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ABSTRACT

Addressing expensive multiobjective optimization problems (EMOPs) poses a sig-
nificant challenge due to the high cost of objective evaluations. We propose FS-
MOEA, a scalable and efficient framework that enhances surrogate-assisted mul-
tiobjective evolutionary algorithms (SMOEAs) by introducing foresighted surro-
gate models. FSMOEA captures population-level context to improve surrogate
prediction accuracy, leverages a low-dimensional latent space to accelerate evo-
lutionary search, and employs lightweight models to reduce computational over-
head. Designed for plug-and-play integration, the foresight model can be embed-
ded into existing contrastive (i.e., classification- and relation-based) SMOEAs,
improving performance on scaling-up EMOPs. We provide theoretical analysis
that formalizes the benefits of population-aware representation and latent-space
optimization. Extensive experiments on 107 benchmarks show that FSMOEA
consistently outperforms state-of-the-art methods in both convergence speed and
optimization quality. Source code is attached and will be available at Linkxxx.

1 INTRODUCTION

Multi-objective optimization problems (MOPs) arise in diverse domains such as neural architecture
search (Zhou et al., 2023), deep learning (Chen & Kwok, 2022), multitask learning (Sener & Koltun,
2018), aerodynamic design (Jin et al., 2018), and drug discovery (Nicolaou & Brown, 2013), where
practitioners seek to optimize multiple conflicting objectives simultaneously. Solving these prob-
lems yields a Pareto front (PF) — a set of trade-off solutions where no objective can be improved
without degrading another (Cai et al., 2023). Gradient-free multiobjective evolutionary algorithms
(MOEAs) have been extensively applied to these problems due to their population-based nature and
robustness to non-convex, multimodal search spaces (Huang et al., 2024). These algorithms alter-
nate between generating candidate solutions (using a generator), evaluating them (by a evaluator),
and selecting the most promising ones (with a discriminator), gradually evolving towards a well-
distributed approximation of the PF (Zhang et al., 2021). However, a key limitation of conventional
MOEAs is their reliance on a large number of expensive objective function evaluations (Liu et al.,
2022a), making them impractical for real-world scenarios involving high-fidelity simulations. This
has motivated the development of surrogate-assisted MOEAs (SMOEAs), which approximate ob-
jective functions using cheaper predictive models such as Kriging (Song et al., 2021), radial basis
function (Yu et al., 2019), support vector regression, or neural networks (Guo et al., 2021). These
surrogates accelerate convergence while preserving solution quality (Li et al., 2022).

A principled way to address expensive black-box optimization is through Bayesian optimization
(BO), which treats the objective as a random function and iteratively refines its belief over the func-
tion using Gaussian processes or other uncertainty-aware models (Xie et al., 2024; Tay et al., 2023).
BO is data-efficient, balancing exploration and exploitation via acquisition functions such as ex-
pected improvement (EI) or upper confidence bound, and has seen significant success in single-
objective settings (Ament et al., 2023). However, extending BO to expensive MOPs (EMOPs)
is challenging due to the high-dimensional trade-off space and the difficulty of maintaining well-
calibrated uncertainty estimates across all objectives (Lin et al., 2022b; Wei et al., 2024). SMOEAs
can be viewed as a scalable, population-based counterpart to BO, enabling better exploration of large
and complex search spaces through surrogate-guided evolutionary search (Zhou et al., 2024).
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Existing SMOEAs for EMOPs fall into two broad categories: regression-based and contrastive
(including classification-based and relation-based) SMOEAs. Regression-based methods directly
model the objective values and use them to guide search and selection (Chugh et al., 2016; Knowles,
2006; Zhao & Zhang, 2023), but often suffer from modeling inaccuracies in high-dimensional or
sparse-data regimes. Contrastive SMOEAs instead model pairwise performance relationships, e.g.,
which of two solutions is better, and leverage lightweight classifiers to perform surrogate selection
(Yuan & Banzhaf, 2021; Hao et al., 2022; Zhang et al., 2022). This bypasses the need to predict ex-
act objective values and is often more robust under data scarcity (Sonoda & Nakata, 2022). Despite
their promise, contrastive SMOEAs face two critical challenges (Yang et al., 2023). First, exist-
ing models typically lack context-awareness — that is, they treat each comparison independently
without considering the population-wide distribution. This limits their ability to generalize selection
pressure across dynamic evolutionary landscapes. Second, scalability remains a bottleneck: perfor-
mance degrades substantially as the problem dimensionality increases, hampering their applicability
to scaling-up EMOPs (e.g., with many-objective and large-scale search space).

In this work, we propose a foresighted surrogate framework to address these issues. Our method
introduces three key innovations: 1) In-context foresight: a context-aware head learns population-
level embeddings to better capture selection dynamics; 2) Low-dimensional code space learn-
ing: a learned latent representation facilitates more efficient and generalizable comparisons; 3)
Lightweight surrogate architecture: our method remains scalable and computationally efficient
across problem sizes. These design choices collectively yield improved convergence, robustness,
and computational efficiency on challenging scaling-up EMOPs.

2 RELATED WORK AND MOTIVATION

2.1 EXPENSIVE MULTIOBJECTIVE OPTIMIZATION

An MOP with m objectives to be minimized is generally formulated as:

minF (x) = (f1(x), f2(x), . . . , fm(x))
T
, s.t. x ∈ Ω (1)

where x = (x1, x2, . . . , xn)
T is a candidate solution in an n-dimensional decision space Ω, and

F (x) denotes a vector of m potentially conflicting objective functions. The goal is to identify
the Pareto set: a collection of non-dominated solutions that map to the PF in objective space. In
computationally intensive settings, where each evaluation of the objective vector F (x) incurs a
significant cost, this task becomes markedly more challenging. Let tF denote the computational
cost of a single evaluation of F (x), and let FEmax be the maximum number of evaluations allowed
under a fixed budget Tbudget. We model this constraint as: Tbudget = tF × FEmax. This constraint
motivates the development of strategies that prioritize high-utility evaluations and avoid wasteful
exploration (Li et al., 2025). Please see Section E in the Appendix for more details of an MOP.

EMOPs are pervasive in domains like robotics, materials science, and automated machine learning,
where simulation or experiment-driven evaluations dominate the runtime (Jin et al., 2018). Tradi-
tional MOEAs operate in an evaluation-hungry manner, relying on the sheer volume of function
calls to ensure convergence. When tF is large, however, the allowable FEmax often drops by or-
ders of magnitude — making naive MOEA strategies ineffective. This has led to a surge in interest
around SMOEAs, where a learned model substitutes the true objective evaluator for most candidate
solutions (Khaldi & Draa, 2024).

2.2 SURROGATE-ASSISTED MOEAS (SMOEAS)

To alleviate the cost of evaluating expensive objective functions, SMOEAs incorporate learned ap-
proximations (or surrogates) to filter and prioritize candidate solutions. These surrogates are in-
tegrated into the standard MOEA pipeline, which typically consists of a generator, evaluator, and
selector (Liu et al., 2023). While the generator explores new regions of the search space using
evolutionary operators such as crossover and mutation, the evaluator estimates objective values (or
rankings) of the generated candidates, and the selector identifies the most promising solutions for
survival and reproduction. In the SMOEA context, the evaluator is replaced or augmented by a sur-
rogate model trained on a limited archive of truly evaluated solutions. This model acts as a proxy to
the expensive function F (x), providing fast but approximate predictions to guide the search. Only
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a small subset of the most promising candidates, as estimated by the surrogate, are selected for real
evaluation. This mirrors the role of acquisition functions in Bayesian optimization, which determine
where to sample next based on model uncertainty and expected improvement. SMOEAs can be
broadly categorized into three types based on the nature of the surrogate:

Regression-based surrogates learn a direct mapping from x 7→ F (x) using models such as Krig-
ing, support vector regression, radial basis functions, or neural networks (Si et al., 2023; Li et al.,
2024b; Si et al., 2023; Gu et al., 2024). After prediction, a standard selection criterion (e.g., domi-
nance, decomposition, or indicator-based) is applied to identify elite solutions. While effective under
dense training data, regression models often struggle when data is sparse or high-dimensional, lead-
ing to unreliable estimates. Classification-based surrogates sidestep the need for precise function
prediction by instead learning to classify solutions as promising or non-promising (Pan et al., 2018;
Hao et al., 2021; Li et al., 2024a). This binary simplification is more robust under limited data and
reduces the modeling complexity. Classifiers can be trained using pairwise comparisons or labels
derived from environmental selection criteria. Relation-based surrogates further generalize classi-
fication by predicting relative rankings between pairs of solutions (Hao et al., 2022; Chen & Zhang,
2024; Hao et al., 2025). Rather than absolute labels, these models estimate which solution in a pair
is likely superior, enabling fine-grained selection even when objective values are unknown or noisy.
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Figure 1: Overview of SMOEAs. The
top depicts a standard MOEA loop with
real evaluations, while the bottom illustrates
how a learned surrogate pre-selects promis-
ing candidates for expensive evaluation, re-
ducing computational cost.

A representative framework is shown in Fig.1, where
the surrogate assists the evolutionary process by pri-
oritizing candidates for real evaluation. As illus-
trated in Fig.2, these models are trained on pre-
viously evaluated solutions, refined iteratively, and
queried during offspring generation to guide the evo-
lutionary trajectory. Importantly, surrogate models
must be computationally lightweight — their infer-
ence and update time must remain negligible com-
pared to the cost of real evaluations.

For regression models, the training data is often in-
sufficient to span the high-dimensional search space,
especially when only a few hundred evaluations are
permissible. In contrast, classification and rela-
tion models exploit structural relationships among
evaluated solutions, which can be more sample-
efficient and robust to noise. Surrogate management
is another critical component of SMOEAs: mod-
els must be regularly validated, retrained with new
data, and dynamically adjusted to maintain reliabil-
ity over time. Moreover, improper model guidance
can cause premature convergence or population col-
lapse — particularly when the surrogate’s prediction
errors are not well-calibrated. Finally, while surro-
gate models used in SMOEAs may appear function-
ally similar to those in BO, their usage context dif-
fers. Bayesian multi-objective optimization (MOBO) typically employs Gaussian processes and
acquisition functions to drive sample selection (Daulton et al., 2020; Konakovic Lukovic et al.,
2020; Belakaria et al., 2019). While highly data-efficient, MOBO methods scale poorly in many-
objective and high-dimensional settings due to computational bottlenecks in surrogate training and
acquisition function optimization (Tu et al., 2022; Wang et al., 2023; Ozaki et al., 2024). In contrast,
SMOEAs scale more naturally due to their population-based nature, implicit diversity maintenance,
and parallel search capabilities.

2.3 INSIGHT AND MOTIVATIONS

Regression-based surrogates remain mainstream in high-dimensional optimization, yet they face
two critical challenges in expensive settings: (i) dimensionality reduction often degrades the accu-
racy required for reliable regression, and (ii) data scarcity makes accurate function approximation
infeasible. By contrast, contrastive surrogates (including classification- and relation-based models)
are more tolerant to information loss, require fewer samples, and can exploit richer relational data

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(e.g., O(N2) pairwise labels from N evaluations). These properties make them particularly suit-
able for SMOEAs. Despite these advantages, existing contrastive surrogates still exhibit limitations
in large-scale or evolving populations. First, they lack population context-awareness: labels are
derived from global criteria (e.g., dominance or decomposition), but predictions are made in iso-
lation without modeling the surrounding population. As distributions drift, this mismatch leads to
biased or inconsistent predictions (Li et al., 2024b). Second, scalability remains problematic: as
objective and search spaces dimensionality grows, surrogate complexity scales linearly or worse,
limiting responsiveness in iterative updates (Liu et al., 2024). Third, surrogate quality is tightly
linked to search efficiency: poor discrimination in early generations can stall exploration, especially
in high-dimensional landscapes where informative features are sparse. To overcome these issues, we
propose a foresighted surrogate architecture that (i) integrates population context via a learned la-
tent space, (ii) enables efficient low-dimensional search, and (iii) employs lightweight classifiers for
scalability. This design improves surrogate accuracy, robustness, and overall efficiency in solving
scaling-up EMOPs. For dimensionality reduction, while similar in spirit to PCA as studied in (Lin
et al., 2022a; Gu et al., 2024), our method differs fundamentally by embedding population-aware
context into the dimensionality reduction process. This allows the latent space to evolve with the
search, making it directly useful for surrogate modeling and evolutionary guidance.

3 THE PROPOSED ALGORITHM

We propose FSMOEA, a foresight-enhanced SMOEA, which augments traditional contrastive
SMOEAs with a foresight model MF to improve scalability and context-awareness in solving
EMOPs. FSMOEA introduces a population-aware encoding-decoding mechanism via MF , an au-
toencoder trained on the current population. As illustrated in Figure 2, MF consists of an encoder
and decoder, with a hidden layer of size k ≪ n, where n is the dimensionality of the decision space.
The encoder projects solutions into a compact latent space, while the decoder reconstructs them.
Training minimizes the reconstruction loss (mean squared error) using standard backpropagation.
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Figure 2: The basic framework of SMOEAs.

Once trained, the encoder serves as a frozen
foresight head that captures the population’s
structural features. FSMOEA uses this head in
two key ways: 1) to enhance surrogate predic-
tions via context-aware representation, and 2)
to conduct evolutionary search directly in the
learned latent space, improving both efficiency
and scalability. The high-level procedure pro-
ceeds as follows: 1) Initialize a population P
with N solutions evaluated using the true ob-
jective function F (x). 2) Train the foresight
model MF on P . 3) Perform surrogate-assisted
search based on MF to generate an offspring
population O. 4) Apply environmental selec-
tion on P ∪ O to form the next generation.
This process repeats until the evaluation budget
FEmax is exhausted. The pseudocode and de-
tailed description of the FSMOEA framework
are provided in Appendix’s Section C. Source
codes involved here are attached and will be re-
leased upon publication. The foresight surro-
gate improves model management and surrogate-guided reproduction, as explained below.

3.1 FORESIGHT SURROGATE-ASSISTED EVOLUTIONARY SEARCH FOR REPRODUCTION

Algorithm 2 provided in the appendix describes the surrogate-assisted reproduction mechanism. The
key innovation lies in integrating the foresight encoder with an existing classifier or relation-based
surrogate model MS , forming a composite surrogate MFS . The encoder projects each solution into
the latent space, serving as the fixed input layer for MS . This architecture reduces input dimen-
sionality from n to k, lowering training complexity and improving generalization. We instantiate
FSMOEA in two settings: FCSEA extends CSEA (Pan et al., 2018) by attaching the foresight en-
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coder to its classifier and FREMO extends REMO (Hao et al., 2022) using the same principle for
relation modeling. In both cases, model training, data preparation, and surrogate management mirror
the original baselines. The foresight encoder is trained once per generation and then frozen during
surrogate updates. Since k ≪ n, the composite model MFS is lighter and faster to train than its
baseline counterpart. The sensitivity analysis of k can be found in Section I of the appendix.

Moreover, instead of performing genetic operations in the original decision space, FSMOEA con-
ducts search in the learned latent space. Given two parent solutions x and y, their latent codes
cx, cy ∈ Rk are combined via crossover and mutation to generate a new code c. The decoder then
maps c back to the original space to yield a new candidate z. This latent-space search acceler-
ates convergence by exploring a compact, structured subspace shaped by the current population.
This design makes FSMOEA not only more scalable but also broadly compatible with existing
classification-based SMOEAs. The foresight module is modular and can be seamlessly integrated
into other frameworks as a drop-in component. Source codes involved here are attached and will be
released upon publication. More details can be found in Section C of the Appendix.

FSMOEA introduces three core contributions. Context-aware evaluation: The foresight encoder
encodes population-level information, enabling the surrogate to evaluate new candidates with richer
contextual understanding. Improved efficiency and scalability: By operating in a reduced latent
space, FSMOEA improves surrogate training speed and stability, particularly in high-dimensional
settings. Faster convergence: Latent-space search improves the quality of generated candidates,
leading to faster identification of Pareto-optimal solutions under tight evaluation budgets.

3.2 THEORETICAL ANALYSIS OF KEY COMPONENTS

This section provides theoretical justification for the two central design choices in FSMOEA: (1)
the use of MLP-based autoencoders to obtain population-aware embeddings for surrogate modeling,
and (2) the use of latent-space search to reduce sample complexity and accelerate convergence.

In multi-objective optimization, the performance of a solution x is often assessed relative to a pop-
ulation Pt under different dominance schemes. Pareto dominance can become ineffective in high
dimensions (e.g., many-objective) due to a lack of discriminative power (Liu et al., 2022c;b). To ad-
dress this, decomposition-based dominance is widely developed such as studies in (He et al., 2017;
Yuan et al., 2016). FSMOEA inherits from CSEA and REMO, both of which employ decomposition-
guided strategies. In this context, the relative quality of solutions (e.g., “solution A outperforms
solution B”) is not absolute but is determined by decomposition-based dominance, which itself
depends on the evolving population. As the population Pt shifts, decomposition scores change, in-
troducing inconsistency when context-free surrogates are used. The following analysis formalizes
this effect and shows how FSMOEA mitigates it.
Population Drift and Decomposition-Based Dominance. Let w ∈ Rm be a normalized weight
vector associated with a subproblem. Given an objective vector f(x) ∈ Rm, three widely used
scalarization functions in decomposition-based strategies are:

gWS(x|w) =
m∑
j=1

wjfj(x), (2)

gTCH(x|w, z∗) = max
j

wj |fj(x)− z∗j |, (3)

gPBI(x|w, z∗) = ⟨f(x)− z∗, w⟩
∥w∥

+ θ

∥∥∥∥f(x)− z∗ − ⟨f(x)− z∗, w⟩
∥w∥2

w

∥∥∥∥ , (4)

where z∗ is the ideal point and θ > 0 is a penalty factor. Each criterion C(x;Pt) is computed
relative to the current population, since both z∗ and the dominance comparisons are derived from
Pt. If Pt ̸= Pt+1, then even for the same candidate x, we may have:

C(x;Pt) ̸= C(x;Pt+1),

because z∗ or neighborhood structures shift as the population evolves.

Population drift under decomposition. Let x ∈ X be fixed. If the population changes from Pt to
Pt+1 such that the ideal point shifts, z∗t ̸= z∗t+1, then under Tchebycheff and PBI scalarizations:

gTCH(x|w, z∗t ) ̸= gTCH(x|w, z∗t+1), gPBI(x|w, z∗t ) ̸= gPBI(x|w, z∗t+1).

5
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Hence, population drift directly alters decomposition-based dominance.

For Tchebycheff, gTCH depends on |fj(x) − z∗j |. A shift in z∗ perturbs all distances, changing the
scalarization value. Similarly, in PBI, both the projection and penalty terms depend explicitly on z∗.
Thus, even for fixed f(x), the decomposition score changes across generations. Weighted sum (gWS)
does not depend on z∗, but since selection depends on relative ranking within Pt, population drift
still alters outcomes (e.g., neighborhood assignment). This illustrates why “context-free surrogates”
are theoretically inconsistent: they attempt to approximate a moving target function using stationary
mappings.

Formalizing Inconsistency. A surrogate M : Rn → R is context-free if it maps M(x) indepen-
dently of the current population Pt. Let M be trained on yi = C(xi;Pt). If Pt ̸= Pt+1, then for
fixed x,

C(x;Pt) ̸= C(x;Pt+1), but M(x) remains unchanged.
Thus, M incurs bias under population drift. Suppose x is non-dominated in Pt but becomes domi-
nated in Pt+1. Then C(x;Pt) = 1, C(x;Pt+1) = 0, while M(x) ≈ 1.

Remedy via context-aware embeddings. FSMOEA introduces an MLP-based autoencoder
trained on Pt. The encoder E produces codes ci = E(xi) that reflect global population struc-
ture, ensuring predictions M(x;Pt) = M̃(Et(x)) remain aligned with evolving labels. Contextual
surrogates using Et minimize prediction bias by embedding each solution relative to Pt. They adapt
across generations as Et is retrained, reducing drift-induced errors. Finally, by decoding from a
compact latent space Rk (k ≪ n), FSMOEA accelerates search: If D is LD-Lipschitz with bounded
reconstruction error ϵ, and F is LF -Lipschitz, then for latent codes z1, z2:

∥F (D(z1))− F (D(z2))∥ ≤ LFLD∥z1 − z2∥+ 2LF ϵ.

Smoothness is preserved and expected complexity is reduced by dimensionality compression.

This analysis shows: (1) Population drift under decomposition-based dominance creates inher-
ent inconsistencies for context-free surrogates. (2) FSMOEA’s autoencoder provides dynamic,
population-aware embeddings, reducing drift-induced bias. (3) Latent-space search reduces com-
plexity and accelerates convergence without compromising fidelity. Detailed theoretical analysis,
including formal definitions, theorems, and proofs, is provided in Section D of the Appendix.

4 EXPERIMENTAL EVALUATION

We conduct comprehensive experiments to evaluate the effectiveness and scalability of the pro-
posed FSMOEA framework, instantiated in two surrogate-assisted algorithms: FCSEA and
FREMO. These are benchmarked against nine state-of-the-art methods, including regression-based
(KRVEA (Chugh et al., 2016), SMSEGO (Ponweiser et al., 2008), EDNARMOEA (Guo et al.,
2021), LDSAF (Gu et al., 2024)), Bayesian-based (ABSAEA (Wang et al., 2020), ESBCEO (Bian
et al., 2023)), classification- and relation-based SMOEAs (CSEA (Pan et al., 2018), REMO (Hao
et al., 2022), MCEAD (Sonoda & Nakata, 2022)).

4.1 EXPERIMENTAL SETUP

We evaluate the selected algorithms on eight widely used test suites: DTLZ (Deb et al., 2005),
WFG (Huband et al., 2006), MaF (Cheng et al., 2017), LSMOP (Cheng et al., 2016), MLDMP (Li
et al., 2017), MPDMP (Köppen & Yoshida, 2007), real-world SMOP (Tian et al., 2019), and
TREE (He et al., 2020), comprising 112 benchmark instances with diverse numbers of objectives
and decision variables. DTLZ and WFG are classical synthetic benchmarks widely adopted in multi-
objective optimization. MaF and LSMOP are designed for many-objective and large-scale scenarios,
respectively. MLDMP and MPDMP represent real-world multi-line and multi-point distance min-
imization tasks. The real-world SMOP suite includes neural network training (MOP-NN), feature
selection (MOP-FS), and signal reconstruction (MOP-SR). TREE consists of industrial-scale volt-
age transformer calibration problems. This benchmark selection reflects standard EMO evaluation
practices, encompassing a broad range of synthetic and real-world problems across multi-, many-
objective, and high-dimensional settings. Performance is measured using the inverted generational
distance (IGD) and Hypervolume (HV) metrics, assessing convergence and diversity.
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Table 1: Average IGD values of FCSEA, FREMO, and their ablated variants (FCSEA-V1,
CSEA, FREMO-V1, REMO) on DTLZ1–7 and WFG1–9 problems with m = 3 and N = 50.

Problems n CSEA FCSEA-V1 FCSEA REMO FREMO-V1 FREMO

DTLZ1 50 7.1977e+2(9.14e+1)+ 6.9746e+2(8.47e+1)+ 9.7583e+2(2.70e+2) 9.4858e+2(2.79e+2)- 6.8327e+2(1.20e+2)+ 6.6910e+2(8.76e+1)
100 1.8764e+3(1.13e+2)= 1.8681e+3(1.62e+2)= 1.6804e+3(8.97e+2) 1.8061e+3(1.74e+2)- 1.8098e+3(1.65e+2)- 1.7105e+3(9.32e+2)

DTLZ2 50 1.5057e+0(2.11e-1)- 1.2749e+0(1.95e-1)- 5.2832e-1(6.31e-2) 1.1560e+0(1.98e-1)- 1.2116e+0(1.68e-1)- 5.4138e-1(1.24e-1)
100 4.0946e+0(4.02e-1)- 3.9648e+0(4.03e-1)- 6.2574e-1(1.48e-1) 3.8417e+0(4.81e-1)- 3.7357e+0(3.31e-1)- 7.4766e-1(3.18e-1)

DTLZ3 50 3.0932e+3(8.32e+2)- 2.0737e+3(2.17e+2)= 2.2088e+3(1.76e+2) 2.7929e+3(9.82e+2)- 2.0227e+3(2.19e+2)+ 2.0644e+3(2.42e+2)
100 6.1106e+3(4.81e+2)= 6.0580e+3(3.72e+2)- 5.6272e+3(2.92e+3) 5.7370e+3(3.45e+2)- 5.8136e+3(4.01e+2)- 5.2558e+3(3.48e+3)

DTLZ4 50 1.3299e+0(1.94e-1)- 1.1843e+0(1.97e-1)- 9.2653e-1(1.55e-1) 1.3046e+0(1.64e-1)- 1.1298e+0(1.46e-1)- 9.9888e-1(1.45e-1)
100 3.7547e+0(3.90e-1)- 3.5439e+0(2.81e-1)- 9.9549e-1(1.11e-1) 3.7898e+0(3.62e-1)- 3.6973e+0(4.21e-1)- 1.0238e+0(2.63e-1)

DTLZ5 50 1.4034e+0(2.20e-1)- 1.2371e+0(2.07e-1)- 4.0903e-1(1.28e-1) 1.1644e+0(1.79e-1)- 1.1465e+0(2.06e-1)- 4.2520e-1(2.08e-1)
100 3.8830e+0(3.97e-1)- 3.8055e+0(3.86e-1)- 5.7915e-1(3.52e-1) 3.8369e+0(4.17e-1)- 3.7947e+0(4.52e-1)- 4.9651e-1(1.73e-1)

DTLZ6 50 4.1080e+1(6.96e-1)- 3.6590e+1(1.12e+0)- 3.6340e+1(1.23e+0) 4.0330e+1(9.37e-1)- 3.6642e+1(1.44e+0)= 3.6451e+1(1.38e+0)
100 8.5634e+1(9.10e-1)- 8.0986e+1(1.11e+0)- 7.9495e+1(1.68e+0) 8.5179e+1(8.88e-1)- 8.1296e+1(1.52e+0)- 8.0799e+1(1.79e+0)

DTLZ7 50 8.0987e+0(9.94e-1)- 4.4684e+0(9.46e-1)= 4.4665e+0(8.17e-1) 7.2926e+0(8.66e-1)- 3.5760e+0(8.24e-1)- 3.3692e+0(8.00e-1)
100 9.2832e+0(6.77e-1)- 6.1156e+0(6.57e-1)= 6.1247e+0(7.47e-1) 8.8404e+0(6.81e-1)- 5.7992e+0(7.20e-1)- 5.8163e+0(4.60e-1)

WFG1 50 2.1504e+0(1.08e-1)- 1.6301e+0(1.03e-1)- 1.5278e+0(6.62e-2)+ 1.9785e+0(1.58e-1)- 1.5590e+0(3.76e-2)= 1.5670e+0(4.12e-2)
100 2.0790e+0(1.21e-1)- 1.6334e+0(6.95e-2)- 1.5806e+0(1.28e-1)+ 1.9181e+0(1.41e-1)- 1.5780e+0(3.32e-2)= 1.5680e+0(3.65e-2)

WFG2 50 6.1959e-1(3.45e-2)+ 6.0090e-1(3.62e-2)+ 6.6454e-1(4.29e-2) 6.4678e-1(6.73e-2)= 6.5416e-1(4.55e-2)- 6.1975e-1(4.62e-2)
100 6.7467e-1(2.02e-2)= 6.7985e-1(2.33e-2)= 6.6723e-1(5.03e-2) 6.9451e-1(4.37e-2)- 6.4816e-1(4.91e-2)= 6.6985e-1(4.17e-2)

WFG3 50 7.0072e-1(3.62e-2)- 6.8423e-1(3.38e-2)- 5.5687e-1(2.74e-2) 6.7492e-1(4.78e-2)- 6.6887e-1(4.10e-2)- 5.6397e-1(3.74e-2)
100 7.4720e-1(3.56e-2)- 7.6099e-1(3.17e-2)- 5.5762e-1(3.55e-2) 7.4968e-1(2.23e-2)- 7.5056e-1(2.81e-2)- 5.5750e-1(3.26e-2)

WFG4 50 4.8438e-1(2.42e-2)+ 4.7344e-1(2.02e-2)+ 5.2181e-1(3.01e-2) 5.0351e-1(3.46e-2)- 4.7057e-1(2.46e-2)= 4.6128e-1(1.85e-2)
100 5.1278e-1(2.38e-2)= 5.0605e-1(1.60e-2)+ 5.3294e-1(4.16e-2) 5.2928e-1(3.24e-2)- 5.0115e-1(1.50e-2)= 4.9666e-1(1.75e-2)

WFG5 50 7.4924e-1(1.72e-2)- 6.5753e-1(1.86e-2)- 6.2561e-1(3.47e-2)+ 7.3966e-1(1.81e-2)- 6.4695e-1(3.83e-2)= 6.4070e-1(2.63e-2)
100 7.6078e-1(9.56e-3)- 7.0552e-1(2.06e-2)= 7.0740e-1(2.69e-2)+ 7.6569e-1(1.28e-2)- 6.9550e-1(2.40e-2)= 6.9454e-1(2.51e-2)

WFG6 50 8.2959e-1(2.50e-2)- 8.1146e-1(2.50e-2)- 8.0017e-1(2.39e-2) 8.4198e-1(4.05e-2)- 8.2419e-1(2.99e-2)- 8.0372e-1(2.71e-2)
100 8.9024e-1(1.72e-2)- 8.7077e-1(2.26e-2)- 8.2709e-1(2.20e-2) 8.9234e-1(2.54e-2)- 8.7694e-1(2.36e-2)- 8.2400e-1(2.66e-2)

WFG7 50 6.7276e-1(2.49e-2)- 6.5438e-1(2.30e-2)- 6.0914e-1(1.35e-2) 6.6321e-1(3.00e-2)- 6.6139e-1(2.50e-2)- 6.0562e-1(1.39e-2)
100 7.0070e-1(1.85e-2)- 6.8507e-1(1.94e-2)- 6.2251e-1(1.45e-2) 6.9108e-1(1.70e-2)- 6.8881e-1(2.28e-2)- 6.2302e-1(1.75e-2)

WFG8 50 7.2910e-1(3.42e-2)- 7.0166e-1(2.33e-2)+ 7.1390e-1(1.77e-2) 7.2182e-1(2.30e-2)- 7.0529e-1(2.71e-2)= 7.0808e-1(3.26e-2)
100 7.6027e-1(2.47e-2)- 7.2506e-1(2.52e-2)= 7.1474e-1(2.06e-2) 7.3887e-1(2.34e-2)= 7.2698e-1(2.82e-2)- 7.0999e-1(1.96e-2)

WFG9 50 8.5295e-1(6.49e-2)- 8.5317e-1(5.60e-2)- 7.6220e-1(4.32e-2) 8.4950e-1(7.12e-2)= 8.5860e-1(6.68e-2)- 7.6224e-1(4.62e-2)
100 9.2945e-1(4.19e-2)- 9.1105e-1(3.75e-2)- 7.7577e-1(5.19e-2) 9.1149e-1(6.94e-2)= 9.2901e-1(6.03e-2)- 7.6596e-1(6.46e-2)

+/-/= vs. FCSEA: 3/26/3 vs. FCSEA: 5/21/6 ——————– vs. FREMO: 0/28/4 vs. FREMO: 2/23/7 ——————–

Each algorithm is executed over 30 independent runs per instance. All implementations use rec-
ommended parameters; the evaluation budget is fixed at 500 function evaluations with a population
size of 50. For FSMOEA, the latent dimension is set to k = 10, while FCSEA and FREMO inherit
all other settings from their respective baselines (CSEA and REMO). Statistical significance is de-
termined using the Wilcoxon rank-sum test at the 0.05 level. In all result tables, symbols “+”, “-”,
and “=” denote cases where FCSEA or FREMO significantly underperform, outperform, or match
the baseline, respectively. Best scores are highlighted in bold. All source codes were implemented
on the PlatEMO (Tian et al., 2017), and all experiments were conducted on a personal computer
equipped with an Intel Core i5-10505 CPU (3.2 GHz) and 24 GB of RAM. For clarity, we em-
phasize that our experimental setup was designed to be fair and stringent; detailed justifications on
problem selection, evaluation budget, and efficiency are provided in Section G of the Appendix.

4.2 EFFECTIVENESS AND COMPONENT-WISE ABLATION

To isolate the impact of FSMOEA’s core components—the foresight head and latent-space
search—we conduct ablation studies on DTLZ1–7 and WFG1–9. We define two ablated variants:
(1) FCSEA-V1, which retains the foresight head but performs search in the original space, and (2)
FREMO-V1, analogously defined for FREMO. These are compared against their baselines (CSEA,
REMO) and full FSMOEA variants. Results (Table 1; see Appendix for full versions) show that
both foresight-enhanced variants (FCSEA, FREMO) consistently outperform their ablated counter-
parts, particularly in higher-dimensional decision spaces (n ∈ {50, 100}). While FCSEA-V1 and
FREMO-V1 provide modest gains over CSEA and REMO, they fall short of the full FSMOEA
variants—indicating that the latent representation is critical for scaling to large n. The foresight
head contributes significant performance gains by embedding context-awareness into the surrogate
model, while latent-space search accelerates convergence and enhances sample efficiency.

4.3 RUNTIME ANALYSIS AND COMPUTATIONAL EFFICIENCY

We evaluate the practical runtime of FCSEA, FREMO, and their ablated variants to assess compu-
tational efficiency, particularly under high-dimensional settings. Fig 3 reports the average runtime
(in seconds) across 30 independent runs on DTLZ1–7 and WFG1–9 test problems with m = 3 and
n = 100. Notably, FCSEA exhibits runtime performance comparable to its variant FCSEA-V1,
indicating that the addition of the foresight head introduces negligible overhead. More importantly,
both FCSEA and FREMO achieve up to an order-of-magnitude speedup over their baselines, CSEA
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Figure 3: Illustration of the average actual running time (as y-axis: the unit is Seconds) of
FCSEA, FREMO and their variants in solving DTLZ and WFG problems (m = 3, n = 100).

and REMO, respectively. This performance gap is consistent across all benchmark functions. The
observed efficiency gains stem from two key factors in FSMOEA. First, the use of an MLP-based
foresight head compresses input dimensionality from n to k (with k ≪ n), significantly reducing the
number of parameters in the downstream classifier or relational surrogate. Second, the encoder is
frozen during surrogate training, allowing for rapid, deterministic embeddings and eliminating back-
propagation overhead within the latent model. Together, these design choices enable faster inference
and lower memory consumption, contributing to both runtime efficiency and improved scalability in
large-scale EMOPs. Overall, FSMOEA’s architectural simplicity, combined with latent-space search
and lightweight surrogates, enables efficient optimization with tight evaluation and time budgets.

 

Figure 4: Convergence curves of FCSEA, FREMO and their variants on selected MaF bench-
mark problems (MaF1, MaF6, and MaF13) with varying objective dimensionality.

4.4 SCALABILITY WITH RESPECT TO OBJECTIVES AND VARIABLES

We further evaluate scalability from two orthogonal perspectives: objective dimensionality and vari-
able dimensionality. For objective scalability, we assess FCSEA on the MaF1–13 suite under many-
objective settings (m ∈ {5, 10}). Convergence curves for selected functions (MaF1, MaF6, MaF13)
are shown in Figure 4. FCSEA demonstrates faster convergence and better final IGD scores than
both its variants (FCSEA-V1 and CSEA), confirming that foresighted surrogates enhance gener-
alization even in many-objective scenarios. For variable scalability, we evaluate FCSEA on the
LSMOP suite with high-dimensional decision spaces (n ∈ {100, 500, 1000}), comparing it against
six strong competitors. As shown in Figure 5, FCSEA significantly outperforms regression-based
(KRVEA, SMSEGO, EDNARMOEA) and Bayesian-based (ABSAEA) surrogates. It also sur-
passes classification-based MCEAD and its own baseline CSEA in most cases. The combination
of lightweight latent representations and population-aware surrogate modeling enables FSMOEA to
scale to large n without compromising performance or stability.

4.5 PERFORMANCE ON REAL-WORLD PROBLEMS

To assess the practical effectiveness of FCSEA in solving real-world EMOPs, we evaluate it on ten
diverse benchmark problems, including MLDMP, MPDMP), MOP NN), MOP FS, MOP SR, and
five TREE problems. We compare FCSEA against six competitive algorithms: KRVEA, LDSAF,
ABSAEA, ESBCEO, MCEAD, and CSEA. Each algorithm is given the same strict evaluation bud-
get of 500 function evaluations. Table 2 reports the average HV results across 30 runs. FCSEA
achieves comparable or superior performance on MLDMP and MPDMP, where all methods operate
in low-dimensional decision spaces (n = 2). More notably, FCSEA outperforms all competitors
on the remaining high-dimensional real-world problems, particularly excelling in large-scale tasks
like MOP NN, MOP PO, and MOP SR. The most significant advantage of FCSEA is observed
on the TREE suite. While all other algorithms fail to find any feasible solutions within the eval-
uation budget—resulting in ‘NaN’ HV scores—FCSEA successfully discovers valid, high-quality
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Figure 5: Convergence curves of FCSEA and its six competitors on selected LSMOP bench-
marks (LSMOP1, LSMOP5, LSMOP8, and LSMOP9) with varying variable dimensionality.

Table 2: Average HV results of FCSEA and its six competitors in solving real-world EMOPs
with N=50 and FEmax = 500, NaN denotes failure to find any feasible solution.

Problems (m,n) KRVEA LDSAF ABSAEA ESBCEO MCEAD CSEA FCSEA
MLDMP (3, 2) 6.732e-1(3.43e-2) 1.920e-1(3.00e-1) 6.956e-1(2.85e-2) 8.155e-2(1.82e-1) 4.619e-1(1.22e-1) 2.207e-1(1.43e-1) 8.276e-1(4.05e-3)
MPDMP (4, 2) 2.577e-1(4.87e-3) 5.315e-2(1.19e-1) 2.778e-1(1.73e-3) 1.047e-1(9.49e-2) 1.456e-1(2.86e-2) 3.938e-2(5.21e-2) 2.727e-1(1.87e-2)
MOP NN (2, 321) 7.734e-2(6.58e-4) 8.235e-2(7.15e-4) 7.698e-2(5.89e-4) 2.953e-1(2.06e-2) 8.174e-2(5.93e-4) 7.791e-2(3.25e-4) 3.429e-1(9.88e-3)
MOP PO (2, 1000) 9.131e-2(2.58e-5) 9.156e-2(1.36e-4) 9.131e-2(4.16e-5) 9.127e-2(5.56e-5) 9.141e-2(8.63e-5) 9.136e-2(4.69e-5) 9.162e-2(1.64e-4)
MOP SR (2, 1024) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 6.992e-2(2.16e-2) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 8.975e-2(5.24e-3)
TREE1 (2, 300) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) 6.366e-1(1.71e-2) 7.909e-1(5.03e-2)
TREE2 (2, 300) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) 7.636e-1(3.80e-2)
TREE3 (2, 600) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) 8.727e-1(1.30e-2)
TREE4 (2, 600) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) 8.773e-1(8.97e-2)
TREE5 (2, 600) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) NaN(NaN) 8.556e-1(8.84e-2)

solutions across all five TREE problems. This suggests that FCSEA not only generalizes well to
large-scale real-world scenarios but also exhibits strong robustness and sample efficiency in highly
constrained, evaluation-limited settings. The ability to maintain convergence and feasibility under
such constraints highlights the practical superiority of the FSMOEA framework.

TREE is a real-world constrained optimization task, where only solutions that satisfy all constraints
are considered feasible. In Table 2, entries marked as “NaN” indicate that the algorithm failed to dis-
cover any feasible solution within the evaluation budget, leaving the final population empty and the
HV metric undefined. Although FSMOEA does not incorporate explicit constraint-handling tech-
niques, it successfully locates feasible solutions on TREE, unlike some baselines. This demonstrates
that its context-aware surrogate modeling and latent-space search accelerate convergence toward the
feasible region in large-scale spaces.

5 CONCLUSIONS

This paper introduced the FSMOEA framework, which unifies a foresight head with evolution-
ary search in a low-dimensional latent space. Instantiated in FCSEA and FREMO, the framework
demonstrates clear advantages in tackling scalable EMOPs. The foresight head improves surrogate
modeling by capturing population context, while latent-space search accelerates convergence and
enhances scalability. Extensive experiments across diverse benchmarks confirm the effectiveness
of these components, showing consistent and significant gains over existing SMOEAs, especially in
high-dimensional settings. Future research will extend FSMOEA to more complex real-world appli-
cations, investigate alternative dimensionality reduction methods and contrastive surrogate models,
and explore opportunities to integrate large language models for adaptive guidance. Additional dis-
cussions and experimental studies are provided in the appendix.
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A APPENDIX

B ABSTRACT OF THE APPENDIX

The appendix provides additional experimental results to complement the main findings, covering
the performance of FCSEA and its competitors on various benchmarks and scenarios: The perfor-
mance of FCSEA and FREMO on DTLZ and WFG problems, results on objective-based scalability
(many-objective EMOPs) studies, results on variable-based scalability (large-scale EMOPs) studies.
The supplementary results reinforce the conclusions drawn in the main paper, validating the scal-
ability, robustness, and practicality of the FSMOEA framework in solving EMOPs across various
domains and complexities.
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C DETAILED DESCRIPTION OF THE FSMOEA FRAMEWORK

This appendix provides a comprehensive, step-by-step explanation of the proposed FSMOEA frame-
work. FSMOEA enhances conventional SMOEAs by embedding population-aware latent represen-
tations and performing evolutionary search in a learned low-dimensional space. The specific pseu-
docodes for implementing FSMOEA are shown in Algorithm 1 and Algorithm 2. The algorithm
proceeds as follows:

Initialization. FSMOEA begins by randomly initializing a population of N candidate solutions
from the decision space. Each solution is then evaluated using the true multiobjective function
F (x). The initial population and its corresponding objective values form the training set for the first
iteration.

Step 1: Foresight Representation Learning. At the start of each generation, an MLP-based au-
toencoder is trained on the current population. The encoder E : Rn → Rk projects each high-
dimensional solution into a compact latent space, while the decoder D : Rk → Rn attempts to
reconstruct the original input. The autoencoder is optimized to minimize reconstruction loss:

LAE =
1

N

N∑
i=1

∥xi −D(E(xi))∥2.

Once trained, the encoder is frozen to ensure stability. The resulting latent codes ci = E(xi) are
used as context-aware representations for surrogate modeling and search.

per maximum surrogate-assisted evaluations

Algorithm 1 The General Framework of FSMOEA
Input: the EMOP to be solved, population size N , FEmax, maximum surrogate-evaluations Itmax

Output: the final population P

1: initialize P with N random solutions as the same to the embedded SMOEA.
2: evaluate each solution x ∈ P by the real objective functions F (x).
3: set real function evaluation counter FE = N and initialize a random foresight model MF .
4: while FE < FEmax do
5: train the MF on the real-evaluated solutions in P .
6: O = SurrogateAssistedSearch(P , MF , Itmax) based on the embedded SMOEA.
7: evaluate each solution x ∈ O by the real objective functions F (x).
8: P = EnvironmentalSelection(P , O) as the same to the embedded SMOEA.
9: updated the real function evaluation counter as FE = FE +N .

10: end while
11: return population P

Algorithm 2 SurrogateAssistedSearch(P , MF , Itmax)
Input: embedded SMOEA’s super-parameters and the maximum surrogate-evaluations Itmax

Output: the promising O that have not been evaluated by the real F (x)

1: initialize a surrogate model MS , set It = 0, O = ∅.
2: add the encoder part of MF to the head of MS to form a foresight surrogate MFS .
3: prepare the training data D from P by a certain environmental selection criterion.
4: train the MFS on D with its head part frozen.
5: while It < Itmax do
6: search in the code space to get T new codes.
7: decode codes by decoder ∈ MF to get new solutions.
8: evaluate each new solution by the MFS .
9: O = BetterPerformingSelection(O, new solutions) based on the embedded SMOEA.

10: It = It+ T .
11: end while
12: return the promising population O

Step 2: Surrogate Model Construction. Using the latent codes of the current population, FS-
MOEA constructs a lightweight surrogate model to predict solution quality. Each solution is la-
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beled using a population-wide performance criterion (e.g., non-dominated sorting, decomposition
value). These labels serve as targets for training a classifier (FCSEA) or a pairwise relation model
(FREMO). The surrogate operates in the latent space and thus benefits from lower input dimension-
ality and improved generalization.

Step 3: Latent-Space Evolutionary Search. FSMOEA performs crossover and mutation directly
in the latent space. For each offspring generation:

• Two parent solutions are selected from the population using binary tournament selection.

• Their latent codes are retrieved via the frozen encoder.

• Variation operators (e.g., simulated binary crossover and Gaussian mutation) are applied in
latent space to produce new latent codes.

• The decoder transforms the new latent code back into a solution in the original space.

The surrogate model is then used to predict the quality of each candidate. Only the most promising
candidates—those with high surrogate-predicted performance—are selected for expensive evalua-
tion with the true objective function.

Step 4: Surrogate-Guided Evaluation. From the pool of generated candidates, FSMOEA selects
the top K solutions based on surrogate scores. These candidates are then evaluated using the real
objective function. This focused evaluation strategy maximizes the utility of each function call under
the evaluation budget.

Step 5: Environmental Selection. The evaluated offspring are combined with the current par-
ent population. An environmental selection mechanism (e.g., based on non-dominated sorting and
crowding distance, depending on the embedded SMOEA) is used to select N solutions to form the
next generation. This process preserves both convergence pressure and diversity.

Termination. FSMOEA repeats the above steps until the maximum number of real function eval-
uations FEmax is reached. Throughout the search, an external archive maintains the set of non-
dominated solutions found so far.

Key Advantages. The foresight head provides population-level awareness to the surrogate model,
improving its ability to make consistent predictions under dynamic population changes. Meanwhile,
latent-space search reduces computational complexity and enhances scalability to high-dimensional
decision spaces. Together, these components enable FSMOEA to efficiently solve expensive MOPs
under strict evaluation budgets.

D DETAILED THEORETICAL DERIVATIONS

This section provides detailed derivations and proofs supporting the high-level theorems in the
main text. We focus on (i) how population drift alters decomposition-based scalarizations used
in MOEA/D-style selection, (ii) why context-free surrogates suffer bias under drift, (iii) how an
MLP autoencoder produces population-aware embeddings with quantitative distortion bounds, and
(iv) why search in a compact latent space reduces sample complexity and preserves smoothness of
the objectives.

D.1 NOTATION AND STANDING ASSUMPTIONS

Let F : Rn → Rm denote the objective mapping F (x) = (f1(x), . . . , fm(x)). Let Pt =

{x(t)
1 , . . . , x

(t)
N } be the population at generation t. Denote by

z∗t :=
(
min
x∈Pt

f1(x), . . . , min
x∈Pt

fm(x)
)

(5)

the (population) ideal point at generation t. We assume:

Assumption 1 (Lipschitz objective). F is LF -Lipschitz on a domain containing all populations
considered:

∥F (x)− F (y)∥ ≤ LF ∥x− y∥, ∀x, y.
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Assumption 2 (Small population movement between generations). The population moves by at
most ∆x in decision space between consecutive generations:

max
i=1,...,N

∥x(t+1)
i − x

(t)
i ∥ ≤ ∆x.

Under these, we will derive explicit bounds relating population movement to changes in scalarization
values and thus to label drift.

D.2 POPULATION DRIFT FOR DECOMPOSITION SCALARIZATIONS

We analyze three common scalarizations used in decomposition-based selection: weighted sum
(WS), weighted Tchebycheff (TCH), and penalty-based boundary intersection (PBI). Fix a normal-
ized weight vector w ∈ Rm, ∥w∥ = 1.

Definitions.

gWS(x | w) :=
m∑
j=1

wjfj(x), (6)

gTCH(x | w, z∗) := max
1≤j≤m

wj |fj(x)− z∗j |, (7)

gPBI(x | w, z∗) := ⟨f(x)− z∗, w⟩
∥w∥

+ θ
∥∥∥f(x)− z∗ − ⟨f(x)− z∗, w⟩

∥w∥2
w
∥∥∥. (8)

We first bound how much these scalarizations can change as z∗ shifts from z∗t to z∗t+1.

Lemma 1 (Ideal-point shift bound). Under Assumptions 1–2,

∥z∗t − z∗t+1∥ ≤ LF ∆x. (9)

Proof. Each coordinate j of z∗t is z∗t,j = mini fj(x
(t)
i ). After the population moves by at most ∆x,

any new candidate x
(t+1)
i satisfies

|fj(x(t+1)
i )− fj(x

(t)
i )| ≤ LF ∥x(t+1)

i − x
(t)
i ∥ ≤ LF∆x.

Thus the coordinate-wise minima can change by at most LF∆x; combining coordinates gives the
claimed bound.

Tchebycheff bound.
Proposition 1. For any fixed x and normalized w,∣∣gTCH(x | w, z∗t )− gTCH(x | w, z∗t+1)

∣∣ ≤ ∥w∥∞ ∥z∗t − z∗t+1∥∞ ≤ ∥w∥∞ ∥z∗t − z∗t+1∥. (10)

Proof. By equation 7 and the elementary inequality | |a| − |b| | ≤ |a− b|, we have∣∣gTCH(x | w, z∗t )− gTCH(x | w, z∗t+1)
∣∣

=
∣∣∣max

j
wj |fj(x)− z∗t,j | −max

j
wj |fj(x)− z∗t+1,j |

∣∣∣
≤ max

j
wj

∣∣ |fj(x)− z∗t,j | − |fj(x)− z∗t+1,j |
∣∣

≤ max
j

wj |z∗t,j − z∗t+1,j | = ∥w∥∞ ∥z∗t − z∗t+1∥∞,

which yields equation 10.
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PBI bound. We next bound the change in PBI score due to z∗ shift.
Proposition 2. For any fixed x and normalized w (∥w∥ = 1),∣∣gPBI(x | w, z∗t )− gPBI(x | w, z∗t+1)

∣∣ ≤ (1 + 2θ) ∥z∗t − z∗t+1∥. (11)

Proof. Set ut := f(x)− z∗t and ut+1 := f(x)− z∗t+1. Then

∆∥ :=
⟨ut, w⟩
∥w∥

− ⟨ut+1, w⟩
∥w∥

= ⟨z∗t+1 − z∗t ,
w

∥w∥
⟩,

so |∆∥| ≤ ∥z∗t − z∗t+1∥. For the perpendicular term, denote

pt := ut −
⟨ut, w⟩
∥w∥2

w, pt+1 := ut+1 −
⟨ut+1, w⟩
∥w∥2

w.

By triangle inequality,

∥pt − pt+1∥ ≤ ∥ut − ut+1∥+
1

∥w∥2
|⟨ut − ut+1, w⟩| · ∥w∥.

With ∥w∥ = 1, this gives ∥pt − pt+1∥ ≤ 2∥ut − ut+1∥ = 2∥z∗t − z∗t+1∥. Therefore

|∆⊥| =
∣∣∥pt∥ − ∥pt+1∥

∣∣ ≤ ∥pt − pt+1∥ ≤ 2∥z∗t − z∗t+1∥.

Combining, ∣∣gPBI(·, z∗t )− gPBI(·, z∗t+1)
∣∣ ≤ |∆∥|+ θ|∆⊥| ≤ (1 + 2θ) ∥z∗t − z∗t+1∥.

Weighted Sum (WS) and neighborhood dependence. While gWS(x | w) does not depend on
z∗, the selection decision using WS still depends on the current population through:

• the set of weight vectors w chosen and their normalization relative to the population,
• neighborhood assignment when comparing candidates (e.g., selecting best in neighbor-

hood).

Thus population drift affects selection even for WS by changing which weight vector or neighbor is
most relevant for a given candidate.

Interpretation. Propositions 1–2 provide explicit, linear-in-∥z∗t − z∗t+1∥ bounds showing that small
population-induced shifts in the ideal point cause proportional changes in decomposition scores.
When such changes cross ranking thresholds between candidates, the selection outcome flips. There-
fore, labels derived from decomposition scores are inherently population-dependent.

D.3 FORMAL INCONSISTENCY OF CONTEXT-FREE SURROGATES

We now quantify how a surrogate trained as a context-free mapping becomes biased when the pop-
ulation shifts.
Definition 1 (Context-free surrogate). A surrogate M : Rn → R is context-free if M(x) depends
only on x, not on the population Pt.

Let C(x;Pt) be a scalar selection score (e.g., decomposed scalarization) used to label training points
at generation t. Suppose M is trained to approximate C(·;Pt) with expected training error εtrain over
the training distribution Dt induced by Pt:

Ex∼Dt

[
|M(x)− C(x;Pt)|

]
≤ εtrain. (12)

Assume C is Lipschitz in the ideal point z∗: there exists LC such that for all x,

|C(x;Pt)− C(x;Pt+1)| ≤ LC∥z∗t − z∗t+1∥. (13)

(For TCH or PBI, one can take LC equal to the right-hand sides of Propositions 1, 2.)
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Theorem 1 (Bias growth under population drift). Under equation 12–equation 13 and assuming
distributions Dt,Dt+1 are close (or identical for simplicity),

Ex∼Dt+1

[
|M(x)− C(x;Pt+1)|

]
≤ εtrain + LC∥z∗t − z∗t+1∥+∆cov, (14)

where ∆cov accounts for distribution shift between Dt and Dt+1.

Proof. By triangle inequality,

|M(x)− C(x;Pt+1)|
≤ |M(x)− C(x;Pt)|+ |C(x;Pt)− C(x;Pt+1)|.

Taking expectation over x ∼ Dt+1 and decomposing the first term into expectation over Dt plus the
distribution-difference ∆cov yields equation 14.

Implication. Even a context-free surrogate M with small training error εtrain experiences additional
error proportional to the magnitude of ideal-point shift ∥z∗t − z∗t+1∥. When populations change
substantially, this extra term may dominate and harm selection quality.

D.4 CONTEXT-AWARE EMBEDDINGS VIA MLP AUTOENCODERS: QUANTITATIVE BOUNDS

FSMOEA trains an autoencoder (Et, Dt) on the current population Pt. Let Et : Rn → Rk, Dt :
Rk → Rn. Let reconstruction error satisfy:

∥Dt(Et(x))− x∥ ≤ ϵ, ∀x ∈ Pt. (15)

Assume Dt is LD-Lipschitz on the relevant region and Et is LE-Lipschitz.

Proposition 3 (Local distinguishability / injectivity). If x, y ∈ Pt then

∥Et(x)− Et(y)∥ ≥ 1
LD

(
∥x− y∥ − 2ϵ

)
. (16)

In particular, if ∥x− y∥ > 2ϵ then Et(x) ̸= Et(y).

Proof. By Lipschitz property of Dt,

∥Dt(Et(x))−Dt(Et(y))∥ ≤ LD∥Et(x)− Et(y)∥.

Rearrange and apply triangle inequality:

LD∥Et(x)− Et(y)∥ ≥ ∥Dt(Et(x))−Dt(Et(y))∥
≥ ∥x− y∥ − ∥x−Dt(Et(x))∥ − ∥y −Dt(Et(y))∥
≥ ∥x− y∥ − 2ϵ,

which yields equation 16.

Neighborhood preservation and similarity. From equation 16 and the Lipschitz of Et,

∥Et(x)− Et(y)∥ ≤ LE∥x− y∥.

Combining upper and lower bounds gives∣∣∥Et(x)− Et(y)∥ − ∥x− y∥
∣∣ ≤ (LE − 1)∥x− y∥+ 2ϵ, (17)

so local distances are preserved up to multiplicative and additive distortion. Consequently inner
products and cosine similarities in latent space reflect relative geometry in decision space for nearby
points.

Why this is population-aware. The autoencoder is trained jointly on all points in Pt, so the
encoder map Et is shaped by the empirical geometry of the current population. In particular, when
Pt changes, Et (re)adapts and thus encodes each x relative to the current population geometry. This
is the mechanism by which context enters the surrogate.
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D.5 AUTOENCODER: NEIGHBORHOOD PRESERVATION AND LOCAL INJECTIVITY

FSMOEA trains an autoencoder (E,D) with encoder E : Rn → Rk and decoder D : Rk → Rn.

Assumption 3 (Bounded reconstruction error). For all x ∈ Pt,

∥D(E(x))− x∥ ≤ ϵ. (18)

Assumption 4 (Lipschitz decoder). D is LD-Lipschitz: ∥D(z1)−D(z2)∥ ≤ LD∥z1 − z2∥.

Proposition 4 (Local injectivity bound). For x, y ∈ Pt,

∥E(x)− E(y)∥ ≥ ∥x− y∥ − 2ϵ

LD
. (19)

Thus, if ∥x− y∥ > 2ϵ, then E(x) ̸= E(y).

Proof. By Lipschitz continuity,

∥D(E(x))−D(E(y))∥ ≤ LD∥E(x)− E(y)∥.

Triangle inequality implies

∥D(E(x))−D(E(y))∥ ≥ ∥x− y∥ − ∥x−D(E(x))∥ − ∥y −D(E(y))∥.

Applying Assumption 3 gives the bound.

Corollary 1 (Neighborhood preservation). For x, y ∈ Pt,

∥x− y∥ − 2ϵ

LD
≤ ∥E(x)− E(y)∥ ≤ LE∥x− y∥, (20)

where LE is the Lipschitz constant of E.

Implication. Distances and relative similarities in latent space are faithful to those in the original
space, up to bounded distortion.

D.6 BIAS REDUCTION VIA CONTEXTUAL ENCODING: A DRIFT-CONTROLLED ERROR BOUND

Let M̃t : Rk → R be a surrogate trained on latent codes c = Et(x) and labels C(x;Pt). Define the
composed predictor Mt(x) := M̃t(Et(x)). Suppose M̃t has training error εM̃ .

Assume the encoder changes slowly between generations:

η := sup
x∈Pt∪Pt+1

∥Et+1(x)− Et(x)∥. (21)

If M̃t is LM̃ -Lipschitz in code space, then for x ∈ Pt+1,

|M̃t(Et(x))− C(x;Pt+1)| ≤ |M̃t(Et(x))− M̃t+1(Et+1(x))|
+ |M̃t+1(Et+1(x))− C(x;Pt+1)|.

The first term is bounded by LM̃η + δM̃ where δM̃ accounts for differences between M̃t and M̃t+1

(which can be controlled by fine-tuning). The second term is the training/generalization error of
M̃t+1 on the new codes. Therefore, encoder drift η directly controls the additional error incurred
across generations; retraining/fine-tuning M̃ after encoder update further reduces error. This ar-
gument formalizes how context synchronization (retraining encoder and surrogate) reduces drift-
induced bias relative to a context-free surrogate that cannot adapt.

D.7 LATENT-SPACE SEARCH: SMOOTHNESS PRESERVATION AND SAMPLE COMPLEXITY

We quantify two properties: (i) objective smoothness is (approximately) preserved through the de-
coder, and (ii) the covering/sample complexity in latent space is dramatically lower when k ≪ n.
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Smoothness preservation. Assume decoder D is LD-Lipschitz and reconstruction error bounded
by ϵ on the population (as in equation 15). For latent codes z1, z2 and xi = D(zi), we have

∥F (x1)− F (x2)∥ ≤ LF ∥x1 − x2∥
≤ LF

(
∥D(z1)−D(z2)∥+ 2ϵ

)
≤ LFLD∥z1 − z2∥+ 2LF ϵ.

(22)

Thus, small latent perturbations produce controlled changes in objective space, up to additive error
2LF ϵ from reconstruction.

Covering / sample complexity argument. Let Z ⊂ Rk be the image under E of a region of
interest in decision space (e.g., region near promising solutions). For tolerance δ > 0 in latent
space, denote the minimal covering number N(Z, δ) (number of ℓ2-balls radius δ needed to cover
Z). For a compact k-dimensional set, one typically has (up to problem-dependent constants)

N(Z, δ) ≍ δ−k.

Similarly in the original decision space region of interest X ⊂ Rn,

N(X , δ) ≍ δ−n.

Hence for the same resolution δ, the ratio of covering numbers scales as

N(X , δ)

N(Z, δ)
≍ δ−(n−k).

Consequently, if naive sampling (or mutation) is approximately uniform over the respective regions,
the expected number of independent trials to hit an δ-neighborhood of a target scales with these
covering numbers. Therefore, under the simplifying model of independent sampling, latent-space
search reduces the expected required samples/exploration effort exponentially in the dimension gap
n− k.

From samples to generations/evaluations. If each generation produces B candidate evaluations
(or if we evaluate B decoded latent samples per generation), then expected number of generations to
find a δ-good point is proportional to N(·, δ)/B. Thus latent-space operation yields a proportional
reduction in generations/evaluations given fixed B.

D.8 PUTTING IT TOGETHER: WHY FSMOEA REDUCES DRIFT AND ACCELERATES
CONVERGENCE

Combining the pieces:

• Propositions 1 and 2 show decomposition labels C(x;Pt) change linearly with ∥z∗t −z∗t+1∥,
where ∥z∗t − z∗t+1∥ ≤ LF∆x by equation 9.

• A context-free surrogate M trained at t incurs extra expected error ≈ LC∥z∗t − z∗t+1∥ at
t+ 1 (Eq. equation 14). Therefore, large population moves produce large surrogate bias.

• The autoencoder encoder Et embeds points relative to Pt, and retraining/update of Et

ensures that the code-space target is synchronized with labels; encoder drift η controls
residual error between generations. This yields smaller bias growth compared to context-
free M .

• Latent-space search operates in dimension k ≪ n and preserves objective smoothness up
to constants (Eq. equation 22), while dramatically reducing covering/sample complexity;
hence fewer evaluations are needed to explore to given resolution.

These quantitative bounds justify FSMOEA’s design: (i) the foresight autoencoder reduces label-
drift bias by aligning representations with population-dependent labels, and (ii) latent-space evo-
lution improves sampling efficiency and expected convergence speed under realistic Lipschitz and
small-reconstruction-error assumptions.

Remarks.
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1. The bounds above are conservative and rely on Lipschitz assumptions and bounded recon-
struction error; they are intended to make the mechanism precise and identify the depen-
dence on key quantities (LF , θ, ϵ,∆x, k, n).

2. Full, non-asymptotic convergence proofs for surrogate-assisted evolutionary processes
would require modeling the stochastic search operators and surrogate-update dynamics;
the present analysis isolates core mechanisms and provides explicit inequalities useful for
understanding empirical behavior.

E PRELIMINARIES ON MULTI-OBJECTIVE OPTIMIZATION

We briefly introduce key concepts in multi-objective optimization that are relevant to FSMOEA, in-
cluding Pareto-dominance, Pareto front, and two widely used performance indicators: hypervolume
(HV) and inverted generational distance (IGD).

Definition 2 (Multi-objective optimization problem (MOP)). A general MOP can be formulated as:

min
x∈Ω

F (x) = (f1(x), f2(x), . . . , fm(x)),

where Ω ⊆ Rn is the decision space, F : Ω → Rm is the vector of m objective functions, and the
image set Y = {F (x) | x ∈ Ω} is called the objective space.

Definition 3 (Pareto dominance). Given two solutions xa,xb ∈ Ω with objectives F (xa), F (xb):

F (xa) ≺ F (xb) ⇐⇒
(
fi(xa) ≤ fi(xb), ∀i = 1, . . . ,m

)
∧

(
fj(xa) < fj(xb), ∃j

)
.

That is, xa Pareto-dominates xb if it is no worse in all objectives and strictly better in at least one.

Definition 4 (Pareto-optimal set and Pareto front). The Pareto-optimal set is:

PS = {x ∈ Ω | ∄ x′ ∈ Ω s.t. F (x′) ≺ F (x)}.

Its image in objective space is called the Pareto front (PF):

PF = {F (x) | x ∈ PS}.

The PF characterizes the trade-offs among conflicting objectives, and is the ultimate optimization
target.

Definition 5 (Hypervolume (HV)). Let R ∈ Rm be a reference point dominated by all solutions of
interest. Given an approximation set A ⊆ Y , the hypervolume indicator is:

HV (A) = Leb

 ⋃
y∈A

[f1(y), R1]× · · · × [fm(y), Rm]

 ,

where Leb(·) denotes the Lebesgue measure. HV measures the volume of the dominated portion of
objective space; larger values imply better convergence and diversity.

Definition 6 (Inverted Generational Distance (IGD)). Given an approximation set A ⊆ Y and a
reference set PF ∗ sampled from the true Pareto front, IGD is defined as:

IGD(A,PF ∗) =
1

|PF ∗|
∑

y∗∈PF∗

min
y∈A

∥y∗ − y∥.

Smaller IGD values indicate that A is closer to and better covers the true Pareto front.

Relevance to FSMOEA. In FSMOEA, Pareto-dominance and decomposition-based dominance
criteria determine population labels, making them inherently population-dependent. Performance is
assessed via HV and IGD, which jointly capture convergence (closeness to PF) and diversity (spread
along PF).
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F LIMITATIONS

While FSMOEA demonstrates strong empirical performance and theoretical soundness across di-
verse EMOP settings, several limitations remain.

Dependence on population quality. The foresight encoder and surrogate model are both trained on
the current population, which may limit their effectiveness early in the optimization process when
the population is still of low quality or lacks diversity. In such cases, the learned latent space may not
fully reflect the structure of the broader search space, potentially leading to premature convergence
or overexploitation.

Fixed latent dimensionality. FSMOEA uses a fixed latent space dimension k throughout the op-
timization. While effective in our experiments, this hyperparameter may require problem-specific
tuning. Too low a value may under-represent important structural information, while too high a
value can reintroduce issues related to high-dimensional search.

Non-adaptive surrogate updates. Although we retrain the surrogate at each generation using the
foresight encoder, the training process is static within each generation and may not adapt quickly
enough to abrupt shifts in the population distribution. Future extensions could explore online or
adaptive updating strategies to improve responsiveness.

Lack of constraint handling mechanisms. The current implementation of FSMOEA focuses pri-
marily on unconstrained and box-constrained EMOPs. Its performance on general constrained mul-
tiobjective optimization problems (CMOPs) with equality and inequality constraints has not yet been
extensively tested and may require additional mechanisms for feasibility preservation and constraint-
aware surrogate modeling.

Computational overhead in extremely tight budgets. While FSMOEA is efficient relative to com-
peting methods, the additional overhead from training autoencoders and surrogate models may still
be non-negligible when function evaluations are extremely limited (e.g., FEmax < 100), especially
in time-critical applications where even surrogate computations are costly.

Generalization to non-evolutionary settings. FSMOEA is designed specifically within an evolu-
tionary framework. Its applicability to other types of surrogate-assisted optimizers, such as Bayesian
optimization or gradient-free trust-region methods, remains unexplored.

We see these limitations as opportunities for future research. In particular, adaptive encoding strate-
gies, enhanced constraint handling, and integration with non-evolutionary paradigms are promising
directions to further extend FSMOEA’s applicability and robustness.

G ON EXPERIMENTAL SELECTION AND FAIRNESS

We emphasize that the benchmark selection in our study was conducted in a comprehensive and
unbiased manner. Specifically, we tested all problems in the WFG, DTLZ, MaF, TREE, MOP NN,
MOP SR, and MOP FS suites. For LSMOP, we included problems 1, 5, 8, and 9. The omitted
cases are either (i) trivially solvable (LSMOP2 and LSMOP4), or (ii) extremely difficult multimodal
problems (LSMOP3, 6, 7) that remain unsolved even by specialized algorithms. Since our focus is
on expensive multi-objective optimization rather than specialized multimodal settings, we believe
this partial selection is justified. To ensure full transparency and reproducibility, all source codes
have been provided.

On Evaluation Budget. A common misunderstanding arises from conflating the notions of it-
erations and function evaluations in evolutionary algorithms. Each generation evaluates the entire
population, so the total number of function evaluations is given by the product of the population size
and the number of generations. Our experiments restrict the total number of function evaluations to
500, which is extremely conservative.

It is important to note that our work explicitly targets scalable EMOPs, where the dimensionality
of the decision variables can reach up to 1000. By contrast, most prior works are evaluated on
low-dimensional problems (typically with fewer than 30 decision variables). The combination of
expensive objective functions and high-dimensional search spaces makes our testbed substantially
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more challenging. Indeed, for inexpensive large-scale optimization, it is common practice for algo-
rithms to consume hundreds of thousands or even millions of evaluations. Within this context, our
budget of only 500 evaluations highlights the efficiency of FSMOEA.

On Efficiency. Finally, our convergence curves (Figures 4 and 5) demonstrate that FSMOEA con-
sistently outperforms competitive baselines within the first 100 evaluations. This not only confirms
its sample efficiency under tight budgets but also shows that our results are not an artifact of generous
evaluation allowances.

In summary, the experimental setup was designed to be both fair and stringent: problem selection
was comprehensive across standard suites, evaluation budgets were deliberately conservative to re-
flect expensive optimization settings, and performance trends were verified through convergence
analyses. These considerations ensure that the advantages observed for FSMOEA are genuine and
not due to selective evaluation conditions.

H MORE DISCUSSIONS ON OUR MOTIVATION AND FUTURE WORK

Motivation and contributions in broader context. EMOPs frequently arise in domains such as
aerodynamic design, neural architecture search, and drug discovery, where the cost of evaluating
objective functions is high and the number of permissible evaluations is tightly constrained. While
traditional MOEAs excel at exploring trade-offs, their reliance on large numbers of function evalua-
tions limits their applicability in these settings. SMOEAs address this limitation by replacing costly
evaluations with learned surrogates; however, most suffer from two persistent issues: 1) Context-
free surrogates: Many SMOEAs use models that evaluate solutions independently, ignoring the fact
that performance labels are defined relative to the evolving population. This disconnect leads to
inconsistent predictions and weak selection pressure, especially in dynamic or high-dimensional
search spaces. 2) Scalability bottlenecks: Surrogates operating in high-dimensional decision spaces
require large training datasets and become computationally inefficient as the number of variables
or objectives grows. FSMOEA directly addresses these challenges by embedding two key inno-
vations: 1) Foresighted surrogates: A population-aware encoder captures contextual relationships
among solutions, enabling more robust and generalizable prediction even under population drift. 2)
Latent-space evolution: Performing variation and selection in a learned low-dimensional representa-
tion space reduces computational overhead and accelerates convergence without sacrificing solution
quality. These design choices are modular and broadly applicable. FSMOEA can be integrated into
existing classification- or relation-based SMOEAs, offering plug-and-play improvements in pre-
diction consistency and scalability. Our experimental results demonstrate substantial performance
gains across a wide spectrum of synthetic and real-world benchmarks, particularly in large-scale and
many-objective scenarios.

Positioning relative to Bayesian multiobjective optimization (MOBO). BO is a principled and
widely studied approach for black-box optimization under strict evaluation budgets. In multi-
objective settings, MOBO combines probabilistic surrogates such as Gaussian processes with ac-
quisition functions (e.g., expected improvement) to guide sample selection. MOBO excels in low-
dimensional, expensive regimes due to its uncertainty-aware decision-making and sample efficiency.
However, MOBO encounters limitations when scaling to many objectives or high-dimensional de-
cision spaces. Surrogate modeling becomes computationally demanding, and acquisition function
optimization grows intractable. In contrast, SMOEAs scale more naturally through population-
based search, maintaining diversity and robustness even in complex landscapes. FSMOEA com-
plements this strength by improving the quality of surrogate predictions and enhancing scalability
through foresight and latent representations. While MOBO remains effective in specific use cases,
FSMOEA offers a scalable and robust alternative for large-scale EMOPs with tight evaluation bud-
gets and structural complexity.

Perspectives on future work: toward LLM-guided optimization. An exciting direction for fu-
ture research lies in exploring the use of large language models (LLMs) as surrogate components in
MOEAs. LLMs offer powerful capabilities in contextual reasoning and high-dimensional represen-
tation learning, which could significantly enhance surrogate foresight. Integrating LLMs could en-
able: 1) Richer representations: Learning complex, multi-level structures from optimization history
and population distributions. 2) Zero-shot or few-shot adaptation: Leveraging pre-trained models to
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Table 3: Average IGD performance of FCSEA, FREMO, and their ablated variants (FCSEA-
V1, CSEA, FREMO-V1, REMO) on DTLZ1–7 and WFG1–9 problems with m = 3 and N =
50.

Problems n CSEA FCSEA-V1 FCSEA REMO FREMO-V1 FREMO

DTLZ1

10 6.7196e+1(1.63e+1)= 3.3560e+1(1.11e+1)+ 6.7087e+1(1.67e+1) 5.2050e+1(1.62e+1)+ 3.7801e+1(9.76e+0)+ 6.5008e+1(1.57e+1)
30 5.2904e+2(8.36e+1)- 2.9489e+2(5.14e+1)- 2.7765e+2(4.08e+1) 3.1734e+2(5.43e+1)+ 2.9129e+2(5.72e+1)+ 5.1442e+2(8.66e+1)
50 7.1977e+2(9.14e+1)+ 6.9746e+2(8.47e+1)+ 9.7583e+2(2.70e+2) 9.4858e+2(2.79e+2)- 6.8327e+2(1.20e+2)+ 6.6910e+2(8.76e+1)
100 1.8764e+3(1.13e+2)= 1.8681e+3(1.62e+2)= 1.6804e+3(8.97e+2) 1.8061e+3(1.74e+2)- 1.8098e+3(1.65e+2)- 1.7105e+3(9.32e+2)

DTLZ2

10 2.9423e-1(2.73e-2)- 1.6292e-1(1.65e-2)+ 1.9867e-1(1.69e-2) 1.9959e-1(2.47e-2)= 1.6013e-1(1.73e-2)+ 2.0294e-1(1.51e-2)
30 5.7160e-1(7.40e-2)- 5.6722e-1(9.78e-2)- 4.8977e-1(6.32e-2) 5.2806e-1(1.06e-1)- 5.4711e-1(9.61e-2)- 4.4723e-1(9.21e-2)
50 1.5057e+0(2.11e-1)- 1.2749e+0(1.95e-1)- 5.2832e-1(6.31e-2) 1.1560e+0(1.98e-1)- 1.2116e+0(1.68e-1)- 5.4138e-1(1.24e-1)
100 4.0946e+0(4.02e-1)- 3.9648e+0(4.03e-1)- 6.2574e-1(1.48e-1) 3.8417e+0(4.81e-1)- 3.7357e+0(3.31e-1)- 7.4766e-1(3.18e-1)

DTLZ3

10 1.6703e+2(3.61e+1)= 9.0172e+1(2.82e+1)+ 1.7333e+2(5.79e+1) 1.4127e+2(5.44e+1)+ 9.6392e+1(2.48e+1)+ 2.0787e+2(5.72e+1)
30 1.6601e+3(1.87e+2)- 8.5401e+2(1.28e+2)- 8.2771e+2(1.20e+2) 1.6124e+3(1.80e+2)- 8.7998e+2(1.18e+2)+ 8.7721e+2(1.34e+2)
50 3.0932e+3(8.32e+2)- 2.0737e+3(2.17e+2)= 2.2088e+3(1.76e+2) 2.7929e+3(9.82e+2)- 2.0227e+3(2.19e+2)+ 2.0644e+3(2.42e+2)
100 6.1106e+3(4.81e+2)= 6.0580e+3(3.72e+2)- 5.6272e+3(2.92e+3) 5.7370e+3(3.45e+2)- 5.8136e+3(4.01e+2)- 5.2558e+3(3.48e+3)

DTLZ4

10 4.3967e-1(1.24e-1)= 2.1263e-1(1.17e-1)+ 4.7111e-1(1.60e-1) 2.2003e-1(5.89e-2)+ 1.4750e-1(2.17e-2)+ 3.4086e-1(1.27e-1)
30 5.8443e-1(1.41e-1)+ 5.6603e-1(1.15e-1)+ 8.2815e-1(1.54e-1) 5.7910e-1(1.15e-1)+ 5.4190e-1(1.28e-1)+ 8.2274e-1(1.42e-1)
50 1.3299e+0(1.94e-1)- 1.1843e+0(1.97e-1)- 9.2653e-1(1.55e-1) 1.3046e+0(1.64e-1)- 1.1298e+0(1.46e-1)- 9.9888e-1(1.45e-1)
100 3.7547e+0(3.90e-1)- 3.5439e+0(2.81e-1)- 9.9549e-1(1.11e-1) 3.7898e+0(3.62e-1)- 3.6973e+0(4.21e-1)- 1.0238e+0(2.63e-1)

DTLZ5

10 1.6594e-1(3.22e-2)- 6.3268e-2(1.99e-2)+ 1.1621e-1(1.47e-2) 9.3994e-2(2.12e-2)+ 6.2834e-2(1.62e-2)+ 1.1636e-1(2.13e-2)
30 5.0325e-1(9.10e-2)- 4.8187e-1(8.61e-2)- 3.4073e-1(7.66e-2) 5.0450e-1(1.06e-1)- 4.8028e-1(1.12e-1)- 3.8055e-1(9.77e-2)
50 1.4034e+0(2.20e-1)- 1.2371e+0(2.07e-1)- 4.0903e-1(1.28e-1) 1.1644e+0(1.79e-1)- 1.1465e+0(2.06e-1)- 4.2520e-1(2.08e-1)
100 3.8830e+0(3.97e-1)- 3.8055e+0(3.86e-1)- 5.7915e-1(3.52e-1) 3.8369e+0(4.17e-1)- 3.7947e+0(4.52e-1)- 4.9651e-1(1.73e-1)

DTLZ6

10 6.1262e+0(3.63e-1)- 3.6768e+0(8.33e-1)+ 4.3975e+0(6.11e-1) 4.0812e+0(5.82e-1)+ 2.7821e+0(4.85e-1)+ 5.4091e+0(4.78e-1)
30 2.3402e+1(6.27e-1)- 2.0068e+1(9.47e-1)- 1.8980e+1(1.04e+0) 2.2806e+1(9.20e-1)- 1.8949e+1(1.30e+0)= 1.8838e+1(1.35e+0)
50 4.1080e+1(6.96e-1)- 3.6590e+1(1.12e+0)- 3.6340e+1(1.23e+0) 4.0330e+1(9.37e-1)- 3.6642e+1(1.44e+0)= 3.6451e+1(1.38e+0)
100 8.5634e+1(9.10e-1)- 8.0986e+1(1.11e+0)- 7.9495e+1(1.68e+0) 8.5179e+1(8.88e-1)- 8.1296e+1(1.52e+0)- 8.0799e+1(1.79e+0)

DTLZ7

10 3.3966e+0(1.22e+0)- 7.9653e-1(3.86e-1)+ 1.5916e+0(7.99e-1) 6.6167e-1(3.36e-1)+ 2.6074e-1(7.22e-2)+ 2.0207e+0(8.28e-1)
30 6.9524e+0(1.06e+0)- 3.0075e+0(8.77e-1)= 3.3165e+0(1.03e+0) 6.1040e+0(9.73e-1)- 1.5755e+0(5.90e-1)- 1.3178e+0(5.52e-1)
50 8.0987e+0(9.94e-1)- 4.4684e+0(9.46e-1)= 4.4665e+0(8.17e-1) 7.2926e+0(8.66e-1)- 3.5760e+0(8.24e-1)- 3.3692e+0(8.00e-1)
100 9.2832e+0(6.77e-1)- 6.1156e+0(6.57e-1)= 6.1247e+0(7.47e-1) 8.8404e+0(6.81e-1)- 5.7992e+0(7.20e-1)- 5.8163e+0(4.60e-1)

WFG1

10 2.0714e+0(1.22e-1)- 1.6488e+0(9.03e-2)- 1.5066e+0(8.59e-2)+ 1.9316e+0(1.64e-1)- 1.5031e+0(9.23e-2)= 1.5213e+0(6.80e-2)
30 2.1016e+0(1.50e-1)- 1.6239e+0(6.89e-2)- 1.5031e+0(7.19e-2)+ 1.9335e+0(1.58e-1)- 1.5424e+0(5.45e-2)= 1.5450e+0(4.48e-2)
50 2.1504e+0(1.08e-1)- 1.6301e+0(1.03e-1)- 1.5278e+0(6.62e-2)+ 1.9785e+0(1.58e-1)- 1.5590e+0(3.76e-2)= 1.5670e+0(4.12e-2)
100 2.0790e+0(1.21e-1)- 1.6334e+0(6.95e-2)- 1.5806e+0(1.28e-1)+ 1.9181e+0(1.41e-1)- 1.5780e+0(3.32e-2)= 1.5680e+0(3.65e-2)

WFG2

10 4.8507e-1(3.92e-2)+ 4.4364e-1(4.25e-2)+ 5.9439e-1(5.87e-2) 5.6722e-1(7.65e-2)- 6.3743e-1(6.99e-2)- 5.1472e-1(7.20e-2)
30 5.6113e-1(3.07e-2)+ 5.6752e-1(3.42e-2)+ 6.4360e-1(5.71e-2) 6.3879e-1(8.05e-2)- 6.3551e-1(4.75e-2)- 5.8537e-1(3.66e-2)
50 6.1959e-1(3.45e-2)+ 6.0090e-1(3.62e-2)+ 6.6454e-1(4.29e-2) 6.4678e-1(6.73e-2)= 6.5416e-1(4.55e-2)- 6.1975e-1(4.62e-2)
100 6.7467e-1(2.02e-2)= 6.7985e-1(2.33e-2)= 6.6723e-1(5.03e-2) 6.9451e-1(4.37e-2)- 6.4816e-1(4.91e-2)= 6.6985e-1(4.17e-2)

WFG3

10 4.4667e-1(6.03e-2)= 4.0659e-1(5.27e-2)+ 4.3822e-1(3.06e-2) 4.0302e-1(6.67e-2)+ 4.0755e-1(6.67e-2)+ 4.5043e-1(2.43e-2)
30 6.1960e-1(3.43e-2)- 6.0313e-1(3.95e-2)- 5.4412e-1(3.01e-2) 5.9967e-1(4.34e-2)- 5.9428e-1(4.57e-2)- 5.4703e-1(3.10e-2)
50 7.0072e-1(3.62e-2)- 6.8423e-1(3.38e-2)- 5.5687e-1(2.74e-2) 6.7492e-1(4.78e-2)- 6.6887e-1(4.10e-2)- 5.6397e-1(3.74e-2)
100 7.4720e-1(3.56e-2)- 7.6099e-1(3.17e-2)- 5.5762e-1(3.55e-2) 7.4968e-1(2.23e-2)- 7.5056e-1(2.81e-2)- 5.5750e-1(3.26e-2)

WFG4

10 4.0255e-1(3.24e-2)+ 3.6015e-1(2.37e-2)+ 5.0187e-1(6.71e-2) 4.5748e-1(3.08e-2)- 3.9152e-1(2.78e-2)- 3.7837e-1(2.35e-2)
30 4.6190e-1(2.93e-2)+ 4.5230e-1(2.56e-2)+ 5.2386e-1(4.25e-2) 4.9622e-1(2.73e-2)- 4.5288e-1(2.75e-2)= 4.4104e-1(2.26e-2)
50 4.8438e-1(2.42e-2)+ 4.7344e-1(2.02e-2)+ 5.2181e-1(3.01e-2) 5.0351e-1(3.46e-2)- 4.7057e-1(2.46e-2)= 4.6128e-1(1.85e-2)
100 5.1278e-1(2.38e-2)= 5.0605e-1(1.60e-2)+ 5.3294e-1(4.16e-2) 5.2928e-1(3.24e-2)- 5.0115e-1(1.50e-2)= 4.9666e-1(1.75e-2)

WFG5

10 6.3437e-1(3.21e-2)- 4.3516e-1(2.95e-2)- 4.2730e-1(2.99e-2)+ 6.0505e-1(4.29e-2)- 3.9285e-1(3.87e-2)= 3.8340e-1(3.24e-2)
30 7.2370e-1(1.89e-2)- 6.0198e-1(3.39e-2)= 5.9236e-1(4.07e-2)+ 7.1640e-1(2.24e-2)- 5.7165e-1(4.72e-2)= 5.6718e-1(3.15e-2)
50 7.4924e-1(1.72e-2)- 6.5753e-1(1.86e-2)- 6.2561e-1(3.47e-2)+ 7.3966e-1(1.81e-2)- 6.4695e-1(3.83e-2)= 6.4070e-1(2.63e-2)
100 7.6078e-1(9.56e-3)- 7.0552e-1(2.06e-2)= 7.0740e-1(2.69e-2)+ 7.6569e-1(1.28e-2)- 6.9550e-1(2.40e-2)= 6.9454e-1(2.51e-2)

WFG6

10 6.6176e-1(4.37e-2)= 6.1578e-1(3.80e-2)+ 6.6015e-1(2.67e-2) 6.9613e-1(4.35e-2)= 6.6849e-1(5.76e-2)= 6.7155e-1(3.04e-2)
30 7.6832e-1(4.67e-2)= 7.5581e-1(3.53e-2)+ 7.7674e-1(2.11e-2) 7.9686e-1(4.82e-2)- 7.7036e-1(3.54e-2)+ 7.8081e-1(2.73e-2)
50 8.2959e-1(2.50e-2)- 8.1146e-1(2.50e-2)- 8.0017e-1(2.39e-2) 8.4198e-1(4.05e-2)- 8.2419e-1(2.99e-2)- 8.0372e-1(2.71e-2)
100 8.9024e-1(1.72e-2)- 8.7077e-1(2.26e-2)- 8.2709e-1(2.20e-2) 8.9234e-1(2.54e-2)- 8.7694e-1(2.36e-2)- 8.2400e-1(2.66e-2)

WFG7

10 5.6903e-1(3.84e-2)- 4.8501e-1(3.42e-2)+ 5.2163e-1(2.11e-2) 5.2065e-1(4.58e-2)= 5.1756e-1(4.61e-2)+ 5.3285e-1(2.48e-2)
30 6.3794e-1(2.66e-2)- 6.1985e-1(3.01e-2)- 5.9446e-1(1.61e-2) 6.2748e-1(3.09e-2)- 6.2728e-1(3.68e-2)- 5.9190e-1(1.79e-2)
50 6.7276e-1(2.49e-2)- 6.5438e-1(2.30e-2)- 6.0914e-1(1.35e-2) 6.6321e-1(3.00e-2)- 6.6139e-1(2.50e-2)- 6.0562e-1(1.39e-2)
100 7.0070e-1(1.85e-2)- 6.8507e-1(1.94e-2)- 6.2251e-1(1.45e-2) 6.9108e-1(1.70e-2)- 6.8881e-1(2.28e-2)- 6.2302e-1(1.75e-2)

WFG8

10 6.8348e-1(4.23e-2)+ 6.3647e-1(3.86e-2)+ 7.4040e-1(3.11e-2) 7.2561e-1(4.03e-2)- 6.5535e-1(3.40e-2)+ 6.6283e-1(5.02e-2)
30 7.1508e-1(3.90e-2)= 6.6658e-1(2.96e-2)+ 7.2929e-1(2.71e-2) 7.2687e-1(2.31e-2)- 6.7138e-1(3.35e-2)+ 6.9754e-1(3.73e-2)
50 7.2910e-1(3.42e-2)- 7.0166e-1(2.33e-2)+ 7.1390e-1(1.77e-2) 7.2182e-1(2.30e-2)- 7.0529e-1(2.71e-2)= 7.0808e-1(3.26e-2)
100 7.6027e-1(2.47e-2)- 7.2506e-1(2.52e-2)= 7.1474e-1(2.06e-2) 7.3887e-1(2.34e-2)= 7.2698e-1(2.82e-2)- 7.0999e-1(1.96e-2)

WFG9

10 5.4364e-1(7.69e-2)+ 5.1060e-1(8.00e-2)+ 5.9307e-1(3.99e-2) 5.8136e-1(6.02e-2)- 5.2266e-1(9.75e-2)= 5.4804e-1(8.86e-2)
30 7.8049e-1(7.18e-2)- 7.5680e-1(5.44e-2)- 7.2985e-1(3.59e-2) 7.7182e-1(8.81e-2)= 8.0036e-1(8.32e-2)- 7.3293e-1(6.16e-2)
50 8.5295e-1(6.49e-2)- 8.5317e-1(5.60e-2)- 7.6220e-1(4.32e-2) 8.4950e-1(7.12e-2)= 8.5860e-1(6.68e-2)- 7.6224e-1(4.62e-2)
100 9.2945e-1(4.19e-2)- 9.1105e-1(3.75e-2)- 7.7577e-1(5.19e-2) 9.1149e-1(6.94e-2)= 9.2901e-1(6.03e-2)- 7.6596e-1(6.46e-2)

+/-/= vs. FCSEA: 10/43/11 vs. FCSEA: 24/31/9 ——————– vs. FREMO: 9/47/8 vs. FREMO: 17/30/17 ——————–

generalize across related optimization tasks with minimal retraining. 3) Meta-level decision support:
Enabling dynamic adaptation of strategies, such as switching between exploration and exploitation
modes. However, several challenges remain, including high computational costs, difficulty in uncer-
tainty quantification, and the need for domain-specific fine-tuning. Hybrid approaches that combine
LLMs with lightweight surrogates or compressed models may offer a practical compromise. In-
corporating LLMs into FSMOEA represents a promising opportunity to further scale up foresight
capabilities and tackle even more complex and high-stakes EMOPs.

I SUPPLEMENTARY EXPERIMENTAL COMPARISON RESULTS

We provide additional results to support the effectiveness and scalability of the proposed FSMOEA
framework, particularly as instantiated in the FCSEA and FREMO algorithms. These results cover
a broad range of problem complexities, including many-objective settings and large-scale EMOPs.
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Table 4: Average IGD results of FCSEA and its two variants in solving many-objective MaF1-
13 problems with m ∈ {5, 10}, N=50, FEmax=500.

Problem m n CSEA CSEA-V1 FCSEA

MaF1 5 14 2.8305e-1 (3.96e-2) + 2.4803e-1 (2.79e-2) + 3.6003e-1 (4.39e-2)
10 19 4.5619e-1 (6.55e-2) - 2.9897e-1 (6.35e-2) + 3.8236e-1 (4.99e-2)

MaF2 5 14 9.6626e-2 (2.05e-3) - 9.2520e-2 (1.70e-3) - 8.0298e-2 (1.45e-3)
10 19 3.4265e-1 (1.88e-2) - 3.2562e-1 (1.83e-2) = 3.1149e-1 (2.37e-2)

MaF3 5 14 5.1804e+5 (2.24e+5)- 4.0637e+5 (2.65e+5) - 2.3043e+5 (3.06e+5)
10 19 6.3067e+5 (2.36e+5)- 6.8348e+5 (4.50e+5) - 5.6225e+5 (3.00e+5)

MaF4 5 14 2.7916e+3 (5.28e+2) + 2.2574e+3 (6.13e+2) + 4.8622e+3 (1.18e+3)
10 19 7.4222e+4 (1.55e+4) + 5.8497e+4 (1.57e+4) + 1.5364e+5 (3.99e+4)

MaF5 5 14 4.6208e+0 (8.78e-1) + 4.5983e+0 (6.58e-1) + 7.5132e+0 (6.63e-1)
10 19 1.3373e+2 (1.65e+1) + 1.1903e+2 (1.93e+1) + 1.6103e+2 (1.29e+1)

MaF6 5 14 9.8201e+0 (3.02e+0) - 1.9858e+0 (1.19e+0) + 4.4252e+0 (1.85e+0)
10 19 4.8172e+0 (2.81e+0) - 1.0789e+0 (2.20e+0) - 5.4427e-1 (2.50e-1)

MaF7 5 24 1.3063e+1 (1.33e+0)- 8.5147e+0 (1.43e+0) - 7.0564e+0 (1.28e+0)
10 29 2.8729e+1 (2.21e+0)- 2.4834e+1 (2.99e+0) - 2.1167e+1 (4.27e+0)

MaF8 5 2 4.3217e+2 (3.55e+2) - 5.2116e+2 (3.03e+2) - 4.2658e+1 (4.71e+1)
10 2 5.5070e+2 (3.06e+2) - 5.5978e+2 (3.59e+2) - 1.1319e+2 (1.06e+2)

MaF9 5 2 3.5075e+2 (2.05e+2) - 1.6467e+2 (1.37e+2) - 2.7006e+1 (2.33e+1)
10 2 5.3668e+2 (2.91e+2) - 3.3435e+2 (3.10e+2) - 2.6680e+1 (2.77e+1)

MaF10 5 14 2.5780e+0 (8.39e-2)- 2.1686e+0 (9.94e-2) - 2.1004e+0 (8.59e-2)
10 19 3.4019e+0 (4.91e-2)- 3.1342e+0 (1.12e-1) - 3.1102e+0 (1.62e-1)

MaF11 5 14 9.6036e-1 (2.58e-1) + 8.4317e-1 (1.15e-1) + 1.3751e+0 (3.15e-1)
10 19 3.1090e+0 (9.38e-1) + 2.9748e+0 (9.68e-1) + 3.8062e+0 (7.38e-1)

MaF12 5 14 1.6884e+0 (2.16e-1) = 1.7186e+0 (1.90e-1) - 1.6588e+0 (5.17e-2)
10 19 7.8457e+0 (7.05e-1) - 7.3896e+0 (4.41e-1) - 6.7167e+0 (2.55e-1)

MaF13 5 5 5.7717e-1 (1.77e-1) = 4.3700e-1 (7.47e-2) = 4.8199e-1 (9.08e-2)
10 5 7.5285e-1 (2.93e-1) - 5.8685e-1 (1.10e-1) = 6.2505e-1 (1.42e-1)

+/-/= 7/17/2 9/14/3 ———

DTLZ and WFG benchmark performance (Table 3). Supplementary IGD results for FCSEA
and FREMO on the DTLZ1–7 and WFG1–9 problems with three objectives and varying decision
dimensions (n = {10, 30, 50, 100}) show that both algorithms consistently outperform their ablated
variants (e.g., FCSEA-V1, FREMO-V1) and other state-of-the-art baselines. The performance gap
becomes more pronounced as the dimensionality increases. This trend validates two central claims
of FSMOEA: (1) the foresight head enables the surrogate to better generalize across dynamic popu-
lations, and (2) latent-space search improves sampling efficiency by reducing the effective complex-
ity of the optimization landscape. Together, these features contribute to enhanced convergence and
solution diversity, particularly in high-dimensional scenarios where traditional surrogates struggle
due to input sparsity and poor generalization.

Objective-based scalability: many-objective EMOPs (Table 4). We further assess the scalability
of FSMOEA with respect to the number of objectives using the MaF1–13 test suite with m = {5, 10}
objectives. FCSEA consistently outperforms FCSEA-V1 and CSEA in terms of IGD across most
problems. The advantage is especially noticeable in MaF problems with complex Pareto front ge-
ometries or deceptive convergence regions. These results underscore the importance of population
context in surrogate modeling: as the number of objectives increases, relative performance compar-
isons become more nuanced, and traditional classifiers may become unreliable. The foresight-aware
surrogate in FCSEA maintains robustness by embedding solutions in a population-informed latent
space, leading to more reliable performance estimation and improved selection pressure.

Variable-based scalability: large-scale EMOPs (Table 5). To evaluate FCSEA under increas-
ing decision space dimensionality, we conduct experiments on the LSMOP1–9 test suite with
n = {100, 500, 1000}. FCSEA consistently outperforms regression-based (KRVEA, SMSEGO,
EDNARMOEA), Bayesian-based (ABSAEA), and classification-based (CSEA, MCEAD) algo-
rithms. In these large-scale problems, the benefits of FSMOEA are most evident. The foresight
head reduces overfitting and prediction variance by capturing higher-order interactions across the
population, while latent-space search enables more directed exploration in a compressed represen-
tation, avoiding the curse of dimensionality faced by traditional evolutionary operators. Moreover,
the lightweight architecture of the surrogate makes FSMOEA computationally efficient despite the
high dimensionality, as shown in runtime comparisons (Figure 4 in the main text).
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Table 5: Average IGD results of FCSEA and its four competitors in solving large-scale
LSMOP1, LSMOP5, LSMOP8, and LSMOP9 problems with m=2, n ∈ {100, 500, 1000},
N=50, FEmax=500.

Problems n KRVEA SMSEGO EDNARMOEA ABSAEA MCEAD CSEA FCSEA

LSMOP1
100 7.4599e+0(3.30e-1)- 7.8381e+0(6.87e-1)- 7.9255e+0(6.92e-1)- 7.7822e+0(4.43e-1)- 2.3723e+0(4.94e-1)- 4.6495e+0(4.02e-1)- 1.6938e+0(4.86e-1)
500 1.0066e+1(7.68e-2)- 9.7443e+0(2.02e-1)- 9.8625e+0(1.91e-1)- 9.6522e+0(2.87e-1)- 2.7921e+0(3.12e-1)= 8.2129e+0(6.10e-1)- 2.4476e+0(2.50e-1)

1000 1.0341e+1(1.20e-1)- 1.0354e+1(1.41e-1)- 1.0389e+1(2.09e-1)- 1.0338e+1(2.36e-1)- 3.0904e+0(6.37e-1)- 9.4511e+0(1.03e+0)- 2.2623e+0(1.48e-1)

LSMOP5
100 1.8637e+1(9.03e-1)- 1.8551e+1(1.05e+0)- 1.9189e+1(1.12e+0)- 1.8499e+1(3.38e-1)- 6.1851e+0(1.71e+0)- 9.6061e+0(3.00e+0)- 3.7395e+0(6.26e-1)
500 2.1515e+1(4.97e-1)- 2.1319e+1(4.97e-1)- 2.1601e+1(1.41e-1)- 2.1395e+1(2.21e-1)- 5.2394e+0(5.06e-1)= 1.2107e+1(1.37e+0)- 4.9862e+0(8.04e-1)

1000 2.2209e+1(2.40e-1)- 2.2288e+1(2.36e-1)- 2.2346e+1 (2.66e-1)- 2.2202e+1(4.24e-1)- 5.7968e+0(9.64e-1)+ 1.4866e+1(2.70e+0)- 7.1774e+0(9.91e-1)

LSMOP8
100 1.4939e+1(5.48e-1)- 1.4617e+1(6.00e-1)- 1.5226e+1 (5.39e-1)- 1.5652e+1(3.12e-1)- 3.1308e+0(4.66e-1)- 9.6533e+0(1.14e+0)- 2.0652e+0(4.40e-1)
500 1.8102e+1(2.26e-1)- 1.8177e+1(2.19e-1)- 1.8039e+1 (3.21e-1)- 1.8234e+1(4.60e-1)- 4.7245e+0(1.04e+0)- 1.3432e+1(1.12e+0)- 3.4462e+0(2.99e-1)

1000 1.8963e+1(2.57e-1)- 1.8931e+1(2.39e-1)- 1.8935e+1 (1.46e-1)- 1.8791e+1(2.31e-1)- 4.4632e+0(6.30e-1)- 1.7702e+1(1.67e+0)- 3.6393e+0(6.59e-1)

LSMOP9
100 3.3385e+1(1.38e+0)- 3.3713e+1(3.40e+0)- 3.5367e+1 (2.89e+0)- 3.5011e+1(2.71e+0) - 7.9247e+0(1.41e+0)- 3.1299e+1(3.32e+0)- 4.2533e+0(1.68e+0)
500 5.0294e+1(1.41e+0)- 4.8453e+1(2.37e+0)- 4.9060e+1 (1.73e+0)- 5.0184e+1(1.48e+0) - 1.4045e+1(4.21e+0)- 3.9439e+1(5.96e+0)- 6.9666e+0(1.73e+0)

1000 5.3422e+1 (1.19e+0)- 5.3178e+1(1.47e+0)- 5.3093e+1 (1.23e+0)- 5.3208e+1(7.69e-1) - 1.1423e+1(2.57e+0)- 3.9415e+1(8.39e+0)- 8.1884e+0(6.75e-1)
+/-/= 0/12/0 0/12/0 0/12/0 0/12/0 1/9/2 0/12/0 ———-

Figure 6: Sensitivity analysis of the latent dimension k across representative benchmark prob-
lems (DTLZ1, DTLZ4, DTLZ7, WFG2, WFG4, WFG6, WFG8, LSMOP5, and LSMOP9).
The table reports the average IGD values obtained by FSMOEA under different settings of k.
Results show that very small k (e.g., k = 2, 3) leads to poor reconstruction and degraded surro-
gate performance, while excessively large k reduces the benefits of compression and increases
training cost. Performance remains stable when k ∈ [8, 15], confirming that FSMOEA is robust
to a wide range of latent dimensions.

Sensitivity Analysis of Latent Dimension k. To examine the effect of the latent space dimension
k, we conducted experiments on several representative test problems, including DTLZ1, DTLZ4,
DTLZ7, WFG2, WFG4, WFG6, WFG8, LSMOP5, and LSMOP9. The average IGD results are
summarized in Fig. 6.

From the results, three main observations can be drawn: (1) FSMOEA exhibits stable performance
when k ∈ [8, 15], indicating robustness across a broad range of latent dimensions. (2) When k is
too small (e.g., k = 2 or k = 3), reconstruction quality degrades significantly, which harms the
surrogate model’s predictive accuracy and consequently the optimizer’s convergence. (3) When k is
too large, the benefits of dimensionality reduction diminish, leading to increased training cost and
reduced efficiency.

These findings suggest that moderate values of k strike a balance between information preservation
and compression, enabling efficient surrogate training without compromising accuracy. Further-
more, we are exploring adaptive strategies in which k is tuned online, guided by reconstruction loss
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or validation performance. Such adaptive schemes could further improve scalability, especially for
problems where complexity and dimensionality vary significantly. A more comprehensive investi-
gation of adaptive latent dimensions will be left for future work.

Summary. Across diverse benchmarks, including high-dimensional, many-objective, and large-
scale EMOPs, the proposed FSMOEA framework consistently demonstrates superior optimization
performance and scalability. The empirical results reinforce our theoretical claims: embedding pop-
ulation context into representations and reducing search dimensionality are effective strategies for
scaling surrogate-assisted evolutionary algorithms to challenging real-world optimization problems.
All source codes were implemented on the PlatEMO, and all experiments were conducted on a
personal computer equipped with an Intel Core i5-10505 CPU (3.2 GHz) and 24 GB of RAM.
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