
From Sparse Dependence to Sparse Attention:
Unveiling How Chain-of-Thought Enhances

Transformer Sample Efficiency

Kaiyue Wen∗†

Stanford University
kaiyuew@stanford.edu

Huaqing Zhang*

IIIS, Tsinghua University
zhanghq22@mails.tsinghua.edu.cn

Hongzhou Lin ‡

Amazon

hongzhou.lin89@gmail.com

Jingzhao Zhang
IIIS, Tsinghua University

Shanghai AI Lab
Shanghai Qizhi Institute

jingzhaoz@mail.tsinghua.edu.cn

Abstract

Chain-of-thought (CoT) significantly enhances the reasoning performance of large
language models (LLM). While current theoretical studies often attribute this
improvement to increased expressiveness and computational capacity, we argue
that expressiveness is not the primary limitation in the LLM regime, as current large
models will fail on simple tasks. Using a parity-learning setup, we demonstrate
that CoT can substantially improve sample efficiency even when the representation
power is sufficient. Specifically, with CoT, a transformer can learn the function
within polynomial samples, whereas without CoT, the required sample size is
exponential. Additionally, we show that CoT simplifies the learning process by
introducing sparse sequential dependencies among input tokens, and leads to a
sparse and interpretable attention. We validate our theoretical analysis with both
synthetic and real-world experiments, confirming that sparsity in attention layers is
a key factor of the improvement induced by CoT. 4

1 Introduction
Chain-of-thought (CoT) has proven to be a powerful technique for enhancing reasoning in large
language models Wei et al. (2022); Kojima et al. (2022). By instructing the model to break complex
problems into smaller, manageable steps, CoT facilitates more efficient reasoning and better gener-
alization, particularly in algorithmic and logical tasks Nye et al. (2022); Lewkowycz et al. (2022);
Wang et al. (2023b). Building on this, performance can be further improved through multi-step
prompting and multi-path sampling techniques Chowdhery et al. (2023); Wang et al. (2022b); Zhou
et al. (2023a); Zhang et al. (2023); Fu et al. (2023).

This focus on CoT within in-context learning has since expanded to more structured learning
approaches Yao et al. (2024); Besta et al. (2024). By adding reasoning examples of CoT style to
the instruction-tuning dataset, models enhance their problem-solving abilities more effectively than
relying solely on CoT during prompting Zelikman et al. (2022); Chung et al. (2024). As a result,

∗These authors contributed equally.
†A large part of this work was done while Kaiyue was at Tsinghua University.
‡This work is independent of and outside of the work at Amazon.
4Our code is available at https://github.com/zhqwqwq/Learning-Parity-with-CoT.

Mathematics of Modern Machine Learning Workshop at NeurIPS 2024.

https://github.com/zhqwqwq/Learning-Parity-with-CoT

(a) Sample complexity of 4-

layer 4-head transformer on

parity with 𝑛 = 30.

(b) Normalized attention entropy and evaluation accuracy

curves of 4-layer 4-head transformer on 𝑛 = 30, 𝑘 = 3 parity

problem.

Figure 1: (a) We show that, without Chain-of-Thought (CoT), the sample complexity for training
transformers to learn the parity function grows exponentially with the hardness parameter k. In
contrast, utilizing CoT significantly improves sample efficiency. (b) We also show that the sparsity of
attention layers, measured by normalized entropy (1), is crucial in the parity learning experiment.
In both CoT and non-CoT scenarios, as the attention layers become sparser—indicated by a rapid
decrease in normalized entropy—a corresponding jump in evaluation accuracy occurs.

CoT is now shaping a new paradigm in language model development, marking a shift from simply
scaling data Kaplan et al. (2020); Hoffmann et al. (2022) to focusing on advanced reasoning strategies
Lightman et al. (2024), which leads to more effective learning outcomes.

While CoT’s success is well-established, understanding why it works is still a hotly debated topic
Saparov & He (2023); Prystawski et al. (2024). Recent theoretical studies suggest that CoT en-
hances a model’s expressiveness, increasing its representational capacity when the sequence is long
enough Feng et al. (2023); Li et al. (2024c). However, expressivity alone does not guarantee success.
Large language models often struggle with simple tasks—like counting the number of ’r’s in "straw-
berry"—when not using CoT. Given the increasing model sizes, it seems unlikely that such tasks are
inherently inexpressible. This discrepancy calls for a deeper study of generalization, hinting the true
power of CoT may lie beyond the expressiveness.

In this paper, we study the benefit of CoT from the sample efficiency perspective. We provide concrete
examples where expressiveness is not the limiting factor; that is, the function can be expressed both
with and without CoT by the transformers. We demonstrate, both in theory and in practice, that
without CoT, the learning requires exponentially more samples comparing to with CoT. Further, we
show that CoT sequences introduce sparse sequential dependence, thereby enhancing the sparsity in
the attention layers. We then show that transformers can efficiently optimize and generalize on such
sequences. We summarize our contributions as follows.

1. Theoretically, we show that while the parity problem can be expressed by a 1-layer transformer,
learning requires exponentially many samples without CoT when the number of parameters is
limited (Theorem 1 and 2). Meanwhile, for CoT data with sparse sequential dependence, a 1-layer
transformer can learn the parity function and faithfully represent the sparse dependence in its
attention pattern with almost linear samples with respect to sequence length(Theorem 3).

2. Empirically, we verify our analysis that training on parity function with CoT data requires only
polynomial samples and will induce sparse and interpretable attention (Figure 3). We further show
that evaluating and training on CoT data will also induce sparser attention on real-world dataset
GSM-8k on pretrained language models.

2 Motivating Examples: Learning Parity Functions
We start with empirically exploring the sample efficiency of training transformers to learn the class
of parity functions (Blum et al., 2003) with and without CoT. The parity functions exhibits simple
structure but yet hard to learn by traditional networks Abbe & Sandon (2018); Malach & Shalev-
Shwartz (2022). Specifically, given a set of n binary variables b1, b2, . . . , bn, a parity function takes
k secret variables bi1 , . . . bik and outputs 1 if the sum of these k variables is odd, and 0 if it is even:

f(b1, ..., bn) = bi1 ⊕ bi2 ⊕ · · · ⊕ bik ,

2

where bi ∈ {0, 1} and ⊕ is the XOR operator. For example, f(b1, b2, b3, b4, b5) = b1 ⊕ b2 ⊕ b4 is a
5-variable parity function with k = 3. The function f returns 1 if the sum of b1, b2 and b4 is odd,
and 0 otherwise, independently of the value of b3 and b5. Intuitively, the parameter k controls the
hardness of the problem. When k increases, the number of possible subsets grows exponentially,
making the identification of the correct secret set more challenging.

Given a n-variable parity function f , we generate sequences of length n + 2 as auto-regressive
manner: b1, · · · bn, bn+1 := 0 and bn+2 = f(b[1:n]). To incorporate CoT, we break the sum of XOR
down into k steps and add all the intermediate steps into the sequence, i.e. including bi1 , bi1 ⊕ bi2 ,
· · · , bi1 ⊕ bi2 ⊕ · · · ⊕ bik . As a result, the CoT data has length n+ k+ 1. With the example function
f(b1, b2, b3, b4, b5) = b1 ⊕ b2 ⊕ b4, one sampled sequence would be

No CoT 0, 1, 0, 1, 0︸ ︷︷ ︸
input

, 0︸︷︷︸
[EOS]

, 0︸︷︷︸
answer

∈ {0, 1}7, as b1 ⊕ b2 ⊕ b4 = 0⊕ 1⊕ 1 = 0.

With CoT 0, 1, 0, 1, 0︸ ︷︷ ︸
input

, 0︸︷︷︸
[EOS]

0, 1︸︷︷︸
CoT

, 0︸︷︷︸
answer

∈ {0, 1}9, as b1 = 0, b1 ⊕ b2 = 1.

Next, we train transformer networks with and without CoT respectively, with a common held-out
test set, and compare their sample complexities. The sample complexity is defined as the amount of
data a model sees at the first time it achieves perfect validation accuracy. More precisely, we halt the
training process when the model reaches 100% validation accuracy and record the total number of
training examples used up to this point as the empirical sample complexity.

In Figure 1, we compare the empirical results of learning parity function with and without CoT. The
results show that the sample complexity without CoT (orange curve) grows exponentially, while
with CoT (blue curve), it increases linearly. In other words, incorporating CoT allows us to learn the
task with exponentially fewer samples. Additionally, it suggests that sparsity in the attention layers
plays a crucial role in the learning process. To explore why CoT enables transformers to learn more
efficiently, we formally define our problem setup below.

3 Theoretical Analysis
In this section, we provide a formal analysis of the training dynamics of Transformers on the parity
problem, both with and without Chain of Thought (CoT). We select the parity problem as our testbed
because identifying a set of key variables amidst various confounding ones is a fundamental aspect of
many reasoning tasks, and parity serves as an abstraction of this process.

3.1 Notations and Definitions

Parity Problem. Each token in our setting is either 0 or 1. We represent a sequence of length T as
b[1], . . . ,b[T]. A parity function is a function of form parityS(b) = ⊕j∈Sb[j], where S is the set of
secret indices that is fixed during training and testing, and ⊕ is the XOR operator on binary variables.
The cardinal of the secret set k = |S| controls the hardness of the problem.
Definition 1 (Parity Problem (n, k) without CoT). Given a secret set S of cardinal k, we define the
parity problem without CoT as the following distribution of sequences pNoCoT:

b[i] ∼ U({0, 1}),∀i ∈ [1, n], b[n+ 1] = 0, b[n+ 2] = parityS(b).

where b[1], ..., b[n] are uniformly sampled from 0 and 1.
Definition 2 (Parity Problem (n, k) with CoT). Given a secret set S of cardinal k, we define the
parity problem with CoT as the following distribution of augmented sequences pCoT:

b[i] ∼ U({0, 1}),∀i ∈ [1, n], b[n+ 1] = 0, b[i+ 1] = b[i]⊕ b[S[i]],∀i ∈ {n+ 1, . . . , n+ k}.
where S is any permutation of S, i.e. {S[i] | i = n+ 1, . . . , n+ k} = S.

When CoT is provided, the data includes a step-by-step computation of the desired parity function,
adding one variable at a time. Note that CoT is not unique for a given secret set since we can
arbitrarily permute S , given the commutative property of the XOR operator.

Transformer Architecture. To conduct the theoretical analysis, we simplify the Transformer
architecture similar to prior works (see e.g. Wang et al. (2024b); Nichani et al. (2024); Li et al.

3

(2023b)). More precisely, we drop all the layer norms or batch normalization; simplify the positional
embedding; use a square matrix to represent the attention layer and concatenate the residual branch in
a Densenet fashion Huang et al. (2017). After simplification, the network still has strong expressive
power like the standard Transformers.

In a standard Transformer, an embedding layer matches each vocabulary token into a dense vector
of size d and then adds a positional embedding. In our case, we only have boolean tokens and the
sequence has constant length T . Hence, we simply freeze 2T unit vectors as the embedding vectors:
Definition 3 (Embedding Module). For any position i ∈ [T], we sample two embedding vectors ei,0
and ei,1 uniformly at random from unit hypercube U

(
{ 1√

d
,− 1√

d
}d
)

. These embedding vectors are

frozen during training. Then for any binary sequence b ∈ {0, 1}T , the embedding is defined as

E (b) = [e(i,b[i])]i∈[T] ∈ Rd×T .
Due to the properties of the hypercube, with high probability, the embedding vectors are near-
orthogonal with each other.

Next, we define the attention layer. In standard architecture, the attention layer is derived from the
product of query and key matrices, i.e. QKT = XTWQ(WK)TX. In our case, we directly use a full
matrix XTAX to parameterize it, which has the same representation power.
Definition 4 (Attention Module). Given an input matrix X ∈ Rd×T and attention weightA, we define
the attention module as A(X) = X softmax(C +XTAX), where C ∈ RT×T is the autoregressive
mask with value −∞ on the lower triangular matrix.

The attention module is then followed by a fully connected layer with ReLU activation:
Definition 5. We define the FFN function with width 2m over a matrix X ∈ R2d×T as FFN(X) =
hTReLU(WX). Here W ∈ R2m×2d, h ∈ R2m×o with o being the output dimension and ReLU is
element-wise.

Finally, we concatenate the modules into a simplified Transformer block.
Definition 6 (Simplified Transformer Block). We define a simplified Transformer block as,

T (b) = FFN

([
E (b)

A (E (b))

])
,

where E is the embedding module, A is the attention module and FFN the fully connected layer.
An L-layer Transformer consists of a composition of L such blocks, with the embedding module E
appearing only in the initial layer. The intermediate dimension is set to d, while the output dimension
of the final layer is 1.

Compared with the standard residual structure, we use a Densenet structure to concatenate the residual
branch with identity branch. Again, this transformation does not affect the representation power
of the network, which is the standard practice in previous theoretical analysis (see e.g. Wang et al.
(2024b); Nichani et al. (2024)).

Loss function. To simplify our analysis, we use hinge loss ℓ(ŷ, y) = max{(−1)y ŷ + 1, 0} as
the loss function. We define the next token prediction loss of a boolean sequence b as L(w) =

ℓ(T (L)(b)[n+ 1],b[n+ 2]) and L(w) =
∑n+k
i=n+1 ℓ(T (L)(b)[i],b[i+ 1]) for with and without CoT

setup respectively, where w denotes all the trainable parameters.

3.2 Exponential Sample Complexity without CoT

We now present analysis in the no CoT setup. First, we show that the parity problem is easy to
represent with the simplified Transformer architecture:
Theorem 1 (Easy to Represent). Consider the Transformer model defined in Definition 6, for any
δ < 0.1 and large enough n, when the number of secret indices k is in [n/ log5(n/δ), n/ log4(n/δ)],
with probability at least 1−δ over the randomness of embedding e, there exists a weight configuration
of the Transformer with dimension d = Θ(k log(n/δ)) and width 2m = O(k) with Θ(log n)
precision of the weights and activations, such that d2 + dm = o(nk/ log n), and it achieves perfect
accuracy on the parity problem (n, k) without CoT, i.e.

∀b ∼ pNoCoT, sgn (T (b)[n+ 1]) = (−1)b[n+2]+1.

4

In other words, the model possesses sufficient expressive power to represent any parity function, even
in the absence of the chain of thought. Therefore, we are in the representational-sufficient regime
where expressiveness is not the bottleneck. The proof of this statement is based on random matrix
theory and concentration inequalities, which we defer to Appendix A.2.

While the function is expressible, this does not guarantee that the solution can be easily found. In
fact, we show that achieving a perfectly accurate solution using a gradient-based optimization method
requires an exponential number of samples in k assuming the memory, i.e. space complexity, to
perform optimization is bounded throughout the training.
Theorem 2 (Hard to Learn). For any randomly initialized simplified Transformer model with constant
layers, when the embedding dimension d and width 2m satisfies d2 + dm = o(nk/ log(n)), for any
constant number of passes q, when the model is trained with q−pass stochastic gradient descent
with O((d2 + dm) log n) memory, the sample complexity required to learn the parity problem (n, k)
without CoT to any nontrivial accuracy a > 50% with nontrivial probability p > 50% is 2Ω(k).

The proof is deferred to Appendix A.3. We use results from the classical online learning com-
munities (Lyu et al., 2023) to show that in the regime where the memory required to perform the
training is less than nk, the model can’t effectively store information about enough samples inside the
parameters during training, and hence can’t infer the secret indices effectively. Here the parameters k
denotes the size of the secret set S and the sample complexity grows exponentially when k grows.

3.3 Polynomial Sample Complexity with CoT
The result in Theorem 2 presents a seemingly negative outcome for learning algorithmic reasoning, as
the model requires exponentially many samples relative to k. However, in our main result, Theorem 3,
we will demonstrate that the sample complexity can be significantly reduced if a step-by-step
derivation is provided. In other words, CoT is much more sample efficient, where model can
effectively learn complex relationships as long as each token depends on only a few previous tokens.

We will use the following initialization of the 1-layer Transformer model. The attention is initialized to
be uniform (A = 0) and the contribution of attention output is initialized to be zero (Wr,d+1:2d = 0).
The parameter h in the FFN and the word embedding E is fixed during training.
Assumption 1 (Initialization). At initialization,

∀r ∈ [2m], A = 0,Wr,d+1:2d = 0,Wr,1:d =

n+k∑
i=n+1

1∑
b=0

νr,i,bei,b, h1:m =
1

2m
,hm+1:2m = − 1

2m
.

Here νr,i,b is independent random variable sampled uniformly from {−ϵ, ϵ}.
We can then train the model with stochastic gradient descent (SGD) and get the following theorem.
Theorem 3 (Easy to Learn with CoT). For any constant δ ∈ (0, 1), when the number of secret
indices k is in [n/ log5(n/δ), n/ log4(n/δ)], with probability 1− δ, a randomly initialized simplified
Transformer (see Assumption 1) with o(nk) parameters trained for constant steps using mini-batch
SGD with Õ(n) samples using appropriate hyperparameters (see Assumption 2) can reach perfect
accuracy on a parity problem (n, k) with CoT,

∀b ∼ pCoT, i ∈ {n+ 1, . . . , n+ k}, sgn (T (b)[i]) = b[i+ 1].

Furthermore, after training, the attention pattern is interpretable and one-hot in the sense that, for
any b ∼ pCoT, i ∈ {n+ 1, · · · , n+ k}, j ≤ i,∣∣softmax(C +E(b)AE(b))[j, i]− 1(j = S[i])

∣∣ < 1/n8.

Moreover, the result still holds even if all the weights and activations are in Θ(log n) precision.

This theorem indicates that the attention module can successfully extract the sparse sequential
dependencies in the CoT data and faithfully represent it in the attention pattern, which is validated
in our experiments (see Figure 3). It is also amongst the first optimization dynamics analysis of
Transformers using finite-sample gradients rather than population gradients. We delay the full proof
of the theorem to Appendix A.5.

Proof Sketch. In our analysis, the dynamics of the model includes three key phases. In the first phase,
the weight of the FFN layers become correlated with the embeddings associated to the secret indices.
In the second phase, this correlation caused the attention module to receive a strong signal to amplify

5

the attention weight on the corresponding secret indices at each position. The attention pattern will
become one-hot after this step. Finally, in the third phase, the FFN layers learn the correct mapping
to the output, utilizing both the embedding at the current token and the retrieved embedding from the
secret indices as indicated by the attention.

Phase 1. Configuring the FFN At initialization, as the FFN weight corresponds to the attention output
(Wr,d+1:2d) is initialized to be zero. The set of neurons activated at each position i ∈ [n+1, n+k] is
solely determined by the word embedding e(i,b[i]) at the position. Because ei,b are nearly orthogonal,
it holds that ⟨ei,b[i],Wr,1:d⟩ ≈ νr,i,b for all i and r with high probability. As a result, for a fixed i
and b[i], the set of activated neurons at position i is {r | νr,i,b[i] > 0}. Therefore, at initialization,
the MLP can be viewed as an ensemble of multiple linear functions specialized to each position and
boolean value. We can show that when the learning rate is small, the set of activated neurons at each
position remains the same through the training process. Hence, we can conceptually view the FFN
function as a set of different linear functions applied independently at each position and value. We
will denote this set of linear weight as κt,i,b (formally defined in Lemma 18).

As the attention weight matrix A is initialized as zero, the attention pattern will be uniform at
initialization. Notice that in the parity data with CoT, the only position whose value correlates with
b[i + 1] when conditioned on b[i] is S[i]. This suggests that the linear weight κ1,i,b[i] will have a
stronger correlation with the embedding e(S[i],b[j]) than other embeddings.

This step crucially relies on the sparse dependency in the CoT data. The strong linear correlation
will not be present in the data without CoT when k > 1, as every token b[i] for i ∈ [n+ 1] will be
uncorrelated with the desired output b[n+ 2] in such case.

Phase 2. Learning the Sparse Attention At the second step, as the FFN weight corresponds to the
attention output is no longer zero, the attention weight matrix A will receive a non-zero gradient. By
the chain rule, the gradient corresponding to how the attention from i−th token attends to the j−th
token softmax(C +XTAX)[j, i] will be larger when the approximate contribution of the embedding
of the j−th token to the output at the i−th token ⟨κ1,i,b[i], e(j,b[j])⟩ is larger. This suggests that the
attention will be amplified on the index that has a strong correlation with the output at the current
token, which is the secret index S[i]. This step will make the attention pattern approximately one-hot
as in the theorem statement.

Phase 3. Learning the Output Mapping At the final step, as the attention pattern is one-hot, the
FFN layer only needs to learn a mapping from the embedding at the current token and the embedding
at the secret index to the output. As the mapping is linear conditioned on the embedding at the current
token, the FFN layer can learn the correct mapping within a single step. This step will make the
model reach perfect accuracy on the parity problem with CoT.

4 Empirical Experiments

In this section, we validate and extend our theoretical findings through comprehensive experiments in
the following three aspects: First, we empirically confirm that CoT reduces the sample complexity of
transformers in learning the parity problem. Second, we conduct multi-pass training of transformers
without CoT, as a complement to the established lower bound (Theorem 2) which only applies to
constant-pass training. The results indicate that multi-pass training indeed improves the models’
ability to learn parity problems. Third, we conduct experiments on the GSM8K dataset (Cobbe
et al., 2021) to show that CoT introduces sparse sequential dependence on real-world training data.
Although necessary simplifications on transformer are made in Section 3 to develop theoretical results,
we use the standard transformer architecture in the subsequent experiments following the GPT-2
architecture (Radford et al., 2019) with trainable position embeddings unless otherwise specified.

4.1 Parity Learning with Multi-layer Transformers
In this section, we conduct an ablation study on the sample complexity of transformers with standard
GPT-2 architectures and one-pass training, with and without CoT.

Ablation study on sample complexity (Figure 2). We train transformers on parity problem with
n = 30 and k = 1, 2, 3, 4, with and without CoT, varying layers and heads from 1 to 4. We choose
the best performer across learning rates from 6×10−5, 8×10−5, and 1×10−4. At each step, a fresh
batch of training data is sampled, with a maximum budget of 107 samples. We record the number of
samples seen by the model before reaching an evaluation accuracy of 1 as the sample complexity.

6

(a) Sample complexity of transformers with varying numbers of layers and heads on parity problem with n=30

(b) Sample complexity of 1-layer 1-head

transformer on parity problem with 𝑛 = 30
(c) Sample complexity of 4-layer 4-head

transformer on parity problem with 𝑛 = 30

Figure 2: The sample complexity for learning parity without CoT increases exponentially with k.
CoT significantly reduces the sample complexity, demonstrating exponential improvement across
varying numbers of heads and layers.

(a) Sample complexity of 1-layer

1-head transformer on parity

problem with 𝑛 = 100 using CoT.

(b) The attention pattern of 1-layer 1-head transformer

trained on (𝑛 = 40, 𝑘 = 20) parity problem, detailed in

Section 4.1.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: (a) When n is fixed, the sample complexity of learning parity with CoT grows approximately
linearly with k. (b) The attention pattern learned by the transformer with CoT is interpretable, as
the i-th output token of CoT predominantly attends to secret index S[i].

Results. Figure 2 shows that training with CoT [first row in Figure 2 (a)] consistently achieves better
sample efficiency than training without CoT [second row in Figure 2 (a)]. Moreover, for a fixed
configuration of heads and layers, the sample complexity without CoT grows exponentially with
the parameter k. In contrast, CoT greatly reduces the sample complexity, showing an exponential
improvement across different numbers of heads and layers. These findings are consistent with our
theoretical analysis.

Training with CoT induce sparse and interpretable attentions (Figure 3). We evaluate the sample
complexity of a 1-layer, 1-head transformer on larger parity problems (n = 100 and 20 ≤ k ≤ 100).
Without CoT, training exceeds the sample budget when k ≥ 4. However, with CoT, we can
successfully train for any k. Figure 3b shows the attention pattern of a 1-layer, 1-head transformer
trained on a parity problem with (n = 40, k = 20) using CoT on a random query. In this case, CoT
processes the secret variables in ascending order. The i-th row illustrates the attention weight of the
i-th token attending to the previous ones, with indices corresponding to secret variables highlighted
in red.

7

200 400 600 800 10005
epoch number

0.6

0.8

1.0

Ev
al

ua
tio

n
Ac

cu
ra

cy
1 2 3 4
Head number

1
2
3
4

La
ye

r n
um

be
r

Figure 4: Evaluation accuracy of transformers on the (n = 20, k = 6) parity problem without
CoT. The model is trained on a dataset of 10, 000 samples for 1, 000 epochs. Almost all layer-head
configuration achieve perfect evaluation accuracy. Adding more heads is more effective than adding
layers. The blue dashed line marks the with CoT setup, which achieves perfect accuracy in 5 epochs.

Results. In Figure 3a, we show that training with CoT succeed with large n and k. Moreover, the
empirical result suggests that the sample complexity of learning parity with CoT grows approximately
linearly with k. This shows a clear contrast to without CoT setting where the required samples
explodes exponentially. To validate our theorem on learning the sparse dependence, we show in
Figure 3b that the attention pattern learned by the transformer with CoT is interpretable. Specifically,
the i-th output token of CoT primarily focuses on the i-th secret variable, with minimal attention
given to other tokens.

4.2 Multi-pass Training Improves Parity Learning without CoT

In our theory, we only establish lower bounds for the sample complexity of learning parity problems
with constant pass SGD training. To complement the established lower bounds for transformers
learning parity (Theorem 2), we conduct empirical experiments by training transformers without
CoT using multi-pass training. We make two observations below. First, the results demonstrate that
training with repeated data can help Transformers learn the parity function, although this process
still consumes significantly more computation (epochs) than trained on CoT data (Figure 4). Second,
a key difference between one-pass and multi-pass training is the development of sparse attention
(see Figure 5 Right), similar to the role of CoT shown in the previous section. This shows that the
development of sparse attention is crucial even in when training without CoT on the parity data.

Experiment protocols. On (n = 20, k = 6) parity problem, we conduct multi-pass training without
CoT. In Figure 4, the models are trained with 104 samples for 1000 epochs, with the number of layers
and heads ranging from 1 to 4. In Figure 5, we compare the training of 4-layer 4-head transformer on
5 · 104 and 106 samples respectively. The learning rate is initialized 10−4.

Normalized attention entropy. To measure attention sparsity, we introduce the concept of normalized
attention entropy for each attention head (illustrated in Figure 5 Right). Let Pℓ,h(x)[i] denote the
attention score distribution produced by the h-th head in the ℓ-th layer at the i-th token of input x.
The normalized attention entropy for the input x is then defined as:

Ent(x; ℓ, h) = min
i≥2

H(Pℓ,h(x)[i])
log i

∈ [0, 1], (1)

where H(P) = −
∫
log(P)dP is the entropy of distribution P . The normalization term log i

represents the entropy of a uniform distribution over i tokens, account for the varying context length.
The minimum is taken over different tokens in x since attention heads may specialize in extracting
information for specific tokens. As a result, a lower normalized attention entropy indicates a sparser
attention pattern. To compute the normalized attention entropy for each head, we would average the
normalized entropy across all question-answer pairs in the validation set.

Results. As shown in Figure 4, when trained on 104 samples, which only accounts for a small portion
(∼ 1%) of all possible inputs (220 ≈ 106), most of the transformer architectures we examined achieve
perfect evaluation accuracy given sufficient epochs. While the k = 6 problem is intractable with
one-pass training without CoT, these results demonstrate that multi-pass training can indeed enhance
learning in the no-CoT setup. However, CoT is by far the most effective accelerator, achieving perfect
accuracy in just 5 epochs, significantly outperforming the multi-pass no-CoT training.

Although learning without CoT is less efficient, it offers a "slow-mode" trajectory. In Figure 5 (Top),
the no-CoT loss function initially plateaus before eventually dropping to zero. During this plateau,
the entropy in the attention layers continues to decrease, indicating that feature learning is occurring

8

Figure 5: 4-layer 4-head transformer trained on the (n = 20, k = 6) parity problem without CoT
using multi-pass training, detailed in Section 4.2. When trained on a small dataset of 50000 samples,
the model achieves perfect evaluation accuracy (Top), accompanied by a significant decrease in
entropy. Surprisingly, when trained on an even larger training set with 1000000 samples, the model
fails to learn (Bottom), and both the training loss and the normalized attention entropy remain
elevated. This shows that the development of attention sparsity may improve optimization.

gradually. When all the attention heads become sparse, a transition phase occurs in the loss and
accuracy: the loss drops to zero, and evaluation accuracy jumps to 1. In contrast, in the failure case
shown in Figure 5 (Bottom), the entropy of the attention layers remains high throughout.

This experiment on no-CoT confirms that sparse attention is crucial for parity learning. As previously
demonstrated in Figure 1, CoT accelerates learning by quickly inducing sparsity. This suggests
that CoT not only improves the sample efficiency but also improve the optimization landscape by
facilitating sparsity, due to the introduction of sparse dependencies added in the intermediate steps.

4.3 CoT Induces Sparsity on Real-World Data
Now we move from the synthetic parity problem to real world experiment on GSM8K dataset of
grade-school math word problems (Cobbe et al., 2021). We observe that:
1. Real-world CoT data also exhibits sparse sequential dependence, leading to a sparser attention

pattern in pre-trained models.
2. Fine-tuning on CoT data further enhances the models’ attention sparsity on the input data.
Experiment protocols. In Figure 6, we examine two data types: With CoT, where inputs from
GSM8K dataset are concatenated with ground truth answers that include multiple reasoning steps,
and No CoT, where inputs are directly concatenated with the final answer. We evaluate two language
models: the pre-trained model Qwen2-7B (Yang et al., 2024) and the specialized mathematics model
Qwen2-7B-Math (Qwen, 2024) which is fine-tuned from Qwen2-7B on a mathematics-specific corpus
with CoT data. We plot the normalized attention entropy (Equation (1)) across different heads. More
details can be found in the Appendix Appendix B.1.

Results. Unlike the synthetic parity problem, the sequential dependency of real-world data is hard to
measure directly. However, it can be inferred from the attention sparsity of pre-trained models when
they process such data as input. As shown in Figure 6, comparing the normalized attention entropy of
the same pre-trained model Qwen2-7B on different types of data, we can see that the entropy is lower
for With CoT data compared to No CoT data, indicating that real-world CoT data indeed exhibits a
sparser structure. Furthermore, on the same With CoT data, Qwen2-Math-7B model demonstrates
lower attention entropy compared to Qwen2-7B model, suggesting that fine-tuning on CoT data
promotes the development of sparser attention patterns in the model.

5 Additional Related Work
Parity Learning. The most relevant work to ours is Wies et al. (2023), which shows that subtask
decomposition enables learning the parity problem with polynomial sample complexity in recurrent
neural networks (RNNs). Their learnability results rely on techniques from Wang et al. (2022a),
which operate within the NTK linearization regime of RNNs. In contrast, the Transformers analyzed
in our work exhibit feature learning and identify the sparse secret set within the attention module. On
the positive side, a line of works that studies optimization dynamics of neural networks on parity (Kou
et al., 2024; Barak et al., 2023; Edelman et al., 2023; Daniely & Malach, 2020; Abbe et al., 2023,
2024b) show that nΩ(k) samples is sufficient to learn parity, which is close to the statistical query

9

1 28
head

0.0

0.2

0.4

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py Layer 1

1 28
head

0.0

0.1

0.2

0.3

0.4
Layer 11

1 28
head

0.0

0.1

0.2

0.3
Layer 21

1 28
head

0.0

0.1

Layer 28

Qwen2-7B+
No CoT
Qwen2-7B+
With CoT
Qwen2-Math-7B+
With CoT

Figure 6: We compare the normalized attention entropy of the pre-trained Qwen2-7B and math-
specialized Qwen2-Math-7B models on the GSM8K dataset with and without CoT prompting (Section
4.3). Each bar represents the entropy of an attention head. The Qwen2-7B model exhibits sparser
attention when processing CoT data, indicating that real-world CoT data has a sparser structure. The
entropy difference between the Qwen2-7B and Qwen2-Math-7B model suggests that fine-tuning on
CoT data promotes the development of sparser attention patterns of the model.
lower bound (Kearns, 1998). On the negative side, it is well-established that learning parity using
gradient descent (GD) requires Ω(nk) iterations due to the SQ lower bound (Kearns, 1998). For SGD
learning, Shalev-Shwartz et al. (2017); Abbe & Sandon (2020) showed that an exponential number
of samples is necessary when SGD is hindered by additional noise or when the number of weights
updated in each step is constrained. However, it remains unclear whether standard mini-batch SGD
will still need exponential sample complexity. In our paper, we take the alternative approach to
consider the training as an online algorithm with bounded memory (parameters) and utilize results
from online learning literature to provide a rigorous exponential lower bound (Lyu et al., 2023; Kol
et al., 2017). Hahn & Rofin (2024) shows that while parity is easy to represent using Transformers,
the sensitivity structure of the function will require the representation to have large weight norms. A
recent work (Abbe et al., 2024a) conjectured that a distribution is weakly learnable by a Transformer
if and only if it has constant globality, which is supported by empirical experiments. The work also
highlights the parity problem as a notable special case.

Chain-of-Thoughts (CoT). Chain-of-Thoughts (CoT) is the technique to let the model generate a
reasoning process before final answers. CoT prompting is an effective method in practice to improve
language model’s reasoning capabilities (Wei et al., 2022; Zhang et al., 2022; Wang et al., 2023a;
Zhou et al., 2023b; Wang & Zhou, 2024; Creswell et al., 2023). Training with CoT data has further
improved the model’s capability in performing complex reasoning (see Qwen (2024); Yue et al.
(2023); Yu et al. (2024); Kim et al. (2023) and reference therein). Different lines of work aimed
at understanding the effect of CoT. From the representation theory perspective, works including
Feng et al. (2024); Merrill & Sabharwal (2024); Li et al. (2024d); Nowak et al. (2024); Wen et al.
(2024) show that CoT can provably expand the representation power of different neural architectures
including Transformers and RNNs. From the statistical approximation level, prompting with CoT
has improved the statistical error (Hu et al., 2024; Prystawski et al., 2023). Li et al. (2023a) studies
how MLP models learn with CoT data. Li et al. (2024a) studies how Transformers learn to perform
CoT through prompting using gradient descent. We differ from this work as (1) we focus on how
Transformer captures the sparse sequential dependency in Chain of Thought, which is not reflected
in their data modeling; (2) we study zero-shot CoT data directly. Finally, Dutta et al. (2024); Wang
et al. (2024a) studies pretrained Transformers’ activation on CoT data. They highlight the attention
head’s role in moving the essential information from the context to the reasoning process, which is
consistent with our theoretical insight.

Transformer Optimization Dynamics. Our works fall in the line of works that studies the opti-
mization dynamics of Transformers on synthetic datasets (Li et al., 2023b; Chen et al., 2024; Kim &
Suzuki, 2024; Wibisono & Wang; Chan et al., 2022; Wibisono & Wang, 2024; Cole et al., 2024; Sheen
et al., 2024; Chen et al., 2024; Tian et al., 2023; Nichani et al., 2024; Li et al., 2024b). Similar to
our works, Wang et al. (2024b) highlights that Transformers can learn to select sparse critical tokens
from the context on linear data. We differ from their work in studying the mini-batch optimization
dynamics on nonlinear data and hence establishing sample complexity bounds.

6 Conclusion and Future Works.
Our work demonstrates that Transformers trained on CoT data with sparse sequential dependencies
can efficiently learn sparse attention mechanisms, accurately capturing these dependencies while
requiring exponentially fewer samples than models trained without CoT. Our current analysis of CoT
training assumes that each subsequent token depends on exactly one token in the context and focuses
solely on the parity function. A promising future direction is to explore more general scenarios where
each token depends on multiple previous tokens and extends to function classes beyond parity.

10

References
Emmanuel Abbe and Colin Sandon. Provable limitations of deep learning. arXiv preprint

arXiv:1812.06369, 2018.

Emmanuel Abbe and Colin Sandon. Poly-time universality and limitations of deep learning, 2020.
URL https://arxiv.org/abs/2001.02992.

Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics, 2023. URL https://arxiv.org/abs/2302.
11055.

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, and Omid Saremi. How far can trans-
formers reason? the locality barrier and inductive scratchpad. arXiv preprint arXiv:2406.06467,
2024a.

Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks, 2024b. URL https://arxiv.org/abs/2202.08658.

Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Hidden progress in deep learning: Sgd learns parities near the computational limit, 2023. URL
https://arxiv.org/abs/2207.08799.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, 2024.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. J. ACM, 50(4):506–519, jul 2003. doi: 10.1145/792538.792543.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning
in transformers. Advances in Neural Information Processing Systems, 2022.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and optimality, 2024. URL
https://arxiv.org/abs/2402.19442.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. Journal of
Machine Learning Research, 24(240), 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun
Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin
Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang,
Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny
Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language models. Journal of
Machine Learning Research, 25(70), 2024.

11

https://arxiv.org/abs/2001.02992
https://arxiv.org/abs/2302.11055
https://arxiv.org/abs/2302.11055
https://arxiv.org/abs/2202.08658
https://arxiv.org/abs/2207.08799
https://arxiv.org/abs/2402.19442

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Frank Cole, Yulong Lu, Riley O’Neill, and Tianhao Zhang. Provable in-context learning of linear
systems and linear elliptic pdes with transformers, 2024. URL https://arxiv.org/abs/2409.
12293.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. In The Eleventh International Conference on
Learning Representations, 2023.

Amit Daniely and Eran Malach. Learning parities with neural networks, 2020. URL https:
//arxiv.org/abs/2002.07400.

Subhabrata Dutta, Joykirat Singh, Soumen Chakrabarti, and Tanmoy Chakraborty. How to think
step-by-step: A mechanistic understanding of chain-of-thought reasoning, 2024. URL https:
//arxiv.org/abs/2402.18312.

Benjamin L. Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Pareto frontiers
in neural feature learning: Data, compute, width, and luck, 2023. URL https://arxiv.org/
abs/2309.03800.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. In Advances in Neural Information
Processing Systems, 2024.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The Eleventh International Conference on Learning Representations,
2023.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers?, 2024. URL
https://arxiv.org/abs/2402.09963.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan,
Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon
Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and Laurent Sifre. An
empirical analysis of compute-optimal large language model training. In Advances in Neural
Information Processing Systems, 2022.

Xinyang Hu, Fengzhuo Zhang, Siyu Chen, and Zhuoran Yang. Unveiling the statistical foundations
of chain-of-thought prompting methods, 2024. URL https://arxiv.org/abs/2408.14511.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM (JACM),
45(6):983–1006, 1998.

Juno Kim and Taiji Suzuki. Transformers learn nonlinear features in context: Nonconvex mean-field
dynamics on the attention landscape, 2024. URL https://arxiv.org/abs/2402.01258.

Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang, Seonghyeon Ye, Jamin Shin, and Minjoon
Seo. The cot collection: Improving zero-shot and few-shot learning of language models via
chain-of-thought fine-tuning, 2023. URL https://arxiv.org/abs/2305.14045.

12

https://arxiv.org/abs/2409.12293
https://arxiv.org/abs/2409.12293
https://arxiv.org/abs/2002.07400
https://arxiv.org/abs/2002.07400
https://arxiv.org/abs/2402.18312
https://arxiv.org/abs/2402.18312
https://arxiv.org/abs/2309.03800
https://arxiv.org/abs/2309.03800
https://arxiv.org/abs/2402.09963
https://arxiv.org/abs/2408.14511
https://arxiv.org/abs/2402.01258
https://arxiv.org/abs/2305.14045

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1067–1080, 2017.

Yiwen Kou, Zixiang Chen, Quanquan Gu, and Sham M. Kakade. Matching the statistical query
lower bound for k-sparse parity problems with stochastic gradient descent, 2024. URL https:
//arxiv.org/abs/2404.12376.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning
problems with language models. In Advances in Neural Information Processing Systems, 2022.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear trans-
formers acquire generalization-guaranteed cot ability? In High-dimensional Learning Dynamics
2024: The Emergence of Structure and Reasoning, 2024a. URL https://openreview.net/
forum?id=8pM8IrT6Xo.

Hongkang Li, Meng Wang, Shuai Zhang, Sijia Liu, and Pin-Yu Chen. Learning on transformers
is provable low-rank and sparse: A one-layer analysis. In 2024 IEEE 13rd Sensor Array and
Multichannel Signal Processing Workshop (SAM), pp. 1–5, 2024b. doi: 10.1109/SAM60225.2024.
10636559.

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak.
Dissecting chain-of-thought: Compositionality through in-context filtering and learning, 2023a.
URL https://arxiv.org/abs/2305.18869.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards
a mechanistic understanding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 19689–19729. PMLR, 23–29 Jul 2023b. URL https://proceedings.mlr.press/v202/
li23p.html.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024c.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems, 2024d. URL https://arxiv.org/abs/2402.12875.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024.

Xin Lyu, Avishay Tal, Hongxun Wu, and Junzhao Yang. Tight time-space lower bounds for constant-
pass learning, 2023. URL https://arxiv.org/abs/2310.08070.

Eran Malach and Shai Shalev-Shwartz. When hardness of approximation meets hardness of learning.
Journal of Machine Learning Research, 23, 2022.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought,
2024. URL https://arxiv.org/abs/2310.07923.

Eshaan Nichani, Alex Damian, and Jason D. Lee. How transformers learn causal structure with
gradient descent, 2024. URL https://arxiv.org/abs/2402.14735.

13

https://arxiv.org/abs/2404.12376
https://arxiv.org/abs/2404.12376
https://openreview.net/forum?id=8pM8IrT6Xo
https://openreview.net/forum?id=8pM8IrT6Xo
https://arxiv.org/abs/2305.18869
https://proceedings.mlr.press/v202/li23p.html
https://proceedings.mlr.press/v202/li23p.html
https://arxiv.org/abs/2402.12875
https://arxiv.org/abs/2310.08070
https://arxiv.org/abs/2310.07923
https://arxiv.org/abs/2402.14735

Franz Nowak, Anej Svete, Alexandra Butoi, and Ryan Cotterell. On the representational capacity
of neural language models with chain-of-thought reasoning, 2024. URL https://arxiv.org/
abs/2406.14197.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. In Deep Learning for Code
Workshop, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in neural information processing systems,
2019.

Ben Prystawski, Michael Y. Li, and Noah D. Goodman. Why think step by step? reasoning emerges
from the locality of experience, 2023. URL https://arxiv.org/abs/2304.03843.

Ben Prystawski, Michael Li, and Noah Goodman. Why think step by step? reasoning emerges from
the locality of experience. Advances in Neural Information Processing Systems, 36, 2024.

Team Qwen. Introducing qwen2-math. https://qwenlm.github.io/blog/qwen2-math/, 2024.
Accessed: 2024-09-28.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International Conference on Learning Representations, 2023.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning,
2017. URL https://arxiv.org/abs/1703.07950.

Heejune Sheen, Siyu Chen, Tianhao Wang, and Harrison H. Zhou. Implicit regularization of gradient
flow on one-layer softmax attention, 2024. URL https://arxiv.org/abs/2403.08699.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Under-
standing training dynamics and token composition in 1-layer transformer. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 71911–71947. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
e359ebe56ba306b674e8952349c6049e-Paper-Conference.pdf.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science, volume 47 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2018. ISBN 978-1-108-41590-3. doi: 10.1017/9781108231596. URL https:
//doi.org/10.1017/9781108231596.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models, 2023a. URL https://arxiv.org/abs/2305.04091.

Lifu Wang, Bo Shen, Bo Hu, and Xing Cao. On the provable generalization of recurrent neural
networks, 2022a. URL https://arxiv.org/abs/2109.14142.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting, 2024. URL
https://arxiv.org/abs/2402.10200.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Rationale-augmented
ensembles in language models. arXiv preprint arXiv:2207.00747, 2022b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b.

14

https://arxiv.org/abs/2406.14197
https://arxiv.org/abs/2406.14197
https://arxiv.org/abs/2304.03843
https://qwenlm.github.io/blog/qwen2-math/
https://arxiv.org/abs/1703.07950
https://arxiv.org/abs/2403.08699
https://proceedings.neurips.cc/paper_files/paper/2023/file/e359ebe56ba306b674e8952349c6049e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/e359ebe56ba306b674e8952349c6049e-Paper-Conference.pdf
https://doi.org/10.1017/9781108231596
https://doi.org/10.1017/9781108231596
https://arxiv.org/abs/2305.04091
https://arxiv.org/abs/2109.14142
https://arxiv.org/abs/2402.10200

Zhiwei Wang, Yunji Wang, Zhongwang Zhang, Zhangchen Zhou, Hui Jin, Tianyang Hu, Jiacheng
Sun, Zhenguo Li, Yaoyu Zhang, and Zhi-Qin John Xu. Towards understanding how transformer
perform multi-step reasoning with matching operation, 2024a. URL https://arxiv.org/abs/
2405.15302.

Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D. Lee. Transformers provably learn sparse
token selection while fully-connected nets cannot, 2024b. URL https://arxiv.org/abs/2406.
06893.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, 2022.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. Rnns are not transformers (yet): The key bottleneck
on in-context retrieval, 2024. URL https://arxiv.org/abs/2402.18510.

Kevin Christian Wibisono and Yixin Wang. In-context learning from training on unstructured data:
The role of co-occurrence, positional information, and training data structure. In ICML 2024
Workshop on Theoretical Foundations of Foundation Models.

Kevin Christian Wibisono and Yixin Wang. How in-context learning emerges from training on
unstructured data: The role of co-occurrence, positional information, and noise structures. In
ICML 2024 Workshop on Theoretical Foundations of Foundation Models, 2024. URL https:
//openreview.net/forum?id=55DHL6rJwK.

Noam Wies, Yoav Levine, and Amnon Shashua. Sub-task decomposition enables learning in sequence
to sequence tasks. In The Eleventh International Conference on Learning Representations, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models, 2024. URL https://arxiv.org/abs/2309.12284.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning, 2023. URL
https://arxiv.org/abs/2309.05653.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Processing Systems, 2022.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models, 2022. URL https://arxiv.org/abs/2210.03493.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables
complex reasoning in large language models. In The Eleventh International Conference on
Learning Representations, 2023a.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex
reasoning in large language models, 2023b. URL https://arxiv.org/abs/2205.10625.

15

https://arxiv.org/abs/2405.15302
https://arxiv.org/abs/2405.15302
https://arxiv.org/abs/2406.06893
https://arxiv.org/abs/2406.06893
https://arxiv.org/abs/2402.18510
https://openreview.net/forum?id=55DHL6rJwK
https://openreview.net/forum?id=55DHL6rJwK
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2205.10625

A Omitted Proof

A.1 Notation and Assumptions.

We will denote a sequence of binary variables as b[1], . . . ,b[T] with b[i] ∈ {0, 1}. We will use [j] to
denote variables corresponding to the j−th token dimension without otherwise specified.

A.1.1 Training Specification

Training Update We will consider the following 1-pass SGD with batch size B:

L(t) =

B∑
s=1

n+k∑
i=n+1

ℓ(T [w(t)](b(t,s))[i],b(t,s)[i+ 1]).

w(t+1) = w(t) − ηt
1

B
∇wL

(t).

Here w includes A and W . We will leave h unchanged for the simplicity of analysis.

A.2 Representation Theory

Proof of Theorem 1. We will set d = Θ(k log(n/δ)) and m = k + 1. We will use p(x, y) as
shorthand for 2(x− 1) + y + 1.

Define embedding matrix M as follows

Mp(i,b) = eTS[i],b.

for {S[1], . . . , S[p]} = S. Then M ∈ R2k×d.

Lemma 1. For large enough n, with probability 1− δ, it holds that

∥MT ∥op = O(1). λmin(MMT) > 1/12.

Proof. The first result follows from Lemma 28, noted thatK = Θ(
√
1/d). The second result follows

from Lemma 29.

Lemma 2. With probability 1− δ/4 over the randomness of embedding ej,b for j ∈ S, b ∈ {0, 1},
there exists uj,b, satisfying that ∀j ∈ S, b ∈ {0, 1},

∀j′ ∈ S, b′ ∈ {0, 1}, ⟨uj,b, ej′,b′⟩ = 1((j, b) = (j′, b′)).

Further,

∥
∑

j∈S,b∈{0,1}

uj,b∥2 = O(
√
k).

Proof. We can simply choose

uS[i],b =MT (MMT)−1o2(i−1)+b.

with o2(i−1)+b being the one-hot vector in R2k.

Lemma 3. When the event in Lemma 2 happens, there exists vj ,

⟨vj , ej,0⟩ = ⟨vj , ej,1⟩ = 1.

∀j′ ̸= j, j ∈ S, ⟨vj′ , ej,b⟩ = 0.

Further,

∥
∑
j∈S

vj∥2 ≤ O(
√
k).

16

Proof. We can choose vj = uj,0 + uj,1.

Lemma 4. When vi defined in Lemma 2 exists, for all j ̸∈ S, b ∈ {0, 1}, with probability 1− δ, it
holds that

|⟨
∑
j′∈S

vj′ , ej,b⟩| ≤ 1/2.

Proof. Noted that ej,b is independent from vj′ , assuming V =
∑
j′∈S vj′ , then ∥V ∥2 = O(

√
k),

using Azuma-Hoeffding Bound, with probability 1− δ/2

|⟨
∑
j′∈S

vj′ , ej,b⟩| = O(
∥
∑
j′∈S vj′∥2√

d

√
log(2k/δ)) = O(

√
k log(2k/δ)

d
) ≤ 1

2
.

The proof is then completed.

Assuming the event in Lemmas 2 and 4 happens, defined V =
∑
j′∈S vj′ and U =

∑
j′∈S uj′,1

A = 40 log(n)V eTn+1,0 Wr,1:d = aren+1,0 Wr,d+1:2d = brU.

for some scalar ar, br to be determined.

For an arbitrary b, it holds that,

1. If j ∈ S, eTj,b[j]Aen+1,0 = 40 log n.

2. If j ̸∈ S, eTj,b[j]Aen+1,0 ≤ 20 log n.

If we define
zj = eTj,b[j]Aen+1,0.

The softmax value is given by:

softmax(z)j,n+1 =
ezj∑
j′ e

zj′
.

1. For j ∈ S:
ezj = e40 logn = n40.

2. For j ̸∈ S:
ezj ≤ e20 logn = n20.

With |S| = k, the denominator of the softmax becomes:∑
j′

ezj′ =
∑
j′∈S

e40 logn +
∑
j′ /∈S

ezj′ ∈ [kn40, kn40 + n21].

For j ∈ S:

softmax(z)j,n+1 =
n40

kn40 +O(n20)
=

1

k
· 1

1 +O(n−19)
=

1

k
+O(n−19).

For j /∈ S:

softmax(z)j,n+1 =
ezj

kn40 +O(n20)
≤ n20

kn40
= O(n−20).

We then have

softmax(E(b)AE(b))[j, n+ 1] =
1(j ∈ S)

k
+O(

1

n7
).

17

As
⟨U, ej,b⟩ = 1(j ∈ S, b = 1).

We have that

⟨U,A(E(b))[n+ 1]⟩ = 1

k

∑
j∈S

b[j] +O(
1

n6
).

Now we only need to map from the summation
∑
j∈S b[j] to the parity of the summation.We set

br = 2k,

ar =

 −4⌈ r2⌉+ 4 if 1 ≤ r ≤ m,
1 if r = m+ 1,
−4⌊ r−m2 ⌋+ 2 if m+ 2 ≤ r ≤ 2m.

hr =

{
1 if 1 ≤ r ≤ m,
−1 if m+ 1 ≤ r ≤ 2m,

Then

T (E(b))[n+ 1] =

k∑
r=1

hrReLU (ar − br⟨U,A(E(b))[n+ 1]⟩)

=

m∑
r=1

ReLU(ar + 2
∑
j∈S

b[j])−
2m∑
r=m

ReLU(ar + 2
∑
j∈S

b[j]) +O(
1

n4
)

= (−1)
∑

j∈S b[j]+1 +O(
1

n4
)

= (−1)b[n+2]+1 +O(
1

n4
).

Thus sgn(T (E(b))[n+ 1]) = (−1)b[n+2] for large enough n.

Note that the range of parameters is polynomial with n, thus could be represented with Θ(log n)
precision. With Θ(log n) precision, the error of each activation can be bounded by a small inverse
polynomial of n and hence we can show the same result.

A.3 Dynamics without CoT

Proof. We will utilize the Theorem 6 in Lyu et al. (2023), which shows that any branching programs
with o(nk) memory will require exponential samples to learn sparse parities with constant passes.
Here the frozen embedding matrix e, which will utilize naively O(nd) memory, can’t be saved in
the memory. However, we can take the alternative approach to regenerate e using a random number
generator with a fixed seed on each step. This allow us to simulate standard SGD optimization with
o(nk) memory, which is a special case of branching programs.

A.4 Dynamics with CoT

Assumption 2. Consider the following conditions for sufficiently large n:

1. The secret Hamming weight satisfies k ∈
[

n
log5(n/δ)

, n
log4(n/δ)

]
.

2. Set d = k log1.1
(
n
δ

)
and m = 2k. This implies md log n = o(nk).

3. Define the batch size as B = C2n log
20
(
n
δ

)
for a sufficiently large constant C2 = 1.28×107

ϵ2 .

4. Set the learning rates to be

η0 = η1 =
mϵ

√
B

100 log
(
n
δ

) , η2 =
4kϵ

3
.

18

Lemma 5. Under Assumption 2, the following conditions hold as n→ ∞:

1. limn→∞
d
n = 0 and limn→∞

B
nk = 0.

2. limn→∞

√
2k
d log

(
Bmn
δ

)
= 0.

3. Each of the following expressions tends to zero:

(a)

√
k log(300mnB

δ)
√
B

.

(b)

√
2k log(400mn

δ)
√
d

.

(c)

√
2nk log(300mnB

δ)
√
Bd

.

4. η0 = η1 ≤ min

{
3mϵ

√
B

80
√

log(300nB
δ)

, mnϵ120

}
.

5. limn→∞ log2
(
300mnB

δ

)
n
√
nk

d
√
Bd

= 0.

6. η0η1
256mn2 > 40 log n.

7. limn→∞
η2
η0

= 0.

8. limn→∞(η0 + η1) < 5nη2.

Proof. The conditions in Lemma 5 are satisfied based on the definitions provided in Assumption ??.
Below, we outline the verification for each condition:

1. Limit of d
n and B

nk :

d

n
=
k log1.1

(
n
δ

)
n

∈
[

1

log3.9(n/δ)
,

1

log2.9(n/δ)

]
→ 0 as n→ ∞.

Similarly,

B

nk
=
C2n log

20
(
n
δ

)
nk

=
C2 log

20
(
n
δ

)
k

≤
C2 log

20
(
n
δ

)
n

log5(n/δ)

= C2
log25(n/δ)

n
→ 0.

2. Limit of
√

2k
d log

(
Bmn
δ

)
:√

2k

d
log

(
Bmn

δ

)
=

√
2k

k log1.1
(
n
δ

) log (C2n log
20
(n
δ

)
·mn/δ

)
.

Simplifying,√
2k

d
log

(
Bmn

δ

)
=

√
2

log1.1
(
n
δ

) ·O(log n) = O

(√
log n

log0.55(n/δ)

)
→ 0.

3. Limits of Sub-Inequalities (a), (b), and (c):

(a) √
k log

(
300mnB

δ

)
√
B

=

√
k ·O(log n)√
C2n log

20
(
n
δ

) = O

(√
k ·

√
log n

√
n · log10(n/δ)

)
.

Given k ≤ n
log2(n/δ)

,

√
k ·

√
log n

√
n · log10(n/δ)

≤

√
n

log2(n/δ)

√
log n

√
n · log10(n/δ)

=
log0.5(n)

log11(n/δ)
→ 0.

19

(b) √
2k log

(
400mn
δ

)
√
d

=

√
2k ·O(log n)√
k log1.1

(
n
δ

) = O

(√
log n

log0.55(n/δ)

)
→ 0.

(c) √
2nk log

(
300mnB

δ

)
√
Bd

=

√
2nk ·O(log n)√

C2n log
20
(
n
δ

)
· k log1.1

(
n
δ

) = O

(√
nk log n√

nk · log10.55(n/δ)

)

= O

(√
log n

log10.55(n/δ)

)
→ 0.

4. Bound on η0 and η1:

η0 = η1 =
mϵ

√
B

100 log
(
n
δ

) =
2kϵ
√
C2n log

20
(
n
δ

)
100 log

(
n
δ

) = O
(
kϵ
√
n log9(n/δ)

)
.

Comparing to the minimum of the two terms:

3mϵ
√
B

80
√
log
(
300nB
δ

) = O
(
kϵ
√
n log10(n/δ)

)
,

and
mnϵ

120
= O(knϵ).

Since η0 scales similarly to the first term and
√
n log10(n/δ) ≪ n for large n, the inequality

η0 ≤ min{·} holds.

5. Limit of log2
(
300mnB

δ

)
n
√
nk

d
√
Bd

:

log2
(
300mnB

δ

)
= O(log2(n/δ)),

and

n
√
nk

d
√
Bd

=
n
√
nk

k log1.1
(
n
δ

)
·
√
C2n log

20
(
n
δ

)
· k log1.1

(
n
δ

)
= O

(
n
√
nk

k log1.1(n/δ)
√
nk log10.55(n/δ)

)
= O

(
n

k log11.65(n/δ)

)
.

Given k ≥ n
log5(n/δ)

,

n

k log11.65(n/δ)
≤ n

n
log5(n/δ)

log11.65(n/δ)
=

1

log5.65(n/δ)
.

Therefore,

log2
(
300mnB

δ

)
n
√
nk

d
√
Bd

= O

(
log2(n/δ)

log5.65(n/δ)

)
= O

(
log−4.65(n/δ)

)
→ 0 as n→ ∞.

6. Limit of η0η1
256mn2 : As

η0η1 =

(
mϵ

√
B

100 log
(
n
δ

))2

=
m2ϵ2B

104 log2
(
n
δ

) .
20

Substituting into the left term:

η0η1
256mn2

=
m2ϵ2B

256× 104 log2
(
n
δ

)
mn2

=
mϵ2B

256× 104 log2
(
n
δ

)
n2
.

Substitute m = 2k and B = C2n log
10
(
n
δ

)
:

η0η1
256mn2

=
2kϵ2C2n log

10
(
n
δ

)
256× 104 log2

(
n
δ

)
n2

=
2kC2 log

8
(
n
δ

)
256× 104n

.

Setting C2 = 1.28×107

ϵ2 :

η0η1
256mn2

≥
2k × 1.28× 107 log8

(
n
δ

)
256× 104 × n

= 10×
k log8

(
n
δ

)
n

.

Using k ≥ n

log5(n
δ)

from the assumption:

η0η1
256mn2

≥ 10×
n

log5(n
δ)

log8
(
n
δ

)
n

= 10 log3
(n
δ

)
.

Since log3
(
n
δ

)
> 4 log n for sufficiently large n, we have:

10 log3
(n
δ

)
> 40 log n.

Thus,
η0η1

256mn2
> 40 log n.

7. We aim to show that:
η2
η0

→ 0 as n→ ∞.

Here

η0 =
2kϵ
√
C2 n log10

(
n
δ

)
100 log

(
n
δ

) =
2kϵ

√
C2

√
n log5

(
n
δ

)
100 log

(
n
δ

) =
kϵ
√
C2

√
n log4

(
n
δ

)
50

.

Thus, the ratio η2
η0

is:

η2
η0

=
4kϵ
3

kϵ
√
C2

√
n log4(n

δ)
50

=
4kϵ× 50

3kϵ
√
C2

√
n log4

(
n
δ

) =
200

3
√
C2

√
n log4

(
n
δ

) .
Substituting C2 = 1.28×107

ϵ2 :

η2
η0

=
200

3
√

1.28×107

ϵ2
√
n log4

(
n
δ

) =
200ϵ

3× 3580
√
n log4

(
n
δ

) .
As n→ ∞,

√
n log4

(
n
δ

)
→ ∞, hence:

η2
η0

→ 0.

8. Limit of (η0 + η1) < 5nη2:

η0 + η1 = 2 · mϵ
√
B

100 log
(
n
δ

) = O

(
mϵ

√
B

log
(
n
δ

)) .
21

5nη2 = 5n · 4kϵ
3

= O(nkϵ).

Given
√
B = O

(√
n log10(n/δ)

)
,

mϵ
√
B

log
(
n
δ

) = O

(
kϵ
√
n log10(n/δ)

log(n/δ)

)
= O

(
kϵ
√
n log9(n/δ)

)
.

Since nkϵ grows faster than kϵ
√
n log9(n/δ) for large n, the inequality (η0 + η1) < 5nη2 holds.

This concludes the proof.

Proof. We will set our hyperparameters according to Assumption 2. We will first warmup our analysis
on linear loss ℓ(ŷ, y) = (−1)y ŷ. We can rewrite the training dynamics in this case as

w(t+1) = w(t) − ηt
1

B

B∑
s=1

n+k∑
i=n+1

∇wℓ(T [w(t)](b(t,s))[i],b(t,s)[i+ 1])

= w(t) − ηt
1

B

B∑
s=1

n+k∑
i=n+1

(−1)b(t,s)[i+1]∇wT [w(t)](b(t,s))[i]. (2)

We will train the model end to end in three steps and analyze the evolution of all the weight changes.
The final results can be shown combining Lemmas 21 and 26. Lemma 27 generalizes the analysis
to hinge loss. It is also easy to verify that all the results hold if the parameters has only O(log n)
precision.

A.4.1 Auxiliary Statistics

To simplify our calculations, we define several auxiliary statistics on the data. Table 1 provides the
definitions and rough orders of these statistics, including logarithmic terms.

Lemma 6. Fixing j, b1, b2, let F(i,t,s) be the filtration generated by the random variables {b(t,s)[i] |
max{n+ 1, j} ≤ i, S[i] ̸= j, t′ ≤ t, s ≤ B} ordered in lexicographic order, the process

(−1)b(t,s)[i+1]1(b(t,s)[j] = b1, b(t,s)[i] = b2)

is a martingale with respect to {Ft}t.

Proof. b[i+1] = b[i]⊕ b[S[i]], and since S[i] ̸= j, b[S[i]] is independent from b[j], . . . ,b[i]. Thus,

E[(−1)b(t,s)[i+1] | F(i,t,s)] = 0,

provided 1(b(t+1,s)[j] = b1) is constant. Hence, this process is a martingale.

This version maintains the essential details while focusing on the core aspects of the martingale
property and independence conditions.

Lemma 7. For each batch, the data inside the batch is approximately balanced. With probability
at least 1 − δ/10, the following bounds hold for all t ∈ [3], i, j ∈ [n + k], b, b1, b2 ∈ {0, 1}, and

22

Statistic Definition Rough Order

δt,i,b

B∑
s=1

(−1)b(t,s)[i+1]1
(

b(t,s)[i] = b
)

O
(√

B log
(
nB
δ

))
αt,i,j,b1,b2

B∑
s=1

(−1)b(t,s)[i+1]1
(

b(t,s)[j] = b1,b(t,s)[i] = b2

)
ᾱi,j,b1,b2+

O
(√

B log
(
nB
δ

))
ᾱi,j,b1,b2

{
(−1)b1+b21(j=S[i])B

4 , i ≥ n+ 2
(−1)b11(j=S[i], b2=0)B

2 , i = n+ 1
O (B) when j = S[i],
0 otherwise

βt,j,b1

n+k∑
i=max{n+1,j}

S[i]̸=j

1∑
b2=0

1

i
αt,i,j,b1,b2 O

√
Bk log

(
nB
δ

)
n

ψt,r,j,b1

n+k∑
i=max{n+1,j}

S[i]̸=j

1∑
b2=0

1

i
1 (νr,i,b2 > 0)αt,i,j,b1,b2 O

√
Bk log

(
mnB
δ

)
n

γi,b,i′,b2

1

i′

(
2m∑
r=1

1 (νr,i,b > 0)1 (νr,i′,b2 > 0)

)

− 1

i′
1 + 1 (i = i′, b = b2)

2
m

O

(√
m log(nδ)
n

)

ζt,i,b,j,b1

2m∑
r=1

1 (νr,i,b > 0)ψt,r,j,b1 O

(
m

√
kB log

(
mnB
δ

)
n

)
Table 1: Definitions and rough orders of auxiliary statistics, including logarithmic terms. Here,
t ∈ {0, 1, 2}, i′ ∈ [n+ 1, n+ k + 1],i, j ∈ [n+ k], b, b1, b2 ∈ {0, 1}, s ∈ [B], and r ∈ [2m].

r ∈ [m] for statistics defined in Table 1:

|δt,i,b| ≤
√
B log

(
300nB
δ

)
|αt,i,j,b1,b2 − ᾱi,j,b1,b2 | ≤

√
2B log

(
300nB
δ

)
1 (j = S[i])

|βt,j,b1 | ≤

√
2Bk log

(
300nB
δ

)
n

|ψt,r,j,b1 | ≤
2
√
Bk log

(
300mnB

δ

)
n

|γi,b,i′,b2 | ≤

√
2m log

(
200n
δ

)
n

|ζt,i,b,j,b1 | ≤
4m
√
kB log

(
300mnB

δ

)
n

Proof. Fix any t, i, and b. For each s ∈ [B], define Xs = (−1)b(t,s)[i+1]1
(

b(t,s)[i] = b
)

. The

sequence {Xs}Bs=1 consists of independent random variables with |Xs| ≤ 1 and zero mean. By the
Azuma-Hoeffding inequality,

Pr (|δt,i,b| > R) ≤ 2 exp

(
−R2

2B

)
.

23

Setting R =
√
2B log

(
300nB
δ

)
, we get

Pr (|δt,i,b| > R) ≤ δ

150nB
.

Applying a union bound over all t, i, and b, we ensure that with probability at least 1 − δ/50, the
bound on δt,i,b holds for all choices.

Similarly, for αt,i,j,b1,b2 , we fix t, i, j, b1, and b2, and define

Ys = (−1)b(t,s)[i+1]1
(

b(t,s)[j] = b1,b(t,s)[i] = b2

)
.

Again, {Ys}Bs=1 are independent with |Ys| ≤ 1 and mean ᾱi,j,b1,b2/B. Applying the Azuma-
Hoeffding inequality as before, we obtain the stated bound for αt,i,j,b1,b2 .

For βt,j,b1 and ψt,r,j,b1 , the bound can be derived similarly combining Lemma 6 and Azuma-
Hoeffding bound.

For γi,b,i′,b2 , consider the sum
∑2m
r=1 1 (νr,i,b > 0)1 (νr,i′,b2 > 0). Each term is an independent

Bernoulli random variable with mean 1
2 (1 + 1 (i = i′, b = b2)). The variance of the sum is bounded

by m. Applying the Azuma-Hoeffding inequality, we get

Pr (|γi,b,i′,b2 | > R) ≤ 2 exp

(
−R

2n2

2m

)
.

Setting R =

√
2m log

(
200n
δ

)
n , we obtain the desired bound.

For ζt,i,b,j,b1 , we note that it is a sum over 2m terms, each involving ψt,r,j,b1 , which are bounded as

in Lemma 7. The total number of terms is 2m, and each term is bounded by
2

√
Bk log

(
300mnB

δ

)
n .

A.4.2 First Step: Configuring the MLPs

Lemma 8. For the dynamics following Equation (2), attention weight stays constant in the first step,
i.e., A(1) = A(0) = 0.

Proof. Because W:,d+1:2d = 0, ∇AT [w(0)](b)[i] = 0.

Lemma 9. For the dynamics following Equation (2), attention output stays constant in the first step,
and

∀t ∈ {0, 1}, i ∈ [n+ k + 1],A[A(t)](E(b))[i] =
1

i

i∑
j=1

ei,b[i].

Proof. This follows from the definition of the attention module and Lemma 8.

Lemma 10. For an input b, With probability 1− δ
50Bm , at initialization, whether a neuron r outputs

nonzero value at position i is determined by νr,i,b[i].

1
(〈
W 0
r,1:d,E(b)[i]

〉
> 0
)
= 1

(
νr,i,b[i] > 0

)
.

Further, ∣∣〈W 0
r,1:d,E(b)[i]

〉
− νr,i,b[i]

∣∣ < ϵ/100.

Proof. Under Assumption 1,

W 0
r,1:d =

n+k∑
i=n+1

νr,i,b[i]ei,b[i]

24

Because,
n+k∑
i=n+1

ν2r,i,b[i] = kϵ2.

By Lemma 30, with probability 1− δ
50Bm ,

∣∣〈W 0
r,1:d,E(b)[i]

〉
− νr,i,b[i]

∣∣ ≤
√

2 log(100Bmδ)k

d
ϵ

By Lemma 5.1,
√

2k
d log(Bm/100δ) < 0.01, we can conclude that

Pr

(∣∣∣∣∣
n+k∑

i′=n+1

d∑
l=1

νr,i′,b′1(i
′ ̸= i)ei′,b[i′][l]ei,b[i][l]

∣∣∣∣∣ ≥ ϵ/100

)
≤ δ

50Bm
.

The proof is then complete.

Lemma 11. With probability 1− δ
50 , the following E1 happens: for any input b(0,s) in the first batch,

at initialization, for any r, whether a neuron r outputs nonzero value at position i is determined by
νr,i,b[i].

1
(〈
W 0
r,1:d,E(b)[i]

〉
> 0
)
= 1

(
νr,i,b[i] > 0

)
.

Further, ∣∣〈W 0
r,1:d,E(b)[i]

〉
− νr,i,b[i]

∣∣ < ϵ/100.

Proof. Apply union bound to Lemma 10 over neuron dimension and data in the first batch.

Lemma 12. When E1 defined in Lemma 11 happens, for all i′ ∈ [n+ 1, n+ k + 1], b′ ∈ {0, 1}, the
gradient on Wr,1:d satisfies that,

dL(0)

dWr,1:d
=
hr
B

n+k∑
i=n+1

1∑
b=0

1(νr,i,b > 0)δ0,i,bei,b.

Proof.

dL(0)

dWr,1:d
=

1

B

B∑
s=1

n+k∑
i=n+1

(−1)b(t,s)[i+1]∇Wr,1:d
T [w(t)](b(t,s))[i]

=
hr
B

B∑
s=1

n+k∑
i=n+1

(−1)b(t,s)[i+1]ei,b(t,s)[i]1(νr,i,b(t,s)[i] > 0).

We can then expand this formula to have
B∑
s=1

n+k∑
i=n+1

(−1)b(t,s)[i+1]ei,b(t,s)[i]1(νr,i,b(t,s)[i] > 0)

=

B∑
s=1

n+k∑
i=n+1

1∑
b=0

(−1)b(t,s)[i+1]1(b(t,s)[i] = b)ei,b1(νr,i,b > 0)

=

n+k∑
i=n+1

1∑
b=0

ei,b1(νr,i,b > 0)

B∑
s=1

(−1)b(t,s)[i+1]1(b(t,s)[i] = b)

=

n+k∑
i=n+1

1∑
b=0

ei,b1(νr,i,b > 0)δ0,i,b.

The proof is then complete.

25

Lemma 13. With probability 1− 0.13δ, for all i′ ∈ [n+ 1, n+ k + 1], b′ ∈ {0, 1}, the gradient on
Wr,1:d satisfies that, ∣∣∣∣〈 dL(0)

dWr,1:d
, ei,b

〉∣∣∣∣ ≤
√
log(300nB/δ)

m
√
B

.

Proof. Combining Lemmas 12 and 30, we have that for any r, with probability 1− δ/100m,∣∣∣∣∣
〈
hr
B

n+k∑
i=n+1

1∑
b=0

1(νr,i,b > 0)δ0,i,bei,b, ei,b

〉∣∣∣∣∣ ≤ 1

2mB
sup δt,i,b

1 +

√
2k log

(
200m
δ

)
d

By Lemmas 5 and 7, with probability 1− 11δ/100, for all r, it holds that for all r, i′, b′∣∣∣∣∣

〈
hr
B

n+k∑
i=n+1

1∑
b=0

1(νr,i,b > 0)δ0,i,bei,b, ei,b

〉∣∣∣∣∣ < 1

mB
sup δ0,i,b <

√
log(300nB/δ)

m
√
B

.

Combining with Lemma 12 and applying union bound concludes the proof.

Lemma 14. For ᾱ and ψ defined in Appendix A.4.1, When E1 defined in Lemma 11 happens, for all
i′ ∈ [n+ 1, n+ k + 1], b′ ∈ {0, 1}, the gradient on Wr,d+1:2d satisfies that,

dL(0)

dWr,d+1:2d
=
hr
B

n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1

i
1(νr,i,b2 > 0)ᾱi,S[i],b1,b2eS[i],b1 +

hr
B

n+k∑
j=1

1∑
b1=0

ψ0,r,j,b1ej,b1 .

Proof. With probability 1− δ/50, E1 defined in Lemma 11 happens, and

dL(0)

dWr,d+1:2d
=

1

B

B∑
s=1

n+k∑
i=n+1

(−1)b(t,s)[i+1]∇Wr,1:d
T [w(t)](b(t,s))[i]

=
hr
B

B∑
s=1

n+k∑
i=n+1

(−1)b(t,s)[i+1]A[A(t)](E(b(t,s)))[i]1(νr,i,b(t,s)[i] > 0)

=
hr
B

B∑
s=1

n+k∑
i=n+1

(−1)b(t,s)[i+1]1(νr,i,b(t,s)[i] > 0)
1

i

i∑
j=1

1∑
b1=0

1 (b[j] = b) ej,b1

Rearranging the summation, and use α defined in Lemma 7„

dL(0)

dWr,d+1:2d
=
hr
B

n+k∑
j=1

1∑
b1=0

ej,b1

n+k∑
i=max{n+1,j}

1∑
b2=0

1

i
1(νr,i,b2 > 0)α0,i,j,b1,b2 .

Breaking the summation,

dL(0)

dWr,d+1:2d
=
hr
B

n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1

i
1(νr,i,b2 > 0)α0,i,S[i],b1,b2eS[i],b1

+
hr
B

n+k∑
j=1

1∑
b1=0

ej,b1
∑

i∈[max{n+1,j}.n+k],S[i]̸=j

1∑
b2=0

1

i
1(νr,i,b2 > 0)α0,i,j,b1,b2

This simplifies to

dL(0)

dWr,d+1:2d
=
hr
B

n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1

i
1(νr,i,b2 > 0)ᾱi,S[i],b1,b2eS[i],b1 +

hr
B

n+k∑
j=1

1∑
b1=0

ψ0,r,j,b1ej,b1 .

The proof is then complete.

26

This leads to the following bound on the gradient,
Lemma 15. With probability 1−0.16δ, for all i ∈ [n+k+1], b ∈ {0, 1}, the gradient on Wr,d+1:2d

satisfies that, ∣∣∣∣〈 dL(0)

dWr,d+1:2d
, ei,b

〉∣∣∣∣ ≤ 3

2mn
.

Proof. Denote

Gr =
hr
B

n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1

i
1(νr,i,b2 > 0)ᾱi,S[i],b1,b2eS[i],b1 +

hr
B

n+k∑
j=1

1∑
b1=0

ψ0,r,j,b1ej,b1 .

By Lemma 30, for all r ∈ [2m], i ∈ [n+ k + 1], b ∈ {0, 1}, with probability 1− δ/25,

|⟨Gr, ei,b⟩| ≤
1

2mB

∣∣∣∣∣
n+k∑

i′=n+1

1∑
b2=0

1

i
1(νr,i,b2 > 0)ᾱi,S[i],b,b21(S[i

′] = i) + ψ0,r,i,b

∣∣∣∣∣
+

√
2 log(400mnδ)

2mB
√
d

√√√√ n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1

i
1(νr,i,b2 > 0)ᾱ2

i,S[i],b1,b2
+

√√√√n+k∑
j=1

1∑
b1=0

ψ2
0,r,j,b1

By Lemma 7, we have with probability 1− δ/10,

supψ0,r,i,b ≤
2
√
Bk log

(
300mnB

δ

)
n

, sup ᾱi,S[i],b1,b2 ≤ B/2.

Combining with Lemma 5,

1

2mB

∣∣∣∣∣
n+k∑

i′=n+1

1∑
b2=0

1

i
1(νr,i,b2 > 0)ᾱi,S[i],b,b21(S[i

′] = i)

∣∣∣∣∣ ≤ 1

2mn

1

2mB
|ψ0,r,i,b| ≤

2
√
k log

(
300mnB

δ

)
mn

√
B

≤ 1

200mn√
2 log(400mnδ)

2mB
√
d

√√√√ n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1

i
1(νr,i,b2 > 0)ᾱ2

i,S[i],b1,b2
≤

√
2k log(400mnδ)

2mn
√
d

≤ 1

200mn
,

√
2 log(400mnδ)

2mB
√
d

√√√√n+k∑
j=1

1∑
b1=0

ψ2
0,r,j,b1

≤
2
√
2nklog(300mnBδ)

mn
√
Bd

≤ 1

200mn
.

Further by Lemma 14, we have that dL(0)

dWr,d+1:2d
= Gr with probability 1− δ/50. This concludes the

proof.

A.4.3 Step 2: Configuring the Attention

Lemma 16. With probability 1−0.29δ , the following E2 happens: the change in the neuron outcome
is small after the first step for any input b,

sup
r

∣∣〈W 1
r −W 0

r , [E(b)[i],A[A1](E(b))[i]]
〉∣∣ < 3ϵ/80.

This leads to the case that for any input b(1,s) in the second batch, for any r, whether a neuron r
outputs nonzero value at position i is determined by νr,i,b[i].

1
(〈
W 1
r,1:d,E(b)[i]

〉
> 0
)
= 1

(
νr,i,b[i] > 0

)
.

27

Proof. By Lemma 13, with probability 1− 0.13δ,

sup
r

|
〈
W 1
r,1:d −W 0

r,1:d,E(b)[i]
〉
| = η0

∣∣∣∣〈 dL(0)

dWr,1:d
,E(b)[i]

〉∣∣∣∣ ≤ η0

√
log(300nB/δ)

m
√
B

.

By Lemma 15,with probability 1− 0.16δ,

sup
r

|
〈
W 1
r,d+1:2d −W 0

r,d+1:2d,A[A1](E(b))[i]
〉
| = η0

∣∣∣∣〈 dL(0)

dWr,d+1:2d
,A[A1](E(b))[i]

〉∣∣∣∣ ≤ η0
3

2mn
.

Hence, as η0 ≤ min{ 3mϵ
√
B

80
√

log(300nB/δ)
, mnϵ120 } (Lemma 5.3), we conclude that

sup
r

∣∣〈W 1
r −W 0

r , [E(b)[i],A[A1](E(b))[i]
〉∣∣ < 3ϵ/80.

The proof is then complete.

This shows that the gradient of MLP on the second and first steps is the same in distribution.
Lemma 17. With probability 1 − 0.58δ, inequalities in Lemma 7 hold and for t ∈ {0, 1},∀i ∈
[n+ k],∀b ∈ {0, 1},

dL(t)

dWr,1:d
=
hr
B

n+k∑
i=n+1

1∑
b=0

1(νr,i,b > 0)δt,i,bei,b.

dL(t)

dWr,d+1:2d
=
hr
B

n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1

i
1(νr,i,b2 > 0)ᾱi,S[i],b1,b2eS[i],b1 +

hr
B

n+k∑
j=1

1∑
b1=0

ψt,r,j,b1ej,b1 .∣∣∣∣〈 dL(t)

dWr,d+1:2d
, ei,b

〉∣∣∣∣ ≤ 3

2mn
.

Moreover for any input b,

sup
r

∣∣〈W t
r −W 0

r , [E(b)[i],A[A1](E(b))[i]
〉∣∣ < 3ϵ/40.

Further,

1
(〈
W t
r,1:d,E(b(t,s))[i]

〉
> 0
)
= 1

(
νr,i,b(t,s)[i] > 0

)
.

Proof. Consider the backward calculation of MLP, it is decided by the input and the corresponding
activation of neurons, which jointly follows the same distribution in the first and second steps. The
proof is similar to Lemmas 12, 14 and 16.

We will now show that while MLP changes little, it is enough to provide high-quality gradient
information to inform the attention layer. To this end, we will define the following terms,

κt,i,b = −
2m∑
r=1

1 (νr,i,b > 0)hrW
(t)
r,d+1:2d

∆t,i,b,j,b1 = ⟨κt,i,b, ej,b1⟩

Intuitively, the FFN with weight W (1) maps attention output x to −κi,b[i]x at position i.
Lemma 18. For α, β, γ, ζ defined in Appendix A.4.1, when the event in Lemma 17 happens, for any
i and b,

κ1,i,b =
η0

8Bmi

1∑
b1=0

ᾱi,S[i],b1,beS[i],b1 +
η0

4Bm2

(
n+k∑

i′=n+1

1∑
b1=0

1∑
b2=0

γi,b,i′,b2 ᾱi′,S[i′],b1,b2eS[i],b1

)

+
η0

4Bm2

n+k∑
j=1

1∑
b1=0

ζ0,i,b,j,b1ej,b1

 .

28

Proof. When the event in Lemma 17 happens, we have that

dL(0)

dWr,d+1:2d
=
hr
B

n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1

i
1(νr,i,b2 > 0)ᾱi,S[i],b1,b2eS[i′],b1 +

hr
B

n+k∑
j=1

1∑
b1=0

ψ0,r,j,b1ej,b1 .

Summing over the axis of r as in κ,

κ1,i,b =
η0

4Bm2

(
n+k∑

i′=n+1

1∑
b1=0

1∑
b2=0

(
2m∑
r=1

1 (νr,i,b > 0)1(νr,i′,b2 > 0)

)
1

i′
ᾱi′,S[i′],b1,b2eS[i],b1

)

+
η0

4Bm2

n+k∑
j=1

1∑
b1=0

ej,b1

(
2m∑
r=1

1 (νr,i,b > 0)ψ0,r,j,b1

) .

Recall that γi,b,i′,b2 = 1
i′

(∑2m
r=1 1 (νr,i,b > 0)1 (νr,i′,b2 > 0)

)
− 1
i′

1+1(i=i′, b=b2)
2 m. We then have

κ1,i,b =
η0

4Bm

(
n+k∑

i′=n+1

1∑
b1=0

1∑
b2=0

1

i′
1 + 1 (i = i′, b = b2)

2
ᾱi′,S[i′],b1,b2eS[i′],b1

)

+
η0

4Bm2

(
n+k∑

i′=n+1

1∑
b1=0

1∑
b2=0

γi,b,i′,b2 ᾱi′,S[i′],b1,b2eS[i],b1

)

+
η0

4Bm2

n+k∑
j=1

1∑
b1=0

ej,b1

(
2m∑
r=1

1 (νr,i,b > 0)ψ0,r,j,b1

) .

The first term can be greatly simplified, as
αi′,S[i′],b1,0 + αi′,S[i′],b1,1 = 0.

This concludes the proof.

Lemma 19. With probability 1− 0.6δ, inequalities and equalities in Lemmas 7, 17 and 18 hold, and
for all i, b2, j, b1,∣∣∣∆1,i,b2,j,b1 −

η0
8Bmi

ᾱi,S[i],b1,b21(j = S[i])
∣∣∣ ≤ 10η0

mn

√
nk√
Bd

log(300mnB/δ).

Proof. Define

Hi,b =
η0

8Bmi

1∑
b1=0

ᾱi,S[i],b1,beS[i],b1

+
η0

4Bm2

(
n+k∑

i′=n+1

1∑
b1=0

1∑
b2=0

γi,b,i′,b2 ᾱi′,S[i′],b1,b2eS[i′],b1

)

+
η0

4Bm2

n+k∑
j=1

1∑
b1=0

ζi,b,j,b1ej,b1

As the inequalities in Lemma 7 hold, by Lemmas 5 and 30, with probability 1− δ/50, it holds that,∣∣∣∣∣ η0

4Bm2

〈(
n+k∑

i′=n+1

1∑
b1=0

1∑
b2=0

γi,b,i′,b2 ᾱi′,S[i′],b1,b2eS[i′],b1

)
, ej,b1

〉∣∣∣∣∣
≤η0 sup ᾱ sup γ

4Bm2

(
1 + 4

√
k log(200n/δ)

d

)

≤ η0
4mn

√
2k log

(
200n
δ

)
md

.

29

and, ∣∣∣∣∣∣ η0
4Bm2

〈n+k∑
j=1

1∑
b1=0

ζi,b,j,b1ej,b1

 , ej,b1

〉∣∣∣∣∣∣
≤η0 sup ζ

4Bm2

(
1 + 4

√
n log(200n/δ)

d

)

≤ η0
mn

(√
k

B
log(200n/δ) + 4

√
nk

dB
log(200n/δ)

)
.

and,∣∣∣∣∣ η0
8Bmi

〈
1∑

b1=0

ᾱi,S[i],b1,beS[i],b1ej,b1

〉
− η0

8Bmi
ᾱi,S[i],b1,b21(j = S[i])

∣∣∣∣∣ ≤2
√

log(200n/δ)

8mn
√
d

.

With d < n and B < nk (Lemma 5), we conclude that,∣∣∣⟨Hi,b, ej,b1⟩ −
η0

8Bmi
ᾱi,S[i],b1,b21(j = S[i])

∣∣∣ ≤ 10η0
mn

√
nk√
Bd

log(300mnB/δ).

By Lemma 18, we have the desired result.

Lemma 20. Under the setting of Lemma 19, for every b ∈ {b(1,s) | s ∈ [B]},

dℓ(T (b)[i], b[i+ 1])

dA
= (−1)b[i+1]+1

i∑
j=1

⟨κ1,i,b[i], ej,b[j]⟩
∂softmax

(
E(b)TAE(b)

)
[j, i]

∂A
.

with,

∂softmax
(
E(b)TAE(b)

)
[j, i]

∂A
= softmax(Z)[j, i]·

(
E(b)[j]−

i∑
p=1

softmax(Z)[p, i]E(b)[p]

)
E(b)[i]T

Proof. Our goal is to calculate the gradient of the loss with respect to the attention layer. We will
first calculate the gradient of the loss with respect to the output of the attention layer, and then use the
chain rule. When the event in Lemma 17 happens, for any binary sequence b in the second batch, we
have that for any i,

dT (b)[i]
dA(E(b))[i]

=

2m∑
r=1

hrW
(1)
r 1

((
W (1)

[
E (b)

A (E (b))

])
[i]r > 0

)

=

2m∑
r=1

hrW
(1)
r 1

(
νr,i,b[i] > 0

)
This then implies that,

dℓ(T (b)[i],b[i+ 1])

dA(E(b))[i]
= (−1)b[i+1]

(
2m∑
r=1

hrW
(1)
r 1

(
νr,i,b[i] > 0

))

We now calculate the gradient of A (the attention matrix) to the attention output.

∂A(E(b))[i]
∂A

=
∂
(
E(b)softmax

(
E(b)TAE(b)

))
[i]

∂A

=

∑i
j=1 ∂E(b)[j]softmax

(
E(b)TAE(b)

)
[j, i]

∂A

=

i∑
j=1

E(b)[j]
∂softmax

(
E(b)TAE(b)

)
[j, i]

∂A

30

Hence, the gradient of the loss with respect to the attention matrix is

dℓ(T (b)[i],b[i+ 1])

dA

=

i∑
j=1

dℓ(T (b)[i],b[i+ 1])

dA(E(b))[i]
E(b)[j]

∂softmax
(
E(b)TAE(b)

)
[j, i]

∂A

=(−1)b[i+1]
i∑

j=1

2m∑
r=1

hr1
(
νr,i,b[i] > 0

)
⟨W (1)

r ,E(b)[j]⟩
∂softmax

(
E(b)TAE(b)

)
[j, i]

∂A

=(−1)b[i+1]+1
i∑

j=1

⟨κ1,i,b[i], ej,b[j]⟩
∂softmax

(
E(b)TAE(b)

)
[j, i]

∂A

We will use Z to denote E(b)TAE(b), and calculate the derivative of th+e softmax function applied
to Z with respect to A.

∂softmax(Z)[j, i]

∂A
=

∂

∂A

(
eZ[j,i]∑i
p=1 e

Z[p,i]

)

=
eZ[j,i] · ∂Z[j,i]

∂A ·
∑i
p=1 e

Z[p,i] − eZ[j,i] ·
∑i
p=1 e

Z[p,i] · ∂Z[p,i]
∂A(∑i

p=1 e
Z[p,i]

)2
Given Z[p, i] = E(b)[p]TAE(b)[i], the derivative with respect to A is:

∂Z[p, i]

∂A
= E(b)[p] ·E(b)[i]T

Substituting the derivatives into the quotient rule expression:

∂softmax(Z)[j, i]

∂A
=
eZ[j,i] ·E(b)[j]E(b)[i]T ·

∑i
p=1 e

Z[p,i] − eZ[j,i] ·
∑i
p=1 e

Z[p,i] ·E(b)[p]E(b)[i]T(∑i
p=1 e

Z[p,i]
)2

Thus, the derivative is:

∂softmax
(
E(b)TAE(b)

)
[j, i]

∂A
= softmax(Z)[j, i]·

(
E(b)[j]−

i∑
p=1

softmax(Z)[p, i]E(b)[p]

)
E(b)[i]T

The proof is then complete.

Lemma 21. After two training steps, the attention layer will show the following structure. With
probability 1− 0.7δ, for all i, b, i′, b2,

1. If j′ = S[i′], then
〈
ej′,b′1 , A

(2)ei′,b′2
〉
≥ η0η1

256mn2 .

2. If j′ ̸= S[i′], then |
〈
ej′,b′1 , A

(2)ei′,b′2
〉
| ≤ η0η1

512mn2 .

Further, events in Lemmas 17 and 18 hold.

Proof. By Lemma 20,

∂softmax
(
E(b)TAE(b)

)
[j, i]

∂A
=

1

i

(
E(b)[j]−

i∑
p=1

1

i
E(b)[p]

)
E(b)[i]T

31

We can rewrite the gradient as

dℓ(T (b)[i],b[i+ 1])

dA
=− 1

i
(−1)b[i+1]

 i∑
j=1

⟨κi,b[i],E(b)[j]⟩E(b)[j]

E(b)[i]T

− 1

i2

i∑
j=1

i∑
p=1

(−1)b[i+1]⟨κi,b[i],E(b)[j]⟩E(b)[p]E(b)[i]T

If we define

µt,j,i,p,b1,b2,b3 =

(
B∑
s=1

(−1)b(t,s)[i+1]1(b(t,s)[j] = b1,b(t,s)[i] = b2,b(t,s)[p] = b3)

)
.

Summing over the second batch, we have that

−dL
(1)

dA
=

1

B

n∑
i=1

i∑
j=1

1∑
b1=0

1∑
b2=0

1

i
α1,i,j,b1,b2∆1,i,j,b1,b2ej,b1e

T
i,b2

− 1

B

n∑
i=1

i∑
j=1

i∑
p=1

1∑
b1=0

1∑
b2=1

1∑
b3=0

1

i2
µ1,j,i,m,b1,b2,b3∆1,i,j,b1,b2ek,b3e

T
i,b2 .

This implies A(2) is updated as,

A(2) = −η1
dL(1)

dA

=
η1
B

n+k∑
i=n+1

i∑
j=1

1∑
b1=0

1∑
b2=0

1

i
α1,i,j,b1,b2∆1,i,j,b1,b2ej,b1e

T
i,b2

− η1
B

n+k∑
i=n+1

i∑
j=1

i∑
p=1

1∑
b1=0

1∑
b2=1

1∑
b3=0

1

i2
µ1,j,i,p,b1,b2,b3∆1,i,j,b1,b2ep,b3e

T
i,b2 .

Recall that our goal is to calculate eTj′,b′1A
(2)ei′,b′2 . We can then calculate the contribution from each

term by separating the calculation as follows:

Tj =
η1
B

∑
i∈[max{n+1,j},n+k],b2∈{0,1},S[i]̸=j

1∑
b1=0

1

i
α1,i,j,b1,b2∆1,i,j,b1,b2⟨ej′,b′1 , ej,b1⟩⟨ei,b2 , ei′,b′2⟩.

R =
η1
B

n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1

i
α1,i,S[i],b1,b2∆1,i,S[i],b1,b2⟨ej′,b′1 , eS[i],b1⟩⟨ei,b2 , ei′,b′2⟩.

Uj,p =
η1
B

n+k∑
i=max{n+1,j,p},S[i] ̸∈{j,p}

1∑
b1=0

1∑
b2=0

1∑
b3=0

1

i2
µ1,j,i,p,b1,b2,b3∆1,i,j,b1,b2⟨ej′,b′1 , ej,b1⟩⟨ep,b3 , ei′,b′2⟩

Vp =
η1
B

n+k∑
i=max{n+1,p}

1∑
b1=0

1∑
b2=0

1

i2
µ1,S[i],i,p,b1,b2,b3∆1,i,S[i],b1,b2⟨ej′,b′1 , eS[i],b1⟩⟨ep,b3 , ei′,b′2⟩

Wj =
η1
B

n+k∑
i=max{n+1,j}

1∑
b1=0

1∑
b2=0

1∑
b3=0

1

i2
µ1,j,i,S[i],b1,b2,b3∆1,i,j,b1,b2⟨ej′,b′1 , ej,b1⟩⟨ep,b3 , ei′,b′2⟩.

Y =
η1
B

n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1∑
b3=0

1

i2
µ1,S[i],i,S[i],b1,b2,b3∆1,i,S[i],b1,b2⟨ej′,b′1 , eS[i],b1⟩⟨eS[i],b3 , ei′,b′2⟩.

32

Then we have that

eTj′,b′1A
(2)ei′,b′2 =

n+k∑
j=1

Tj +R−
n+k∑
j=1

n+k∑
p=1

Uj,p −
n+k∑
j=1

Wj −
n+k∑
p=1

Vp + Y.

.By Lemma 31, with probability 1− δ/100,∣∣⟨ei,b2 , ei′,b′2⟩ − 1(i = i′&b2 = b′2)
∣∣ ≤ 2

√
log(100nd/δ)

d
.

We will also assume the event in Lemma 19 holds.

We will now discuss each term separately

1. For Tj , by Lemma 6 and Azuma-Hoeffding bound, with probability 1− δ/50,∣∣∣∣∣∣
∑

i∈[max{n+1,j},n+k],b2∈{0,1},S[i]̸=j

1∑
b2=0

1

i
α1,i,j,b1,b2∆1,i,j,b1,b2⟨ej′,b′1 , ej,b1⟩⟨ei,b2 , ei′,b′2⟩

∣∣∣∣∣∣
≤2

1∑
b1=0

√√√√B log(
100n

δ
)

∑
i∈[max{n+1,j},n+k],b2∈{0,1},S[i] ̸=j

1

i2
∆2

1,1,i,j,b1,b2

(
⟨ej′,b′1 , ej,b1⟩

)2 (⟨ei,b2 , ei′,b′2⟩)2

≤
2
√
B log(100nδ)

n
sup
j ̸=S[i]

|∆1,i,j,b1,b2 |
1∑

b1=0

∣∣⟨ej′,b′1 , ej,b1⟩∣∣√ ∑
i∈[max{n+1,j},n+k],b2∈{0,1},S[i]̸=j

(
⟨ei,b2 , ei′,b′2⟩

)2
Now by Lemma 19, we have that

sup
j ̸=S[i]

|∆1,i,j,b1,b2 | ≤
10η0
mn

√
nk√
Bd

log(300mnB/δ).

Further by Lemma 31,∑
i∈[max{n+1,j},n+k],b2∈{0,1},S[i]̸=j

(
⟨ei,b2 , ei′,b′2⟩

)2 ≤8k log(100nd/δ)

d
+ 1 ≤ 4.

∣∣⟨ej′,b′1 , ej,b1⟩∣∣ ≤1(j = j′&b′1 = b1) + 2

√
log(100nd/δ)

d
.

|Tj | ≤
40η1η0
mn2

√
nk

B
√
d
log1.5(300mnB/δ)

(
4

√
log(100nd/δ)

d
+ 1(j = j′)

)
.

Summing over j, by Lemma 5, we have that the contribution is bounded by∑
j

|Tj | ≤
160η1η0
mn2

log2(300mnB/δ)
n
√
nk

d
√
Bd

≤ η1η0
2000mn2

. (3)

2. For R, we will directly put everything to an upper bound. We will discuss three cases,

• ̸ ∃i′′, S[i′′] = j, by Lemma 19,

|R| ≤ 16kη1 log(100nd/δ)

Bnd
supα∆+

η1
B

1

i′
α1,i′,S[i′],b1,b′2

∆1,i′,S[i′],b1,b′2
|⟨ej′,b′1 , eS[i],b1⟩|

≤ 16kη1 log(100nd/δ)

Bnd

B

2

η0
4mn

+
η1
Bn

B
η0

4mn

√
log(100nd/δ)

d

=
η0η1k log(100nd/δ)

mn2d
+

η0η1
4mn2

√
log(100nd/δ)

d
≤ η0η1

2000mn2
.

33

• ∃i′′, S[i′′] = j, i′′ ̸= i′, we can get a similar bound,

|R| ≤ η0η1
2000mn2

.

• S[i′] = j′, in this case, we can show that,

|R− η0η1
8B2mi′

ᾱ2
i,S[i′],b1,b2

| ≤ η0η1
2000mn2

.

This concludes that ∣∣∣R− η0η1
8B2mi′

ᾱ2
i,S[i′],b1,b2

1(S[i′] = j′)
∣∣∣ ≤ η0η1

2000mn2
. (4)

3. Uj,p can ve bounded in the same way as Tj and we have that,∑
j

∑
p

Uj,p ≤
η1η0

1000mn2
. (5)

4. For Vp,Wj , Y , we will directly put everything to an upper bound similar to the bound of R, we
have that

n+k∑
p=1

|Vp| ≤
η1η0

1000mn2
. (6)

n+k∑
j=1

|Wj | ≤
η1η0

1000mn2
(7)

|Y | ≤ η1η0
1000mn2

. (8)

Summing over Equations (3) to (8), we have that∣∣∣〈ej′,b′1 , A(2)ei′,b′2

〉
− η0η1

8Bmi′
ᾱ2
i,S[i′],b1,b2

1(S[i′] = j′)
∣∣∣ ≤ η1η0

512mn2
.

Further
η1

8B2mi′
ᾱ2
i,S[i′],b1,b2

≥ η0η1
128mn2

.

Hence, we can show that

1. If j′ = S[i′], then
〈
ej′,b′1 , A

(2)ei′,b′2
〉
≥ η0η1

256mn2 .

2. If j′ ̸= S[i′], then |
〈
ej′,b′1 , A

(2)ei′,b′2
∣∣⟩ ≤ η0η1

512mn2 .

The proof is complete.

Lemma 22. Under the setting of Lemma 21, the attention output is approximately one-hot after the
second step, with ∣∣A[A2](E(b))[i]− eS[i],b[S[i]]

∣∣ < 1/n10.

Proof of Lemma 22. This is a direct combination with Lemmas 5, 21 and 32.

A.4.4 Third Step: Moving MLP in Linear Regime

Lemma 23. With probability 1− 0.8δ, the gradient of the FFN layer on the third step can be written
as, ∣∣∣∣〈 dL(2)

dWr,1:d

〉∣∣∣∣ ≤
√
log(300nB/δ)

m
√
B

.

dL(2)

dWr,d+1:2d
=hr

n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1(νr,i,b2 > 0)(−1)b1+b2eS[i],b1 +O(
1

n8
).

Further the event in Lemmas 21 and 22 hold.

34

Proof. The proof is similar to Lemmas 12 and 14, switching the original output with the near one-hot
output of the attention layer.

Lemma 24. With probability 1− 0.9δ, the attention output is almost unchanged after the third step,
with ∣∣A[A3](E(b))[i]− eS[i],b[S[i]]

∣∣ < 1/n9.

Further, events in Lemma 23 hold.

Proof. By Lemmas 5, 20 and 22, A(3) −A(2) is of order 1/n8, this implies that the attention weight
and output is almost unchanged.

Lemma 25. With probability 1− 0.91δ,∣∣∣∣〈W (2)
r,d+1:2d,A(A3)[E(b)][i]

〉
+ sign(νr,i,b[S[i]]hr)

2ϵ

3
1(νr,i,0νr,i,1 < 0)

∣∣∣∣ < ϵ

300
.

Further, events in Lemma 24 hold.

Proof. We will first calculate the projection of the gradient on eS[i′],b′ . When the event in Lemma 23
happens,〈

dL(2)

dWr,d+1:2d
, eS[i′],b′

〉
= hr

n+k∑
i=n+1

1∑
b1=0

1∑
b2=0

1(νr,i,b2 > 0)(−1)b1+b2⟨eS[i′],b′ , eS[i],b1⟩+O(
1

n8
).

By Lemmas 5 and 30, with probability 1− 0.01δ,∣∣∣∣〈 dL(2)

dWr,d+1:2d
, eS[i′],b′

〉
− sign(νr,i,b′)hr1(νr,i,0νr,i,1 < 0)

∣∣∣∣ ≤ 1

200m

By Lemmas 5 and 17, we have that,∣∣∣〈W (2)
r,d+1:2d, eS[i′],b′

〉
+ sign(νr,i,b′)hrη21(νr,i,0νr,i,1 < 0)

∣∣∣ < (η0 + η1)

20mn
+

η2
200m

<
η2

100m
.

Combining with Lemma 24 and η2 = 4ϵm
3 , we have the result.

Lemma 26. With probability 1− δ, for all b ∈ {0, 1}n+k, i ∈ [n+ 1, n+ k], we have that∣∣∣∣T (E(b))[i]− ϵ(−1)b[i+1]+1

3

∣∣∣∣ < ϵ

3
.

Proof. By Lemma 23, the following holds,〈
W

(3)
r,1:d,E(b)[i]

〉
sign(νr,i,b[i]) ∈ [5ϵ/6, 7ϵ/6].

Combining with Lemma 25,∣∣∣∣〈W (2)
r,d+1:2d,A(A3)[E(b)][i]

〉
+ sign(νr,i,b[S[i]]hr)

2ϵ

3
1(νr,i,0νr,i,1 < 0)

∣∣∣∣ < ϵ

300
.

Hence, we still have that

|
〈
W

(3)
r,d+1:2d,A(A3)[E(b)][i]

〉
| < 5ϵ

6
.

which implies that,

1(
〈
W

(3)
r,1:d,E(b)[i]

〉
> 0) = 1(νr,i,b[i] > 0).

35

Consider the output contribution of the attention part,∣∣∣ 2m∑
r=1

hr

〈
W

(3)
r,d+1:2d,A(A3)[E(b)][i]

〉
1(νr,i,b[i] > 0)

+

2m∑
r=1

2hrϵ

3
sign(νr,i,b[S[i]]hr)1(νr,i,0νr,i,1 < 0, νr,i,b[i] > 0)

∣∣∣ < ϵ

300
.

The later term with 1− δ/100 satisfies,

2m∑
r=1

2hrϵ

3
sign(νr,i,b[S[i]]hr)1(νr,i,0νr,i,1 < 0, νr,i,b[i] > 0)

=

2m∑
r=1

ϵ

3m
sign(νr,i,b[S[i]])1(νr,i,0νr,i,1 < 0, νr,i,b[i] > 0)

=

2m∑
r=1

ϵ

3m
(−1)b[S[i]]+b[i]1(νr,i,0νr,i,1 < 0)

=
ϵ

3
(−1)b[S[i]]+b[i] +O(

ϵ log(100n/δ)√
m

)

This shows that,∣∣∣∣∣
2m∑
r=1

hr

〈
W

(3)
r,d+1:2d,A(A3)[E(b)][i]

〉
1(νr,i,b[i] > 0)− ϵ

3
(−1)1+b[S[i]]+b[i]

∣∣∣∣∣ ≤ ϵ

150
.

On the other hand, we have that∣∣∣∣∣
2m∑
r=1

hr

〈
W

(3)
r,1:d,E(b)[i]

〉
1(νr,i,b[i] > 0)

∣∣∣∣∣
≤

∣∣∣∣∣
2m∑
r=1

hr

〈
W

(0)
r,1:d,E(b)[i]

〉
1(νr,i,b[i] > 0)

∣∣∣∣∣+
∣∣∣∣∣
2m∑
r=1

hr

〈
W

(3)
r,1:d −W

(0)
r,1:d,E(b)[i]

〉
1(νr,i,b[i] > 0)

∣∣∣∣∣
≤ ϵ

4
.

The first term is bounded due to standard concentration inequality over the axis of r. The second
term is bounded by Lemmas 17 and 23. Combining the terms, we have that∣∣∣∣T (E(b))[i]− ϵ(−1)b[i]+b[S[i]]+1

3

∣∣∣∣ = ∣∣∣∣T (E(b))[i]− ϵ(−1)b[i+1]+1

3

∣∣∣∣ < ϵ

3
.

This concludes that the model is able to predict the correct output.

A.5 Final Proof

Lemma 27. The results in Lemmas 18 and 26 can be extended to hinge loss ℓ(ŷ, y) = max{(−1)y ŷ+
1, 0} with the same probability.

Proof. Our Lemmas 17 and 23 shows that the output of the FFN layer is bounded by ϵ/3 throughout
training. The hinge loss is linear when the output is in [−1, 1]. Hence, the results can be directly
extended to hinge loss.

Proof of Theorem 3. The original theorem is a combination of Lemmas 18, 26 and 27.

36

A.6 Technical Lemma

Lemma 28 (Theorem 4.4.5 of Vershynin (2018)). There exists universal constant C,let A be an
m×n random matrix whose entriesAij are independent, mean zero, sub-Gaussian random variables.
Then, for any t > 0, we have

∥A∥ ≤ CK
(√
m+

√
n+ t

)
with probability at least 1− 2 exp(−t2). Here K = maxi,j ∥Aij∥ψ2

is the maximum sub-Gaussian
norm of Aij .
Lemma 29 (Theorem 4.6.1 of Vershynin (2018)). Let A be an m × n matrix whose rows Ai are
independent, mean zero, sub-Gaussian isotropic random vectors in Rn. Then, for any t ≥ 0, we have√

m− CK2(
√
n+ t) ≤ sn(A) ≤ s1(A) ≤

√
m+ CK2(

√
n+ t)

with probability at least 1− 2 exp(−t2). Here, K = maxi ∥Ai∥ψ2
.

Furthermore, a slightly stronger conclusion holds:∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ ≤ K2 max(δ, δ2),

where δ = C
(√

n
m + t√

m

)
.

Lemma 30. Define v =
∑n+k
i=1

∑1
b=0 λi,bei,b, then with probability 1− δ,

|⟨ei′,b′ , v⟩ − λi′,b′ | ≤

√√√√2 log
(
2
δ

)
d

∑
(i,b)̸=(i′,b′)

λ2i,b.

Proof. We aim to bound |⟨ei′,b′ , v⟩|, where

v =

n+k∑
i=n+1

1∑
b=0

λi,bei,b.

Note that each ei,b ∈ Rd has entries that are independent random variables from
{
− 1√

d
, 1√

d

}
.

First, observe that

⟨ei′,b′ , v⟩ =
∑
(i,b)

λi,b⟨ei′,b′ , ei,b⟩ = λi′,b′ +
∑

(i,b) ̸=(i′,b′)

λi,b⟨ei′,b′ , ei,b⟩.

Since ⟨ei′,b′ , ei′,b′⟩ = 1 and for (i, b) ̸= (i′, b′), the inner products ⟨ei′,b′ , ei,b⟩ are sums of indepen-
dent random variables with mean zero.

Define
Xi,b = λi,b⟨ei′,b′ , ei,b⟩, for (i, b) ̸= (i′, b′).

Each Xi,b is a sum of d independent random variables bounded in
[
− |λi,b|

d ,
|λi,b|
d

]
, because each

component ei′,b′,jei,b,j is ± 1
d .

By the Azuma-Hoeffding inequality, for any t > 0,

Pr

∣∣∣∣∣∣
∑

(i,b) ̸=(i′,b′)

Xi,b

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
− 2dt2∑

(i,b)̸=(i′,b′) 4λ
2
i,b

)
= 2 exp

(
− dt2

2
∑

(i,b) ̸=(i′,b′) λ
2
i,b

)
.

Setting the right-hand side equal to δ and solving for t, we get

t =

√√√√2 log
(
2
δ

)
d

∑
(i,b)̸=(i′,b′)

λ2i,b.

Therefore, with probability at least 1− δ,

|⟨ei′,b′ , v⟩ − λi′,b′ | ≤

√√√√2 log
(
2
δ

)
d

∑
(i,b)̸=(i′,b′)

λ2i,b.

The proof is then complete.

37

Lemma 31. With probability 1− δ, it holds that

∀i, i′ ∈ [n+ k], b, b′ ∈ {0, 1}, ∥eTi,bei′,b′ − 1(i = i′&b = b′)∥2 ≤
√

2
log(8nd/δ)

d
.

Proof. This is a direct consequence combining Lemma 30 and union bound.

Lemma 32. If for constant C, the attention score before softmax has the following property:

• for each position i, the target position j = S[i] satisfies:〈
ej,b′1 , A

(2)ei,b′2

〉
≥ 2C log n.

• For all other positions j′ ̸= j, the attention weights satisfy:∣∣∣〈ej′,b′1 , A(2)ei,b′2

〉∣∣∣ ≤ C log n.

The attention output is approximately one-hot, with∣∣A[A2](E(b))[i]− eS[i],b[S[i]]
∣∣ < 4/nC−1.

Proof of Lemma 22. The attention output for position i is given by:

A[A2](E(b))[i] = X · softmax
(
C +X⊤AX

)
[i],

where the softmax is applied column-wise.

Given the condition from Lemma 5, we set

∆ = 2C log n

This implies that:

e−∆/2 < e−C logn =
1

nC
.

Define zj′ =
〈
ej′,b′1 , A

(2)ei,b′2
〉
.

The softmax for the target position j = S[i] is:

softmax(z)j =
ezj

ezj +
∑
j′ ̸=j e

zj′
.

Given that zj ≥ ∆ and |zj′ | ≤ ∆
2 (since η0η1

512mn2 = ∆
2), we have:

zj − zj′ ≥ ∆− ∆

2
=

∆

2
.

Thus:

softmax(z)j ≥
e∆

e∆ + (T − 1)e∆/2
=

1

1 + (T − 1)e−∆/2
.

Therefore with T ≤ 2n:

softmax(z)j ≥
1

1 + (T − 1) · 1
nC

≥ 1− 2

nC−1
.

Therefore ∑
j′ ̸=j

softmax(z)j′ ≤
2

nC−1
.

The attention output for position i is:

A[A2](E(b))[i] =
∑
j

ej,b[j]softmax(z)j .

38

Substituting the bounds:

∣∣A[A2](E(b))[i]− eS[i],b[S[i]]
∣∣ =

∣∣∣∣∣∣
∑

j′ ̸=S[i]

ej′,b[j′]softmax(z)j′

∣∣∣∣∣∣+ ∣∣eS[i],b[S[i]](softmax(z)S[i] − 1)
∣∣

≤
∑

j′ ̸=S[i]

softmax(z)j′ +
∣∣(softmax(z)S[i] − 1)

∣∣ ≤ 4

nC−1

We conclude our proof.

39

B Additional Experiment Results

In this section, we provide details of the experiment setup and present additional results. All training
was conducted using PyTorch Paszke et al. (2019) on NVIDIA RTX A10 GPUs.

B.1 Experiment Details

The transformer architecture adopted in the experiment section is based on the GPT-2 model (Radford
et al., 2019) with a hidden size of 720, an intermediate size of 3072, and trainable position embeddings.
For all experiments, we use Adam (Kingma, 2014) optimizer with random initialization, using
hyperparameters β1 = 0.9, β2 = 0.999, a weight decay of 0 and a linear decay learning rate
schedule. The batch size is set to 512 throughout. The validation set contains 2048 samples which
are nonintersecting with the training data. In all experiments regarding sample complexity, a test set
of size 2048 which is non-intersected with the training data is used.

Details of the experiments in Section 4.3 This section examines the normalized attention entropy
of Qwen2-7B (Yang et al., 2024) and Qwen2-Math-7B models (Qwen, 2024) on the GSM8K dataset
(Cobbe et al., 2021) with and without CoT prompting respectively. Both models consist of 28 layers,
each with 28 attention heads. The normalized attention entropy is computed as the average across the
GSM8K test set. In Figure 6, the entropy values of each attention head in a layer are sorted separately
under the three setups. While Figure 6 presents the normalized attention entropy for specific attention
heads in the first, last, and two intermediate layers, Figure 7 shows the entropy across all layers.

For With CoT data, the input is concatenated with the ground truth answer from the GSM8K dataset.
For With CoT data, we extract the final answer from the ground truth, and concatenate the input with
the string “The answer is [Final Answer].”.

B.2 Additional Results

In Figure 3 (Right), we present the attention pattern of a single-layer, single-head transformer trained
on the (n = 20, k = 40) parity problem with CoT data. In Figure 8, we show the attention patterns
of a multi-layer, multi-head transformer trained on the same problem. We observe that in the first
layer, the attention pattern is sparse and interpretable, with each secret variable attended to by at
least one attention head. In contrast, the second layer exhibits an almost uniform attention pattern. A
possible explanation is that the first layer captures sufficient information, which is then transferred to
subsequent layers via the residual connections.

In Section 4.2, we observe that training with repeated data can help Transformers learn the parity
function, but it still requires significantly more computation compared to trained on CoT data
(Figure 4). To further substantiate this observation, we explore the training of models with and
without CoT on the (n = 20, k = 12) parity problem. Compared with the (n = 20, k = 6) parity
problem considered in 4, this problem is harder for the models to learn as the number of secret
variables k is larger. We examine various configurations: the number of layers and heads ranges from
1, 2, 3, 4, 6, and 8; the learning rate varies from 6× 10−6, 8× 10−8, to 1× 10−4; and the training
dataset size varies from 104, 105 to 106, with corresponding epochs ranging from 1000, 100 to 10.
Across all configurations we examined, training without CoT fails to achieve non-trivial accuracy
(Figure 9). In contrast, models trained with CoT achieve perfect evaluation accuracy when trained
on a dataset with 10, 000 samples for only 6 epochs, or with approximately 60, 000 fresh samples in
one-pass training setting.

In Figure 5, a 4-layer 4-head transformer achieves perfect evaluation accuracy on (n = 20, k = 6)
problem when trained on a small dataset of 50000 samples, but fails to achieve non-trivial accuracy
when trained on a larger dataset. Furthermore, successful learning coincides with a significant
decrease in attention entropy, indicating the development of sparse attention, while entropy remains
high when trained on a larger dataset. In Figure 10, we present more results across different
architectures (1-layer 1-head, 2-layer 3-head and 4-layer 4-head transformers) with dataset size of
5000, 10000, 50000, 100000, 1000000, and observe the same pattern.

40

1 28
head

0.0

0.2

0.4
No

rm
al

ize
d

At
te

nt
io

n
En

tro
py Layer 1

1 28
head

0.0

0.2

0.4

0.6

Layer 2

1 28
head

0.0

0.2

0.4

0.6

0.8
Layer 3

1 28
head

0.0

0.2

0.4

0.6

Layer 4

1 28
head

0.0

0.1

0.2

0.3

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py Layer 5

1 28
head

0.00

0.05

0.10

0.15

Layer 6

1 28
head

0.0

0.1

0.2

0.3

Layer 7

1 28
head

0.0

0.1

0.2

0.3

Layer 8

1 28
head

0.0

0.1

0.2

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py Layer 9

1 28
head

0.0

0.1

0.2

Layer 10

1 28
head

0.0

0.1

0.2

0.3

0.4
Layer 11

1 28
head

0.0

0.1

0.2

Layer 12

1 28
head

0.0

0.1

0.2

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py Layer 13

1 28
head

0.0

0.1

0.2

0.3

0.4
Layer 14

1 28
head

0.0

0.1

0.2

0.3
Layer 15

1 28
head

0.0

0.1

0.2

0.3
Layer 16

1 28
head

0.0

0.1

0.2

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py Layer 17

1 28
head

0.0

0.1

0.2

0.3
Layer 18

1 28
head

0.0

0.1

0.2

0.3

0.4
Layer 19

1 28
head

0.0

0.1

0.2

0.3

Layer 20

1 28
head

0.0

0.1

0.2

0.3

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py Layer 21

1 28
head

0.00

0.05

0.10

0.15

0.20

Layer 22

1 28
head

0.000

0.025

0.050

0.075

0.100

Layer 23

1 28
head

0.00

0.02

0.04

0.06

0.08
Layer 24

1 28
head

0.00

0.02

0.04

0.06

0.08

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py Layer 25

1 28
head

0.0

0.1

0.2

Layer 26

1 28
head

0.00

0.05

0.10

0.15

0.20
Layer 27

1 28
head

0.00

0.05

0.10

Layer 28

Qwen2-7B+
No CoT
Qwen2-7B+
With CoT
Qwen2-Math-7B+
With CoT

Figure 7: The normalized attention entropy of the pre-trained Qwen2-7B and math-specialized
Qwen2-Math-7B models on the GSM8K dataset with and without CoT prompting (Section 4.3).
Each bar represents the entropy of an attention head.

41

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Head 1

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

La
ye

r 1

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Head 2

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

La
ye

r 1

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Head 1

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

La
ye

r 2

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Head 2

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

La
ye

r 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Attention Pattern

Figure 8: The attention pattern learned by a 2-layer 2-head transformer on (n = 20, k = 6) parity
problem with CoT.

1 2 3 4 6 8
Head Number

1
2

3
4

6
8

La
ye

r N
um

be
r

10000 samples × 1000 epochs

1 2 3 4 6 8
Head Number

1
2

3
4

6
8

La
ye

r N
um

be
r

100000 samples × 100 epochs

1 2 3 4 6 8
Head Number

1
2

3
4

6
8

La
ye

r N
um

be
r

1000000 samples × 10 epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

accuracy

Figure 9: Training with CoT on (n = 20, k = 12) parity problem fails to achieve non-trivial accuracy
under different configurations.

42

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0
50

00
 tr

ai
ni

ng
 sa

m
pl

es
Ac

cu
ra

cy

1 layer 2 heads

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

2 layers 3 heads

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

4 layers 4 heads

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

10
00

0
tra

in
in

g
sa

m
pl

es
Ac

cu
ra

cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

50
00

0
tra

in
in

g
sa

m
pl

es
Ac

cu
ra

cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

10
00

00
 tr

ai
ni

ng
 sa

m
pl

es
Ac

cu
ra

cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

10
00

00
0

tra
in

in
g

sa
m

pl
es

Ac
cu

ra
cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 10000 20000
Steps

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Evaluation Accuracy
Training Loss
Evaluation Loss

Figure 10: Transformer trained on the (n = 20, k = 6) parity problem without CoT with different
sizes of training dataset and a fixed number of iterations.

43

0.00 0.25 0.50 0.75 1.00
Iterations × Batch Size 1e7

0.0

0.2

0.4

0.6

0.8

1.0

50
00

0
tra

in
in

g
sa

m
pl

es

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py

Layer 1

0.00 0.25 0.50 0.75 1.00
Iterations × Batch Size 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Layer 2

0.00 0.25 0.50 0.75 1.00
Iterations × Batch Size 1e7

0.0

0.2

0.4

0.6

0.8

1.0

10
00

00
0

tra
in

in
g

sa
m

pl
es

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py

0.00 0.25 0.50 0.75 1.00
Iterations × Batch Size 1e7

0.0

0.2

0.4

0.6

0.8

1.0

head 0
head 1
head 2

(a) 2-layer 3-head transformer

0.00 0.25 0.50 0.75 1.00
Iterations × Batch Size 1e7

0.0

0.2

0.4

0.6

0.8

1.0

50
00

0
tra

in
in

g
sa

m
pl

es

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py

Layer 1

0.00 0.25 0.50 0.75 1.00
Iterations × Batch Size 1e7

0.0

0.2

0.4

0.6

0.8

1.0
10

00
00

0
tra

in
in

g
sa

m
pl

es

No
rm

al
ize

d
At

te
nt

io
n

En
tro

py

head 0
head 1

(b) 1-layer 2-head transformer

Figure 11: Normalized attention entropy curve of transformers training on the (n = 20, k = 6) parity
problem without CoT. Each line in the graph represents the attention entropy for a head of a certain
layer.

44

	Introduction
	Motivating Examples: Learning Parity Functions
	Theoretical Analysis
	Notations and Definitions
	Exponential Sample Complexity without CoT
	Polynomial Sample Complexity with CoT

	Empirical Experiments
	Parity Learning with Multi-layer Transformers
	Multi-pass Training Improves Parity Learning without CoT
	CoT Induces Sparsity on Real-World Data

	Additional Related Work
	Conclusion and Future Works.
	Omitted Proof
	Notation and Assumptions.
	Training Specification

	Representation Theory
	Dynamics without CoT
	Dynamics with CoT
	Auxiliary Statistics
	First Step: Configuring the MLPs
	Step 2: Configuring the Attention
	Third Step: Moving MLP in Linear Regime

	Final Proof
	Technical Lemma

	Additional Experiment Results
	Experiment Details
	Additional Results

