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Abstract001

In this study, we measure the Intrinsic Dimen-002
sion (ID) of token embedding to estimate the003
intrstic dimensions of the manifolds spanned004
by the representations, so as to evaluate their005
redundancy quantitatively compared to their006
extrinsic dimensionality. In detail, (1) we es-007
timate the ID of token embeddings in small-008
scale language models and also modern large009
language models, finding that the embedding010
spaces often reside on lower-dimensional man-011
ifolds compared to their extrinsic dimension-012
ality; (2) we measure the ID across various013
model sizes and observe an increase in redun-014
dancy rates as the model scale grows; (3) we015
measure the dynamics of IDs during the train-016
ing process, and find a rapid ID drop in the017
early stages of training. Moreover, (4) when018
LoRA is applied to the embedding layers, we019
observe a sudden drop in perplexity around the020
estimated IDs, suggesting that the ID can serve021
as a useful guideline for LoRA application.022

1 Introduction023

Recent Large Language Models (LLMs) utilize024

token embedding layers with hundreds or even025

thousands of extrinsic dimensions (ED), while it026

remains unclear how many of these dimensions027

are actually necessary for effective representa-028

tion. If the token embedding utilizes only a lower-029

dimensional manifold, large portions of the param-030

eter space may be redundant, increasing training031

and inference costs unbeneficially. Also, prior work032

suggests that sentence embeddings can lie on re-033

markably low-dimensional manifolds (Ueda and034

Yokoi, 2024), while the sentence embeddings are035

model outputs, or activations that can not be ex-036

plicitly reduced for a more efficient model.037

So, in this paper, we focus on the token em-038

bedding, which is the model parameters on the039

first layer of a typical language model, instead of040

activations. In detail, we examine the Intrinsic Di-041

mension (ID) of embedding spaces in both small- 042

scale (e.g., Word2Vec, GloVe) and large-scale (e.g., 043

Pythia) word embedding models, addressing two 044

central research questions: 045

RQ1 How large is the gap between ED and
ID, and what factors influence it?

RQ2 How does the ID in an LLM’s embed-
ding layer evolve and stabilize among
model scale and training dynamics?

046

To answer these questions, first, we measure 047

the discrepancy between ED and ID in popular 048

word embedding models (Section 3.2). Next, using 049

Pythia suite (Biderman et al., 2023), we investi- 050

gate how the dimension redundancy varies against 051

model scales, and how the IDs update among the 052

training dynamics (Sections 3.3 and 3.4). Finally, 053

we show that the estimated ID can guide the selec- 054

tion of the inner dimension in low-rank adaptation 055

(LoRA) (Hu et al., 2022) on the embedding layer, 056

striking a better balance between compactness and 057

performance (Section 3.5). 058

Contributions. (1) We present a consistent 059

empirical analysis of ID for both small- and 060

large-scale embedding models, demonstrating 061

that embedding spaces remain surprisingly low- 062

dimensional. (2) We reveal that the ID is stabilized 063

in the early training even as the model size grows, 064

indicating that a compact, core representation is 065

learned from the early phase. (3) We provide initial 066

evidence that ID-based rank selection in LoRA de- 067

livers efficiency gains without sacrificing perplex- 068

ity, thereby highlighting the potential of ID-aware 069

compression for large-scale NLP models. 070

2 Related Works 071

In recent years, Intrinsic Dimension (ID) and Lo- 072

cal Intrinsic Dimensionality (LID) (Levina and 073

Bickel, 2004; Amsaleg et al., 2015) have gained 074
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attention as indicators of the essential dimension-075

ality of high-dimensional data. Since they capture076

the nonlinear manifold structure—beyond what lin-077

ear methods like PCA can reveal—they provide078

valuable geometric insights into deeper feature rep-079

resentations. Ansuini et al. (2019) observed in the080

activations of CNNs that: (1) ID is smaller than081

the Euclidean dimension of each layer, (2) deeper082

layers tend to have a lower ID, and (3) higher ID083

often correlates with poorer generalization. For084

word embeddings, TwoNN (Facco et al., 2017) has085

shown that ID can compress to around 10 dimen-086

sions (Ueda and Yokoi, 2024).087

Meanwhile, low-rank approximation techniques088

such as LoRA (Hu et al., 2022) leverage the low-089

rank hypothesis to reduce inference and train-090

ing costs for LLMs. LoRA freezes weights W091

and learns a low-rank update ∆W = AB (with092

A ∈ Rd×r and B ∈ Rr×k), where r governs093

the compression–expressivity trade-off while dras-094

tically reducing trainable parameters. However,095

how far these representations can be compressed096

remains unexplored. Understanding this in embed-097

ding spaces is essential not only for deepening our098

grasp of representation learning but also for iden-099

tifying new directions for model acceleration and100

memory efficiency.101

3 Methodology and Experiments102

We begin by describing how we estimate LID and103

ID, followed by three experiments that apply these104

methods to token embeddings.105

3.1 Method: LID and ID Estimation106

Intrinsic Dimension Estimation. Following Lev-107

ina and Bickel (2004), we estimate the Local108

Intrinsic Dimension (LID) of a point x (e.g. one109

token embedding vector) via:110

L̂IDk(x) =

[
1

k − 1

k−1∑
i=1

ln
dk(x)

di(x)

]−1

, (1)111

where di(x) is the distance from point x to the i-112

th of total k nearest neighbor (k is a experiment113

hyper-parameter). Then, global ID (MacKay and114

Ghahramani, 2005) is computed as the harmonic115

mean of the LID across all n embedding vectors:116

ÎD =

[
1

n

n∑
i=1

L̂ID
−1

i

]−1

. (2)117

Table 1: Estimated ID.

Statistic GloVe FastText Word2Vec Random

ID 24.77 13.19 24.75 130.3

0 50 100 150
Local Intrinsic Dimension

0.00

0.01

0.02

0.03

0.04

Ke
rn

el
 D

en
si

ty

FastText
Google News
GloVe

Figure 1: Kernel densities of LID values.

3.2 Experiment 1: ID Estimation for Word 118

Embeddings 119

Our first experiment evaluates whether widely used 120

pre-trained word embeddings (Word2Vec (Mikolov 121

et al., 2013), GloVe (Pennington et al., 2014), 122

FastText (Bojanowski et al., 2017)) occupy lower- 123

dimensional manifolds than their ED. The models 124

we use are available via the Gensim library (Ře- 125

hůřek and Sojka, 2010): word2vec-google-news 126

-300, glove-wiki-gigaword-300, and fasttext 127

-wiki-news-subwords-300. To assess the effect 128

of linguistic structure, we also compare these em- 129

beddings to a random baseline consisting of vectors 130

sampled from a normal distribution. 131

Experimental Procedure. For each embedding 132

vector from the full vocabulary, we use Euclidean 133

distances and FAISS (Douze et al., 2024) to identify 134

the k = 5 nearest neighbors for the embedding 135

vector, then compute L̂IDk, as given in Eq. (1), 136

and finally average these LID values to estimate 137

the global ID following Eq. (2). 138

Random Baseline. We generate 1e5 points from 139

a d-dimensional Gaussian with mean 0 and covari- 140

ance I, where d is set to equal with the extrinsic 141

dimensionality of each evaluated embedding. 142

Results. Table 1 shows the ID estimates obtained 143

in this experiment, and Figure 1 illustrates the dis- 144

tribution of LID values. The word embeddings 145

yield IDs of about 10-30, significantly less than 146

the random baseline. Given that the ED is 300 for 147

these vectors, the observed ID corresponds to ap- 148

proximately 3-10% of the ED, suggesting strong 149

redundancy in the original embedding dimension. 150
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Table 2: Redundancy Ratio (Redu. (%)) alongside ID
and ED for Pythia models with various scales.

Model Redu. (%) ID ED

pythia-14m 72.40 35.33 128
pythia-70m 94.14 29.99 512
pythia-160m 96.49 26.97 768
pythia-410m 97.56 24.95 1024
pythia-1b 98.18 37.23 2048
pythia-1.4b 98.43 32.20 2048
pythia-2.8b 98.66 34.18 2560
pythia-6.9b 98.09 78.30 4096
pythia-12b 97.62 121.82 5120
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Figure 2: Redundancy Ratio against model parameters.

3.3 Experiment 2: Redundancy Ratio Across151

Different LLM Scales152

Next, we measure the redundancy ratio in the em-153

bedding layer of the Pythia series (Biderman et al.,154

2023) with various scales from 14M to 12B pa-155

rameters pre-trained under the same training data156

and conditions, to compare how the ID evolves at157

different scales under a consistent setting. For each158

model, let the extrinsic dimension be ED, and let159

ID be the ID estimated by the method in §3.1, we160

define the redundancy ratio as:161

Redundancy =
ED− ID

ED
, (3)162

and observe it among various model scales. Unlike163

§3.2, we focus on this ratio instead of ED, since164

ED varies across models.165

Results. Table. 2 and Figure. 2 present the results166

of redundancy ratios. As the model size grows, the167

ID also increases, yet the redundancy ratio remains168

very high, between roughly 90% and 98%. More-169

over, from pythia-410m onward, the redundancy170

ratio stabilizes at around 98%. In other words, for171

sufficiently large models, the redundancy ratio does172

not undergo significant change.173

3.4 Experiment 3: ID Estimation During174

LLM Training175

To examine how the embedding space of LLMs176

evolves during training, we utilize the model check-177

points periodically saved along the training dynam-178

ics from 1e3 to 1e4 steps at intervals of 1e3, and179

from 1e4 to 1.43e5 steps at intervals of 5e3. At180

each checkpoint, we estimate L̂IDk using Eq. (1),181
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Figure 3: Dynamics of ID against the training steps.

Figure 4: Validation perplexity against LoRA inner di-
mensions on pythia-410m.

ÎD using Eq. (2) thereby tracking changes in ID 182

throughout training. Due to limited GPU resources, 183

we restrict our experiments to models ranging from 184

pythia-14m to pythia-1.4b. 185

Results. Figure. 3 presents our findings. We 186

observe a sharp decline in ID during the initial 187

training stages, followed by a more gradual conver- 188

gence. The smallest model, pythia-14m, exhibits 189

relatively unstable behavior, which is generally ac- 190

ceptable for smaller-scale models (Tirumala et al., 191

2022). 192

3.5 Experiment 4: LoRA with ID-driven 193

Rank Choice 194

In §3.3, we obtained the ID of each model’s em- 195

bedding layer and used it to guide the rank (inner 196

dimension) selection of LoRA (Hu et al., 2022). 197

Similarly to before, we apply LoRA only to the 198

embedding layer (e.g., gpt_neox.embed_in in 199

Pythia) for a causal language modeling task on 200

the WikiText-2 dataset, where the dataset is tok- 201

enized to a maximum sequence length of 256 and 202

any empty samples are discarded. We systemati- 203

cally vary the LoRA rank {8, 16, 24, 25, 26, 32, 204

48, 64, 128} around the estimated ID (∼ 24.95), 205

and train only the LoRA parameters on the afore- 206

mentioned object for 5 epochs with a per-device 207

batch size of 32, and compute the perplexity on the 208

validation set as exp(loss) to evaluate the effect of 209
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LoRA. This setup allows us to examine how closely210

the optimal LoRA rank aligns with the ID, as well211

as whether ranks below or above the ID threshold212

significantly affect the model’s performance.213

Results. Figure. 4 presents our findings. In Fig-214

ure. 4, error bands corresponding to ±σ are dis-215

played. We find that in LoRA, ranks below the ID216

lead to a clear performance drop, whereas ranks217

above the ID improve results slightly. Around the218

ID, performance jumps sharply before declining219

again, suggesting that ID is pivotal for balancing220

compactness and capacity in LoRA.221

4 Discussions222

4.1 RQ1: The Gap between ED and ID is223

Significant224

Word embeddings with an ED of 300 typically ex-225

hibit an ID of around 10-30, which aligns with226

the findings on the sentence embedding (activa-227

tion) of Ueda and Yokoi (2024). It can be inferred228

that language prior leads the embeddings and also229

activations to appear more structured and low-ID230

geometries, compared to random vectors.231

Notably, FastText embeddings exhibit a signif-232

icantly lower ID compared to those from other233

models. This phenomenon may be attributed to234

FastText’s subword segmentation, with additional235

contributions potentially coming from factors such236

as the training data and token frequency. To inves-237

tigate this, we conducted a preliminary experiment238

with various tokenizers to assess how different tok-239

enization strategies affect the resulting ID. Details240

and results are provided in the Appendix A.241

4.2 RQ2: Redundancy Ratio Persists at a242

High Level243

In Fig. 2, our scale-based analysis reveals that as244

the model size grows, the ID also increases but245

still lags significantly behind the ED, resulting246

in about a 98% redundancy ratio. This suggests247

that many dimensions remain underutilized, even248

though large models offer ample representational249

capacity. Moreover, high redundancy may, in fact,250

mirror the inherent complexity of language, pro-251

viding nuanced flexibility for downstream tasks252

and cautioning against viewing it as purely ineffi-253

ciency. In detail, it can be considered that during254

the fine-tuning onto a downstream task, the model255

can enable the unused dimensionalities as a “chan-256

nel” for the related information.257

Additionally, §3.4 shows that early training258

rapidly finds a compact, low-dimensional repre- 259

sentation of core linguistic features, followed by a 260

slower phase of refinement. 261

Possible Explanations for the Rapid Emergence 262

of Low-Dimensional Structure. We conjec- 263

ture that the embedding layer quickly converges 264

to a low-dimensional manifold due to the over- 265

parameterized nature of the model and the intrin- 266

sic clustering in natural language. Specifically, 267

during the initial training phase, frequent tokens 268

are rapidly grouped in a semantically meaning- 269

ful subspace, while infrequent tokens remain scat- 270

tered around the periphery, effectively reducing 271

the global degrees of freedom. This phenomenon 272

aligns with previous work on Neural Collapse (Gao 273

et al., 2019; Cho et al., 2025) in classification set- 274

tings, suggesting that early training emphasizes 275

global structure. Moreover, the manifold hypoth- 276

esis posits that real-world data often lie on a low- 277

dimensional manifold; our ID estimation lends em- 278

pirical support to this claim in the context of large- 279

scale language models. In later stages of training, 280

ID remains relatively stable, indicating a phase 281

where the primary geometry is refined rather than 282

fundamentally restructured. We believe that addi- 283

tional factors such as learning rate schedules, token 284

frequency distributions (Zipf’s law), and subword 285

segmentation might further influence the speed and 286

extent of ID convergence. Future work will include 287

in-depth analyses of these factors and their inter- 288

play with optimization dynamics. 289

5 Conclusion 290

We have shown that while embeddings in both 291

small and large models nominally span hundreds or 292

thousands of dimensions, their effective dimension- 293

ality, ID, is remarkably low. Notably, ID emerges 294

early in training and remains far below the ED, 295

leaving significant redundancy. Crucially, these 296

findings inform practical compression strategies 297

such as LoRA, where selecting a rank close to the 298

ID can preserve performance while reducing pa- 299

rameters. In short, the ID-based perspective of- 300

fers both theoretical insight into LLM embeddings 301

and a concrete path toward more efficient, scalable 302

model deployment. 303

Future Work. We plan to explore ID in addi- 304

tional layers and architectures, extend our approach 305

to cross-linguistic and diachronic corpora, and fur- 306

ther investigate ID-based compression methods to 307

enhance LLM interpretability and performance. 308
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Limitation309

One limitation of this study is that it focuses exclu-310

sively on the Pythia model, thereby restricting the311

generalizability of our findings to other architec-312

tures. Additionally, due to the practical constraints313

posed by our available GPU resources, the experi-314

mental scale remains somewhat smaller compared315

to contemporary large-scale language models. Con-316

sequently, caution should be exercised when extrap-317

olating these results to larger or more diverse model318

families.319
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Radim Řehůřek and Petr Sojka. 2010. Software frame- 399
work for topic modelling with large corpora. In 400
Proceedings of the LREC 2010 Workshop on New 401
Challenges for NLP Frameworks, pages 45–50, Val- 402
letta, Malta. ELRA. https://radimrehurek.com/ 403
gensim/. 404

5

https://doi.org/10.1145/2783258.2783412
https://doi.org/10.1145/2783258.2783412
https://doi.org/10.1145/2783258.2783412
https://proceedings.neurips.cc/paper/2019/file/cfcce0621b49c983991ead4c3d4d3b6b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cfcce0621b49c983991ead4c3d4d3b6b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cfcce0621b49c983991ead4c3d4d3b6b-Paper.pdf
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://aclanthology.org/Q17-1010
https://aclanthology.org/Q17-1010
https://aclanthology.org/Q17-1010
https://aclanthology.org/2025.coling-main.708/
https://aclanthology.org/2025.coling-main.708/
https://aclanthology.org/2025.coling-main.708/
https://arxiv.org/abs/2401.08281
https://doi.org/10.1038/s41598-017-11873-y
https://doi.org/10.1038/s41598-017-11873-y
https://doi.org/10.1038/s41598-017-11873-y
https://doi.org/10.1038/s41598-017-11873-y
https://doi.org/10.1038/s41598-017-11873-y
https://arxiv.org/abs/1907.12009
https://arxiv.org/abs/1907.12009
https://arxiv.org/abs/1907.12009
https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
http://www.inference.org.uk/mackay/dimension/
http://www.inference.org.uk/mackay/dimension/
http://www.inference.org.uk/mackay/dimension/
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
https://arxiv.org/abs/2205.10770
https://arxiv.org/abs/2205.10770
https://arxiv.org/abs/2205.10770
https://arxiv.org/abs/2205.10770
https://arxiv.org/abs/2205.10770
https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/E6-1.pdf
https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/E6-1.pdf
https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/E6-1.pdf
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1509.01626
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/


Table 3: ID for Each Tokenizer (ED = 300, Vocab Sam-
ple = 10,000). WS indicates whitespace tokenization.

Tokenizer ID

Word2Vec-SentencePiece 24.7846
Word2Vec-BPE 24.7275
Word2Vec-WS 27.0036
FastText-SentencePiece 11.3744
FastText-BPE 11.9805
FastText-WS 10.7492

A Tokenizer Analysis405

To examine how subword segmentation, training406

data, or frequency characteristics might influence407

the ID, we trained word embeddings using various408

tokenizers on the AGNews corpus (Zhang et al.,409

2015). Specifically, we compared SentencePiece,410

Byte-Pair Encoding (BPE), and whitespace tok-411

enization (WS) under both Word2Vec and FastText412

frameworks. Table 3 lists the resulting ID values413

for embeddings with an ED of 300, using a vocab-414

ulary sample of 10,000 tokens.415

We observe that FastText embeddings generally416

yield lower ID values than Word2Vec across all to-417

kenizers, suggesting that subword-level modeling418

may help reduce the intrinsic dimensionality. How-419

ever, further analysis is needed to confirm whether420

these differences are indeed due to segmentation421

approaches, data frequency characteristics, or train-422

ing hyperparameters.423
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