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Abstract. Deformable image registration (DIR) is a key element in
adaptive radiotherapy (AR) to include anatomical modifications in the
adaptive planning. In AR, daily 3D images are acquired and DIR can be
used for structure propagation and to deform the daily dose to a reference
anatomy. Quantifying the uncertainty associated with DIR is essential.
Here, a probabilistic unsupervised deep learning method is presented to
predict the variance of a given deformable vector field (DVF). It is shown
that the proposed method can predict the uncertainty associated with
various conventional DIR algorithms for breathing deformation in the
lung. In addition, we show that the uncertainty prediction is accurate
also for DIR algorithms not used during the training. Finally, we demon-
strate how the resulting DVFs can be used to estimate the dosimetric
uncertainty arising from dose deformation.
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1 Introduction

Due to their peaked depth-dose profile, protons deposit a substantially lower
dose to the normal tissue than photons for a given target dose [19]. However, the
location of the dose peak is highly dependent on the tissue densities along the
beam path, which are subject to anatomical changes throughout the treatment.
Target margins are therefore applied, reducing the advantage of proton therapy
(PT) [19]. The need to account for anatomical uncertainties can be alleviated
using daily adaptive PT (DAPT), where treatment is reoptimized based on a
daily patient image [1]. DAPT yields a series of dose maps, each specific to a
daily anatomy. One important step of DAPT is to rely on the accurate accumu-
lation of these doses for quality assurance (QA) of the delivered treatment and to
trigger further adaptation [13, 12, 7, 3]. To this end, the daily scans are registered
to a reference and their corresponding doses are deformed before summation. In
the presence of deforming anatomy, deformable image registration (DIR) is used
[7, 22, 25]. However, DIR is ill-posed [4], which results in dosimetric uncertainty
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after deformation. Substantial work has been performed to quantify this, sum-
marized in [7], but there remains a clear need for methods predicting uncertainty
associated with DIR and its effect on dose deformation [4, 18].

In this work, an unsupervised deep learning (DL) method is presented to
predict the uncertainty associated with a DIR result. Section 2 describes our
method. The results of hyperparameter tuning on the predicted registration
uncertainty are presented in section 3, followed by the effect on the dosimetric
uncertainty arising from dose deformation. Section 4 provides a discussion and
conclusions are stated in section 5.

2 Methods

Our work aims to estimate the uncertainty of the solution of an existing DIR
algorithm. It is based upon a probabilistic unsupervised deep neural network for
DIR called VoxelMorph [8]. The main equations from [8] are first summarized,
after which the changes are described.

2.1 Probabilistic VoxelMorph

With f and m respectively a fixed and a moving 3D volume, here CT images, a
neural network learns z, the latent variable for a parameterized representation
of a deformable vector field (DVF) Φz. The network aims to estimate the con-
ditional probability p(z|f,m), by assuming a prior probability p(z) = N (0, Σz),
with Σ−1

z = Λz = λ(D − A), λ a hyperparameter, D the graph degree matrix
and A the adjacency matrix. Further, f is assumed to be a noisy observation of
the warped moving image with noise level σ2

I , p(f |m, z) = N (m◦Φz, σ
2
II). With

these assumptions, calculation of p(z|f,m) is intractable. Instead, p(z|f,m) is
modelled as a multivariate Gaussian

qΨ (z|f,m) = N (µz|f,m, Σz|f,m) (1)

with Ψ the parameters of the network which predicts µz|f,m and Σz|f,m (Fig.
1). The parameters Ψ are optimized by minimizing the KL divergence between
p(z|f,m) and qΨ (z|f,m), yielding, for K samples zk ∼ qΨ (z|f,m), a loss function

L(Ψ, f,m) =
1

2σ2
IK

∑
k

||f −m ◦ Φz||2 +
λ

4

m∑
i=1

∑
j∈N(i)

(µi − µj)
2

+ tr(
λ

2
(D −A)Σz|f,m) − 1

2
log(|Σz|f,m|) + cte

(2)

with N(i) the neighboring voxels of voxel i. When Σz|f,m is diagonal, the last

two terms of Eq. 2 reduce to 1
2 tr(λDΣz|f,m − log(Σz|f,m)).
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2.2 Combining deep learning with existing DIR software

Because the performance of DL based DIR is generally below conventional meth-
ods [9, 10, 24], our network aims to predict the uncertainty associated with a DVF
generated by another algorithm without predicting the DVF itself. We therefore
extend the VoxelMorph architecture to include the output DVF of an existing
DIR algorithm (Fig. 1). First, an existing algorithm is ran on f and m, after
which the resulting DVF is concatenated to f and m as network input. The net-
work only predicts a diagonal matrix G, which is used to calculate Σz|f,m (see
Sec. 2.3), and the mean field µz|f,m is taken as the output of the DIR algorithm.
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Fig. 1: Schematic network architecture. In case an existing DIR method is used,
the resulting DVF of this algorithm is concatenated with the fixed and moving
image, resulting in a 5xHxWxD tensor as network input. A 3D UNet predicts
a diagonal matrix G, and taking the DVF of the existing DIR as mean field µ,
DVF samples are generated with the reparametrization trick as z = µ + GCσc

ϵ
(see Sec. 2.3) [15]. Contrarily if no existing DIR is used, the network only receives
the fixed and moving image as input and predicts a mean DVF besides G.

2.3 Non-diagonal covariance matrix

Dosimetric uncertainty will be estimated by sampling qΨ (z|f,m), requiring spa-
tially smooth samples. Nearby vectors can be correlated with a non-diagonal
covariance matrix. However, a full covariance matrix cannot be stored in mem-
ory because it would require storing (3×H×W ×D)2 entries, which for a 32 bit
image of 256 × 265 × 96 requires 633 TB, compared to 25 MB for the diagonal
elements. In [8] a non-diagonal Σz|f,m is proposed by Gaussian smoothing of a
diagonal matrix G, i.e. Σz|f,m = Cσc

GGTCT
σc

, but it is shown that this is unnec-
essary because the implemented diffeomorphic integration smooths the samples
sufficiently. Because the existing DIR solutions are not necessarily diffeomorphic,
we do not apply integration, which implies the need for a non-diagonal Σz|f,m.

Similar to [8], we apply Gaussian smoothing but invert the order Σz|f,m =
GCσc

CT
σc
GT which yields a fixed correlation matrix ρ = Cσc

CT
σc

. This has the
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advantage that the variance of the vector magnitude at voxel i is only dependent
on the corresponding diagonal element Gi,i and not on its neighbors. Further-
more, it allows to simplify the calculation of the loss terms in Eq. 2. Rewriting
the last two terms of Eq. 2 with Σz|f,m = GCσcC

T
σc
GT results in

tr(
λ

2
(D −A)Σz|f,m) − 1

2
log(|Σz|f,m|)

=

m∑
i=1

m∑
j=1

(
λ

2
(D −A)i,j(Σz|f,m)i,j) −

1

2
log(|GGT |) − 1

2
log(|Cσc

CT
σc
|)

(3)

with i and j respectively the row and column indices, m the number voxels and
log(|CσcC

T
σc
|) a constant which can be excluded from the loss function. For each

row (or voxel) i, the matrix (D−A) has only 7 non-zero elements (the voxel itself
and its 6 neighboring voxels), so that only the corresponding 7 elements in Σz|f,m
are needed to evaluate the loss function. By precomputing the 7 corresponding
elements of ρ = Cσc

CT
σc

, the first term of Eq. 3 becomes

m∑
i=1

m∑
j=1

(
λ

2
(D −A)i,j(Σz|f,m)i,j) =

m∑
i=1

∑
j∈N(i)

(
λ

2
(D −A)i,jρi,jGi,iGj,j) (4)

with N(i) the neighbors of voxel i, which allows fast evaluation of L without the
need of storing large matrices.

2.4 Training

52 CT scan pairs from 40 different patients with various indications treated at
the Centre for Proton Therapy (CPT) in Switzerland are used for training. The
pairs consist of one planning and one replanning or control CT from a proton
treatment, and are therefore representative of both daily and progressive anatom-
ical variations in DAPT. Scans are rigidly registered using the Elastix toolbox
[16] and resampled to a fixed resolution 1.95 × 1.95 × 2.00 mm, most frequently
occurring in the dataset. The Hounsfield units are normalized with HU+1000

4000 .
Patches with a fixed size 256×256×96 are randomly cropped from the full CTs
during training and axis aligned flipping is applied as data augmentation.

The network is implemented in Pytorch [20] and training is ran on GPUs
with 11 GB VRAM. A 3D UNet is used [8] with an initial convolution creating 16
feature maps, which are doubled in each of the 3 consecutive downsampling steps.
The features are upsampled 3 times to their original resolution. The parameters
are optimized with Adam [14] with initial learning rate 2 ·10−4, which is halved 6
times during 500 epochs. Gaussian smoothing of the diagonal covariance matrix
has a fixed kernel size of 61 voxels and blur σc = 15.

We train networks to predict the uncertainty associated with three existing
DIR algorithms: a b-spline and a demon implementation in Plastimatch and
a non-diffeomorphic VoxelMorph predicting both µz|f,m and Σz|f,m. The pa-
rameters for b-spline and demon are taken from [17, 2]. Furthermore, we verify
whether these networks can be used to predict the uncertainty of other DIR
algorithms by evaluating them on the results of a commercial DIR in Velocity.
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2.5 Validation

The hyperparameters λ and σ2
I are tuned for each method by quantitatively

evaluating the predicted uncertainty on the publicly available 4DCT DIRLAB
lung deformation dataset [6, 5]. It contains 10 CT scan pairs with each 300
annotated landmarks (LM). These scans are split equally in a validation and
test set. We maximize the probability of observing the moving landmarks x⃗m

given the predicted probabilistic vector field, which, for a given set of CTs, is
calculated as

p(LMs) =

CTs∏
i

LM∏
j

p(x⃗m,i,j |DV Fi), (5)

assuming for simplicity that each landmark is independent of the others, which
is reasonable if the landmarks are sufficiently far apart. Note that the probability
of observing exactly x⃗m is infinitesimally small because the variables are contin-
uous. We therefore maximize the probability that x⃗m is observed within a cube
of 1 mm3 around it with a homogeneous probability density, which is the same
as maximizing the probability density at x⃗m. We discard the 1% least probable
points because p(LMs) is heavily affected by the outliers due to the extremely
low probability density at the tails of a normal distribution. Furthermore, we
maximize the mean log p(LMs) to avoid that the absolute value is dependent
on the number of landmarks.

3 Results

3.1 Hyper parameter tuning

The optimal hyperparameters are λ = 10 and σ2
I = 10−4 for both b-spline and

demon (Fig. 2). Further, using both the networks trained on demon and b-spline,
we find that the the network trained with b-spline and λ = 5 and σ2

I = 10−4

yields the highest average log p(LMs) for Velocity (not shown).

Fig. 2: Average log probability of observing moving landmarks x⃗m of the valida-
tion set for varying values of σ2

I and λ including an existing DIR output. Similar
results were found for the test set (not shown).

For VoxelMorph, the hyperparameters influence both µz|f,m and Σz|f,m. Eq.
2 shows that the trade off between similarity and smoothness is determined by
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the product λσ2
I . Therefore, we first minimize the target registration error (TRE)

on the validation set by varying λσ2
I (keeping λ = 2), which yields a minimum

TRE around λσ2
I = 2 · 10−3. Varying λ and σ2

I while keeping λσ2
I = 2 · 10−3

results in a maximum p(LMs) for σ2
I = 5 · 10−4. p(LMs) is however lower

than for the networks including the conventional (i.e non deep learning) DIRs,
indicating that these methods predict better probability distributions.

Fig. 3 shows the uncertainty prediction for a lung CT in the DIRLAB dataset.
As expected, the predicted uncertainty is low in regions with high contrast and
high where contrast is low. Further, the Jacobian determinant is < 0 for on
average 0.01% of the voxels in sampled DVFs for the DIRLAB dataset, which,
together with visual inspection, indicates that samples are sufficiently smooth.

Fig. 3: Predicted uncertainty σp, i.e. the square root of the diagonal elements of
Σz|f,m, in the sagittal (left), coronal (middle) and axial (right) direction for one
example patient in the test set.

Comparing the target errors and their predictions for the tuned networks for
all DIRLAB scans yields several conclusions (Fig. 4). First of all, our method
is able to fairly accurately predict the uncertainty of multiple existing DIR al-
gorithms. Secondly, the error prediction of Velocity shows that it is possible to
predict the error from a DIR algorithm even if it was not used to train the net-
work. Lastly, the average error is higher and the uncertainty prediction is worse
for VoxelMorph than for the existing DIR algorithms, as expected from [9, 10,
24]. However, the performance can likely be improved by diffeomorphic integra-
tion, network adjustments or using more data, but this is not within the scope
of the current study.

3.2 Dose deformation

We create probabilistic dose maps by sampling the probabilistic DVF and warp-
ing the dose with the different samples. We focus here on the result of a single de-
formation to highlight the dosimetric uncertainty associated with warping. Even
though the predicted DVFs have assumed to be Gaussian, the probabilistic dose
maps are not. We therefore keep the individual samples and use a finite-sample
distribution to approximate the probabilistic dose map.

The dose received by the tumor and organs at risk (OARs) is in PT fre-
quently evaluated with dose volume histograms (DVHs). Probabilistic DVHs
can be constructed from the probabilistic dose map. Here, the lower and upper
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(a) b-spline (b) demon

(c) velocity (d) VoxelMorph

Fig. 4: TRE as a function of the predicted uncertainty σp for all DIRLAB scans.
For each subplot, σp is divided into 15 equal intervals and the distribution of the
TREs within each interval is plotted as a box, together with the unregistered
and registered root mean squared error (RMSE). The number of landmarks
nLM within each interval is also shown (right axes). If the TREs were normally
distributed and the networks had a perfect prediction, the registered RMSE
would be exactly equal to the predicted σp (dashed line).

bound of the DVH depict for each volume increment respectively the 5th and
95th percentile of all sampled doses (Fig. 5).

Verifying whether the dosimetric uncertainty is realistic is non-trivial. Pre-
vious work [17, 2] quantified it by warping the dose with several DIR algorithms
and calculating the dose differences between the results. Similarly, here we ver-
ify whether the warped dose with three conventional DIR algorithms falls in
between our predicted lower and upper bound (Fig. 5). Using the same dataset
of 7 lung cancer patients with each 9 repeated CTs as in [17, 2], we find that
the dose in on average 97% of the volume of the OARs (heart, esophagus and
medulla) lies between the bounds predicted for b-spline. For the planning target
volume (PTV) and gross tumor volume (GTV) it is on average 81%.

4 Discussion

Despite the promising preliminary results, more work is required before the
method can be used in the clinic. Our approach should be verified on a dataset
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Fig. 5: Left: example of a deformed dose map with b-spline, overlayed with con-
tours of the gross tumor volume (GTV), planning target volume (PTV) and
three OARs. Right: corresponding probabilistic DVH as calculated with the op-
timal network for b-spline (shaded area). The dashed, dotted and dash-dotted
lines represent the DVH for warped doses with three commercial DIR softwares,
respectively Mirada, Raystation Anaconda and Velocity.

including typical deformations that occur during the course of six weeks of treat-
ment, and not only during one breathing cycle. To that end, a dataset with
typical anatomical deformations is currently being landmarked at the CPT.

Even for the dataset under study, the error prediction is clearly not perfect.
This can be due to several factors, among which imperfect annotation, lack of
training data or inaccurate model assumptions. One important assumption is the
Gaussian vector field. Although our results show that it is not unreasonable to
assume that the errors are Gaussian, further research should look whether other
probability distributions yield better results. Unfortunately, other analytical dis-
tributions are often mathematically more complex making exact treatment as in
Eqs. 2 and 3 difficult. Learning a discretized posterior could resolve this [11, 10,
21, 23].

The trained networks capture most of the dosimetric variations found in
the OARs when running conventional DIRs. By contrast, for the GTV and PTV
only 81% of the doses lie between the error bars, significantly below the expected
90% given the 5th and 95th percentile error bounds. However, we found that this
value increases to 91% by simply adding a small margin to the error bounds (i.e.
by increasing the upper and decreasing lower bound by only 0.1% of the dose).
This indicates that the deviation from the error bounds is mostly very small.

5 Conclusion

In this work, a probabilistic unsupervised deep learning method for deformable
image registration is presented to predict the uncertainty associated with DIR
solutions. It is shown that the method can accurately predict the uncertainty of
various conventional DIR algorithms and that the combination of deep learning
with conventional DIR yields superior results than using deep learning alone.
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