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Abstract

In this paper, we present a simple yet effective provable method (named ABSGD) for ad-
dressing the data imbalance or label noise problem in deep learning. Our method is a simple
modification to momentum SGD where we assign an individual importance weight to each
sample in the mini-batch. The individual-level weight of sampled data is systematically
proportional to the exponential of a scaled loss value of the data, where the scaling factor is
interpreted as the regularization parameter in the framework of distributionally robust op-
timization (DRO). Depending on whether the scaling factor is positive or negative, ABSGD
is guaranteed to converge to a stationary point of an information-regularized min-max or
min-min DRO problem, respectively. Compared with existing class-level weighting schemes,
our method can capture the diversity between individual examples within each class. Com-
pared with existing individual-level weighting methods using meta-learning that require
three backward propagations for computing mini-batch stochastic gradients, our method is
more efficient with only one backward propagation at each iteration as in standard deep
learning methods. ABSGD is flexible enough to combine with other robust losses without
any additional cost. Our empirical studies on several benchmark datasets demonstrate the
effectiveness of the proposed method.

1 Introduction

Deep Learning (DL) has emerged as the most popular machine learning technique in recent years. It has
brought transformative impact in industries and quantum leaps in the quality of a wide range of everyday
technologies including face recognition (Schroff et al., 2015; Taigman et al., 2014; Parkhi et al., 2015; Wen
et al., 2016; Liu et al., 2019; Qi & Ardeshir, 2023), speech recognition (Graves et al., 2013; Chung et al.,
2014; Kim, 2014; Graves, 2013; Ravanelli et al., 2018) and machine translation (Cho et al., 2014; Bahdanau
et al., 2014; Sutskever et al., 2014; Luong et al., 2015; Vaswani et al., 2018). Most of these systems are
built based on learning a deep neural network (DNN) model from a huge amount of data. However, it
has been observed that these deep learning systems could fail in some cases caused by undesirable data
distribution, such as data imbalance (Johnson & Khoshgoftaar, 2019; Lin et al., 2017; Chan et al., 2019;
Fernández et al., 2018; Huang et al., 2019) and noisy labels in the dataset (FAN et al.; Herzig et al., 2013;
Kim et al., 2011). To be more specific, for example, Apple’s FaceID (a face recognition system) is much less
accurate for recognizing a child than an adult (Bud, 2018), and an autonomous driving car might fail at
night under the same road condition (Wakabayashi, 2018). The key factors that cause these problems are
(i) the training data sets collected from the real-world are usually follows a highly skewed distribution (e.g.,
the number of facial images of children are much less than that of adults), and/or contain noisily labelled
samples due to the inaccurate annotation process (Zhang et al., 2016); (ii) current deep learning systems are
not robust enough to overcome negative influence incurred by the real-world imperfect data as most existing
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(a) (b) (c) (d)
Figure 1: (a): A synthetic data for imbalanced binary classification (green vs purple) with a random linear decision
boundary (black line). (b), (c): Learned linear models optimized by SGD and ABSGD with logistic loss for 100
iterations, respectively. (d): The averaged weights of circled samples in the training process of SGD and ABSGD.

deep learning techniques in the literature are crafted and evaluated on well-designed benchmark datasets
with balanced distributions among different classes (e.g., ImageNet data for image classification).

Extensive studies have shown that standard empirical risk minimization (ERM) is not sufficient to address
the above deficiencies in training on large-scale datasets. Specifically, ERM can lead to biased models
toward the majority class and perform poorly in predicting minority class for data imbalance problems (He
& Garcia, 2009; Sun et al., 2007; Chawla et al., 2002; Batista et al., 2004). Similarly, label noise can result
in incorrect empirical risks during training (Natarajan et al., 2013; Wang et al., 2018; Zhang et al., 2021).
To overcome this, recent studies have been explored to learn to improve model robustness to overcome the
above deficiencies. Those studies can be divided into two directions, data manipulation, and robust learning.
Popular data manipulation methods include under/over-sampling based approaches (Chawla et al., 2002;
Han et al., 2005; Chawla, 2009) for data imbalance problem and label correction methods (Xiao et al., 2015;
Vahdat, 2017; Lee et al., 2018; Veit et al., 2017) for label noise problem, etc. Existing studies in these
methods are not very successful for deep learning with big data. For example, several studies have found
that over-sampling yields better performance than using under-sampling (Johnson & Khoshgoftaar, 2019).
But over-sampling will add more examples to the training data, which will lead to increased training time.
While the label correction methods (Xiao et al., 2015; Vahdat, 2017; Lee et al., 2018; Veit et al., 2017) usually
require extra clean data that are expensive to collect.

Robust learning methods include robust weighting and robust loss, where robust weighting assigns weights
to different losses of individual data which are either hand-crafted or learned, and robust loss refers to new
loss functions that are heuristic-driven or theoretically inspired for addressing data imbalance or label noise
issues. The existing robust weighting methods either require significant tuning or suffer from significant
computational burden. In this paper, we propose a simple yet systematic attentional-biased stochastic
gradient descent (ABSGD) method for addressing the class imbalance or the label noise problem in a
unified framework, which falls in the category of robust weighting methods. ABSGD is a simple modification
of the popular momentum SGD method for deep learning by injecting individual-level importance weights
to stochastic gradients in the mini-batch. These importance weights allow our method either to focus on
examples from the minority classes for the data imbalance problem or the clean samples for the label noise
problem. This idea is illustrated in Figure 1 on a toy imbalanced dataset by comparing it with the standard
momentum SGD method for deep learning. Unlike existing meta-learning methods for learning individual-
level weights, our individual-level weights are self-adaptive that are computed based on the loss value of each
individual data. In particular, the weight for each example is proportional to exponential of a scaled loss value
on that example. The weighting scheme is grounded in the theoretically justifiable distributionally
robust optimization (DRO) framework.

Specifically, our method can be considered as a stochastic momentum method for solving an information-
regularized distributionally robust optimization (IR-DRO) problem defined on all possible data (Zhu et al.,
2019). From this perspective, our method has several unique features. (i) The weights for all examples in
the mini-batch have a proper normalization term to ensure the method optimizes the IR-DRO problem,
which is updated online. We prove a theorem to show that our method converges to a stationary solution

2



Published in Transactions on Machine Learning Research (05/2023)

of the non-convex IR-DRO problem (with a certain convergence rate). (ii) The scaling factor before the
loss value in the exponential function is interpreted as the regularization parameter in the DRO framework.
In addition, our method has two benefits: (i) it is applicable in online learning, where the data is received
sequentially; (ii) it is loss independent, and can be combined with all existing loss functions crafted for
tackling data imbalance and label noise. Finally, we summarize our contributions below:

• We propose a simple robust stochastic gradient descent method with momentum and self-adaptive
importance weighting to tackle deep learning tasks with imbalanced data or label noise, which is
named asABSGD. ABSGD can be generalized to a broader family of AB methods that employ other
updating methods, e.g., AB-ADAM that uses the ADAM scheme to update the model parameter.

• We prove that ABSGD finds a stationary solution of a non-convex IR-DRO problem for learning a
deep neural network, and establish its convergence rate.

• We compare ABSGD with a variety of existing techniques for addressing the data imbalance and label
noise problems, including crafted loss functions, class-balancing weighting methods, individual-level
weighting meta-learning methods, and demonstrate superb performance of ABSGD.

2 Related Work

Class-level Weighting. The idea of class-level weighting is to introduce weights to examples at the class
level to balance the contributions from different classes. This idea is rooted in cost-sensitive classification in
machine learning (Zhou & Liu, 2005; Sun et al., 2007; Scott, 2011; Parambath et al., 2014; Narasimhan et al.,
2015; Elkan, 2001; Busa-Fekete et al., 2015; Yan et al., 2017). Traditional cost-sensitive methods typically
tune the class-level weights. Recently, a popular approach is to set the class-wise weights to be proportional
to the inverse of class sizes (Huang et al., 2016; Yin et al., 2018). Cui et al. (2019) proposed an improved
class-level weighting scheme according to inverse of the “effective number” of examples per class. It is also
notable that over/under-sampling methods have the same effect of introducing the class-level weighting to
the training algorithm. We can see that these class-level weighting schemes usually require certain knowledge
about the size (distribution) of each class, which makes them not suitable to online learning where the size of
each class is not known beforehand. These methods also neglect the differences between different examples
from the same class (cf. Figure 1).

Individual-weighting by Meta-Learning. The individual-level weights learning methods typically use
meta-learning to learn the individual-level weights along with updating the model parameters (Jamal et al.,
2020; Ren et al., 2018). The idea is to learn individual-level weights by solving a two-level optimization
problem. In particular,

min
θ

1
|C|
∑
zi∈C

L(w(θ); zi), where w(θ) = arg min
w

1
|D|

∑
zi∈D

θiL(w; zi)

where D denotes the training dataset, C denotes a balanced validation dataset, w denotes the model pa-
rameter, zi denotes a data, L(w; z) denotes the loss value of model w on data z, and θ = (θ1, . . . , θ|D|)
denotes the weights on the training examples. Ren et al. (2018) directly optimized the individual weights
in the framework of meta-learning with a heuristic trick by normalizing the weights of all examples in a
training batch so that they sum up to one. Jamal et al. (2020) considered the problem from the perspective
of domain adaptation and decomposed the individual weight into sum of a non-learnable class-level weight
and a learnable individual-level weight. One issue of these meta-learning methods is that they require three
back-propagations at each iteration, which is computationally more expensive than our method that is about
the same cost of standard SGD for DL.

Crafted Individual Loss Functions. Some crafted individual loss functions have been proposed for
tackling data imbalance or label noise. A popular loss function is known as the focal loss (Lin et al., 2017),
which is a modification of the standard cross-entropy loss. Specifically, it is defined as −(1 − pt)γ log(pt)
where γ > 0 is a tuning parameter, pt is the estimated probability for the ground-truth class. The focal loss
has been observed to be effective for dense object detection and is also widely used for classification with
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imbalanced data due to its simplicity (Goyal & Kaiming, 2018). However, the focal loss lacks theoretical
foundation. To complement this, (Cao et al., 2019) proposed a theoretically-principled label-distribution-
aware margin loss, which injects uneven margins into the cross-entropy loss, where the margin for each class
is proportional to inverse of each class size to the power of 2/5. For tackling label noise, symmetric losses
have been proposed, e.g., symmetric cross entropy loss (SCE) (Wang et al., 2019) and generalized cross
entropy loss (TCE) (Zhang & Sabuncu, 2018). Our method is loss independent and hence can be combined
with these existing crafted individual loss functions.

Optimization of DRO. DRO is a useful technique for domain adaptation, which has been shown both
theoretically and empirically promising for learning with imbalanced data (Shalev-Shwartz & Wexler, 2016;
Namkoong & Duchi, 2017; Qi et al., 2019; 2022). However, most existing optimization algorithms for DRO
are not practical for deep learning, which dims the usefulness of DRO. In the literature, DRO is formulated
as (Rahimian & Mehrotra, 2019; Namkoong & Duchi, 2017) :

min
w∈Rd

max
p∈∆n

n∑
i=1

piL(w; zi)− h(p,1/n) + r(w), (1)

where ∆n = {p ∈ Rn :
∑
i pi = 1, pi ≥ 0} denotes an n-dimensional simplex, h(p,1/n) is a divergence

measure or constraint between p and uniform probabilities 1/n, r(w) is a standard regularizer on w. We
can see DRO aims to minimize the worst-case loss over all the underlying distribution p in an uncertainty
set specified by h(p,1/n). Many primal-dual optimization algorithms have been designed for solving the
above problem for DL (Rafique et al., 2018; Yan et al., 2020). However, the dual variable p in the above
min-max form is an n-dimensional variable restricted to a simplex, which makes existing primal-dual opti-
mization algorithms computationally expensive and not applicable for the online setting where the data is
coming sequentially. Our method can be considered as a solution to addressing these issues by considering
a specific information-oriented regularizer h(p,1/n) = λ

∑
i pi log(npi) that is the KL divergence between

p and uniform probabilities 1/n, which allows us to transform the min-max formulation into an equivalent
minimization formulation with a compositional objective. From this perspective, our method resembles a re-
cently proposed dual-free algorithm RECOVER (Qi et al., 2020). However, RECOVER requires computing
stochastic gradients at two different points in each iteration, which causes their GPU cost to double ours.
In addition, RECOVER is a variance-reduction method, which might have poor generalization performance.
Several recent studies also proposed stochastic algorithms for DRO (Qi et al., 2022; Duchi & Namkoong,
2021; Levy et al., 2020; Jin et al., 2021; Levy et al., 2020; Amid et al., 2019), which are arguably more
complicated than our methods.

It was brought to our attention that several papers have developed algorithms based on certain formulations
of DRO for tackling noisy data and/or imbalanced data. Li et al. (2021) investigated the effectiveness of
optimizing the KL regularized DRO objective in dealing with class imbalance, which is similar to our paper.
The difference from this work is that our algorithm is simpler which only uses one mini-batch of samples
per-iteration. In contrast, their algorithm requires two independent mini-batches for updating the model
parameter. Majidi et al. (2021) proposed an Exponentiated Gradient (EG) reweighting method to optimize
the min-min DRO formulation (4) to handle the label noise problem. Unlike that in our algorithm, the
normalization term for computing the weights in the mini-batch is simply calculated from the mini-batch,
which does not provide any convergence guarantee for solving the min-min DRO formulation. Kumar &
Amid (2021) proposed Constrained Instance Weighting (CIW) method that is similar to EG to optimize
f -divergence min-min DRO, however, no theoretical guarantees have been provided. Later on, Bar et al.
(2021) proposed a different algorithm for solving a min-min DRO formulation such that the weights in a
constrained simplex {

∑n
i=1 pi = 1, 0 ≤ pi ≤ µ/n}. Their algorithm requires periodic projection onto the

constrained simplex, which takes O(n2) complexity when µ < n and O(n) complexity when µ = n, where
n is the size of the training set. They established a convergence rate of

√
n
BT , where B denotes the batch

size, and T denote, which is worse than the rate of our proposed algorithm by a factor of n/B.
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Algorithm 1 ABSGD (λ, η, γ, β, s0,w0, T )
1: for t = 0, · · · , T − 1 do
2: Sample/Receive a mini-batch of B samples {z1, · · · , zB}
3: Compute g̃(wt) = 1

B

∑B
i=1 exp(L(wt, zi)/λ)

4: Compute st+1 = (1− γ)st + γg̃(wt)
5: Compute p̃i = exp(L(wt;zi)

λ )
st+1

, for i = 1, . . . , B
6: Update wt+1 by Equation (2)
7: end for
8: Return wT

3 Attentional-biased SGD with Momentum (ABSGD)

In this section, we present the proposed method ABSGD and its analysis. We first describe the algorithm and
then connect it to the DRO framework. Then we present the convergence result of our method for solving IR-
DRO. Throughout this paper, we let z = (x, y) denote a random sample that includes an input x ∈ Rd′ and
the class label y ∈ {1, . . . ,K}, w ∈ Rd denote the weight of the underlying DNN to be learned. Let f(x) ∈ RK
be the prediction score of the DNN on data x, and `(f ; y) denote a loss function. For simplicity, we let
L(w; z) = `(f(x); y). A standard loss function is the cross-entropy loss where `(f ; y) = − log exp(fy(x))∑K

k=1
exp(fk(x))

.

We emphasize that our method is loss independent, and can be applied with any loss functions `(f ; y).
Specifically, ABSGD can employ the class-level weighted loss functions such as the class-balanced loss (Cui
et al., 2019), crafted individual loss functions such as label-distribution aware margin loss (Cao et al., 2019).

3.1 Algorithm

The proposed algorithm ABSGD is presented in Algorithm 1. The key steps are described in Step 2 to Step
6, and the key updating step for wt+1 is given by

ABSGD: wt+1 =wt − η
(

1
B

B∑
i=1

p̃i∇L(wt; zi) +∇r(wt)
)

+ β(wt −wt−1) (2)

where r(w) ∝ 1/2‖w‖22 denotes a standard `2 norm regularization (i.e., for contributing weight decay in the
update). The above update is a simple modification of the standard momentum method (Polyak, 1964),
where the last term β(wt −wt−1) is a momentum term. The modification lies at the introduced weight p̃i
for each data zi in the mini-batch. The individual weight p̃i is computed in Step 7 and is proportional to
exp(L(wt; zi)/λ), where λ is a scaling parameter that λ ∈ {R\0}. Intuitively, we can see that a sample with
a large loss value tends to get a higher weight with λ > 0. It makes sense for learning with imbalanced
data since the model tends to fit the data from the majority class while making the loss value larger for the
minority class. Hence, the data from the minority class tends to get a larger weight p̃i. This phenomenon is
demonstrated on a toy dataset in Figure 1. Similarly, if λ < 0, large value losses have smaller weights. As
the noisy samples incurs larger losses than the clean samples, p̃i would further emphasize more on the clean
samples with larger weights, hence λ < 0 is preferred in the presence of label noise.

It is notable that the weight p̃i is properly normalized by dividing a quantity st+1 that is updated online.
In particular, st+1 maintains a moving average of the exponential of the scaled loss value on the sampled
data (Step 4). It is notable that the normalization does not make the sum of p̃i in the mini-batch equal to
1. We emphasize that this normalization is essential in twofold: (i) it stabilizes the update without causing
a significant numerical issue; (ii) it ensures the algorithm converges to a meaningful solution as presented in
the next subsection.

3.2 Connection with Min-max or Min-min Robust Optimization

In the next subsection, we will show that ABSGD converges to a stationary solution of two robust opti-
mization problems depending on whether λ is positive or negative. In particular, given n training samples
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{z1, . . . , zn} we consider the following min-max and min-min robust optimization:

min
w∈Rd

max
p∈∆n

n∑
i=1

piL(w; zi)− τ
n∑
i

pi ln(npi)︸ ︷︷ ︸
F

(1)
τ (w)

+r(w).
(3)

min
w∈Rd

min
p∈∆n

n∑
i=1

piL(w; zi) + τ

n∑
i

pi ln(npi)︸ ︷︷ ︸
F

(2)
τ (w)

+r(w)
(4)

where τ > 0 and ∆n is a simplex. In the Appendix, we show that F (1)
τ (w) = τ log 1

n

∑
i exp(L(w; zi)/τ)+r(w)

and F (2)
τ (w) = −τ log 1

n

∑
i exp(−L(w; zi)/τ)+r(w). Similar min-max and min-min formulations have been

considered in the literature under the framework of tilting log-likelihood (Choi et al., 2000). Recently, there
is some renaissance of solving the min-max and min-min formulation in machine learning. For example, the
min-max formulation (3) is also closely related to distributionally robust optimization (Namkoong & Duchi,
2017) with a difference that a regularization is imposed on p instead of a constraint function. The min-min
formulation has been considered in (Majidi et al., 2021) for tackling noisy data. Recently, the titled risk
functions F (1)

τ (w) and F (2)
τ (w) have been also studied in (Li et al., 2021). We describe the difference between

ABSGD and the algorithm in (Li et al., 2021) in detail in section 3.5.

By considering the explicit τ
∑
i pi log(npi) regularizer in the two DRO formulations, our algorithm is appli-

cable to solving the min-max objective (3) by setting λ = τ and the min-min objective (4) by setting λ = −τ .
When τ = +∞, pi = 1/n according to the close form solution derived in Eqn (5). Then above DRO objectives,
Eqn (3) and (4), become the standard empirical risk minimization problem: minw∈Rd

1
n

∑n
i=1 L(w; zi)+r(w).

When τ = 0, then p has only one component equal to 1 that corresponds to the data with largest loss value
for Eqn (3) and the data with smallest loss value for Eqn (4). Hence, when τ → 0, DRO objective (3)
becomes the maximal loss minimization: minw∈Rd maxi L(w; zi) + r(w). And when τ → 0, DRO objec-
tive (4) becomes the minimal loss minimization: minw∈Rd mini L(w; zi) + r(w). The above maximal loss
minimization has been studied for learning with imbalanced data (Shalev-Shwartz & Wexler, 2016). It was
shown theoretically to yield better generalization performance than empirical risk minimization for imbal-
anced data. However, the maximal loss minimization is sensitive to outliers. Hence, by varying the value of
τ we can enjoy the balanced robustness between the imbalanced data and outliers.

3.3 Optimization Analysis

It is nice that the DRO formulation is robust to imbalanced data (Eqn (3)) and noisy data (Eqn (4)). How-
ever, the min-max/min formulation of DRO is not friendly to the design of efficient optimization algorithms,
especially given the constraint p ∈ ∆n. To this end, we transform the min-max/min formulation (3) and (4)
into an equivalent minimization formulation following (Qi et al., 2020). In particular, we first compute the
optimal solution of dual variable p∗ for the inner maximization/minimization problem given w. By taking
the first-derivation of equation (3) and (4) in terms of p and setting it to zero, i.e. ∇pF (w,p) = 0, we have
p∗:

p∗i =
exp(L(w;zi)

λ )
n∑
i=1

exp(L(w;zi)
λ )

, i = 1, . . . , n (5)

where λ = τ for equation (3) and λ = −τ for equation (4). By substituting p∗ back, we obtain the following
equivalent minimization formulation:

min
w∈Rd

Fλ(w) = λ log
(

1
n

n∑
i=1

exp
(
L(w; zi)

λ

))
+ r(w). (6)

In an online learning setting, we can further generalize the above formulation as

min
w∈Rd

Fλ(w) = λ log (Ez exp(L(w; z)/λ)) + r(w). (7)
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Given the above minimization formulations, our method ABSGD can be considered as a stochastic algorithm
for optimizing (6) in offline learning or optimizing (7) in online learning. Our method is rooted in stochastic
optimization for compositional optimization that has been studied in the literature (Wang et al., 2017;
Ghadimi et al., 2020; Chen et al., 2020; Qi et al., 2020). Intuitively, we can understand our weighting scheme
p̃ as following. In offline learning with a big data size where n is huge, it is impossible to calculate the p∗
as in (5) at every iteration due to computation and memory limits. As a result, we need to approximate p∗
in a systematic way.

In our method, we use moving average estimate st+1 to approximate the denominator in p∗, i.e.,
1
n

n∑
i=1

exp(L(w;zi)
λ ), and use it to compute a scaled weight of data in the mini-batch by Step 5, i.e.,

p̃i =
exp(L(wt;zi)

λ )
st+1

, i ∈ {1, · · ·B}. (8)

More rigorously, our method ABSGD is a stochastic momentum method for solving a compositional problem
in the form f(g(w))+r(w). To this end, we write the objective in (7) as f(g(w))+r(w), where f(g) = λ log(g)
and g(w) = Ez[exp(L(w; z)/λ)]. The difficulty of stochastic optimization for the compositional function
f(g(w)) lies on computing an approximate gradient at wt. By the chain rule, its gradient is given by
∇f(g(wt))∇g(wt) = λ

g(wt)∇g(wt). To approximate∇f(g(wt)) = λ
g(wt) , we use a moving average to estimate

g(wt) inspired by (Wang et al., 2017), which is updated in Step 4 of Algorithm 1, i.e.,

st+1 = (1− γ)st + γg̃(wt), where g̃(wt) = 1
B

B∑
i=1

exp(L(wt, zi)
λ

), {zi} are random samples.

And ∇g(wt) can be estimated by mini-batch stochastic gradient, i.e.,

∇g̃(wt) = 1
B

B∑
i=1

exp(L(wt; zi)/λ)∇L(wt; zi)
λ

.

Hence, the true gradient ∇f(g(wt))∇g(wt) is able to be approximated by

λ

st+1
∇g̃(wt) = 1

B

B∑
i=1

1
st+1

exp(L(wt; zi)/λ)∇L(wt; zi),

which is exactly the approximate gradient used in the update of wt+1 as in equation (2). Let us provide an
intuition about the benefit of using st+1 for normalization of weights. Let us consider a simple case such that
only one data is sampled for updating. For the imbalanced data setting, if the sampled data denoted by zt at
the t-th iteration is from a minority group and hence has a large loss. We would like to penalize more on such
an example. The estimator st+1 = (1−γ)st+γ exp(L(wt, zt)/λ) is likely to be smaller than exp(L(wt, zt)/λ)
due to γ < 1. As a result, normalization using st+1 will give a larger weight to the sampled minority data
compared with using the mini-batch normalization, i.e., exp(L(wt,zt)/λ)

st+1
> exp(L(wt,zt)/λ)

exp(L(wt,zt)/λ) . Similarly, in the
noisy label setting, if the sampled data is a noisy sample and hence has a large loss, then exp(L(wt, zt)/λ)
would be small due to that λ is set to be negative in this case. As a result st+1 = (1−γ)st+γ exp(L(wt, zt)/λ)
is likely to be larger than exp(L(wt, zt)/λ). Then normalization using st+1 will give a smaller weight to the
sampled noisy data compared with using the mini-batch normalization, i.e., exp(L(wt,xt)/λ)

st+1
< exp(L(wt,zt)/λ)

exp(L(wt,zt)/λ) .
We can see that in both cases using st+1 for normalization intuitively makes sense. In Figure 4, we will
empirically demonstrate the benefit of our algorithm design with a variant that uses γ = 1 which is just
using the mini-batch normalization.

Finally, we comment on the final update of model parameters. Instead of directly using this gradient
estimator to update the model parameter following (Wang et al., 2017), we employ a momentum update.
The reason is that the algorithm in (Wang et al., 2017) has a larger sample complexity, which is O(1/ε5) for
finding an ε-stationary point of the objective function (cf. Section 3.5). By using a momentum update as
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in (2), we are able to establish an optimal sample complexity. It is notable that the momentum update can
be seen as a simplification of the NASA method proposed in (Ghadimi et al., 2020), which was designed to
address the constrained compositional optimization.

3.4 Other AB methods

In light of the discussion about the connection between ABSGD and optimization of IR-DRO, we can
generalize ABSGD to employ other updating schemes, e.g., AdaGrad (Duchi et al., 2011), RMSProp (Ruder,
2016; Guo et al., 2021), Adam (Kingma & Ba, 2015). Below, we present the ABAdam method. The key
idea is to replace the standard mini-batch gradient estimator in Adam by the weighted mini-batch gradient
estimator. The key steps of ABAdam are presented below.

G(wt) = 1
B

B∑
i=1

p̃i∇L(wt; zi)

ABAdam: vt+1 = β1vt + (1− β1)G(wt)
ut+1 = β2ut + (1− β2)(G(wt))2

wt+1 = wt − η( vt+1√ut+1 +G0
+∇r(wt))

(9)

where G0 is a constant to increase stability, β1, β2 are the constant hyperparameters that are usually set
as 0.9 and 0.999, respectively. ABAdam could potentially benefit the applications that Adam has better
generalization performance than the SGD (Nadkarni et al., 2011; Kang et al., 2020). In the appendix, we
provide a theoretical analysis for ABAdam for optimizing IR-DRO, and leave the experimental exploration
for the future.

3.5 Convergence Analysis

In this subsection, we provide a convergence result of ABSGD for solving the min-max or the min-min
objective under some standard assumptions in non-convex optimization. For presentation simplicity, we
use the notations g(w) = Ez[exp(L(w; z)/λ)] and g(w; z) = exp(L(w; z)/λ). We first state a standard
assumption (Qi et al., 2020; Wang et al., 2017) and then present our main theorem.
Assumption 1. Let Vg, Ll are constant scalars,

• For a fixed λ, there exists Vg > 0 such that Ez[‖g(w; z)−g(w)‖2] ≤ Vg,Ez[‖∇g(w; z)−∇g(w)‖2] ≤ Vg
and L(w; z) for any z is an Ll-smooth function, i.e., ‖∇L(w; z)−∇L(w′; z)‖ ≤ Ll‖w−w′‖,∀w,w′

• For a given τ , there exists ∆0 such that F (1)
τ (w1)−minF (1)

τ (w) ≤ ∆0 or F (2)
τ (w1)−minF (2)

τ (w) ≤
∆F .

Theorem 1. Assume assumption 1 holds and there exists C0, C1 such that exp(L(wt; zi)/λ) ≤
C0, ‖∇L(wt; zi)‖ ≤ C1, for all wt and any zi. Then, γ ≤ ε2

3(4G2+5GVg) , η = γ2

2
√
L2
F

+10GL2
g

, β = 1 − γ.

For λ = τ > 0, ABSGD ensures that E
[

1
T

T∑
t=1
‖∇F (1)

τ (wt)‖2
]
≤ ε2 after T = O(1/ε4) iterations, and for

λ = −τ < 0 , ABSGD ensures that E
[

1
T

T∑
t=1
‖∇F (2)

τ (wt)‖2
]
≤ ε2 after T = O(1/ε4) iterations, where we

exhibit the constant in the big O in Appendix.

Remark: Before ending this section, we present some remarks. First, we notice that in a concurrent
work (Li et al., 2021), the authors proposed a similar algorithm to ABSGD without the momentum term,
i.e., γ = 1. However, they only prove the convergence for the algorithm with independent mini-batches for
L(w; z) and ∇L(w; z′). In our experiments, we show that the momentum term is important for speeding
up the convergence. In another concurrent work (Majidi et al., 2021) the authors proposed an algorithm for
solving the min-min objective (4). The difference is that in their algorithm the normalization for computing
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the weight is computed only from the current mini-batch while that in ABSGD depends on all historical
data. In addition, (Majidi et al., 2021) provides no convergence analysis for solving the min-min robust
optimization problem.

3.6 Two-stage Training Strategy for λ

Since λ can be interpreted as the regularization parameter in IR-DRO, we can understand its impact on the
learning of model. With a larger |λ|, the IR-DRO is getting closer to ERM and ABSGD is getting close
to the standard momentum SGD method without robust weighting. When |λ| = ∞, the update becomes
exactly the same as the standard momentum SGD method. When |λ| becomes smaller, the update will focus
more on data with larger loss values (e.g., from the minority class). This uneven weighting is helpful to learn
a robust classifier. However, it might harm the learning of feature extraction layers. This phenomenon has
been also observed in previous works (Cao et al., 2019; Kang et al., 2019).

To address this issue, we employ a two-stage training method following the existing literature (Kang et al.,
2019), where in the first stage we employ momentum SGD to learn a basis network, and in the second stage
we employ ABSGD to learn the classifier and finetune the feature layers. As momentum SGD is a special
case of ABSGD with |λ| =∞, the two-stage method is equivalent to running ABSGD with |λ| =∞ first and
then restarting it with a decayed |λ| < ∞. In the ablation study, we will show that damping |λ| is critical
for balancing the learning of feature extraction layers and classifier layers. Finally, it is notable that in the
second stage, we can fix some lower layers and only fine-tune upper layers using ABSGD.

4 Experimental Results on Data Imbalance Problem

We conduct experiments on multiple imbalanced benchmark datasets, including CIFAR-10 (LT), CIFAR-10
(ST), CIFAR-100 (LT), CIFAR-100 (ST), ImagetNet-LT (Liu et al., 2019), Places-LT (Zhou et al., 2017),
and iNaturelist2018 (iNatrualist, 2018), and compare ABSGD with several state-of-the-art (SOTA) methods,
including meta-learning (Jamal et al., 2020), class-balanced weighting (Cao et al., 2019), and two-stage
decoupling methods (Kang et al., 2019). We use the ResNets (He et al., 2016) as the main backbone
in our experiments. For fair comparison, ABSGD is implemented with the same hyperparameters such
as momentum parameter, initial step size, weight decay and step size decaying strategy, as the baseline
momentum SGD method. For ABSGD, the moving average parameter γ are tuned in [0.1 : 0.1 : 1] by
default. Without additional mentions, we directly use the results of baselines from their original papers by
default.

Datasets: The original CIFAR-10 and CIFAR-100 data contain 50,000 training images and 10,000 validation
with 10 and 100 classes, respectively. We construct the imbalanced version of training set of CIFAR10,
CIFAR100 following the two strategies: Long-Tailed (LT) imbalance (Cao et al., 2019) and Step (ST)
imbalance (Buda et al., 2018) with two different imbalance ratio ρ = 10, ρ = 100, and keep the testing set
unchanged. The imbalance ratio ρ is defined as the ratio between sample sizes of the most frequent and
least frequent classes. The LT imbalance follows the exponentially decayed sample size between different
categories. In ST imbalance, the number of examples are both equal within minority classes and majority
classes but differs between the majority and minority classes. We denote the imbalanced versions of CIFAR10,
CIFAR100 as CIFAR10-LT/ST, CIFAR100-LT/ST according the imbalanced strategies. ImageNet-LT (Liu
et al., 2019) is a long-tailed subset of the original ImageNet-2012 by sampling a subset following the Pareto
distribution with the power value 6. It has 115.8K images from 1000 categories, which include 4980 for the
head class and 5 images for the tail class. The Places-LT dataset was also created by sampling from Places-
2 (Zhou et al., 2017) using the same strategy as ImageNet-LT. It contains 62.5K training images from 365
classes with an imbalance ratio ρ = 4980/5. iNaturalist 2018 is a real world dataset whose class-frequency
follows a heavy-tail distribution (iNatrualist, 2018). It contains 437K images from 8142 classes. The long-tail
and step imbalance label distribution of the datasets are shown in Figure 2.

Label-Distribution Independent Losses. We first compare the effectiveness of our ABSGD method
with standard momentum SGD method for DL. In particular, we consider two loss functions, cross-entropy
(CE) loss and focal loss. The baseline method is the momentum SGD optimizing these losses, denoted by

9



Published in Transactions on Machine Learning Research (05/2023)

Figure 2: Long-tail label distributions of ImageNet-LT, Places-LT, iNaturalist2018 and CIFAR100 with imbalance
ratio ρ = 100, and Step imbalance label distribution of CIFAR10 with imbalance ratio ρ = 10.

SGD (CE) and SGD (Focal). Our methods are denoted by ABSGD (CE) and ABSGD (Focal) that employ
the two losses in our framework. This comparison is meaningful as in the online learning setting the prior
knowledge of class-frequency is not known.

Label-distribution Dependent Losses. Next, we compare ABSGD with baseline methods that use label-
distribution dependent losses. In particular, we consider class-balanced (CB) versions of three individual
losses, including CE loss, focal loss, label-distribution-aware margin (LDAM) loss (Cao et al., 2019). The
class-balanced weighing strategy is from (Cui et al., 2019), which uses the effective number of samples to
define the weight. As a result, there are three categories of CB losses, i.e., CB-CE, CB-Focal, CB-LDAM.
We use our method ABSGD with these different losses. In particular, ABSGD + CB-CE/Focal/LDAM uses
a combination of class-level weighting and instance-level weighting, which is expected to have outstanding
performance as it considers diversity between examples at both class level and individual level. For each of
these losses, we consider two baseline optimization methods. The first method is the standard momentum
SGD method with a practical useful trick (Cao et al., 2019) that defers adding the class-level weighting
after a number of pre-training steps with no class-level weights to improve the performance. We denote the
first method by SGD (XX), where XX denotes the loss function. The second method is the meta learning
method (Jamal et al., 2020) that uses meta-learning on a separate validation data to learn individual weights
and combines them with class-balanced weights. The meta learning method has been observed with SOTA
results on these benchmark imbalanced datasets. We let META (XX) denote the second method. Our
method is denoted by ABSGD (XX).

In the following, we compare ABSGD, SGD, and meta-learning methods by optimizing the same label-
dependent and label-independent losses on imbalanced CIFAR datasets, and including more baselines on
ImageNet-LT, Places-LT, and iNaturalist-LT.

Table 1: Top-1 testing accuracy (%), mean (std), of ResNet32 on imbalanced CIFAR-10 and CIFAR-100 trained
with label-distribution independent losses. The results are reported over 3 independent runs.

Dataset Imbalance Type long-tailed (LT) step (ST)
Imbalance Ratio 100 10 100 10

Cifar10

SGD (CE) 71.75 (± 0.75) 87.64 (± 0.45) 63.12 (± 0.63) 85.23 (± 0.41)
ABSGD (CE) 72.43 (± 0.31) 87.93 (± 0.25) 66.24 (± 0.35) 85.84 (± 0.27)
SGD (Focal) 70.86 (± 0.68) 87.10 (± 0.41) 63.31 (± 0.61) 85.55 (± 0.46)

ABSGD (Focal) 72.48 (± 0.28) 87.26 (± 0.35) 65.03 (± 0.33) 85.67 (± 0.30)

Cifar100

SGD (CE) 38.35 (± 0.63) 56.91 (± 0.44) 39.23 (± 0.58) 55.09 (± 0.35)
ABSGD (CE) 39.77 (± 0.34) 57.44 (± 0.25) 39.76 (± 0.37) 55.15 (± 0.29)
SGD (Focal) 39.05 (± 0.71) 56.89 (± 0.41) 39.32 (± 0.61) 54.45 (± 0.43)

ABSGD (Focal) 39.37 (± 0.38) 57.08 (± 0.29) 39.75 (± 0.39) 55.40 (± 0.33)

4.1 Experimental Results on CIFAR Datasets
Setups Following the experimental setting in the literature, the initial learning rate is 0.1 and decays by a
factor of 100 at the 160-th, 180-th epoch for both ABSGD and SGD in our experiments, respectively. The
value of λ in ABSGD tuned in [1 : 1 : 10].

Results. We report the results with label independent losses in Table 1 and with label dependent losses
in Table 2. We can see that ABSGD consistently outperforms SGD with a noticeable margin regardless
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Table 2: Top-1 testing accuracy (%) of ResNet32 on imbalanced CIFAR-10 and CIFAR-100 trained with label-
distribution dependent losses. The red numbers indicate the best in each category of class-weighted loss. The bold
red numbers indicate the best in each imbalanced setting. The original paper of META does not include the results
on the ST imbalanced setting, hence their missing results are marked by −.

Datasets Imbalanced CIFAR-10 Imbalanced CIFAR-100
Imbalance Type long-tailed step long-tailed step
Imbalance Ratio 100 10 100 10 100 10 100 10
Resampling (CE) 71.78 86.99 61.16 84.59 38.87 56.92 38.84 54.35

SGD (CB-CE) (Cui et al., 2019) 72.37 86.77 61.84 83.80 38.70 57.56 21.31 53.39
META (CB-CE) (Jamal et al., 2020) 76.41 88.85 - - 43.35 59.58 - -

ABSGD (CB-CE) 79.34 88.57 72.93 88.42 45.54 61.12 45.89 60.77
SGD (CB-Focal) (Cui et al., 2019) 74.57 87.10 60.27 83.46 36.02 57.99 19.76 50.02

META (CB-Focal) (Jamal et al., 2020) 78.90 88.37 - - 44.70 59.59 - -
ABSGD (CB-Focal) 79.53 88.76 76.33 85.90 44.11 59.14 45.41 59.75

SGD (LDAM) (Cao et al., 2019) 73.35 86.69 66.58 85.00 39.60 56.91 39.58 56.27
SGD (CB-LDAM) (Cao et al., 2019) 77.03 88.12 76.92 87.81 42.04 58.71 45.36 59.46

META (CB-LDAM) (Jamal et al., 2020) 80.00 87.40 - - 44.08 58.80 - -
ABSGD (CB-LDAM) 80.45 88.27 78.33 88.40 44.71 59.21 45.65 58.74

of imbalance strategies and imbalance ratio ρ. In particular, we have more than 2% improvements on the
CIFAR10-ST and CIFAR100-LT, respectively with ρ = 100. For the label dependent losses, we have the
following observations, comparing ABSGD with SGD, we can see that our method that incorporates the
self-adaptive robust weighting scheme performs consistently better in all imbalanced settings. This verifies
that the proposed self-adaptive weighting scheme is also effective even when applied on top of the class-level
weighting strategy. It is notable that META requires a separate validation data and is more computationally
expensive than our method. Hence, our method is a strong choice even compared with the SOTA meta
learning method, especially for highly imbalanced tasks. Also, the improvements of ABSGD with CB losses
over ABSGD with label independent losses verify the importance of prior label information in addressing
the data imbalance problem.

4.2 Experimental Results on ImageNet-LT, Places-LT and iNaturalist2018

Setups and baselines. Next, we conduct experiments on large-scale datasets and compare ABSGD with
more baselines. We conduct experiment on two different architectures, ResNet50 for ImageNet-LT and iNat-
uralist2018, and ResNet152 for Places-LT and iNaturalist2018. We compare ABSGD with several methods,
which include single-stage methods such as momentum SGD for optimizing LDAM loss, CB-CE loss and
CB-Focal loss, two-stage methods such as τ -normalized (CB-CE), LWS (CB-CE) proposed in (Kang et al.,
2019), and meta-learning method (META) (Jamal et al., 2020). For the two-stage decoupling strategy base-
line methods (Kang et al., 2019), the first stage uses the standard uniform sampling to train the model with
the CE loss, and the second stage fine tunes part of parameters in higher layers such as the fully connected
(FC) layers and last block of (LB) feature layers. META also uses the two-stage strategy to improve the
performance.

Here, to achieve the SOTA results, we investigate two-stage decoupling strategy for ABSGD. Hence, the
two-stage decay λ training scheme can be automatically applied. For ImageNet-LT, we jointly train the
feature representation and classifier using momentum SGD in the first stage for 90 epochs from scratch, and
finetune the FC layer for 90 epochs of ABSGD in the second stage. For Places-LT, we train the Last Block
(LB) of the convolutions layer and Fully Connected (FC) layer for 90 epochs in the first stage using SGD
with momentum from an ImageNet pretrained model, and finetune the FC and LB layer for 30 epochs in
second stage using ABSGD. For iNaturalist2018, we run momentum SGD (β = 0.9) for 200 epochs in the
first stage from the ImageNet pretrained model, and in the second stage we only finetune FC layer and LB
of the neural network using ABSGD with λ = 10 for 30 epochs. λ is tuned in {10, 20, 30} for all datasets.
The initial learning rates and learning scheme are described in Table 8 (Appendix). All of our results are
reported based on 3 independent runs.
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Table 3: Test top-1 accuracy(%) of different baseline methods on ImageNet-LT with Resnet50.

Methods Sampling Loss Stage-1 TV Stage-2 TV Results
Vanilla Model (Jamal et al., 2020) None CE All - 41.0
CB-CE (Cui et al., 2019) None CE All - 41.8
Joint (Kang et al., 2019) CB CE All All 41.6
NCM (Kang et al., 2019) CB CE All FC 44.3
cRT (Kang et al., 2019) CB CE All FC 43.3
τ -normalizer (Kang et al., 2019) CB CE All FC 46.7
META† (Jamal et al., 2020) None CE All FC 48.0
ABSGD None CE All FC+LB 48.2

Table 4: Test top-1 accuracy(%) of different baseline methods on Places-LT using ResNet50.

Methods Sampling Loss Stage-1 TV Stage-2 TV Results
Vanilla Model (Jamal et al., 2020) - CE FC/LB+FC - 27.9/30.3
Vanilla Model (Zhang et al., 2017) - Range FC - 35.1
Joint (Kang et al., 2019) CB CE LB+FC LB+FC 30.2
NCM (Kang et al., 2019) CB CE LB+FC FC 36.3
cRT (Kang et al., 2019) CB CE LB+FC FC 36.7
τ -normalized (Kang et al., 2019) None CE LB+FC FC 37.9
OLTR∗ (Liu et al., 2019) CB CE LB+FC FC 35.9
META † (Jamal et al., 2020) None CE LB+FC FC 37.1
ABSGD None CE LB+FC FC 38.7

Results Table 3, 4 5 are the experimental results of ImageNet-LT, Places-LT and iNaturalist2018, respec-
tively. To better understanding results, we make some notes in the table. TV represents Trainable Variable.
All represents standard training process that optimizes all the parameters of the backbone. FC represents
fully connected layer, LB represents the last block of feature layers in the backbone. The CB in the Sampling
column denotes Class-Balanced Sampling (Cui et al., 2019) in the second stage. † represents an additional
balanced data set is required in the second stage. ∗ denotes an additional memory is required in the second
stage. The bold numbers and the numbers with underline in the table represent the best and the second
best the numbers with underline on each dataset, respectively.

We can see that ABSGD combining with the two stage training strategy achieves best on all three datasets.
For the ImageNet-LT dataset in Table 3, ABSGD has 0.2% improvements over the next best META method
while has no requirements on the additional balanced validation datasets. For Places-LT, ABSGD has 0.9%
improvements over than the best baseline, τ -normalized. For the iNaturalist2018-LT in Table 5, ABSGD
outperforms all other baselines by a large margin 0.3% and 0.6% for using both ResNet50 and ResNet152,
respectively. To the best of our knowledge, 73.1% is the SOTA result on iNaturalist2018 dataset. In addition,
it is worth to mention that all the other baselines takes the advantage of the Class-Balanced Sampling or
additional balanced validation datasets (META), which makes ABSGD more favorable than the baselines.

4.3 Ablation Studies on CIFAR Datasets

In the ablation study, we first study ABSGD from different perspectives: a) the stagewise decay λ; b) the
influence of the moving average parameter γ on the testing accuracy. Then we plot the average instance
robust weights for each class to show the attention of ABSGD towards the minority class.

Two-stage decay of λ. To verify the model enjoys the benefits of stagewise decay λ the same as the
learning rate η, we compare the feature representations in both training and testing data between adopting
the two-stage λ decay training strategy and using a fixed value of λ during the training. For two-stage
strategy, we use λ = 100 in the first phase and decay it to 1 in the second phase. For fixed values of λ,
we use λ = 1. The results are plotted in the second column of Figure 3 on CIFAR10-LT. It is clear to see
using the stagewise strategy on λ yields much better feature representations that are well separated between
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Figure 3: t-SNE visualization of feature representations of training & testing set on CIFAR10-LT (ρ = 100) with
different λ strategies. Left two figures: Two-stage decay of λ: first phase λ = 100 and second phase λ = 1. Right two
figures: Fixed λ = 1.

Table 5: Top-1 testing accuracy(%) of different methods on iNaturalist2018 using ResNet50, ResNet152.

Methods Stage-2 TV Results Results
Network ResNet50 ResNet152
CE (Cui et al., 2019) - 65.8 69.0
LDAM (Cao et al., 2019) - 68.0 -
CB-Focal (Cui et al., 2019) - 61.1 -
NCM (CE) (Kang et al., 2019) FC 63.1 67.3
cRT (CB-CE) (Kang et al., 2019) FC 68.2 71.2
τ -Normalized (CE) (Kang et al., 2019) FC 69.3 72.5
LWS (CB-CE) (Kang et al., 2019) FC 69.5 72.1
META† (CB-CE) (Jamal et al., 2020) All 67.6 -
META† (CB-Focal) (Jamal et al., 2020) All 67.7 -
ABSGD (CB-CE) FC 69.8 73.1

different classes. In contrast, the learned feature representations with a fixed value λ = 1 are more cluttered.
Thus the stagewise decay λ strategy is better than using a fixed value of λ, which verifies our algorithmic
choice. We also provide the convergence curves of different λ strategies in Appendix.

The sensitivity of the moving average parameter γ In the derivation of Theorem 1, γ = O( 1√
T

),
which decreases to 0 when the total number of iterations increases. In practical training, we tune the
γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We report the testing accuracy over 3 independent runs in Figure 4 (left two)
and compare it with standard SGD training, the green dashed line. Here we can see that ABSGD achieves
highest testing accuracy with γ = 0.5 on both CIFAR10-LT and CIFAR100-LT. All the results of ABSGD
with different γ are better or comparable than momentum SGD verifies the effectiveness of the moving
average estimator Step 4 in Algorithm 1.

The average instance weights per-class ABSGD is an instance-level weighting method. For each
sample, ABSGD assigns a robust weight that is proportional to the scaled loss value. For ABSGD (CE), we
plot the average robust weights for the samples in the minority and majority class in Figure 4 (right two). It
can be clearly seen that the average weights of samples in minority class is greater than the average weights
of samples in majority class, which verifies the intuition behind ABSGD.

5 Experimental Results on Label Noise Problem

To show the effectiveness of ABSGD for handling noisy labels, we provide empirical studies on the noisy label
datasets in this section. We conduct experiments on CIFAR10, CIFAR100, and Clothing1M (Xiao et al.,
2015) datasets. The noise rate is defined as the portion of samples whose ground truth label are randomly
flipped. We follow the same setting as (Wang et al., 2019) and consider both the symmetric label noise
and asymmetric label noise on CIFAR10 and CIFAR100 with the noisy rates {0.2, 0.4} (Wang et al., 2019;
Patrini et al., 2017; Zhang & Sabuncu, 2018) in our experiments. The symmetric (uniform) noisy labels are
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Figure 4: Left two: the influence of γ on the CIFAR10-LT and CIFAR100-LT with imbalance ratio 100. The results
are reported over 3 independent runs. The green error bar is the stand deviation of each results. Right two: the
average instance weights for difference classes during the training process on CIFAR100-LT and CIFAR100-ST with
imbalanced ratio 100 on ResNet32.

generated by flipping the labels of a given proportion of training samples to one of the other class labels
uniformly. The asymmetric noisy labels are class-dependent noise, in which the flipping of labels only occur
within a specific set of classes. Please refer to the Noise setting section in (Wang et al., 2019) for details. The
Clothing1M is a real-world large-scale label noisy dataset and includes 14 classes with 1M training images
in total.

Baselines We compare ABSGD with SGD and a mini-batch based method for solving the min-min DRO
formulation (4) named EG (Majidi et al., 2021) and CIW with α = 1 (Kumar & Amid, 2021) with different
losses. The first is the standard CE loss. Then a theoretically grounded generalized cross entropy loss,
named as TCE, has been proposed later on (Zhang & Sabuncu, 2018). Furthermore, (Wang et al., 2019)
proposed a symmetric loss, named SCE, to address the under learning and overfitting problem that widely
exists in the noisy labels. For crafting loss hyperparameters, we tune the symmetric parameters in SCE
α, β ∈ {0.1, 1, 0.5, 1, 5} and the truncated parameter q in TCE is tuned in {0.1, 0.5, 0.7}. The momentum
parameter γ for ABSGD is tuned in {0.1, 0.5, 0.9}.

5.1 Experimental Results on CIFAR Datasets

Experimental Setting. Following the setting in (Wang et al., 2019), we use a 4-layer CNN proposed
in (Wang et al., 2019) for CIFAR10 data. For the CIFAR100, we use ResNet18 for the symmetric noisy
labels and the asymmetric noisy labels. We report the results of using CE and TCE losses optimized by
SGD, and SCE optimized by SGD, EG, CIW and ABSGD, respectively. The weight decay for different
methods are tuned in {1e-4, 5e-4, 1e-3, 5e-3}. We train the model for 120 epochs and the batch size is fixed
as 128 for all settings. The initial learning rates are tuned in {1e-3, 1e-2, 1e-1} and decayed at the epoch of
40, and 80 epochs by a factor of 10. The ABSGD hyper-parameter λ is tuned in {−0.1,−0.5,−1,−2,−3}.

Results. The results are reported in Table 6. Among the three baselines, SCE achieves better/comparable
experimental results in most of the different models, settings and datasets. Then the testing accuracy is
consistently improved further by optimizing SCE with the proposed ABSGD. By comparing the results
across different noisy rates, we can see that our ABSGD(SCE) improves more when the noisy rate increases.

5.2 Experimental Results on Clothing1M

Experimental Setting. We train the ResNet50 starting from the ImageNet pretrained model for all the
baselines following the same setting as (Wang et al., 2019) on the Clothing1M dataset. The training phase
includes 10 epochs, and the initial learning rate is fixed as 0.002 and decayed by a factor of 10 at the 5th
epoch for all the methods. The weight decay is set as 1e-2. The λ for ABSGD is tuned in {−1,−5,−10,−15}.
We report the results on CE, TCE, SCE optimized by standard SGD, EG and ABSGD, respectively.

Results. The results are reported in Table 7. We can see that ABSGD has better testing accuracy than
SGD and EG for all losses.
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Table 6: Top-1 testing accuracy (%) on noisy labelled CIFAR10 and CIFAR100 data of different methods. Results
are reported over 5 independent runs. Bold and underline represent the best and second results

Symmetric Asymmetric
Noisy Rate 0.2 0.4 0.2 0.4

CIFAR10
SGD(CE) 88.59 (± 0.21) 85.75 (± 0.31) 86.62 (± 0.27) 80.81 (± 0.29)
SGD(TCE) 89.87 (± 0.27) 86.84 (± 0.32) 88.97 (± 0.31) 80.85 (± 0.27)
SGD(SCE) 90.05 (± 0.23) 87.83 (± 0.33) 90.25 (± 0.34) 81.91 (± 0.42)
EG(SCE) 90.25 (± 0.21) 88.13 (± 0.29) 90.55 (± 0.32) 84.47(± 0.25)
CIW(CE) 90.29 (± 0.23) 87.92 (± 0.19) 88.99 (± 0.24) 87.18 (± 0.21)
CIW(SCE) 90.79 (± 0.25) 88.21 (± 0.22) 89.97 (± 0.23) 85.13 (± 0.19)
ABSGD(CE) 90.64 (± 0.20) 88.31 (± 0.19) 90.15 (± 0.22) 87.84 (± 0.25)
ABSGD(SCE) 91.15 (± 0.18) 88.65 (± 0.21) 91.04 (± 0.21) 86.10 (± 0.21)

CIFAR100
SGD(CE) 68.21 (± 0.27) 62.54(± 0.22) 69.57 (± 0.32) 62.93 (± 0.28)
SGD(SCE) 68.28 (± 0.29) 60.72 (± 0.23) 69.31 (± 0.31) 64.22 (± 0.21)
SGD(TCE) 65.12 (± 0.39) 59.61 (± 0.32) 67.98(± 0.28) 60.88 (± 0.27)
EG(SCE) 69.53 (± 0.21) 65.36 (± 0.19) 69.61 (± 0.23) 67.01 (± 0.24)
CIW(CE) 70.21 (± 0.20) 65.89 (± 0.19) 69.29 (± 0.22) 64.75 (± 0.23)
CIW(SCE) 69.53 (± 0.19) 65.38 (± 0.23) 70.07 (± 0.21) 67.19 (± 0.24)
ABSGD(CE) 70.63 (± 0.19) 66.23 (± 0.24) 70.70 (± 0.21) 68.16 (± 0.22)
ABSGD(SCE) 71.23 (± 0.19) 66.39 (± 0.20) 69.98 (± 0.23) 65.26 (± 0.24)

Table 7: Top-1 testing accuracy (%) on Clothing1M data of different methods. Results are reported over 3 inde-
pendent runs.

loss SGD EG CIW ABSGD
CE 69.05 (± 0.21) 69.42 (± 0.20) 69.53 (± 0.31) 69.79 (± 0.18)
SCE 69.31 (± 0.31) 69.32 (± 0.21) 69.22 (± 0.29) 69.93 (± 0.11)
TCE 68.28 (± 0.23) 68.66 (± 0.19) 68.51 (± 0.33) 68.69 (± 0.18)

6 Conclusion

In this paper, we propose a unified framework, ABSGD, for addressing the data imbalance and noisy label
problem. We provide the theoretical analysis both for the SGD-style and Adam-style updates. Empirical
studies on multiple benchmark datasets with different models show the outstanding performance of ABSGD
compared with several strong baselines.
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7 Appendix

Table 8: General hyperparameter settings in different experiments of section 4

Datasets Initial Step Size Weight Decay Schedule Batch Size Momentum
CIFAR10-ST/LT 0.1 2e-4 Stagewise Decay (Yuan et al., 2019) 128 0.9
CIFAR100-ST/LT 0.1 2e-4 Stagewise Decay (Yuan et al., 2019) 128 0.9

ImageNet-LT 0.05 5e-4 Cosine Annealing (Loshchilov & Hutter, 2016) 512 0.9
Places-LT 0.05 5e-4 Cosine Annealing (Loshchilov & Hutter, 2016) 512 0.9

iNaturalist2018 0.2 1e-4 Cosine Annealing (Loshchilov & Hutter, 2016) 512 0.9

The benefits of momentum Next, we verify that adding the momentum term can dramatically improve
performance. The results are plotted in the left two columns of Figure (5) on CIFAR10-LT (ρ = 100) and
CIFAR100-LT (ρ = 100) datasets, where we plot the testing accuracy vs the epochs of optimization with
an average of 3 runs. The results clearly show that including a momentum term helps improve performance
and stabilize the training process.

The Effect of Damping λ on Convergence. Figure 3 shows the advantage of using the damping
strategy on λ on feature representation learning. Here, we plot the convergence curves in terms of testing
accuracy in Figure 5. It is obvious to see that damping λ achieves higher test accuracy over fixed values of
λ, which also verifies our choice of damping λ.

Running Time Comparison To show the efficiency of ABSGD, we conduct an experiment on CIFAR-10
data with different networks on NVIDIA GeForce GTX 1080 Ti. The running time per iteration (seconds)
of SGD, ABSGD and META methods are shown in the following table. It is clear to see that ABSGD has
a comparable running time as SGD, while the per iteration running time of META is way slower than SGD
and ABSGD.

Table 9: Tunning time (seconds) per iterations of SGD, ABSGD, and META (Jamal et al., 2020) methods on
CIFAR-10 dataset with different networks.

Network(# Param.) SGD ABSGD META
ResNet32 (0.46M) 0.0167 0.0176 0.376
ResNet44 (0.44M) 0.0234 0.0250 0.474
ResNet56 (0.85M) 0.0284 0.0296 0.566
ResNet110 (1.7M) 0.0684 0.0692 0.882

Experiements on Convmixer We have implemented the newly proposed structure, named as Con-
vmixer (Trockman & Kolter, 2022), which operates convolutional layers on small patches. Convmixer has
been shown to achieve competitive results as ViT models but with faster training speed and fewer parame-
ters. We conducted an experiment by comparing ABSGD with CE loss and SGD for optimizing CE loss with
on CIFAR10 dataset in the long tail setting with an imbalance ratio of 10, and 100. The result is presented
in Table 10.

Table 10: Empirical Results on imbalanced dataset CIFAR10-LT with Convmixer structure

Imbalance Ratio SGD (CE) ABSGD (CE)
10 82.1 (± 0.28) 83.90 (± 0.23)
100 63.2 (± 0.31) 66.31 (± 0.21)

Comparison with optimal sample complexity algorithm with RECOVER

In this section, we compare ABSGD with RECOVER on the CIFAR dataset, which achieves optimal sample
complexity when solving regularized DRO with KL-divergence. The results are reported in Table 11. We
can see that ABSGD achieve better empirical that RECOVER on imbalanced datasets.
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Table 11: Experimental results on imbalanced CIFAT10-ST, CIFAR100-ST on ResNet32

Imbalance Ratio ABSGD RECOVER

CIFAR10-ST 10 85.84 (± 0.27) 82.61 (± 0.43)
100 66.24 (± 0.35) 63.53 (± 0.71)

CIFAR100-ST 10 55.15 (± 0.29) 52.52 (± 0.61)
100 39.76 (± 0.37) 37.21 (± 0.64)
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Figure 5: Ablation studies on CIFAR10-LT and CIFAR100-LT datasets: Left two images: comparing ABSGD with
(W/) momentum vs without(W/O) momentum. Right two images: comparing ABSGD with different λ strategies
on CIFAR-LT datasets. The black dashed lines represent the epoch where the learning rates are decayed. For the
red line, λ also decays from λ1 to λ2 at the dashed line epoch. The results are averaged over 3 random trials.

8 Theoretical Analysis of Theorem 1

Notations Denote f(s) = λ log(s), g(w; z) = exp(L(w;z)
λ ) and g(w) = Ez[g(w; z)], then

Fλ(w) = f(g(w)) = f(Ez[g(w; z)])

And Lg, Lf , Cg, Cf , Ds, DG are positive constants. By denoting Lg = C0Ll
λ + C0C1

λ2 , Cg = C0
√
C1

λ , Lf = λ,
and Cf = λ, we first derive the smooth and continuous property of f(·) and g(w; z) for ∀z ∼ D implied by
Assumption 1 with the following propositions.
Proposition 1. g(w) is a Lg-smooth and Cg-Lipschitz continuous function.

Proof. By Assumption 1 and Theorem 1, ‖∇L(w; z) − ∇L(w′; z)‖ ≤ Ll‖w − w′‖,∀w,w′, g(w; z) =
exp(L(w;z)

λ ) ≤ C0, L(w; z) ≥ 0 and ‖∇L(w; z)‖2 ≤ C1, we have 1 ≤ g(w; z) ≤ C0,∀z ∼ D and

‖∇2g(w)‖ = ‖ 1
n

n∑
i=1
∇2g(w; zi)‖ ≤

1
n

n∑
i=1
‖∇2g(w; zi)‖

= Ez[‖∇2g(w; z)‖] = Ez[ 1
λ
‖∇2L(w, z) exp(L(w; z)

λ
) + exp(L(w; z)

λ
)∇L(w; z)

λ
∇L(w; z)>‖]

≤ Ez[ 1
λ
‖∇2L(w; z) exp(L(w; z)

λ
)‖+ 1

λ2 ‖ exp(L(w; z)
λ

)∇L(w; z)∇L(w; z)>‖]

≤ C0Ll
λ

+ C0

λ2 Ez[‖∇L(w; z)‖2] ≤ C0Ll
λ

+ C0C1

λ2

(10)

In addition, with the assumption in Theorem 1,

‖∇g(w)‖ = ‖Ez[∇g(w; z)]‖ ≤ Ez[‖∇g(w; z)‖] = 1
λ
Ez[‖∇L(w; z) exp(L(w; z)

λ
)‖]

≤ C0

λ
Ez[‖∇L(w; z)‖] ≤ C0

λ

√
Ez[‖∇L(w; z)‖2] ≤ C0

√
C1

λ

(11)
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Proposition 2. f(s) = λ log(s) is a Lf -smooth and Cf -Lipschitz continuous function.

Proof. ∇f(s) = λ
s . As s = g(w; z) ∈ (1, C0], ∇f(s) ≤ λ, which implies ‖∇f(s)‖ ≤ λ. In addition,

‖∇f(s1)−∇f(s2)‖ = ‖ λ
s1
− λ

s2
‖ ≤

∥∥∥∥ λ

s1s2

∥∥∥∥ ‖s1 − s2‖ < λ‖s1 − s2‖. (12)

Following the assumption 1, Proposition 1 and 2, and the conditions in Theorem 1, then by let G =
max(C2

f , C
2
g ), LF = Lf the following inequalities hold:

• ‖∇g(w; z)‖2 ≤ G,∀z, |∇f(s)|2 ≤ G

• E[|g(w; z)− g(w)|2] ≤ Vg

• F (w) is LF smooth.

Next, we provide the following lemma to describe the objective gap between adjacent solutions for any
LF -smooth function F (w) : Rd → R with the wt+1 = wt − η̃vt+1 update. vt ∈ Rd can be any vector.
Lemma 1. Consider a sequence update wt+1 = wt− η̃vt+1, suppose clη ≤ η̃ ≤ cuη for a LF -smooth function
F , with ηLF ≤ cl/2c2u we have

F (wt+1) ≤ F (wt) + η

2‖∇F (wt)− vt+1‖2 −
η

2‖∇F (wt)‖2 −
η

4‖vt+1‖2.

Proof. Due the smoothness of F , we can prove that under ηLF ≤ cl/2c2u

F (wt+1) ≤ F (wt) +∇F (wt)>(wt+1 −wt) + LF
2 ‖wt+1 −wt‖2

= F (wt)− η̃∇F (wt)>vt+1 + LF η̃
2

2 ‖vt+1‖2

≤ F (wt) + η̃

2‖∇F (wt)− vt+1‖2 −
η̃cl
2 ‖∇F (wt)‖2 + (LF η̃

2

2 − η̃

2 )‖vt+1‖2

≤ F (wt) + ηcu
2 ‖∇F (wt)− vt+1‖2 −

ηcl
2 ‖∇F (wt)‖2 + (LF η

2c2u
2 − ηcl

2 )‖vt+1‖2

≤ F (wt) + ηcu
2 ‖∇F (wt)− vt+1‖2 −

ηcl
2 ‖∇F (wt)‖2 −

ηcl
4 ‖vt+1‖2

Remark When vt+1 is a stochastic gradient estimator, ‖∇F (w)−vt+1‖2 represents the stochastic gradient
estimator variance. In the following, we show that ‖∇F (w)−vt+1‖2 is decreasing for the proposed stochastic
estimator in ABSGD and ABAdam, which guarantees the convergence of the algorithms.

Next, the next lemma describes track the ‖∇F (w)− vt+1‖2

Lemma 2. Suppose Assumption 1 holds, then with the updates of st+1 = (1− γ)st + γg(wt; zt)
vt+1 = (1− β̃)vt + β̃∇g(wt; zt)∇f(st+1), for ∀t > 0, the following inequality holds:

Et‖∇F (wt)− vt+1‖2

≤ (1− β̃)‖∇F (wt−1)− vt‖2 + 4
β0
L2
F ‖wt −wt−1‖2 + 5β̃GEt‖g(wt)− st+1‖2 + 4β̃2G2

The third term on the right hand side can be bounded with the following lemma:
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Lemma 3 (Lemma 2, wang2017stochastic). Consider a moving average sequence st+1 = (1−γ)st+γg(wt; zt)
for tracking g(wt), where Ez[g(wt; z)] = g(wt) and g is a Cg-Lipchitz continuous operator. Then we have

Et[|st+1 − g(xt)|2] ≤ (1− γ)|st − g(xt−1)|2 + γ2Et[‖g(xt; zt)− g(xt)‖2] + 2L2‖wt −wt−1‖2

γ
.

Proof of Lemma 2.

‖∇F (wt)− vt+1‖2

= ‖(1− β̃)∇F (wt−1)− (1− β̃)vt − β̃∇g(wt; zt)∇f(st+1) +∇F (wt)− (1− β̃)∇F (wt−1)‖2

≤ ‖(1− β̃)(∇F (wt−1)− vt) + β̃∇g(wt; zt)∇f(g(wt))−∇g(wt; zt)∇f(st+1))
+ (1− β̃)(∇F (wt)−∇F (wt−1)) + β̃(∇F (wt)−∇g(wt; zt)∇f(g(wt)))‖2

Taking expectation on both sides over zt conditioned on historical randomness and noting that Et[∇F (wt)−
∇g(wt; zt)∇f(g(wt))] = 0, we have

Et‖∇F (wt)− vt+1‖2

≤ Et‖(1− β̃)(∇F (wt−1)− vt) + (1− β̃)(∇F (wt)−∇F (wt−1))
+ β̃(∇g(wt; zt)∇f(g(wt))−∇g(wt; zt)∇f(st+1))‖2

+ β̃2Et‖∇F (wt)−∇g(wt; zt)∇f(g(wt))‖2

+ 2β̃2Et[‖∇g(wt; zt)∇f(g(wt))−∇g(wt; zt)∇f(st+1))‖‖∇F (wt)−∇g(wt; zt)∇f(g(wt))‖]
(a)
≤ (1− β̃)‖∇F (wt−1)− vt‖2 + 2(1 + 1

β̃
)(1− β̃)2L2

F ‖wt −wt−1‖2 + 2β2
0(1 + 1

β̃
)GEt‖g(wt)− st+1‖2

+ 2β̃2‖∇F (wt)−∇g(wt; zt)∇f(g(wt))‖2 + β̃2GEt‖g(wt)− st+1‖2

(b)
≤ (1− β̃)‖∇F (wt−1)− vt‖2 + 4

β̃
L2
F ‖wt −wt−1‖2 + 4β̃GEt‖g(wt)− st+1‖2

+ 4β̃2G2 + β̃2GEt‖g(wt)− st+1‖2

(c)
≤ (1− β̃)‖∇F (wt−1)− vt‖2 + 4

β̃
L2
F ‖wt −wt−1‖2 + 5β̃GEt‖g(wt)− st+1‖2

+ 4β̃2G2

where the inequality (a) is due to ‖a+b‖2 ≤ (1+β̃)‖a‖2+(1+ 1
β̃

)‖b‖2, and ab ≤ a2

2 + b2

2 . The inequality (b) ap-
plies β̃ ≤ 1, 1+ 1

β̃
≤ 2

β̃
, Et‖∇F (wt)−∇g(wt; zt)∇f(g(wt))‖2 = ‖∇f(g(wt))‖2Et[‖∇g(wt)−∇g(wt; zt)‖2] ≤

‖∇f(g(wt))‖2Et[‖∇g(wt)‖2−‖∇g(wt; zt)‖2] ≤ ‖∇f(g(wt))‖2Et[‖∇g(wt)‖2 +‖∇g(wt; zt)‖2] ≤ 2G2 and the
last inequality (c) is due to β̃G ≥ β̃2G.

8.1 Convergence Analysis of ABSGD

Without loss of generality, we ignore r and consider the objective in the form of F (w) = f(g(w)), where
f = λ log(·) is a deterministic function and g = E[exp(L(w; z)/λ)] is a stochastic function, and at each
iteration, we only sample one data zt for evaluating g(wt; zt) and ∇g(wt; zt). To provide the convergence
analysis for ABSGD, the updates of Steps 3-6 in Algorithm 1 can be equivalently written as:

st+1 = (1− γ)st + γg(wt; zt)
vt+1 = βvt − η∇g(wt; zt)∇f(st+1)
wt+1 = wt + vt+1
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With some change of variable, the above update is equivalent to

st+1 = (1− γ)st + γg(wt; zt)
vt+1 = (1− β0)vt + β0∇g(wt; zt)∇f(st+1)
wt+1 = wt − η0vt+1

When η0β0 = η, β = 1− β0, the above two updates are equivalent. Hence, below we will analyze the second
update.

Hence Lemma 1, 2 and 3 are applicable to ABSGD updates with η̃ = η0, cl = cu = 1, β̃ = β0. Based on this,
we provide the convergence analysis for Theorem 1.

Proof of Theorem 1. Then by ∆t = ‖∇F (wt)− vt+1‖2 and according to Lemma 2, we have

E[∆t−1] ≤ E
[

∆t−1 −∆t

β0
+ 4L2

F η
2
0‖vt‖2

β2
0

+ 4β0G
2 + 5G‖st+1 − g(wt)‖2

]
Taking summation, we have

E[
T−1∑
t=0

∆t] ≤ E

[
T−1∑
t=0

∆t −∆t+1

β0
+
T−1∑
t=0

4L2
F η

2
0‖vt+1‖2

β2
0

+ 4β0G
2T + 5G

T−1∑
t=0
‖st+2 − g(wt+1)‖2

]
(13)

Next we bound E[
∑T
t=1 ‖st+1 − g(wt)‖2] = E[

∑T−1
t=0 ‖st+2 − g(wt+1)‖2] by the following Lemma 3:

Et[‖st+1 − g(wt)‖2] ≤ (1− γ)‖st − g(wt−1)‖2 + γ2Vg +
2L2

g‖wt −wt−1‖2

γ
.

‖st − g(wt−1)‖2 ≤ (‖st − g(wt−1)‖2 − Et[‖st+1 − g(wt)‖2])
γ

+ γVg +
2L2

g‖wt −wt−1‖2

γ2 .

As a result,

Et[
T∑
t=1
‖st+1 − g(wt)‖2] ≤ E[‖s2 − g(w1)‖2]

γ
+ γVgT +

T∑
t=1

2L2
gη

2
0‖vt‖2

γ2 . (14)

Combining the equation (13) and (14) inequalities together we have

E[
T−1∑
t=0

∆t] ≤ E

[
∆0

β0
+
T−1∑
t=0

L2
F η

2
0‖vt+1‖2

β2
0

+ 4β0G
2T + 5GE[‖s2 − g(w1)‖2]

γ
+

T∑
t=1

10GL2
gη

2
0‖vt‖2

γ2 + 5GγVgT
]

(15)

Finally, combining Equation (15) with Lemma 1, and β0 = γ, we have

E

[
1
T

T−1∑
t=0
‖∇F (wt)‖2

]
≤ F (w1)− F (wT )

η0T
+ 1
T

T−1∑
t=0

∆t

2 −
1
T

T−1∑
i=0

‖vt+1‖2

4

≤ F (w1)− F∗
η0T

+ E[∆0 + 5‖s2 − g(w1)‖2]
γT

+ γ(4G2 + 5GVg)

+ E

[
1
T

T−1∑
t=0

(L2
F + 10GL2

g)c2uη2‖vt+1‖2

γ2 − 1
4‖vt+1‖2

]
.

where F (w1) − F∗ ≤ ∆F , ∆0 = ‖v1 − ∇F (w0)‖2 = ‖β0∇g(w0; z0)∇f(s1) − ∇F (w0)‖2 =

‖β0∇g(w0; z0)∇f(γg(w0; z0)) − ∇F (w0)‖2 ≤ 2β2
0C

2
gC

2
f + 2C2

F

β0≤1
≤ 2G2 + 2C2

F , and ‖s2 − g(w1)‖2 =
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‖(1 − γ)s1 + γg(w1, z1) − g(w1)‖2 s0=0= ‖(1 − γ)(γg(w0, z0)) + γg(w1, z1) − g(w1)‖2
|a+b|2≤2a2+2b2

≤ 4C2
0 +

4C2
0 + 2C2

0 = 10C2
0 .

Then by setting β0 = γ ≤ ε2

3(4G2+5GVg) , η0 = γ

2
√
L2
F

+10GL2
g

, T ≥ max{ 3(2G2+2C2
F+10C2

0 )
ε2γ ,

6
√
L2
F

+10GL2
g∆F

ε2γ } =

max{ 9(4G2+5GVg)(2G2+2C2
F+10C2

0 )
ε4 ,

18(4G2+5GVg)
√
L2
F

+10GL2
g∆F

ε4 }, η0LF ≤ cl
2c2
u
, η0LF ≤ 1

2 , we have that

E

[
1
T

∑
t

‖∇F (wt)‖2
]
≤ ε2,

Therefore, by η = η0γ, β = 1− γ, which finishes the proof of ABSGD in Theorem 1

8.2 Convergence Analysis of ABAdam

Theorem 2. Assume assumption 1 holds and there exists C0, C1 such that exp(L(wt; zi)/λ) ≤
C0, ‖∇L(wt; zi)‖ ≤ C1, for all wt and any zi, Then, For λ = τ > 0 with appropriate η, γ, β1, β2, ABAdam

ensures that E
[

1
T

T∑
t=1
‖∇F (1)

τ (wt)‖2
]
≤ ε2 after T = O(1/ε4) iterations, and for λ = −τ < 0 with appro-

priate η, γ, β, ABAdam ensures that E
[

1
T

T∑
t=1
‖∇F (2)

τ (wt)‖2
]
≤ ε2 after T = O(1/ε4) iterations, where we

exhibit the constant in the big O.

ABAdam The updates of ABAdam:

st+1 = (1− γ)st + γg(wt; zt)
vt+1 = β1vt + (1− β1)∇g(wt; zt)∇f(st+1)
ut+1 = β2ut + (1− β2)(∇g(wt; zt)∇f(st+1))2

wt+1 = wt − η( vt+1√ut+1 +G0
)

To provide theoretical analysis for ABAdam, we add another assumption following the proof of (Guo et al.,
2021).

Proposition 3. Suppose Assumption 1 holds, there exists constant cl = 1/(G0 + G), G = max(C2
g , C

2
f ),

and cu = 1
G0

, then qt = 1/
√

ut +G0 is lower and upper bounded, such that ∀i, cl ≤ ‖qt,i‖ ≤ cu, where qt,i
denotes the i-th element of qt.

Proof. Then

‖∇f(st+1)∇g(wt; zt)�∇f(st+1)∇g(wt; zt)‖∞ ≤ ‖∇f(st+1)∇g(wt; zt)‖2 ≤ C2
gC

2
f ≤ G2

where � represents Hadamard product. By set u0,i = C2
0
λ2 G

2
∞, ut+1,i = (1 − β2)tu0,i +

β2‖(∇f(st+1)∇g(wt; zt))2‖∞ ≤ G2 ∀t ≥ 0. Therefore 1
G0
≥ 1√

ut+1,i+G0
≥ 1

G0+G .

Proof of ABAdam. The proof of ABAdam can reuse the steps of ABSGD up to Equation (15) by setting
β1 = β0, η0 = η̃. In addition, by setting ηcl ≤ η̃ = η

G0+√ut,i ≤ ηcu
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Then according to proposition 3 and Lemma 1, and let γ = 1− β1, we have

E

[
1
T

T−1∑
t=0
‖∇F (wt)‖2

]
≤ F (w1)− F (wT )

clηT
+ cu
clT

T−1∑
t=0

∆t

2 −
1
T

T−1∑
i=0

‖vt+1‖2

4

≤ F (w1)− F∗
clηT

+ cuE[∆0 + 5‖s2 − g(w1)‖2]
γTcl

+ γ(4G2 + 5GVg)
cu
cl

+ E

[
1
T

T−1∑
t=0

c3u(L2
F + 10GL2

g)η2‖vt+1‖2

clγ2 − 1
4‖vt+1‖2

]
.

The same as ABSGD, F (w1) − F∗ ≤ ∆F , ∆0 ≤ 2G2 + 2C2
F , ‖s2 − g(w1)‖2 ≤ 10C2

0 . Then by set-

ting 1 − β1 = γ ≤ ε2cl
3cu(4G2+5GVg) , η =

√
clγ

2c3/2
u

√
L2
F

+10GL2
g

, T ≥ max{ 3cu(2G2+2C2
F+10C2

0 )
ε2clγ

,
6
√
L2
F

+10GL2
g∆F

ε2clγ
} =

max{ 9c2
u(4G2+5GVg)(2G2+2C2

F+10C2
0 )

ε4c2
l

,
18cu(4G2+5GVg)

√
L2
F

+10GL2
g∆F

ε4c2
l

}, η0LF ≤ cl
2c2
u
, we have that

E

[
1
T

∑
t

‖∇F (wt)‖2
]
≤ ε2,

which finishes the proof of ABAdam in Theorem 1.

8.3 Equivalence derivation between Min-max Robust Optimization and Composition formulation

In the section, we show the equivalence between the min-max formulation (3), (4), i.e,

min
w∈Rd

max
p∈∆n

n∑
i=1

piL(w; zi)− τ
n∑
i

pi ln(npi)︸ ︷︷ ︸
F

(1)
τ (w)

+r(w), τ > 0

min
w∈Rd

min
p∈∆n

n∑
i=1

piL(w; zi) + τ

n∑
i

pi ln(npi)︸ ︷︷ ︸
F

(2)
τ (w)

+r(w), τ < 0

and the composition formulations, i.e,

F (1)
τ (w) = τ log 1

n

∑
i

exp(L(w; zi)/τ) + r(w), τ > 0

F (2)
τ (w) = −τ log 1

n

∑
i

exp(−L(w; zi)/τ) + r(w), τ < 0

Proof. Here, we provide the detailed derivation for τ > 0. Similarly, the derivation for τ < 0 can be done
using the same method. Recall the problem:

min
w∈Rd

max
p∈∆n

Fp(w) =
n∑
i=1

pi`(w; zi)− h(p,1/n) + r(w),

where ∆n = {p ∈ Rn :
∑
i pi = 1, 0 ≤ pi ≤ 1}. In order to solve the inner maximization, we will fix w and

derive an optimal solution p∗(w) that depends on w. To this end, we consider the following problem:

min
p∈∆n

−
n∑
i=1

pi`(w; zi) + h(p,1/n)

where r(w) was neglected since it does not involve p. Note the expression of h(p,1/n) = τ
∑
i pi log(npi) =

τ
∑
i pi log(pi) + τ log(n) due to

∑
i pi = 1. There are three constraints to handle, i.e., pi ≥ 0,∀i and
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pi ≤ 1,∀i and
∑
i pi = 1. Note that the constraint pi ≥ 0 is enforced by the term pi log(pi), otherwise the

above objective will become infinity. As a result, the constraint pi < 1 is automatically satisfied due to∑
i pi = 1 and pi ≥ 0. Hence, we only need to explicitly tackle the constraint

∑
i pi = 1. To this end, we

define the following Lagrangian function

Lw(p, µ) = −
n∑
i=1

pi`(w; zi) + τ(logn+
∑
i

pi log(pi)) + µ(
∑
i

pi − 1)

where µ is the Lagrangian multiplier for the constraint
∑
i pi = 1. The optimal solutions satisfy the KKT

conditions:

− `(w; zi) + τ(log(p∗i (w)) + 1) + µ = 0,∑
i

p∗i (w) = 1

From the first equation, we can derive p∗i (w) ∝ exp(`(w; zi)/τ). Due to the second equation, we can conclude
that p∗i (w) = exp(`(w;zi)/λ)∑

i
exp(`(w;zi)/λ)

. Plugging this optimal p∗(w) into the original min-max objective, we have

n∑
i=1

p∗i (w)`(w; zi)− τ(logn+
∑
i

p∗i (w) log(p∗i (w))) + r(w) = τ log 1
n

∑
i

exp(`(w; zi)/τ) + r(w),

which is the F (1)
τ (w).
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