
population sizes, the foresight model employs
a lightweight architecture aligned with the size
of Py, together with mild regularization. This
prevents overfitting while preserving the local Figure 2: The basic framework of SMOEAs.
geometric relations needed for downstream sur-

rogate modeling. The latent dimension k is selected to approximate the intrinsic dimensionality of
‘P:; empirical analyses show that a small range of k£ provides consistently robust representations.
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—
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The high-level procedure proceeds as follows: 1) initialize a population P with N solutions eval-
uvated using the true objective function F'(x); 2) train the foresight model My on P; 3) perform
surrogate-assisted search based on My to generate an offspring population O; and 4) apply envi-
ronmental selection on P U O to form the next generation. This process repeats until the evaluation
budget F Fy,.x is exhausted. The pseudocode and detailed description of the FSMOEA framework
are provided in Appendix Section [C} The computational overhead introduced by Mp is modest:
training a shallow autoencoder on N samples of dimensionality n requires O(Nk?) operations,
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and because the composite surrogate Mg receives k-dimensional inputs, its training complexity is
significantly reduced compared to operating directly in the original n-dimensional space.

3.1 FORESIGHT SURROGATE-ASSISTED EVOLUTIONARY SEARCH FOR REPRODUCTION

Algorithm 2 in the appendix describes the surrogate-assisted reproduction mechanism. The key idea
is to integrate the foresight encoder with an existing classifier- or relation-based surrogate model
Mg, forming a composite surrogate M rg. The encoder projects each solution into the latent space,
serving as the fixed input layer for Mg. This reduces input dimensionality from n to k, lowering
training complexity and improving generalization. In FSMOEA, the autoencoder serves as one prac-
tical realization of the proposed population-aware dimensionality-reduction mechanism, but it is not
the only possible choice. Any mapping that can both (i) compress high-dimensional decision vari-
ables into a compact latent representation and (ii) capture population-dependent structure may be
used. We adopt a lightweight autoencoder primarily because it offers a flexible and computationally
efficient way to obtain such context-aware embeddings together with an explicit decoder, which is
convenient for latent-space evolutionary operations. The framework itself, however, remains agnos-
tic to the specific dimensionality-reduction model employed.

We instantiate FSMOEA in two settings: FCSEA extends CSEA (Pan et al.| 2018) by attaching the
foresight encoder to its classifier, and FREMO extends REMO (Hao et al. |2022) using the same
principle for relation modeling. In both cases, model training and surrogate management follow the
structure of the original baselines. The foresight encoder is trained once per generation and then
frozen during surrogate updates. Because £ < n, the composite model Mg is lighter and faster to
train. See Section[| for sensitivity analysis of k.

FSMOEA performs evolutionary operations in the learned latent space. Given two parent solutions
2 and y, their latent codes ¢, ¢y € R* are combined via crossover and mutation to produce a new
code ¢, which the decoder maps back to the original decision space to form a new candidate solution
z. This latent-space search accelerates convergence by exploring a compact, structured subspace
shaped by the current population. This design makes FSMOEA not only more scalable but also
broadly compatible with existing classification- and relation-based SMOEAs. More implementation
details are provided in Section[C|of the appendix.

FSMOEA introduces three core contributions. Context-aware evaluation: The foresight encoder
encodes population-level information, enabling the surrogate to evaluate new candidates with richer
contextual understanding. Improved efficiency and scalability: By operating in a reduced latent
space, FSMOEA improves surrogate training speed and stability, particularly in high-dimensional
settings. Faster convergence: Latent-space search improves the quality of generated candidates,
leading to faster identification of Pareto-optimal solutions under tight evaluation budgets.

3.2 THEORETICAL ANALYSIS OF KEY COMPONENTS

This section provides theoretical justification for the two central design choices in FSMOEA: (1)
the use of MLP-based autoencoders to obtain population-aware embeddings for surrogate modeling,
and (2) the use of latent-space search to reduce sample complexity and accelerate convergence. For
EMOPs, the performance of a solution x is often assessed relative to a population P; under different
dominance schemes. Pareto dominance can become ineffective in high dimensions due to a lack of
discriminative power (Liu et al.,[2022c}b). Decomposition-based dominance addresses this issue by
evaluating solutions through scalarization functions tailored to each subproblem (He et al., 2017
Yuan et al.,2016). FSMOEA inherits from CSEA and REMO, which rely on such decomposition-
guided strategies. In this setting, the relative quality of solutions depends on population-derived
quantities such as the ideal point and neighborhood structure; therefore, as the population evolves,
the dominance outcome itself changes. This section formalizes this dependence and explains how
the proposed autoencoder-based embedding mitigates the resulting inconsistency.

Population Drift and Decomposition-Based Dominance. Let w € R™ be a normalized weight
vector associated with a subproblem. Given an objective vector f(z) € R™, the widely used scalar-
ization functions (as in CSEA and REMO) is:

PBI
g1 Tk

z|w,z*) =

’ ; 2
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where z* is the ideal point and 6 > 0 is a penalty factor. Each criterion C(x; P;) is computed relative
to the current population, since both z* and several neighborhood-based components depend on P;.
Thus, if P, # P;41, we may have C(x; P;) # C(x; Pis1), even for fixed .

Population drift under decomposition. If z; # 2}, ,, then g*®!(z|w, z}) # ¢*®!(z|w, 2;,4). Thus,
decomposition-based dominance is inherently population-dependent. This population dependence is
what we refer to as population drift: generation-to-generation variations in P; induce corresponding
shifts in decomposition scores, altering dominance outcomes and local neighborhoods. Since drift
can occur even when objective vectors change only mildly, a surrogate that assumes fixed target
labels becomes fundamentally inconsistent. A surrogate M : R™ — R is context-free if M (z) is
computed independently of P;. Suppose M is trained on labels y; = C(z;;P;). If Py # Pry1, then
C(xs;P) # C(wi; Pry1) while M (z;) remains fixed, introducing systematic bias. For example, a
point z may be non-dominated in P; but dominated in Py 1, yet M (z) continues to approximate the
earlier label. This shows that context-free surrogates necessarily incur prediction bias when labels
depend on a drifting population.

Remedy via Context-Aware Embeddings. FSMOEA addresses this issue by using an autoen-
coder Mp = (E, D) trained directly on P;. The encoder F; provides population-aware codes

¢i = Ey(x;) that reflect global structure in Py, enabling the surrogate M to approximate M (x; P;) =

M (E:(x)), rather than mapping from raw decision vectors. As F is retrained each generation, the
surrogate input space adapts consistently with the evolving dominance relations. To control repre-
sentation drift, the encoder is updated only when its validation reconstruction error deviates beyond
a small threshold, ensuring that F; varies smoothly across generations. This corresponds to bound-
ing the encoder drift parameter n = || Ey — E;_1]|, which appears explicitly in the error propagation
analysis (Appendix[D). Autoencoders are also theoretically preferable over linear projections such as
PCA in this setting, because they can preserve nonlinear manifold structure and provide an explicit
decoder D enabling inverse mapping required for latent-space genetic operations. Variants such as
VAEs introduce stochasticity in decoding, which is undesirable for deterministic reproduction.

Latent-Space Fidelity and Smoothness. If D is Lp-Lipschitz with bounded reconstruction error
€, and F'is L p-Lipschitz, then for any latent codes z1, zo:

[F(D(21)) = F(D(22))|| < LrLpllz1 — 22| + 2L re.

Thus, smoothness in the latent space is transferred to the objective space up to controlled distor-
tion. This bound clarifies the effect of dimensionality reduction: as long as the reconstruction error
remains bounded and D is sufficiently smooth, evolutionary operators in latent space induce re-
liable and interpretable variations in the decision space. The additive 2L e term quantifies the
theoretical tolerance of FSMOEA to imperfect reconstruction, which is especially important for
high-dimensional EMOPs.

Complexity Benefits. Because latent-space optimization operates in RF with k < n, the sam-
ple complexity required for surrogate training and the search-space volume explored per genera-
tion both decrease substantially. Combined with the Lipschitz-based distortion bound above, this
shows that FSMOEA can reduce effective search complexity without sacrificing structural fidelity.
This analysis shows that: (1) Population drift under decomposition-based dominance introduces in-
herent inconsistencies for context-free surrogates. (2) FSMOEA’s autoencoder provides dynamic,
population-aware embeddings that remain aligned with evolving dominance relations. (3) Latent-
space search reduces sample complexity while preserving smoothness and fidelity. Detailed theo-
retical analysis, including formal definitions, lemmas, and proofs, is provided in Appendix

4 EXPERIMENTAL EVALUATION

We conduct comprehensive experiments to evaluate the effectiveness and scalability of the pro-
posed FSMOEA framework, instantiated in two surrogate-assisted algorithms: FCSEA and
FREMO. These are benchmarked against sixteen state-of-the-art methods, including regression-
based (KRVEA (Chugh et al., 2016), SMSEGO (Ponweiser et al., [2008), EDNARMOEA (Guo
et al) [2021), ADSAPSO (Lin et al., 2022a), LDSAF (Gu et al.| [2024), SFADE (Horaguchi
et al) [2025)), Bayesian-based (ABSAEA (Wang et al.l [2020), ESBCEO (Bian et al., |2023),
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DirHVEI (Zhao & Zhang| [2024), MORBO (Rashidi et al., [2024)), classification- and relation-based
SMOEASs (CSEA (Pan et al., 2018), REMO (Hao et al., 2022), MCEAD (Sonoda & Nakata, [2022),
MOL2SMEA (Si et al., 2025)). Two SMOEAs, i.e., EICMSSAEA (Wu et al.,[2025) and RECMO
Liu et al.| (2025), specifically for constrained EMOPs are also included.

Table 1: Average IGD values of FCSEA, FREMO, and their ablated variants (FCSEA-V1,
CSEA, FREMO-V1, REMO) on DTLZ1-7 and WFG1-9 problems with m = 3 and N = 50.

Problems n CSEA FCSEA-V1 FCSEA REMO FREMO-V1 FREMO
DTLZ1 50 7.1977e+2(9.14e+1)+ | 6.9746e+2(8.47e+1)+ 9.7583e+2(2.70e+2) 9.4858e+2(2.79e+2)- | 6.8327e+2(1.20e+2)+ | 6.6910e+2(8.76e+1)
100 | 1.8764e+3(1.13e+2)= | 1.8681e+3(1.62e+2)= | 1.6804e+3(8.97e+2) 1.8061e+3(1.74e+2)- 1.8098¢e+3(1.65¢+2)- 1.7105e+3(9.32e+2)
DTLZ2 50 1.5057e+0(2.11e-1)- 1.2749e+0(1.95¢e-1)- 5.2832¢-1(6.31e-2) 1.1560e+0(1.98e-1)- 1.2116e+0(1.68e-1)- 5.4138e-1(1.24e-1)
100 4.0946e+0(4.02e-1)- 3.9648e+0(4.03e-1)- 6.2574e-1(1.48¢-1) 3.8417e+0(4.81e-1)- 3.7357e+0(3.31e-1)- 7.4766e-1(3.18e-1)
DTLZ3 50 3.0932e+3(8.32e+2)- | 2.0737e+3(2.17e+2)= 2.2088e+3(1.76e+2) 2.7929¢+3(9.82e+2)- | 2.0227e+3(2.19e+2)+ | 2.0644e+3(2.42e+2)
100 | 6.1106e+3(4.81e+2)= | 6.0580e+3(3.72e+2)- 5.6272¢+3(2.92e+3) 5.7370e+3(3.45e+2)- 5.8136e+3(4.01e+2)- 5.2558e+3(3.48¢+3)
DTLZ4 50 1.3299e+0(1.94e-1)- 1.1843e+0(1.97¢-1)- 9.2653e-1(1.55¢-1) 1.3046e+0(1.64e-1)- 1.1298e+0(1.46e-1)- 9.9888e-1(1.45¢-1)
100 3.7547e+0(3.90e-1)- 3.5439¢e+0(2.81e-1)- 9.9549¢-1(1.11e-1) 3.7898e+0(3.62e-1)- 3.6973e+0(4.21e-1)- 1.0238e+0(2.63¢-1)
DTLZS 50 1.4034e+0(2.20e-1)- 1.2371e+0(2.07e-1)- 4.0903e-1(1.28e-1) 1.1644e+0(1.79e-1)- 1.1465e+0(2.06e-1)- 4.2520e-1(2.08e-1)
100 3.8830e+0(3.97e-1)- 3.8055e+0(3.86e-1)- 5.7915e-1(3.52¢-1) 3.8369e+0(4.17e-1)- 3.7947e+0(4.52¢-1)- 4.9651e-1(1.73e-1)
DTLZ6 50 4.1080e+1(6.96e-1)- 3.6590e+1(1.12e+0)- 3.6340e+1(1.23e+0) 4.0330e+1(9.37e-1)- 3.6642e+1(1.44e+0)= | 3.6451e+1(1.38e+0)
100 8.5634e+1(9.10e-1)- 8.0986e+1(1.11e+0)- 7.9495e+1(1.68e+0) 8.5179e+1(8.88e-1)- 8.1296e+1(1.52e+0)- | 8.0799e+1(1.79¢+0)
DTLZ7 50 8.0987e+0(9.94e-1)- 4.4684e+0(9.46e-1)= 4.4665e+0(8.17e-1) 7.2926e+0(8.66e-1)- 3.5760e+0(8.24e-1)- 3.3692e+0(8.00e-1)
100 9.2832e+0(6.77e-1)- 6.1156e+0(6.57e-1)= 6.1247e+0(7.47¢-1) 8.8404e+0(6.81e-1)- 5.7992¢+0(7.20e-1)- 5.8163e+0(4.60e-1)
WEGI 50 2.1504e+0(1.08e-1)- 1.6301e+0(1.03e-1)- 1.5278e+0(6.62¢-2)+ 1.9785e+0(1.58e-1)- 1.5590e+0(3.76e-2)= 1.5670e+0(4.12¢-2)
100 2.0790e+0(1.21e-1)- 1.6334e+0(6.95¢e-2)- 1.5806e+0(1.28e-1)+ 1.9181e+0(1.41e-1)- 1.5780e+0(3.32e-2)= 1.5680e+0(3.65¢-2)
WEG2 50 6.1959¢-1(3.45¢e-2)+ 6.0090e-1(3.62¢-2)+ 6.6454¢-1(4.29¢-2) 6.4678e-1(6.73e-2)= 6.5416e-1(4.55e-2)- 6.1975e-1(4.62¢-2)
100 6.7467e-1(2.02e-2)= 6.7985e-1(2.33e-2)= 6.6723e-1(5.03e-2) 6.9451e-1(4.37¢-2)- 6.4816e-1(4.91e-2)= 6.6985e-1(4.17e-2)
WEG3 50 7.0072e-1(3.62¢-2)- 6.8423¢-1(3.38¢-2)- 5.5687e-1(2.74e-2) 6.7492¢-1(4.78e¢-2)- 6.6887e-1(4.10e-2)- 5.6397e-1(3.74e-2)
100 7.4720e-1(3.56e-2)- 7.6099e-1(3.17e-2)- 5.5762e-1(3.55e-2) 7.4968e-1(2.23e-2)- 7.5056e-1(2.81e-2)- 5.5750e-1(3.26e-2)
WEG4 50 4.8438e-1(2.42e-2)+ 4.7344¢-1(2.02e-2)+ 5.2181e-1(3.01e-2) 5.0351e-1(3.46e-2)- 4.7057e-1(2.46e-2)= 4.6128e-1(1.85¢-2)
100 5.1278e-1(2.38¢-2)= 5.0605e-1(1.60e-2)+ 5.3294e-1(4.16¢-2) 5.2928e-1(3.24¢-2)- 5.0115e-1(1.50e-2)= 4.9666e-1(1.75¢-2)
WFGS 50 | 7.4924e-1(1.72e-2)- 6.5753e-1(1.86e-2)- | 6.2561e-1(3.47e-2)+ 7.3966e-1(1.81e-2)- | 6.4695e-1(3.83e-2)= | 6.4070e-1(2.63e-2)
100 7.6078e-1(9.56¢e-3)- 7.0552e-1(2.06e-2)= 7.0740e-1(2.69e-2)+ 7.6569e-1(1.28e-2)- 6.9550e-1(2.40e-2)= 6.9454¢-1(2.51e-2)
WEG6 50 8.2959¢-1(2.50e-2)- 8.1146e-1(2.50e-2)- 8.0017e-1(2.39¢-2) 8.4198e-1(4.05¢-2)- 8.2419e-1(2.99¢-2)- 8.0372¢-1(2.71e-2)
100 8.9024e-1(1.72e-2)- 8.7077e-1(2.26e-2)- 8.2709¢-1(2.20e-2) 8.9234e-1(2.54¢-2)- 8.7694e-1(2.36e-2)- 8.2400e-1(2.66¢-2)
WEG7 50 6.7276¢-1(2.49¢-2)- 6.5438¢-1(2.30e-2)- 6.0914e-1(1.35¢-2) 6.6321e-1(3.00e-2)- 6.6139¢-1(2.50e-2)- 6.0562¢-1(1.3%¢-2)
100 7.0070e-1(1.85¢-2)- 6.8507e-1(1.94¢-2)- 6.2251e-1(1.45¢-2) 6.9108e-1(1.70e-2)- 6.8881e-1(2.28¢-2)- 6.2302¢-1(1.75¢-2)
WEGS 50 7.2910e-1(3.42e-2)- 7.0166e-1(2.33e-2)+ 7.1390e-1(1.77e-2) 7.2182e-1(2.30e-2)- 7.0529¢-1(2.71e-2)= 7.0808e-1(3.26e-2)
100 7.6027e-1(2.47e-2)- 7.2506e-1(2.52e-2)= 7.1474e-1(2.06e-2) 7.3887e-1(2.34e-2)= 7.2698e-1(2.82¢-2)- 7.0999¢-1(1.96e-2)
WEGY 50 8.5295e-1(6.49¢-2)- 8.5317e-1(5.60e-2)- 7.6220e-1(4.32¢-2) 8.4950e-1(7.12e-2)= 8.5860e-1(6.68¢-2)- 7.6224¢-1(4.62¢-2)
100 9.2945¢-1(4.19e-2)- 9.1105e-1(3.75e-2)- 7.7577e-1(5.19¢-2) 9.1149¢-1(6.94e-2)= 9.2901e-1(6.03e-2)- 7.6596e-1(6.46e-2)
+-/= vs. FCSEA: 3/26/3 vs. FCSEA: 5/21/6 _ vs. FREMO: 0/28/4 vs. FREMO: 2/23/7 _—
4.1 EXPERIMENTAL SETUP

We evaluate the selected algorithms on eight widely used test suites: DTLZ (Deb et al., |2005),
WFG (Huband et al., [2006), MaF (Cheng et al.| 2017), LSMOP (Cheng et al.| 2016), MLDMP (L1
et al., 2017), MPDMP (Koppen & Yoshida, 2007), real-world SMOP (Tian et al., |2019), and
TREE (He et al., 2020), comprising 112 benchmark instances with diverse numbers of objectives
and decision variables. DTLZ and WFG are classical synthetic benchmarks widely adopted in multi-
objective optimization. MaF and LSMOP are designed for many-objective and large-scale scenarios,
respectively. MLDMP and MPDMP represent real-world multi-line and multi-point distance min-
imization tasks. The real-world SMOP suite includes neural network training (MOP-NN), feature
selection (MOP-FS), and signal reconstruction (MOP-SR). TREE consists of industrial-scale volt-
age transformer calibration problems. This benchmark selection reflects standard EMO evaluation
practices, encompassing a broad range of synthetic and real-world problems across multi-, many-
objective, and high-dimensional settings. Performance is measured using the inverted generational
distance (IGD), IGD™, and Hypervolume (HV) metrics, assessing convergence and diversity.

Each algorithm is executed over 30 independent runs per instance. All implementations use rec-
ommended parameters; the evaluation budget is fixed at 500 function evaluations with a population
size of 50. For FSMOEA, the latent dimension is set to k = 10, while FCSEA and FREMO inherit
all other settings from their respective baselines (CSEA and REMO). Statistical significance is de-
termined using the Wilcoxon rank-sum test at the 0.05 level. In all result tables, symbols “+7, “-”
and “=" denote cases where FCSEA or FREMO significantly underperform, outperform, or match
the baseline, respectively. Best scores are highlighted in bold. All source codes were implemented
on the PlatEMO (Tian et al., [2017)), and all experiments were conducted on a personal computer
equipped with an Intel Core i5-10505 CPU (3.2 GHz) and 24 GB of RAM. For clarity, we em-
phasize that our experimental setup was designed to be fair and stringent; detailed justifications on
problem selection, evaluation budget, and efficiency are provided in Section|G|of the Appendix.
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4.2 EFFECTIVENESS AND COMPONENT-WISE ABLATION

To isolate the impact of FSMOEA’s core components—the foresight head and latent-space
search—we conduct ablation studies on DTLZ1-7 and WFG1-9. We define two ablated variants:
(1) FCSEA-V1, which retains the foresight head but performs search in the original space, and (2)
FREMO-V1, analogously defined for FREMO. These are compared against their baselines (CSEA,
REMO) and full FSMOEA variants. Results (Table 1; see Appendix for full versions) show that
both foresight-enhanced variants (FCSEA, FREMO) consistently outperform their ablated counter-
parts, particularly in higher-dimensional decision spaces (n € {50,100}). While FCSEA-V1 and
FREMO-V1 provide modest gains over CSEA and REMO, they fall short of the full FSMOEA
variants—indicating that the latent representation is critical for scaling to large n. The foresight
head contributes significant performance gains by embedding context-awareness into the surrogate
model, while latent-space search accelerates convergence and enhances sample efficiency.
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Figure 3: Illustration of the average actual running time (as y-axis: the unit is Seconds) of
FCSEA, FREMO and their variants in solving DTLZ and WFG problems (m = 3,n = 100).

4.3 RUNTIME ANALYSIS AND COMPUTATIONAL EFFICIENCY

We evaluate the practical runtime of FCSEA, FREMO, and their ablated variants to assess compu-
tational efficiency, particularly under high-dimensional settings. Fig 3] reports the average runtime
(in seconds) across 30 independent runs on DTLZ1-7 and WFG1-9 test problems with m = 3 and
n = 100. Notably, FCSEA exhibits runtime performance comparable to its variant FCSEA-V1,
indicating that the addition of the foresight head introduces negligible overhead. More importantly,
both FCSEA and FREMO achieve up to an order-of-magnitude speedup over their baselines, CSEA
and REMO, respectively. This performance gap is consistent across all benchmark functions. The
observed efficiency gains stem from two key factors in FSMOEA. First, the use of an MLP-based
foresight head compresses input dimensionality from n to k (with & < n), significantly reducing the
number of parameters in the downstream classifier or relational surrogate. Second, the encoder is
frozen during surrogate training, allowing for rapid, deterministic embeddings and eliminating back-
propagation overhead within the latent model. Together, these design choices enable faster inference
and lower memory consumption, contributing to both runtime efficiency and improved scalability in
large-scale EMOPs. Overall, FSMOEA'’s architectural simplicity, combined with latent-space search
and lightweight surrogates, enables efficient optimization with tight evaluation and time budgets.

ive-MaF13 (m=5)

03 o B
100200 300 400 S E 00 300 400
Number of Function Evaluations ns Number of Funetion Evaluations

Figure 4: Convergence curves of FCSEA, FREMO and their variants on selected MaF bench-
mark problems (MaF1, MaF6, and MaF13) with varying objective dimensionality.

4.4 SCALABILITY WITH RESPECT TO OBJECTIVES AND VARIABLES

We further evaluate scalability from two orthogonal perspectives: objective dimensionality and vari-
able dimensionality. For objective scalability, we assess FCSEA on the MaF1-13 suite under many-
objective settings (m € {5, 10}). Convergence curves for selected functions (MaF1, MaF6, MaF13)
are shown in Figure §] FCSEA demonstrates faster convergence and better final IGD scores than
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Figure 5: Convergence curves of FCSEA and its six competitors on selected LSMOP bench-
marks (LSMOP1, LSMOPS, LSMOPS, and LSMOPY) with varying variable dimensionality.

Table 2: Average IGD™ results of FCSEA and its six competitors in solving 3-objective 100-
dimensional DTLZ and WFG problems with N=50 and F' F,,,, = 500.

Problem MORBO DirHVEI SFADE LDSAF ADSAPSO MOL2SMEA FCSEA
DTLZ2 | 3.8257¢+0(3.19-1) | 6.1744¢+0 (1.68¢-2) | 5.0768¢-1(6.07¢-2) | 6.4925¢-1(1.50e-1) | 3.6555¢+0 (6.04¢-1) | 1.5651e+0(1.85e-1) | 5.0800¢-1(7.68¢-2)
DTLZ4 | 3.4314¢+0 (3.84c-1) | 6.4274¢+0(2.09¢-1) | 6.1700e-1(2.43¢-2) | 7.1070e-1(1.80e-1) | 4.7245¢+0(1.30e+0) | 1.3316e+0(1.15e-1) | 5.5030e-1(3.65¢-2)
DTLZ7 | 9.9169¢+0 (6.86e-1) | 9.8915¢+0(2.10¢-1) | 6.2735¢+0(5.89¢-1) | 9.0743¢+0(5.34¢-1) | 7.3988¢+0(1.06¢+0) | 1.0389¢+1(5.56e-1) | 5.7365¢+0(3.10e-1)
WFGI | 2.2018¢+0(7.77¢-2) | 2.1343¢+0(2.99¢-2) | 1.6034e+0(2.37e-2) | 2.0756¢+0(5.766-2) | 2.1984e+0(3.92¢-2) | 1.9965¢+0 (I.14e-1) | 1.6151c+0(3.38¢-2)
WFGS | 7.7329¢-1(1.62¢-2) | 7.4307¢-1(6.90¢-3) | 3.1820¢-1(4.53¢-2) | 3.5816e-1(3.81e-2) | 7.0728¢-1(3.91e-2) | 7.8875¢-1 (1.80e-2) | 2.9240¢-1(4.63¢-2)
WFGS | 7.1172e-1(1.86-2) | 7.4256¢-1(7.89¢-3) | 6.6978¢-1(3.76¢-2) | 6.9288¢-1(3.32¢-2) | 7.0785¢-13.44e-2) | 5.0404c-1(2.94¢-2) | 5.1502¢-1(2.46¢-2)

both its variants (FCSEA-V1 and CSEA), confirming that foresighted surrogates enhance gener-
alization even in many-objective scenarios. For variable scalability, we evaluate FCSEA on the
LSMOP suite with high-dimensional decision spaces (n € {100, 500, 1000}), comparing it against
six strong competitors. As shown in Figure [6| FCSEA significantly outperforms regression-based
(KRVEA, SMSEGO, EDNARMOEA) and Bayesian-based (ABSAEA) surrogates. It also sur-
passes classification-based MCEAD and its own baseline CSEA in most cases. The combination
of lightweight latent representations and population-aware surrogate modeling enables FSMOEA to
scale to large n without compromising performance or stability.

To further validate the scalability of our method on large-scale EMOPs, we additionally com-
pare FCSEA with six algorithms specifically designed for high-dimensional EMOPs: MORBO,
DirHVEI, SFADE, LDSAF, ADSAPSO, and MOL2SMEA. Table 2| reports the IG D% values on
100-dimensional 3-objective DTLZ and WFG problems under a tight evaluation budget. FCSEA
consistently attains competitive or superior performance, confirming the effectiveness of the pro-
posed population-aware latent representation in high-dimensional settings.

4.5 PERFORMANCE ON REAL-WORLD PROBLEMS

To assess the practical effectiveness of FCSEA in solving real-world EMOPs, we evaluate it on ten
diverse benchmark problems, including MLDMP, MPDMP), MOP_NN), MOP_FS, MOP_SR, and
five TREE problems. We compare FCSEA against six competitive algorithms: KRVEA, LDSAF,
ABSAEA, ESBCEO, MCEAD, and CSEA. Each algorithm is given the same strict evaluation bud-
get of 500 function evaluations. Table [3| reports the average HV results across 30 runs. FCSEA
achieves comparable or superior performance on MLDMP and MPDMP, where all methods operate
in low-dimensional decision spaces (n = 2). More notably, FCSEA outperforms all competitors
on the remaining high-dimensional real-world problems, particularly excelling in large-scale tasks
like MOP_NN, MOP_PO, and MOP_SR. The most significant advantage of FCSEA is observed
on the TREE suite. While all other algorithms fail to find any feasible solutions within the eval-
uation budget—resulting in ‘NaN’ HV scores—FCSEA successfully discovers valid, high-quality
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Figure 6: Average rankings of FCSEA and its ten competitors based on the IGD+ results.

Table 3: Average HV results of FCSEA and its six competitors in solving real-world EMOPs
with N=50 and F'E,,,, = 500, NaN denotes failure to find any feasible solution.

Problems | (m, n) KRVEA LDSAF ABSAEA ESBCEO MCEAD CSEA FCSEA

MLDMP | (3,2) | 6.732¢-1(3.43¢-2) | 1.920e-1(3.00e-1) | 6.956¢-1(2.85¢-2) | 8.155¢-2(1.82¢-1) | 4.619¢-1(1.22¢-1) | 2.207e-1(1.43¢-1) | 8.276¢-1(4.05¢-3)
MPDMP | (4,2) | 2.577e-1(4.87¢-3) | 5.315-2(1.19¢-1) | 2.778e-1(1.73¢-3) | 1.047e-1(9.49¢-2) | 1.456¢-1(2.86¢-2) | 3.938¢-2(5.21¢-2) | 2.727e-1(1.87e-2)
MOPNN | (2,321) | 7.734¢-2(6.58¢-4) | 8.235¢-2(7.15¢-4) | 7.698¢-2(5.89¢-4) | 2.953¢-1(2.06e-2) | 8.174¢-2(5.93¢-4) | 7.791e-2(3.25¢-4) | 3.429¢-1(9.88¢-3)
MOP PO | (2,1000) | 9.131c-2(2.58¢-5) | 9.156¢-2(1.36¢-4) | 9.131e-2(4.16¢-5) | 9.127¢-2(5.56¢-5) | 9.141¢-2(8.63¢-5) | 9.1360-2(4.69¢-5) | 9.162¢-2(1.64e-4)
MOPSR | (2, 1024) | 0.000e+0(0.0¢+0) | 0.000e+0(0.0¢+0) | 0.000e+0(0.0c+0) | 6.992¢-2(2.16¢-2) | 0.000e+0(0.0e+0) | 0.000e+0(0.0e+0) | 8.975¢-2(5.24¢-3)

TREEI | (2,300) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) 6.366¢-1(1.71¢-2) | 7.909¢-1(5.03¢-2)
TREE2 | (2,300) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) 7.636¢-1(3.80¢-2)
TREE3 | (2,600) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) 8.727¢-1(1.30¢-2)
TREE4 | (2,600) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) 8.773¢-1(8.97¢-2)
TREE5 | (2,600) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) 8.556¢-1(8.84¢-2)

solutions across all five TREE problems. This suggests that FCSEA not only generalizes well to
large-scale real-world scenarios but also exhibits strong robustness and sample efficiency in highly
constrained, evaluation-limited settings. The ability to maintain convergence and feasibility under
such constraints highlights the practical superiority of the FSMOEA framework.

TREE is a real-world constrained task, where only solutions that satisfy all constraints are consid-
ered feasible. In Table 3] “NaN” indicates that the algorithm failed to discover any feasible solu-
tion within the evaluation budget, leaving the final population empty and the HV metric undefined.
Although FSMOEA does not incorporate explicit constraint-handling techniques, it successfully lo-
cates feasible solutions on TREE (The HV results of both the EICMSSAEA and RECMO in solving
these five TREE problems are also NaN.). This demonstrates that its context-aware modeling and
latent-space search accelerate convergence toward the feasible region in large-scale spaces.

Ablation study. =~ We emphasize that our e 4. Aplation study: Average IGD* re-
framework is not tied to autoencoders; any g1 of FCSEA and its dimensionality-reduction
dimensionality-reduction module that can cap- . 1iants (CSEA-PCA and CSEA-VAE) on 3-
ture population-dependent structure and pro-  ;piective 100-dimensional DTLZ and WFG prob-

vide a reversible mapping is compatible With 10106 T gwer values indicate better performance.
FSMOEA. Thus, we replaced the autoencoder

with PCA and VAE, producing the variants ~Problem | CSEA-PCA CSEA-VAE FCSEA

CSEA-PCA and CSEA-VAE. As shown in Ta- DTLZ2 | 6.12e-1(9.1e-2) | 5.65e-1(8.2e-2) | 5.08e-1(7.6e-2)

. . o ~ DTLZ4 | 6.82e-1(4.9¢-2) | 6.05e-1(4.1e2) | 5.50e-1(3.6e-2)
ble[d] both variants remain competitive but con DTLZ7 | 7.02¢40(4.0¢e-1) | 6.41e+03.5e-1) | 5.73e+0(3.1e-1)

sistently underperform FCSEA. This confirms  WFGI | 1.92e+0(4.2¢-2) | 1.77e+0(3.8¢-2) | 1.61e+0(3.3e-2)
that while FSMOEA does not rely on autoen- ~ WFGS | 391e-154e-2) | 342e-15.1e2) | 292e-1(4.6e-2)

) SO WF 33e-13.5¢2) | 5.82e-1(3.1e-2) | 5.15e-1(2.4e-2
coders, the nonlinear yet deterministic embed- G8 | 633c-1G.3e2) | 5.82c-1G.le2) e-1@24e-2)
dings produced by a lightweight autoencoder provide a more stable and population-aligned latent
space, thereby enhancing surrogate accuracy and search efficiency.

5 CONCLUSIONS

This paper introduced the FSMOEA framework, which unifies a foresight head with evolution-
ary search in a low-dimensional latent space. Instantiated in FCSEA and FREMO, the framework
demonstrates clear advantages in tackling scalable EMOPs. The foresight head improves surrogate
modeling by capturing population context, while latent-space search accelerates convergence and
enhances scalability. Extensive experiments across diverse benchmarks confirm the effectiveness
of these components, showing consistent and significant gains over existing SMOEAs, especially in
high-dimensional settings. Future research will extend FSMOEA to more complex real-world appli-
cations, investigate alternative dimensionality reduction methods and contrastive surrogate models,
and explore opportunities to integrate large language models for adaptive guidance. Additional dis-
cussions and experimental studies are provided in the appendix.
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A APPENDIX

B ABSTRACT OF THE APPENDIX

The appendix provides additional experimental results to complement the main findings, covering
the performance of FCSEA and its competitors on various benchmarks and scenarios: The perfor-
mance of FCSEA and FREMO on DTLZ and WFG problems, results on objective-based scalability
(many-objective EMOPs) studies, results on variable-based scalability (large-scale EMOPs) studies.
The supplementary results reinforce the conclusions drawn in the main paper, validating the scal-
ability, robustness, and practicality of the FSMOEA framework in solving EMOPs across various
domains and complexities.

C DETAILED DESCRIPTION OF THE FSMOEA FRAMEWORK

This appendix provides a comprehensive, step-by-step explanation of the proposed FSMOEA frame-
work. FSMOEA enhances conventional SMOEAs by embedding population-aware latent represen-
tations and performing evolutionary search in a learned low-dimensional space. The specific pseu-
docodes for implementing FSMOEA are shown in Algorithm 1 and Algorithm 2. The algorithm
proceeds as follows:

Initialization. FSMOEA begins by randomly initializing a population of /N candidate solutions
from the decision space. Each solution is then evaluated using the true multiobjective function
F(x). The initial population and its corresponding objective values form the training set for the first
iteration.

Step 1: Foresight Representation Learning. At the start of each generation, an MLP-based au-
toencoder is trained on the current population. The encoder £ : R® — RF projects each high-
dimensional solution into a compact latent space, while the decoder D : R¥ — R”™ attempts to
reconstruct the original input. The autoencoder is optimized to minimize reconstruction loss:

N
1
Lae = > lIxi — D(E(x:))]I.
=1

Once trained, the encoder is frozen to ensure stability. The resulting latent codes ¢; = E(x;) are
used as context-aware representations for surrogate modeling and search.

per maximum surrogate-assisted evaluations

Step 2: Surrogate Model Construction. Using the latent codes of the current population, FS-
MOEA constructs a lightweight surrogate model to predict solution quality. Each solution is la-
beled using a population-wide performance criterion (e.g., non-dominated sorting, decomposition
value). These labels serve as targets for training a classifier (FCSEA) or a pairwise relation model
(FREMO). The surrogate operates in the latent space and thus benefits from lower input dimension-
ality and improved generalization.

Step 3: Latent-Space Evolutionary Search. FSMOEA performs crossover and mutation directly
in the latent space. For each offspring generation:

* Two parent solutions are selected from the population using binary tournament selection.
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Algorithm 1 The General Framework of FSMOEA

Input: the EMOP to be solved, population size N, F'F,,x, maximum surrogate-evaluations I«
Qutput: the final population P
. initialize P with N random solutions as the same to the embedded SMOEA.
evaluate each solution = € P by the real objective functions F'(x).
set real function evaluation counter ' = NN and initialize a random foresight model M.
while FE < FFE,,., do
train the Mg on the real-evaluated solutions in P.
O = SurrogateAssistedSearch(P, Mg, Ity.x) based on the embedded SMOEA.
evaluate each solution = € O by the real objective functions F'(x).
P = EnvironmentalSelection(P, O) as the same to the embedded SMOEA.
updated the real function evaluation counter as FFF = FE + N.
end while
return population P

TEYRIADIUNRD

—_—

Algorithm 2 SurrogateAssistedSearch(P, Mg, It,,x)

Input: embedded SMOEA’s super-parameters and the maximum surrogate-evaluations 1%«
Output: the promising O that have not been evaluated by the real F'(x)

: initialize a surrogate model Mg, set It = 0,0 = ().
add the encoder part of M to the head of M s to form a foresight surrogate Mpg.
prepare the training data D from P by a certain environmental selection criterion.
train the Mpg on D with its head part frozen.
while It < It,,.. do
search in the code space to get 7' new codes.
decode codes by decoder € M to get new solutions.
evaluate each new solution by the M pg.
O = BetterPerformingSelection(O, new solutions) based on the embedded SMOEA.
It=1t+T.
. end while
: return the promising population O

PRDIUN AR

—— =
NTewe

¢ Their latent codes are retrieved via the frozen encoder.

* Variation operators (e.g., simulated binary crossover and Gaussian mutation) are applied in
latent space to produce new latent codes.

* The decoder transforms the new latent code back into a solution in the original space.

The surrogate model is then used to predict the quality of each candidate. Only the most promising
candidates—those with high surrogate-predicted performance—are selected for expensive evalua-
tion with the true objective function.

Step 4: Surrogate-Guided Evaluation. From the pool of generated candidates, FSMOEA selects
the top K solutions based on surrogate scores. These candidates are then evaluated using the real
objective function. This focused evaluation strategy maximizes the utility of each function call under
the evaluation budget.

Step 5: Environmental Selection. The evaluated offspring are combined with the current par-
ent population. An environmental selection mechanism (e.g., based on non-dominated sorting and
crowding distance, depending on the embedded SMOEA) is used to select NV solutions to form the
next generation. This process preserves both convergence pressure and diversity.

Termination. FSMOEA repeats the above steps until the maximum number of real function eval-
vations F'E .« is reached. Throughout the search, an external archive maintains the set of non-
dominated solutions found so far.

Key Advantages. The foresight head provides population-level awareness to the surrogate model,
improving its ability to make consistent predictions under dynamic population changes. Meanwhile,
latent-space search reduces computational complexity and enhances scalability to high-dimensional
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decision spaces. Together, these components enable FSMOEA to efficiently solve expensive MOPs
under strict evaluation budgets.

D DETAILED THEORETICAL DERIVATIONS

This section provides detailed derivations and proofs supporting the high-level theorems in the
main text. We focus on (i) how population drift alters decomposition-based scalarizations used
in MOEA/D-style selection, (ii) why context-free surrogates suffer bias under drift, (iii) how an
MLP autoencoder produces population-aware embeddings with quantitative distortion bounds, and
(iv) why search in a compact latent space reduces sample complexity and preserves smoothness of
the objectives.

D.1 NOTATION AND STANDING ASSUMPTIONS

Let FF : R®™ — R™ denote the objective mapping F(x) = (fi(x),..., fm(x)). Let P, =
{xgt), .. ,zg\t,)} be the population at generation ¢. Denote by

the (population) ideal point at generation ¢t. We assume:

Assumption 1 (Lipschitz objective). F' is Lp-Lipschitz on a domain containing all populations
considered:

|F(z) = F(y)ll < Lellz —yll, Va,y.
Assumption 2 (Small population movement between generations). The population moves by at
most A, in decision space between consecutive generations:

- max HxEtH) - xgt)H < A,.
i=1,...,N

Under these, we will derive explicit bounds relating population movement to changes in scalarization
values and thus to label drift.

D.2 POPULATION DRIFT FOR DECOMPOSITION SCALARIZATIONS

We analyze three common scalarizations used in decomposition-based selection: weighted sum
(WS), weighted Tchebycheff (TCH), and penalty-based boundary intersection (PBI). Fix a normal-

ized weight vector w € R™, |jw| = 1.
Definitions.
m
9" | w) =D w;f(@), 4)
j=1
gTCH(x | w, 2*) := 1r§njagxmwj |fi(x) — zj|, (&)
9o ) = PO ) o MBS

We first bound how much these scalarizations can change as z* shifts from 2} to 2/, ;.
Lemma 1 (Ideal-point shift bound). Under Assumptions[IH2}
27 — 241l < Lr Ag. 7)

Proof. Each coordinate j of z is z; ; = min; fj(arl(»t)). After the population moves by at most A,
(t+1)

i

satisfies

5@y = £ < Lella!™Y — 20| < Lpa,.

K3

any new candidate x

Thus the coordinate-wise minima can change by at most LA ; combining coordinates gives the
claimed bound. O

17



Under review as a conference paper at ICLR 2026

Tchebycheff bound.
Proposition 1. For any fixed x and normalized w,

TCH( TCH(

19" M (@ | w, 2) — g

Proof. By equation [5]and the elementary inequality | |a| — [b] | < |a — b|, we have

9" (@ | w,zp) = 9T M (@ [ w, 2
= | max w15 (2) = 23] - maxwy|f(@) = 2y
< mjaij ’ |f(z) — Zz]| = |fj(z) - Z;—l,j' ’
< maxwy 275 = 2,4 = lwllee ll28 = 24alloos
which yields equation [§]

PBI bound. We next bound the change in PBI score due to z* shift.

Proposition 2. For any fixed x and normalized w (||w|| = 1),

|97 @ [ w, 2) = 97PN (@ | w, 7740)] < (1+20) |27 = 284 -

Proof. Setu; := f(x) — z{ and ug 41 := f(x) — 27, . Then

<Utaw> <Ut+1vw> w
A= - — (2, -2,
T e S A

so |Ay| < ||zf — 2{, 1. For the perpendicular term, denote

{ut, w) _ (utr1, w)
HwHQ w, Pt41 ‘= Ut41 HwHQ

bt = U —
By triangle inequality,
1
1Pt = praall < lue — wepa || + WKW — urs1, w)l - [Jwl.

With [|w|| = 1, this gives ||p; — pi1]| < 2||ue — wegr|| = 2||2f — 2/ Therefore

ALl = [llpell = lIpeall] < llpe = pesall < 20127 — 274411

Combining,

971 20) = g™ o) S 1A+ 01A LT < (1+20) [l — 2744 -

vl w, 7 )| < Jwlls 2 = 24 llee < lwllso NIz = 244l

®)

©))

O

Weighted Sum (WS) and neighborhood dependence. While ¢VVS(x | w) does not depend on

z*, the selection decision using WS still depends on the current population through:

* the set of weight vectors w chosen and their normalization relative to the population,

* neighborhood assignment when comparing candidates (e.g., selecting best in neighbor-

hood).

Thus population drift affects selection even for WS by changing which weight vector or neighbor is

most relevant for a given candidate.

Interpretation. Propositions|IH2|provide explicit, linear-in-||z; — z/, , || bounds showing that small
population-induced shifts in the ideal point cause proportional changes in decomposition scores.
When such changes cross ranking thresholds between candidates, the selection outcome flips. There-

fore, labels derived from decomposition scores are inherently population-dependent.
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D.3 FORMAL INCONSISTENCY OF CONTEXT-FREE SURROGATES

We now quantify how a surrogate trained as a context-free mapping becomes biased when the pop-
ulation shifts.

Definition 1 (Context-free surrogate). A surrogate M : R™ — R is context-free if M (x) depends
only on x, not on the population Py.

Let C(x; P;) be a scalar selection score (e.g., decomposed scalarization) used to label training points
at generation t. Suppose M is trained to approximate C'(-; P;) with expected training error €, over
the training distribution D, induced by P;:

Eznp, [|M(2) = C(2;Py)|] < Etain- (10)

Assume C' is Lipschitz in the ideal point z*: there exists L¢ such that for all x,
|C(@;Py) — Cla; Prsa)| < Lellzg — z4al- (11
(For TCH or PBI, one can take L¢ equal to the right-hand sides of Propositions|[T} 2])

Theorem 1 (Bias growth under population drift). Under equation [I0-equation [[1] and assuming
distributions Dy, Dy 1 are close (or identical for simplicity),

EIN’Dt+1 “M(l’) - C(m;tpt+1)|] S Etrain + LC’HZ;IK - Z;(Jr]H + Acov; (12)

where Ao, accounts for distribution shift between Dy and Dy 1.

Proof. By triangle inequality,

|M () — C(; Prya)|
< [M(x) = Ca; Po)| + |C(;Pr) = C(; Prga )|
Taking expectation over  ~ D, and decomposing the first term into expectation over D, plus the

distribution-difference Ao, yields equation@ O

Implication. Even a context-free surrogate M with small training error €., experiences additional
error proportional to the magnitude of ideal-point shift ||z — 2/, ;||. When populations change
substantially, this extra term may dominate and harm selection quality.

D.4 CONTEXT-AWARE EMBEDDINGS VIA MLP AUTOENCODERS: QUANTITATIVE BOUNDS

FSMOEA trains an autoencoder (E;, D;) on the current population P;. Let E; : R® — R*, D; :
R* — R™. Let reconstruction error satisfy:

ID:(Ee(z)) — x| <, YV € Ps. (13)

Assume Dy is L p-Lipschitz on the relevant region and F; is Lg-Lipschitz.

Proposition 3 (Local distinguishability / injectivity). If z,y € Py then
1B (z) = Ev(w)ll = 75 (= = yll - 2¢). (14)
In particular, if ||z — y|| > 2¢ then Ey(x) # Eqi(y).

Proof. By Lipschitz property of D,
1D:(Et(2)) — De(Er(w))]| < LpllEi(x) = E(y)]
Rearrange and apply triangle inequality:

Lp||Ey(z) — E(y)|| = [[De(Ee(z)) — De(Ee(y))|l
> |lz = yll = llz = De(Ee(2))]| — [ly — De(Ex(y))|
> |l —yll — 2,

which yields equation O
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Neighborhood preservation and similarity. From equation|14|and the Lipschitz of F,
[1Ei(z) — Ev(y)ll < Lellz -yl
Combining upper and lower bounds gives
1Be(z) = Ex()ll = llz = yll] < (Le = Dz =yl + 2¢, (15)

so local distances are preserved up to multiplicative and additive distortion. Consequently inner
products and cosine similarities in latent space reflect relative geometry in decision space for nearby
points.

Why this is population-aware. The autoencoder is trained jointly on all points in P, so the
encoder map FE) is shaped by the empirical geometry of the current population. In particular, when
‘P; changes, F; (re)adapts and thus encodes each z relative to the current population geometry. This
is the mechanism by which context enters the surrogate.

D.5 AUTOENCODER: NEIGHBORHOOD PRESERVATION AND LOCAL INJECTIVITY
FSMOEA trains an autoencoder (E, D) with encoder F : R” — R* and decoder D : R¥ — R™.
Assumption 3 (Bounded reconstruction error). For all x € Py,

ID(E(x)) — || <e. (16)
Assumption 4 (Lipschitz decoder). D is Lp-Lipschitz: ||D(z1) — D(z2)|| < Lpllz1 — 22|
Proposition 4 (Local injectivity bound). For z,y € P;,

—yl =2
12) ~ ) > 1222 (1)
Lp

Thus, if ||z — y|| > 2¢, then E(x) # E(y).
Proof. By Lipschitz continuity,

ID(E(x)) = D(E(y))|l < Lp||E(x) — E(y)]|
Triangle inequality implies

ID(E(z)) = D(E(y))|| = lz = yll = |z = D(E(@))]| = lly — D(EW))]-
Applying Assumption [3|gives the bound. O
Corollary 1 (Neighborhood preservation). For z,y € P;,
T —y| — 2€
B=MZ2 < p) - B < Lolle - 18)

where L is the Lipschitz constant of E.

Implication. Distances and relative similarities in latent space are faithful to those in the original
space, up to bounded distortion.

D.6 BIAS REDUCTION VIA CONTEXTUAL ENCODING: A DRIFT-CONTROLLED ERROR BOUND

Let M, : R¥ — R be a surrogate trained on latent codes ¢ = E;(z) and labels C'(z; P;). Define the
composed predictor M, (z) := M;(E;(x)). Suppose M, has training error € ;.
Assume the encoder changes slowly between generations:
ni=sup ||Eya(z) — Ey(a)]. 19)
TEPUPi 41

If M, is L sr-Lipschitz in code space, then for x € Pyyy,
|My(Ey(2)) = C(@; Prya)| < [Mi(Ey(x)) — Myg1 (Erga(2))]
+ | M1 (Erga (2) = Cl@; Prya)|-
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The first term is bounded by L ;7 + 0, where & accounts for differences between M; and M; 41
(which can be controlled by fine-tuning). The second term is the training/generalization error of
M1 on the new codes. Therefore, encoder drift n directly controls the additional error incurred

across generations; retraining/fine-tuning M after encoder update further reduces error. This ar-
gument formalizes how context synchronization (retraining encoder and surrogate) reduces drift-
induced bias relative to a context-free surrogate that cannot adapt.

D.7 LATENT-SPACE SEARCH: SMOOTHNESS PRESERVATION AND SAMPLE COMPLEXITY

We quantify two properties: (i) objective smoothness is (approximately) preserved through the de-
coder, and (ii) the covering/sample complexity in latent space is dramatically lower when k& < n.

Smoothness preservation. Assume decoder D is L p-Lipschitz and reconstruction error bounded
by € on the population (as in equation . For latent codes z1, 23 and z; = D(z;), we have

| F(x1) — F(22)]| < Lp||zy — 22|
< LF(HD(Z1) — D(z0)|| + 26) (20)
< LFLDHzl - 2’2“ + 2L pe.

Thus, small latent perturbations produce controlled changes in objective space, up to additive error
2L pe from reconstruction.

Covering / sample complexity argument. Let Z C R* be the image under £ of a region of
interest in decision space (e.g., region near promising solutions). For tolerance § > 0 in latent
space, denote the minimal covering number N (Z,§) (number of ¢5-balls radius ¢ needed to cover
Z). For a compact k-dimensional set, one typically has (up to problem-dependent constants)

N(Z,8) =5k

Similarly in the original decision space region of interest ¥ C R”,
N(X,0) =<5

Hence for the same resolution d, the ratio of covering numbers scales as

N(X,0)

~ 5—(n—k) ]
N(Z,5)

Consequently, if naive sampling (or mutation) is approximately uniform over the respective regions,
the expected number of independent trials to hit an J-neighborhood of a target scales with these
covering numbers. Therefore, under the simplifying model of independent sampling, latent-space
search reduces the expected required samples/exploration effort exponentially in the dimension gap
n —k.

From samples to generations/evaluations. If each generation produces B candidate evaluations
(or if we evaluate B decoded latent samples per generation), then expected number of generations to
find a d-good point is proportional to N(-,d)/B. Thus latent-space operation yields a proportional
reduction in generations/evaluations given fixed B.

D.8 PUTTING IT TOGETHER: WHY FSMOEA REDUCES DRIFT AND ACCELERATES
CONVERGENCE

Combining the pieces:

* Propositions and show decomposition labels C'(x; P;) change linearly with ||z} — 27, 4|,
where ||z} — 21 [[< LrA, by equation(7]

* A context-free surrogate )M trained at ¢ incurs extra expected error ~ Loz — 2/, | at
t + 1 (Eq. equation[I2). Therefore, large population moves produce large surrogate bias.

21



Under review as a conference paper at ICLR 2026

* The autoencoder encoder E; embeds points relative to P;, and retraining/update of E;
ensures that the code-space target is synchronized with labels; encoder drift 7 controls

residual error between generations. This yields smaller bias growth compared to context-
free M.

* Latent-space search operates in dimension k£ < n and preserves objective smoothness up
to constants (Eq. equation [20), while dramatically reducing covering/sample complexity;
hence fewer evaluations are needed to explore to given resolution.

These quantitative bounds justify FSMOEA’s design: (i) the foresight autoencoder reduces label-
drift bias by aligning representations with population-dependent labels, and (ii) latent-space evo-
Iution improves sampling efficiency and expected convergence speed under realistic Lipschitz and
small-reconstruction-error assumptions.

Remarks.

1. The bounds above are conservative and rely on Lipschitz assumptions and bounded recon-
struction error; they are intended to make the mechanism precise and identify the depen-
dence on key quantities (Lp, 0, ¢, A, k,n).

2. Full, non-asymptotic convergence proofs for surrogate-assisted evolutionary processes
would require modeling the stochastic search operators and surrogate-update dynamics;
the present analysis isolates core mechanisms and provides explicit inequalities useful for
understanding empirical behavior.

E PRELIMINARIES ON MULTI-OBJECTIVE OPTIMIZATION

We briefly introduce key concepts in multi-objective optimization that are relevant to FSMOEA, in-
cluding Pareto-dominance, Pareto front, and two widely used performance indicators: hypervolume
(HV) and inverted generational distance (IGD).

Definition 2 (Multi-objective optimization problem (MOP)). A general MOP can be formulated as:
LDEIEZIF(X) = (fl(x)a fZ(X)a RS fm(x))y

where ) C R"™ is the decision space, F' : Q0 — R™ is the vector of m objective functions, and the
image set Y = {F(x) | x € Q} is called the objective space.

Definition 3 (Pareto dominance). Given two solutions X, Xy, € () with objectives F(x,), F(xp):
Fxa) < F(xp) = (filxa) < filxo)s ¥i=1,...,m) A (f5(xa) < F5(x0), 3j)-
That is, x, Pareto-dominates x;, if it is no worse in all objectives and strictly better in at least one.

Definition 4 (Pareto-optimal set and Pareto front). The Pareto-optimal set is:
PS={xeQ|Px €Qst Fx') < F(x)}.
Its image in objective space is called the Pareto front (PF):
PF ={F(x)|x € PS}.
The PF characterizes the trade-offs among conflicting objectives, and is the ultimate optimization
target.

Definition 5 (Hypervolume (HV)). Let R € R™ be a reference point dominated by all solutions of
interest. Given an approximation set A C ), the hypervolume indicator is:

HV(A) =Leb | |JIA(y), Ra] x -+ X [fn(y), Rl | 5
yeEA

where Leb(-) denotes the Lebesgue measure. HV measures the volume of the dominated portion of
objective space; larger values imply better convergence and diversity.

Definition 6 (Inverted Generational Distance (IGD)). Given an approximation set A C ) and a
reference set PF* sampled from the true Pareto front, IGD is defined as:
1
IGD(A,PF*) = Z min ||y* — y||.

Smaller IGD values indicate that A is closer to and better covers the true Pareto front.
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Relevance to FSMOEA. In FSMOEA, Pareto-dominance and decomposition-based dominance
criteria determine population labels, making them inherently population-dependent. Performance is
assessed via HV and IGD, which jointly capture convergence (closeness to PF) and diversity (spread
along PF).

F LIMITATIONS

While FSMOEA demonstrates strong empirical performance and theoretical soundness across di-
verse EMOP settings, several limitations remain.

Dependence on population quality. The foresight encoder and surrogate model are both trained on
the current population, which may limit their effectiveness early in the optimization process when
the population is still of low quality or lacks diversity. In such cases, the learned latent space may not
fully reflect the structure of the broader search space, potentially leading to premature convergence
or overexploitation.

Fixed latent dimensionality. FSMOEA uses a fixed latent space dimension % throughout the op-
timization. While effective in our experiments, this hyperparameter may require problem-specific
tuning. Too low a value may under-represent important structural information, while too high a
value can reintroduce issues related to high-dimensional search.

Non-adaptive surrogate updates. Although we retrain the surrogate at each generation using the
foresight encoder, the training process is static within each generation and may not adapt quickly
enough to abrupt shifts in the population distribution. Future extensions could explore online or
adaptive updating strategies to improve responsiveness.

Lack of constraint handling mechanisms. The current implementation of FSMOEA focuses pri-
marily on unconstrained and box-constrained EMOPs. Its performance on general constrained mul-
tiobjective optimization problems (CMOPs) with equality and inequality constraints has not yet been
extensively tested and may require additional mechanisms for feasibility preservation and constraint-
aware surrogate modeling.

Computational overhead in extremely tight budgets. While FSMOEA is efficient relative to com-
peting methods, the additional overhead from training autoencoders and surrogate models may still
be non-negligible when function evaluations are extremely limited (e.g., F'Epnax < 100), especially
in time-critical applications where even surrogate computations are costly.

Generalization to non-evolutionary settings. FSMOEA is designed specifically within an evolu-
tionary framework. Its applicability to other types of surrogate-assisted optimizers, such as Bayesian
optimization or gradient-free trust-region methods, remains unexplored.

We see these limitations as opportunities for future research. In particular, adaptive encoding strate-
gies, enhanced constraint handling, and integration with non-evolutionary paradigms are promising
directions to further extend FSMOEA'’s applicability and robustness.

G ON EXPERIMENTAL SELECTION AND FAIRNESS

We emphasize that the benchmark selection in our study was conducted in a comprehensive and
unbiased manner. Specifically, we tested all problems in the WFG, DTLZ, MaF, TREE, MOP_NN,
MOP_SR, and MOP_FS suites. For LSMOP, we included problems 1, 5, 8, and 9. The omitted
cases are either (i) trivially solvable (LSMOP2 and LSMOP4), or (ii) extremely difficult multimodal
problems (LSMOP3, 6, 7) that remain unsolved even by specialized algorithms. Since our focus is
on expensive multi-objective optimization rather than specialized multimodal settings, we believe
this partial selection is justified. To ensure full transparency and reproducibility, all source codes
have been provided.

On Evaluation Budget. A common misunderstanding arises from conflating the notions of it-
erations and function evaluations in evolutionary algorithms. Each generation evaluates the entire
population, so the total number of function evaluations is given by the product of the population size
and the number of generations. Our experiments restrict the total number of function evaluations to
500, which is extremely conservative.
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It is important to note that our work explicitly targets scalable EMOPs, where the dimensionality
of the decision variables can reach up to 1000. By contrast, most prior works are evaluated on
low-dimensional problems (typically with fewer than 30 decision variables). The combination of
expensive objective functions and high-dimensional search spaces makes our testbed substantially
more challenging. Indeed, for inexpensive large-scale optimization, it is common practice for algo-
rithms to consume hundreds of thousands or even millions of evaluations. Within this context, our
budget of only 500 evaluations highlights the efficiency of FSMOEA.

On Efficiency. Finally, our convergence curves (Figures 4 and 5) demonstrate that FSMOEA con-
sistently outperforms competitive baselines within the first 100 evaluations. This not only confirms
its sample efficiency under tight budgets but also shows that our results are not an artifact of generous
evaluation allowances.

In summary, the experimental setup was designed to be both fair and stringent: problem selection
was comprehensive across standard suites, evaluation budgets were deliberately conservative to re-
flect expensive optimization settings, and performance trends were verified through convergence
analyses. These considerations ensure that the advantages observed for FSMOEA are genuine and
not due to selective evaluation conditions.

H MORE DISCUSSIONS ON OUR MOTIVATION AND FUTURE WORK

Motivation and contributions in broader context. EMOPs frequently arise in domains such as
aerodynamic design, neural architecture search, and drug discovery, where the cost of evaluating
objective functions is high and the number of permissible evaluations is tightly constrained. While
traditional MOEAs excel at exploring trade-offs, their reliance on large numbers of function evalua-
tions limits their applicability in these settings. SMOEAs address this limitation by replacing costly
evaluations with learned surrogates; however, most suffer from two persistent issues: 1) Context-
free surrogates: Many SMOEAs use models that evaluate solutions independently, ignoring the fact
that performance labels are defined relative to the evolving population. This disconnect leads to
inconsistent predictions and weak selection pressure, especially in dynamic or high-dimensional
search spaces. 2) Scalability bottlenecks: Surrogates operating in high-dimensional decision spaces
require large training datasets and become computationally inefficient as the number of variables
or objectives grows. FSMOEA directly addresses these challenges by embedding two key inno-
vations: 1) Foresighted surrogates: A population-aware encoder captures contextual relationships
among solutions, enabling more robust and generalizable prediction even under population drift. 2)
Latent-space evolution: Performing variation and selection in a learned low-dimensional representa-
tion space reduces computational overhead and accelerates convergence without sacrificing solution
quality. These design choices are modular and broadly applicable. FSMOEA can be integrated into
existing classification- or relation-based SMOEAs, offering plug-and-play improvements in pre-
diction consistency and scalability. Our experimental results demonstrate substantial performance
gains across a wide spectrum of synthetic and real-world benchmarks, particularly in large-scale and
many-objective scenarios.

Positioning relative to Bayesian multiobjective optimization (MOBO). BO is a principled and
widely studied approach for black-box optimization under strict evaluation budgets. In multi-
objective settings, MOBO combines probabilistic surrogates such as Gaussian processes with ac-
quisition functions (e.g., expected improvement) to guide sample selection. MOBO excels in low-
dimensional, expensive regimes due to its uncertainty-aware decision-making and sample efficiency.
However, MOBO encounters limitations when scaling to many objectives or high-dimensional de-
cision spaces. Surrogate modeling becomes computationally demanding, and acquisition function
optimization grows intractable. In contrast, SMOEAs scale more naturally through population-
based search, maintaining diversity and robustness even in complex landscapes. FSMOEA com-
plements this strength by improving the quality of surrogate predictions and enhancing scalability
through foresight and latent representations. While MOBO remains effective in specific use cases,
FSMOEA offers a scalable and robust alternative for large-scale EMOPs with tight evaluation bud-
gets and structural complexity.

Perspectives on future work: toward LLM-guided optimization. An exciting direction for fu-
ture research lies in exploring the use of large language models (LLMs) as surrogate components in
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MOEAs. LLMs offer powerful capabilities in contextual reasoning and high-dimensional represen-
tation learning, which could significantly enhance surrogate foresight. Integrating LLMs could en-
able: 1) Richer representations: Learning complex, multi-level structures from optimization history
and population distributions. 2) Zero-shot or few-shot adaptation: Leveraging pre-trained models to
generalize across related optimization tasks with minimal retraining. 3) Meta-level decision support:
Enabling dynamic adaptation of strategies, such as switching between exploration and exploitation
modes. However, several challenges remain, including high computational costs, difficulty in uncer-
tainty quantification, and the need for domain-specific fine-tuning. Hybrid approaches that combine
LLMs with lightweight surrogates or compressed models may offer a practical compromise. In-
corporating LLMs into FSMOEA represents a promising opportunity to further scale up foresight
capabilities and tackle even more complex and high-stakes EMOPs.

I SUPPLEMENTARY EXPERIMENTAL COMPARISON RESULTS

We provide additional results to support the effectiveness and scalability of the proposed FSMOEA
framework, particularly as instantiated in the FCSEA and FREMO algorithms. These results cover
a broad range of problem complexities, including many-objective settings and large-scale EMOPs.

DTLZ and WFG benchmark performance (Table 3). Supplementary IGD results for FCSEA
and FREMO on the DTLZ1-7 and WFG1-9 problems with three objectives and varying decision
dimensions (n = {10, 30, 50, 100}) show that both algorithms consistently outperform their ablated
variants (e.g., FCSEA-V1, FREMO-V1) and other state-of-the-art baselines. The performance gap
becomes more pronounced as the dimensionality increases. This trend validates two central claims
of FSMOEA: (1) the foresight head enables the surrogate to better generalize across dynamic popu-
lations, and (2) latent-space search improves sampling efficiency by reducing the effective complex-
ity of the optimization landscape. Together, these features contribute to enhanced convergence and
solution diversity, particularly in high-dimensional scenarios where traditional surrogates struggle
due to input sparsity and poor generalization.

Objective-based scalability: many-objective EMOPs (Table 4). We further assess the scalability
of FSMOEA with respect to the number of objectives using the MaF1-13 test suite with m = {5, 10}
objectives. FCSEA consistently outperforms FCSEA-V1 and CSEA in terms of IGD across most
problems. The advantage is especially noticeable in MaF problems with complex Pareto front ge-
ometries or deceptive convergence regions. These results underscore the importance of population
context in surrogate modeling: as the number of objectives increases, relative performance compar-
isons become more nuanced, and traditional classifiers may become unreliable. The foresight-aware
surrogate in FCSEA maintains robustness by embedding solutions in a population-informed latent
space, leading to more reliable performance estimation and improved selection pressure.

Variable-based scalability: large-scale EMOPs (Table 5). To evaluate FCSEA under increas-
ing decision space dimensionality, we conduct experiments on the LSMOP1-9 test suite with
n = {100,500,1000}. FCSEA consistently outperforms regression-based (KRVEA, SMSEGO,
EDNARMOEA), Bayesian-based (ABSAEA), and classification-based (CSEA, MCEAD) algo-
rithms. In these large-scale problems, the benefits of FSMOEA are most evident. The foresight
head reduces overfitting and prediction variance by capturing higher-order interactions across the
population, while latent-space search enables more directed exploration in a compressed represen-
tation, avoiding the curse of dimensionality faced by traditional evolutionary operators. Moreover,
the lightweight architecture of the surrogate makes FSMOEA computationally efficient despite the
high dimensionality, as shown in runtime comparisons (Figure 4 in the main text).

Sensitivity Analysis of Latent Dimension k. To examine the effect of the latent space dimension
k, we conducted experiments on several representative test problems, including DTLZ1, DTLZ4,
DTLZ7, WFG2, WFG4, WFG6, WFGS, LSMOPS5, and LSMOP9. The average IGD results are
summarized in Fig. ??.

From the results, three main observations can be drawn: (1) FSMOEA exhibits stable performance
when k € [8,15], indicating robustness across a broad range of latent dimensions. (2) When k is
too small (e.g., k = 2 or k = 3), reconstruction quality degrades significantly, which harms the
surrogate model’s predictive accuracy and consequently the optimizer’s convergence. (3) When £ is
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Table 5: Average IGD performance of FCSEA, FREMO, and their ablated variants (FCSEA-
V1, CSEA, FREMO-V1, REMO) on DTLZ1-7 and WFG1-9 problems with m = 3 and N =

50.

Problems n CSEA FCSEA-VI FCSEA REMO FREMO-V1 FREMO

10 | 6.7196e+1(1.63e+1)= | 3.3560e+1(1.11e+1)+ | 6.7087e+1(1.67e+1) 5.2050e+1(1.62e+1)+ | 3.7801e+1(9.76e+0)+ | 6.5008e+1(1.57e+1)
DTLZI 30 | 5.2904e+2(8.36e+1)- | 2.9489e+2(5.14e+1)- | 2.7765e+2(4.08e+1) 3.1734e+2(5.43e+1)+ | 2.9129e+2(5.72e+1)+ | 5.1442e+2(8.66e+1)
50 | 7.1977e+2(9.14e+1)+ | 6.9746e+2(8.47e+1)+ | 9.7583e+2(2.70e+2) 9.4858e+2(2.79e+2)- | 6.8327e+2(1.20e+2)+ | 6.6910e+2(8.76e+1)
100 | 1.8764e+3(1.13e+2)= | 1.8681e+3(1.62e+2)= | 1.6804e+3(8.97e+2) 1.8061e+3(1.74e+2)- 1.8098e+3(1.65e+2)- | 1.7105e+3(9.32¢+2)
10 2.9423e-1(2.73e-2)- 1.6292¢-1(1.65e-2)+ 1.9867e-1(1.6%-2) 1.9959%-1(2.47e-2)= 1.6013e-1(1.73e-2)+ 2.0294e-1(1.51e-2)
DTLZ2 30 5.7160e-1(7.40e-2)- 5.6722e-1(9.78e-2)- 4.8977e-1(6.32¢-2) 5.2806e-1(1.06e-1)- 5.4711e-1(9.61e-2)- 4.4723e-1(9.21e-2)
50 1.5057e+0(2.11e-1)- 1.2749e+0(1.95e-1)- 5.2832e-1(6.31e-2) 1.1560e+0(1.98e-1)- 1.2116e+0(1.68e-1)- 5.4138e-1(1.24e-1)
100 | 4.0946e+0(4.02e-1)- 3.9648e+0(4.03e-1)- 6.2574e-1(1.48e-1) 3.8417e+0(4.81e-1)- 3.7357e+0(3.31e-1)- 7.4766e-1(3.18e-1)
10 | 1.6703e+2(3.6le+1)= | 9.0172e+1(2.82e+1)+ | 1.7333e+2(5.79%e+1) 1.4127e+2(5.44e+1)+ | 9.6392e+1(2.48e+1)+ | 2.0787e+2(5.72e+1)
DTLZ3 30 1.6601e+3(1.87e+2)- | 8.5401e+2(1.28e+2)- | 8.2771e+2(1.20e+2) 1.6124e+3(1.80e+2)- | 8.7998e+2(1.18e+2)+ | 8.7721e+2(1.34e+2)
50 | 3.0932e+3(8.32e+2)- | 2.0737e+3(2.17e+2)= | 2.2088e+3(1.76e+2) 2.7929e+3(9.82e+2)- | 2.0227e+3(2.19e+2)+ | 2.0644e+3(2.42e+2)
100 | 6.1106e+3(4.81e+2)= | 6.0580e+3(3.72e+2)- | 5.6272e+3(2.92e+3) 5.7370e+3(3.45e+2)- | 5.8136e+3(4.0le+2)- | 5.2558e+3(3.48e+3)
10 4.3967e-1(1.24e-1)= 2.1263e-1(1.17e-1)+ 4.7111e-1(1.60e-1) 2.2003e-1(5.8%e-2)+ 1.4750e-1(2.17e-2)+ 3.4086e-1(1.27e-1)
DTLZ4 30 5.8443e-1(1.41e-1)+ | 5.6603e-1(1.15¢-1)+ 8.2815e-1(1.54e-1) 5.7910e-1(1.15e-1)+ 5.4190e-1(1.28e-1)+ 8.2274e-1(1.42¢-1)
50 1.3299e+0(1.94e-1)- 1.1843e+0(1.97e-1)- 9.2653e-1(1.55¢-1) 1.3046e+0(1.64e-1)- 1.1298e+0(1.46e-1)- 9.9888¢-1(1.45¢-1)
100 | 3.7547e+0(3.90e-1)- 3.5439e+0(2.81e-1)- 9.9549¢-1(1.11e-1) 3.7898e+0(3.62e-1)- 3.6973e+0(4.21e-1)- 1.0238¢+0(2.63e-1)
10 1.6594e-1(3.22e-2)- 6.3268e-2(1.99¢-2)+ 1.1621e-1(1.47e-2) 9.3994e-2(2.12e-2)+ 6.2834e-2(1.62¢-2)+ 1.1636e-1(2.13e-2)
DTLZS 30 5.0325e-1(9.10e-2)- 4.8187e-1(8.61e-2)- 3.4073e-1(7.66e-2) 5.0450e-1(1.06e-1)- 4.8028e-1(1.12e-1)- 3.8055e-1(9.77e-2)
50 1.4034e+0(2.20e-1)- 1.2371e+0(2.07e-1)- 4.0903e-1(1.28e-1) 1.1644e+0(1.79-1)- 1.1465e+0(2.06e-1)- 4.2520e-1(2.08e-1)
100 | 3.8830e+0(3.97e-1)- 3.8055e+0(3.86e-1)- 5.7915e-1(3.52¢-1) 3.8369e+0(4.17e-1)- 3.7947e+0(4.52e-1)- 4.9651e-1(1.73e-1)
10 6.1262e+0(3.63e-1)- | 3.6768e+0(8.33e-1)+ | 4.3975e+0(6.11e-1) 4.0812e+0(5.82e-1)+ | 2.7821e+0(4.85¢e-1)+ | 5.4091e+0(4.78e-1)
DTLZ6 30 2.3402e+1(6.27e-1)- 2.0068e+1(9.47e-1)- 1.8980e+1(1.04e+0 2.2806e+1(9.20e-1)- 1.8949e+1(1.30e+0)= | 1.8838e+1(1.35e+0)
50 4.1080e+1(6.96e-1)- | 3.6590e+1(1.12¢+0)- | 3.6340e+1(1.23e+0; 4.0330e+1(9.37e-1)- | 3.6642e+1(1.44e+0)= | 3.6451e+1(1.38e+0)
100 | 8.5634e+1(9.10e-1)- | 8.0986e+1(I.11e+0)- | 7.9495e+1(1.68e+0) | 8.5179¢+1(8.88e-1)- 8.1296e+1(1.52¢+0)- | 8.0799e+1(1.79e+0)
10 | 3.3966e+0(1.22¢+0)- | 7.9653e-1(3.86e-1)+ 1.5916e+0(7.99e-1) 6.6167¢-1(3.36e-1)+ 2.6074e-1(7.22¢-2)+ | 2.0207e+0(8.28e-1)
DTLZ7 30 | 6.9524e+0(1.06e+0)- | 3.0075e+0(8.77e-1)= | 3.3165¢+0(1.03e+0) 6.1040e+0(9.73e-1)- 1.5755e+0(5.90e-1)- 1.3178e+0(5.52e-1)
50 8.0987e+0(9.94e-1)- | 4.4684e+0(9.46e-1)= | 4.4665¢+0(8.17e-1) 7.2926e+0(8.66e-1)- 3.5760e+0(8.24e-1)- 3.3692¢+0(8.00e-1)
100 | 9.2832e+0(6.77e-1)- | 6.1156e+0(6.57e-1)= | 6.1247e+0(7.47¢-1) 8.8404¢+0(6.81e-1)- 5.7992¢+0(7.20e-1)- 5.8163e+0(4.60e-1)
10 2.0714e+0(1.22¢-1)- 1.6488e+0(9.03¢-2)- | 1.5066e+0(8.5%-2)+ 1.9316e+0(1.64e-1)- 1.5031e+0(9.23e-2)= 1.5213e+0(6.80e-2)
WEGL 30 2.1016e+0(1.50e-1)- 1.6239¢+0(6.89¢-2)- | 1.5031e+0(7.19e-2)+ 1.9335e+0(1.58e-1)- 1.5450e+0(4.48¢-2)
50 2.1504¢+0(1.08e-1)- 1.6301e+0(1.03e-1)- | 1.5278e+0(6.62e-2)+ 1.9785e+0(1.58¢-1)- 1.5670e+0(4.12¢-2)
100 | 2.0790e+0(1.21e-1)- 1.6334e+0(6.95e-2)- | 1.5806e+0(1.28¢-1)+ 1.9181e+0(1.41e-1)- 1.5780e+0(3.32¢-2)= | 1.5680e+0(3.65¢-2)
10 4.8507e-1(3.92e-2)+ | 4.4364e-1(4.25¢-2)+ 5.9439¢-1(5.87¢-2) 5.6722¢-1(7.65¢-2)- 6.3743¢-1(6.99¢-2)- 5.1472e-1(7.20e-2)
WEG2 30 5.6113e-1(3.07e-2)+ 5.6752¢-1(3.42¢-2)+ 6.4360e-1(5.71e-2) 6.3879¢-1(8.0: 6.3551e-1(4.75¢-2)- 5.8537e-1(3.66e-2)
- 50 6.1959¢-1(3.45¢-2)+ | 6.0090e-1(3.62e-2)+ 6.6454¢-1(4.29¢-2) 6.4678¢-1(6.73¢-2); 6.5416¢-1(4.55¢-2)- 6.1975e-1(4.62¢-2)
100 | 6.7467¢-1(2.02e-2)= 6.7985¢-1(2.33e-2)= 6.6723e-1(5.03e-2) 6.9451e-1(4.37¢-2)- 6.4816e-1(4.91e-2)= 6.6985¢-1(4.17¢-2)
10 4.4667e-1(6.03e-2)= | 4.065%e-1(5.27e-2)+ 4.3822e-1(3.06e-2) 4.0302e-1(6.67e-2)+ 4.0755e-1(6.67e-2)+ 4.5043e-1(2.43e-2)
WEG3 30 6.1960e-1(3.43e-2)- 6.0313e-1(3.95e-2)- 5.4412e-1(3.01e-2) 5.9967e-1(4.34e-2)- 5.9428e-1(4.57e-2)- 5.4703e-1(3.10e-2)
- 50 7.0072e-1(3.62¢-2)- 6.8423¢-1(3.38e-2)- 5.5687e-1(2.74e-2) 6.7492¢-1(4.78e-2)- 6.6887¢-1(4.10e-2)- 5.6397e-1(3.74e-2)
100 | 7.4720e-1(3.56e-2)- 7.6099¢-1(3.17e-2)- 5.5762e-1(3.55¢-2) 7.4968e-1(2.23¢-2)- 7.5056e-1(2.81e-2)- 5.5750e-1(3.26e-2)
10 4.0255e-1(3.24e-2)+ | 3.6015e-1(2.37e-2)+ 5.0187e-1(6.71e-2) 4.5748e-1(3.08e-2)- 3.9152e-1(2.78e-2)- 3.7837e-1(2.35¢-2)
WEG4 30 4.6190e-1(2.93e-2)+ | 4.5230e-1(2.56e-2)+ 5.2386e-1(4.25¢-2) 4.9622e-1(2.73e-2)- 4.5288e-1(2.75e-2 4.4104e-1(2.26e-2)
50 4.8438e-1(2.42e-2)+ | 4.7344e-1(2.02e-2)+ 5.218le-1(3.01e-2) 5.0351e-1(3.46e-2)- 4.7057e-1(2.46e-2)= 4.6128e-1(1.85¢-2)
100 | 5.1278e-1(2.38e-2)= | 5.0605e-1(1.60e-2)+ 5.3294e-1(4.16e-2) 5.2928e-1(3.24e-2)- 5.0115e-1(1.50e-2)= 4.9666e-1(1.75¢-2)
10 6.3437e-1(3.21e-2)- 4.3516e-1(2.95e-2)- 4.2730e-1(2.99e-2)+ 6.0505¢e-1(4.29-2)- 3.9285e-1(3.87e-2)= 3.8340e-1(3.24e-2)
WEGS 30 7.2370e-1(1.89%¢-2)- 6.0198e-1(3.39¢-2)= | 5.9236e-1(4.07e-2)+ 7.1640e-1(2.24e-2)- 5.7165e-1(4.72e-2 5.6718e-1(3.15¢-2)
N 50 7.4924e-1(1.72e-2)- 6.5753e-1(1.86e-2)- 6.2561e-1(3.47e-2)+ 7.3966e-1(1.81e-2)- 6.4695e-1(3.83e-2)= 6.4070e-1(2.63¢-2)
100 | 7.6078e-1(9.56e-3)- 7.0552e-1(2.06e-2)= | 7.0740e-1(2.69e-2)+ 7.6569-1(1.28e-2)- 6.9550e-1(2.40e-2)= 6.9454e-1(2.51e-2)
10 6.6176e-1(4.37e-2)= | 6.1578e-1(3.80e-2)+ 6.6015e-1(2.67e-2) 6.9613e-1(4.35e-2)= 6.6849¢-1(5.76e-2)= 6.7155e-1(3.04e-2)
WFG6 30 7.6832e-1(4.67e-2)= | 7.5581e-1(3.53e-2)+ 7.7674e-1(2.11e-2) 7.9686e-1(4.82e-2)- 7.7036e-1(3.54e-2)+ 7.8081e-1(2.73e-2)
50 8.2959%-1(2.50e-2)- 8.1146e-1(2.50e-2)- 8.0017e-1(2.3%¢-2) 8.4198e-1(4.05e-2)- 8.2419e-1(2.99-2)- 8.0372¢-1(2.71e-2)
100 | 8.9024e-1(1.72e-2)- 8.7077e-1(2.26e-2)- 8.2709e-1(2.20e-2) 8.9234e-1(2.54e-2)- 8.7694e-1(2.36e-2)- 8.2400e-1(2.66¢-2)
10 5.6903e-1(3.84e-2)- 4.8501e-1(3.42¢-2)+ 5.2163e-1(2.11e-2) 5.2065e-1(4.58e-2)= 5.1756e-1(4.61e-2)+ 5.3285e-1(2.48¢-2)
WFG7 30 6.3794e-1(2.66e-2)- 6.1985e-1(3.01e-2)- 5.9446e-1(1.61e-2) 6.2748e-1(3.09¢-2)- 6.2728e-1(3.68e-2)- 5.9190e-1(1.79¢-2)
50 6.7276e-1(2.49¢-2)- 6.5438e-1(2.30e-2)- 6.0914e-1(1.35¢-2) 6.6321e-1(3.00e-2)- 6.6139-1(2.50e-2)- 6.0562¢-1(1.39¢-2)
100 | 7.0070e-1(1.85e-2)- 6.8507e-1(1.94e-2)- 6.2251e-1(1.45¢-2) 6.9108e-1(1.70e-2)- 6.8881e-1(2.28e-2)- 6.2302e-1(1.75¢-2)
10 6.8348e-1(4.23e-2)+ | 6.3647e-1(3.86e-2)+ 7.4040e-1(3.11e-2) 7.2561e-1(4.03e-2)- 6.5535¢-1(3.40e-2)+ 6.6283e-1(5.02¢-2)
WFGS 30 7.1508e-1(3.90e-2)= | 6.6658e-1(2.96e-2)+ 7.2929e-1(2.71e-2) 7.2687e-1(2.31e-2)- 6.7138e-1(3.35¢-2)+ 6.9754e-1(3.73e-2)
50 7.2910e-1(3.42¢-2)- 7.0166e-1(2.33e-2)+ 7.1390e-1(1.77e-2) 7.2182e-1(2.30e-2)- 7.0529¢-1(2.71e-2)= 7.0808e-1(3.26e-2)
100 | 7.6027e-1(2.47e-2)- 7.2506e-1(2.52e-2)= 7.1474e-1(2.06e-2) 7.3887e-1(2.34e-2)= 7.2698e-1(2.82e-2)- 7.0999-1(1.96e-2)
10 5.4364e-1(7.69e-2)+ | 5.1060e-1(8.00e-2)+ 5.9307e-1(3.99¢-2) 5.8136e-1(6.02e-2)- 5.2266e-1(9.75¢-2)= 5.4804e-1(8.86e-2)
WEGY 30 7.8049e-1(7.18e-2)- 7.5680e-1(5.44e-2)- 7.2985¢-1(3.59%¢-2) 7.7182e-1(8.81e-2)= 8.0036e-1(8.32e-2)- 7.3293¢-1(6.16e-2)
50 8.5295e-1(6.4%-2)- 8.5317e-1(5.60e-2)- 7.6220e-1(4.32¢-2) 8.4950e-1(7.12e-2)= 8.5860e-1(6.68e-2)- 7.6224e-1(4.62¢-2)
100 | 9.2945e-1(4.19e-2)- 9.1105e-1(3.75e-2)- 7.7577e-1(5.19¢-2) 9.1149e-1(6.94e-2)= 9.2901e-1(6.03e-2)- 7.6596¢-1(6.46e-2)

+-I= vs. FCSEA: 10/43/11 vs. FCSEA: 24/31/9 P — vs. FREMO: 9/47/8 | vs. FREMO: 17/30/17 —

too large, the benefits of dimensionality reduction diminish, leading to increased training cost and
reduced efficiency.

These findings suggest that moderate values of k strike a balance between information preservation
and compression, enabling efficient surrogate training without compromising accuracy. Further-
more, we are exploring adaptive strategies in which k is tuned online, guided by reconstruction loss
or validation performance. Such adaptive schemes could further improve scalability, especially for
problems where complexity and dimensionality vary significantly. A more comprehensive investi-
gation of adaptive latent dimensions will be left for future work.

Summary. Across diverse benchmarks, including high-dimensional, many-objective, and large-
scale EMOPs, the proposed FSMOEA framework consistently demonstrates superior optimization
performance and scalability. The empirical results reinforce our theoretical claims: embedding pop-
ulation context into representations and reducing search dimensionality are effective strategies for
scaling surrogate-assisted evolutionary algorithms to challenging real-world optimization problems.
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Table 6: Average IGD results of FCSEA and its two variants in solving many-objective MaF1-
13 problems with m € {5,10}, N=50, F E,,,,=500.

Table 7: Average IGD results of FCSEA and its four

Problem | m n CSEA CSEA-V1 FCSEA
MaF1 5 14 | 2.8305e-1 (3.96e-2) + 2.4803e-1 (2.79e-2) + 3.6003e-1 (4.39¢-2)
10 | 19 | 4.5619e-1 (6.55¢e-2) - 2.9897e-1 (6.35e-2) + 3.8236e-1 (4.99¢-2)
MaF2 5 | 14 | 9.6626e-2 (2.05¢-3) - 9.2520e-2 (1.70e-3) - 8.0298e-2 (1.45e-3)
10 | 19 | 3.4265e-1 (1.88e-2) - 3.2562¢-1 (1.83e-2) = 3.1149e-1 (2.37e-2)
MaF3 5 | 14 | 5.1804e+5 (2.24e+5)- | 4.0637e+5 (2.65e+5) - | 2.3043e+5 (3.06e+5)
10 | 19 | 6.3067e+5 (2.36e+5)- | 6.8348e+5 (4.50e+5) - | 5.6225e+5 (3.00e+5)
MaF4 5 ] 14 | 2.7916e+43 (5.28e+2) + | 2.2574e+3 (6.13e+2) + | 4.8622e+3 (1.18e+3)
10 | 19 | 7.4222e+4 (1.55¢+4) + | 5.8497e+4 (1.57e+4) + | 1.5364e+5 (3.99¢+4)
MaF5 5 | 14 | 4.6208e+0 (8.78¢e-1) + | 4.5983e+0 (6.58e-1) + | 7.5132e+0 (6.63e-1)
10 | 19 | 1.3373e+2 (1.65e+1) + | 1.1903e+2 (1.93e+1) + | 1.6103e+2 (1.29¢e+1)
MaF6 5 | 14 | 9.8201e+0 (3.02e+0) - | 1.9858e+0 (1.19¢+0) + | 4.4252e+0 (1.85e+0)
10 | 19 | 4.8172e+0 (2.81e+0) - | 1.0789e+0 (2.20e+0) - | 5.4427e-1 (2.50e-1)
MaE7 5 | 24 | 1.3063e+1 (1.33e+0)- 8.5147e+0 (1.43e+0) - | 7.0564e+0 (1.28e+0)
10 | 29 | 2.8729e+1 (2.21e+0)- | 2.4834e+1(2.99e+0) - | 2.1167e+1 (4.27e+0)
MaF8 5 2 | 4.3217e+2(3.55e+2) - | 5.2116e+2 (3.03e+2) - | 4.2658e+1 (4.71e+1)
10 | 2 | 5.5070e+2 (3.06e+2) - | 5.5978e+2 (3.59¢+2) - | 1.1319e+2 (1.06e+2)
MaF9 5 2 | 3.5075e+2 (2.05e+2) - | 1.6467e+2 (1.37e+2)- | 2.7006e+1 (2.33e+1)
10 | 2 | 5.3668e+2 (2.91e+2) - | 3.3435e+2 (3.10e+2) - | 2.6680e+1 (2.77e+1)
MaF10 5 | 14 | 2.5780e+0 (8.39¢-2)- 2.1686e+0 (9.94¢-2) - | 2.1004e+0 (8.5%¢-2)
10 | 19 | 3.4019e+0 (4.91e-2)- 3.1342e+0 (1.12e-1) - | 3.1102e+0 (1.62¢-1)
MaF11 5 | 14 | 9.6036e-1 (2.58e-1) + 8.4317e-1 (1.15e-1) + 1.3751e+0 (3.15¢e-1)
10 | 19 | 3.1090e+0 (9.38e-1) + | 2.9748e+0 (9.68e-1) + | 3.8062e+0 (7.38e-1)
MaF12 5 | 14 | 1.6884e+0 (2.16e-1) = 1.7186e+0 (1.90e-1) - 1.6588e+0 (5.17e-2)
10 | 19 | 7.8457e+0 (7.05e-1) - 7.3896e+0 (4.41e-1) - | 6.7167e+0 (2.55e-1)
MaF13 5 5 5.7717e-1 (1.77e-1) = 4.3700e-1 (7.47e-2) = 4.8199¢-1 (9.08¢-2)
10| 5 7.5285e-1 (2.93e-1) - 5.8685e-1 (1.10e-1) = 6.2505e-1 (1.42e-1)

+/-/= 7/17/2 9/14/3 R

competitors in solving large-scale

LSMOPI1, LSMOP5, LSMOP8, and LSMOP9 problems with m=2, n € {100, 500, 1000},
N=50, FE,,q,=500.

Problems n KRVEA SMSEGO EDNARMOEA ABSAEA MCEAD CSEA FCSEA
100 | 7.4599e+0(3.30e-1)- | 7.8381e+0(6.87e-1)- | 7.9255¢+0(6.92e-1)- 7.7822e+0(4.43e-1)- | 2.3723e+0(4.94e-1)- | 4.6495¢+0(4.02¢e-1)- | 1.6938e+0(4.86e-1)
LSMOP1 | 500 1.0066e+1(7.68e-2)- | 9.7443e+0(2.02e-1)- | 9.8625e+0(1.91e-1)- 9.6522e+0(2.87e-1)- | 2.7921e+0(3.12e-1)= | 8.2129e+0(6.10e-1)- | 2.4476e+0(2.50e-1)
1000 | 1.0341e+1(1.20e-1)- 1.0354e+1(1.41e-1)- 1.0389e+1(2.09¢-1)- 1.0338e+1(2.36e-1)- | 3.0904e+0(6.37e-1)- | 9.4511e+0(1.03e+0)- | 2.2623e+0(1.48e-1)
100 1.8637e+1(9.03e-1)- | 1.8551e+1(1.05e+0)- | 1.9189e+1(1.12e+0)- 1.8499e+1(3.38e-1)- | 6.1851e+0(1.71e+0)- | 9.6061e+0(3.00e+0)- | 3.7395e+0(6.26e-1)
LSMOPS | 500 2.1515e+1(4.97e-1)- | 2.1319e+1(4.97e-1)- | 2.1601e+1(1.41e-1)- 2.1395e+1(2.21e-1)- | 5.2394e+0(5.06e-1)= | 1.2107e+1(1.37e+0)- | 4.9862e+0(8.04e-1)
1000 | 2.2209e+1(2.40e-1)- | 2.2288e+1(2.36¢-1)- | 2.2346e+1 (2.66e-1)- | 2.2202e+1(4.24e-1)- | 5.7968e+0(9.6de-1)+ | 1.4866e+1(2.70e+0)- | 7.1774e+0(9.91e-1)
100 1.4939¢+1(5.48e-1)- 1.4617e+1(6.00e-1)- | 1.5226e+1 (5.39%-1)- 1.5652e+1(3.12e-1)- | 3.1308e+0(4.66e-1)- | 9.6533e+0(1.14e+0)- | 2.0652e+0(4.40e-1)
LSMOP8 | 500 1.8102e+1(2.26e-1)- 1.8177e+1(2.19e-1)- | 1.803%+1 (3.21e-1)- 1.8234e+1(4.60e-1)- | 4.7245e+0(1.04e+0)- | 1.3432e+1(1.12e+0)- | 3.4462e+0(2.99¢-1)
1000 | 1.8963e+1(2.57e-1)- 1.8931e+1(2.3%-1)- | 1.8935e+1 (1.46e-1)- | 1.8791e+1(2.31e-1)- | 4.4632e+0(6.30e-1)- | 1.7702e+1(1.67e+0)- | 3.6393e+0(6.5%-1)
100 | 3.3385e+1(1.38e+0)- | 3.3713e+1(3.40e+0)- | 3.5367e+1 (2.89e+0)- | 3.5011e+1(2.71e+0) - | 7.9247e+0(1.41e+0)- | 3.1299e+1(3.32e+0)- | 4.2533e+0(1.68e+0)
LSMOP9 | 500 [ 5.0294e+1(1.41e+0)- | 4.8453e+1(2.37e+0)- | 4.9060e+1 (1.73e+0)- | 5.0184e+1(1.48e+0) - | 1.4045e+1(4.21e+0)- | 3.9439e+1(5.96e+0)- | 6.9666e+0(1.73e+0)
1000 | 5.3422e+1 (1.19e+0)- | 5.3178e+1(1.47e+0)- | 5.3093e+1 (1.23e+0)- | 5.3208e+1(7.69¢-1) - | 1.1423e+1(2.57e+0)- | 3.9415e+1(8.39¢+0)- | 8.1884e+0(6.75¢-1)
+/-I= 0/12/0 0/12/0 0/12/0 0/12/0 1/9/2 0/12/0
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Table 8: Sensitivity analysis of the latent dimension k across representative benchmark prob-
lems (DTLZ1, DTLZ4, DTLZ7, WFG2, WFG4, WFG6, WFGS, LSMOPS, and LSMOP9).
The table reports the average IGD values obtained by FSMOEA under different settings of k.
Results show that very small & (e.g., £ = 2, 3) leads to poor reconstruction and degraded surro-
gate performance, while excessively large k& reduces the benefits of compression and increases
training cost. Performance remains stable when & € [8, 15], confirming that FSMOEA is robust
to a wide range of latent dimensions.

Problem | Dimension FCSEA-k
k=2 k=3 k=5 k=8 k=10 k=15 k=20 k=30 k=50
DTLZ1 50 1059.4  1159.0 1099.0 1037.2  975.3 971.0 1113.1 11169 924.4
DTLZ1 100 15524 1421.8 18453 1643.7 1680.4 1722.8 1446.2 1004.0 1849.4
DTLZ4 50 1.008 0.982 1.008 1.028 0.927 1.045 1.098 0.999 1.016
DTLZ4 100 0.975 1.093 1.096 1.010 0.995 0.975 1.005 0.983 1.028
DTLZ7 50 9.569 9.595 9.143 5.537 4.467 5.968 9.570 9.498 9.735
DTLZ7 100 9.967 10.171  9.890 6.201 6.125 6.278 8.130 9.670 10.347
WFG2 50 0.796 0.810 0.819 0.706 0.665 0.750 0.743 0.731 0.761
WFG2 100 0.816 0.786 0.591 0.818 0.667 0.696 0.764 0.752 0.795
WFG4 50 0.613 0.585 0.595 0.582 0.522 0.543 0.624 0.590 0.645
WFG4 100 0.611 0.609 0.599 0.582 0.533 0.607 0.643 0.593 0.623
WEFG6 50 0.833 0.824 0.843 0.809 0.800 0.830 0.853 0.834 0.838
WFG6 100 0.866 0.858 0.863 0.823 0.827 0.824 0.846 0.859 0.854
WFGS8 50 0.761 0.758 0.756 0.706 0.714 0.714 0.749 0.774 0.762
WFGS8 100 0.752 0.757 0.740 0.727 0.715 0.716 0.750 0.755 0.747
LSMOP5 500 9.361 9.697 6.358 5.815 4.986 6.443 7.627 9.344 9.350
LSMOP5 1000 9.782  10.854 10.754  8.624 7177 9.389 9.458 10.868  10.426
LSMOP9 500 65.694 29.714 13.311  8.965 6.967 7.535 13.216  33.782  58.100
LSMOP9 1000 62.126  31.885 17.252  9.064 8.188 7.835 11.631  41.740  59.657

Table 9: The actual average running (seconds: s) time of each algorithm in solving the DTLZ
and WFG problems: except for the KRVEA which uses the Kriging model, whose running time
is significantly better, the FCSEA is comparable to other methods and is faster than CSEA.

Problem | M | D DirHVEI KRVEA LDSAF MCEAD SFADE CSEA FCSEA

DTLZ2 | 3 | 100 | 8.0262e+1(3.37e+1) | 1.7069e-2(4.62e-3) | 3.9912e+1(4.57e+0) | 1.2708e+1(5.77e-1) | 6.3759¢+1(7.86e+0) | 7.3960e+1(8.44e+0) | 1.3261e+1(1.50e+0)
DTLZ4 | 3 | 100 | 8.0929e+1(3.41e+1) | 1.3602¢-2(2.83¢-3) | 3.6510e+1(4.79¢+0) | 1.0395e+1(6.71e-1) | 6.3768e+1(8.07e+0) | 6.1916e+1(1.04e+1) | 1.3306e+1(1.93e+0)
DTLZ7 | 3 | 100 | 8.3704e+1(3.42e+1) | 2.5250e-2(7.90e-3) | 3.5902e+1(4.28e+0) | 1.1958e+1(1.13e+0) | 6.3741e+1(5.82e+0) | 5.8979%e+1(5.45e+0) | 1.5382e+1(1.84e+0)
WEGI1 3] 100 | 8.1794e+1(3.41e+1) | 3.1586e-2(9.78e-3) | 3.6044e+1(3.79¢+0) | 1.0209e+1(3.66e-1) | 5.9050e+1(5.39e+0) | 5.3880e+1(4.86e+0) | 9.0869e+0(1.02e+0)
WFG5 3 | 100 | 8.0870e+1(3.37e+1) | 1.6300e-2(3.20e-3) | 3.4993e+1(3.69e+0) | 1.0160e+1(3.71e-1) | 6.3830e+1(8.30e+0) | 5.265le+1(4.27e+0) | 8.0373e+0(7.47e-1)
WFG8 3 | 100 | 8.0275e+1(3.32e+1) | 2.8541e-2(7.96e-3) | 3.4811e+1(3.74e+0) | 1.0403e+1(2.83¢-1) | 6.7994e+1(9.47¢+0) | 5.3162e+1(4.96e+0) | 7.4833e+0(8.99¢-1)

All source codes were implemented on the PlatEMO, and all experiments were conducted on a
personal computer equipped with an Intel Core i5-10505 CPU (3.2 GHz) and 24 GB of RAM.
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