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Abstract

Multimodal large language models (MLLMs)
demonstrate excellent abilities for understand-
ing visual information, while the hallucination
remains. Albeit image tokens constitute the
majority of the MLLMs input, the relation be-
tween image tokens and hallucinations is still
unexplored. In this paper, we analyze the atten-
tion score distribution of image tokens across
layers and attention heads in models, revealing
an intriguing but common phenomenon: most
hallucinations are closely linked to the atten-
tion sink patterns of image tokens attention ma-
trix, where shallow layers exhibit dense sinks
and deep layers exhibit the sparse. We fur-
ther explore the attention heads of different lay-
ers, finding: heads with high-density attention
sink of the image part act positively in mitigat-
ing hallucinations. Inspired by these findings,
we propose a training-free approach called
Enhancing Vision Attention Sink (EVAS) to
facilitate the convergence of the image token
attention sink within shallow layers. Specifi-
cally, EVAS identifies the attention heads that
emerge as the densest visual sink in shallow
layers and extracts its attention matrix, which
is then broadcast to other heads of the same
layer, thereby strengthing the layer’s focus on
the image itself. Extensive empirical results of
various MLLMs illustrate the superior perfor-
mance of the proposed EVAS, demonstrating
its effectiveness and generality.

1 Introduction

Multimodal large language models (MLLMs) have
significantly progressed in cross-modal tasks. How-
ever, hallucinations remain a challenging problem,
particularly in visual question answering and image
captioning. Although prior hallucination mitigat-
ing strategies such as incorporating external knowl-
edge, retraining with additional data, or training-
free methods (Yu et al., 2024; Sarkar et al., 2024;

“These authors contributed equally to this work
= .
corresponding author

Question: Please describe the image in

detail

The image features a large flatbread pizza
placed on a wooden cutting board, which is
resting on a dining table. Additionally, there
are person/Tomato

Sparse vision sink head
Predicted

! distribution

Calculate Person
logits
EHE X
HHHHHH
. Last

Input Encode

[oYo) e
- 2
Layer2 ~ Layer Predicted
LVLM T distribution
| Calculate
. logits u Tomato
e ] v

Bis (a0

i

Figure 1: We found a common phenomenon through the
attention map: In the range of image token, the attention
head of shallow Sparse attention sink is prone to halluci-
nation, while the attention head of Dense attention sink
is much less likely to hallucinate.

Xiao et al., 2024; Xing et al., 2024a; Ma et al,,
2024; Gong et al., 2024; Chen et al., 2024a; Kim
et al., 2024; Liu et al., 2024b; Zhou et al., 2023;
Zhai et al., 2023; Wang et al., 2023a; Huang et al.,
2023; Zhu et al., 2024; Jiang et al., 2024; Zhou
et al., 2025; Bai et al., 2025; Suo et al., 2025; Lym-
peraiou et al., 2025; Wang et al., 2025; Li et al.,
2025a; Chen et al., 2025b; Che et al., 2025; Chen
etal., 2025a; Tuet al., 2025; Mao et al., 2025; Duan
et al., 2025; Yin et al., 2025; Li et al., 2025b) can
work well in some scenarios, their interpretability is
insufficient, especially lacking a clear explanation
of the causes of hallucinations in the autoregressive
model.

Current research on attention sink provides new
insights for tackling hallucinations. The attention
sink is an information flow as introduced in “Label
Words are Anchors" (Wang et al., 2023b), depict-
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Figure 2: Definition of dense vision sink head and its
layer-wise distribution. In this case, 8 = 0.0015, v =
15%

ing how the information flow often converges on
a specific user token in LL.Ms. It’s important to
note that MLLLM’s output tokens are generated by
the decoder based on logits, whereas input tokens,
which constitute most of the input sequence, are
more likely to directly reflect the MLLM’s inter-
nal mechanisms. OPERA, DOPRA, TAME, and
Vissink (Huang et al., 2024; Wei and Zhang, 2024;
Tang et al., 2025; Kang et al., 2025) further explore
the connection between attention sink in vision to-
kens and output tokens. In our investigation, we ob-
serve that when a token has a high attention weight
across subsequent tokens, such over-reliance on the
token can lead to hallucinations. Albeit these meth-
ods clarify the relationship among the attention
sink, user tokens, and output tokens, the sparsity
and hallucination of the deep and shallow vision
attention sinks in the model remain unclear.

Finding 1: Most dense vision sink heads occur
in or before layer 2: As aforementioned by FastV
(Chen et al., 2024b), the information flow of im-
age tokens is primarily concentrated in the first and
second layers. Given this, we conduct experiments
on several models and observe their shallow layers,
including LLaVA1.5 (Liu et al., 2024a), Minigpt4
(Zhu et al., 2023), MiniGemini (Li et al., 2024d),
and Intern-VL (Chen et al., 2024d). As shown in
Figure 2, we calculate the average count of dense
vision sink heads across these layers to further in-
vestigate the distribution of attention sinks across
layers.

We define h; ; as the attention head, a “dense
vision sink head" as a head (i, 7) when the propor-
tion o7 of columns in the attention map meets the
vision sink threshold ~:

> Pijlally] - M
r—k

Where are &k € [36,611], M is an upper trian-
gle mask matrix. Concretely, we define o’/ as:

visionsink =

>p, (D)

Please describe this image in detail

¢ LLaVA1.5

e image features a large flatbread pizza
placed on a wooden cutting board, which is
resting on a dining table. Additionally,
there are two person visible in the scene,
one standing near the left side of the table
and another on the right side, inviting
people to sit and enjoy the pizza.
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Figure 3: Relationship between text tokens and the
average proportion of dense vision sink heads within a
single layer by layer2, analyzed across 5,000 randomly
selected MSCOCO images using LLaVA1.5-7B.
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A head is considered as a “dense vision sink
head” when:
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bl > . (3)

Observations show that most vision attention
sinks occur in the first 2 layers.

Finding 2: Fewer dense vision sink heads lead
to hallucination output:

# (dense vision sink heads)
32

This proportion p quantifies how many of the
total 32 heads are classified as "dense vision sink
heads", i.e. they have a high proportion of columns
that meet the vision sink condition within the im-
age token range. We conduct the image captioning
experiment on 5,000 randomly sampled MSCOCO
images with LLaVA1.5-7B. When the model gen-
erates a new token, we first identify whether it is a
hallucination token. Then, we backtrack to layer

p= “4)
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Figure 4: (a) A example of distribution of dense vi-
sion head and the corresponding proportions/densities
of vision sinks within these heads when model output
hallucination token; (b) Relationship between the aver-
age skewness and CHAIR; on 150 randomly selected
MSCOCO images, using LLaVA1.5-7B for captioning;
(c) Comparative skewness scatter plot for Hallucination
and Non-Hallucination classification on 150 randomly
selected MSCOCO images, using LLaVA1.5-7B for
VQA.

2 and analyze the granularity of attention heads.
We calculate the proportion of dense vision sink
heads in layer 2 relative to the total number of
heads (32 heads for 7B models). Such analysis is
repeated for layer 1, and the average across lay-
ers 1 and 2 is computed later. As shown in Figure
3, we observe that non-hallucination tokens typi-
cally activate a larger number of dense vision sink
heads, whereas hallucination tokens are generally
associated with only a few dense vision sink heads,
with the majority of heads being sparse. Through
our analysis of different models, e.g., LLaVA1.5
(Liu et al., 2024a), Minigpt4 (Zhu et al., 2023),
MiniGemini (Li et al., 2024d), Qwen-VL (Wang
et al., 2024) and Intern-VL (Chen et al., 2024d), it
suggests that fewer dense vision sinks heads lead
to more probable hallucination output.

Finding 3: Lower density of vision sinks and
Jfewer vision sink heads lead to a higher probabil-
ity of hallucinations: However, the average count
of dense vision sink heads across shallow layers
does not reveal the individual contributions of each
dense vision head, some of which may be nega-
tive while others are positive for hallucination. As
noted by ITI (Li et al., 2024b), in current LLMs
using transformer architecture, only a subset of
attention heads plays a more significant role. Ef-
fectively optimizing these heads and leveraging
them will likely lead to substantial improvements
in model efficiency and overall performance. In
this case, we conducted a more detailed view for
each head, as shown in Figure 4 (a), the sink densi-
ties within different vision sink heads vary across
the shallow layers (layerl-layer2), with an overall
negatively skewed distribution. As shown in Figure

4 (b), for the image captioning task, the average
skewness of the distribution of dense vision sink
head and its corresponding vision sink densities in
layer1 and layer2 is recorded each time a token is
output. Once the output token is completed, the
CHAIR; for the entire output is calculated, and
the average skewness for all tokens in layerl and
layer2 is obtained. As shown in Figure 4 (c), for
the VQA task (with only a single output token),
the average skewness of the distribution of vision
sink head and its corresponding vision sink den-
sities in layer1 and layer?2 is directly recorded for
the answer token. It is observed that, regardless
of the task (image captioning or VQA), a lower
skewness coefficient correlates with a lower hallu-
cination rate. In other words, a higher density of
vision sinks within a dense vision sink head and a
larger number of vision sink heads lead to a lower
probability of hallucination.

These observations highlight the critical role of
attention head and vision sink distribution in un-
derstanding the attention sink phenomenon, par-
ticularly as it relates to alleviating hallucination
issues in MLLMs. When the vision sink is sparse,
visual tokens concentrate too heavily on specific el-
ements, leading to reduced attention to other parts
of the image. Conversely, a dense vision sink helps
maintain a global perspective, preventing the model
from narrowing its focus too much and minimizing
information loss. Our goal is to ensure the model
maintains a high-density vision sink within shallow
layers. To achieve this, we design a training-free
method called Enhancing Vision Attention Sinks
(EVAS). This plug-and-play approach focuses on
each attention head in the early layers, systemati-
cally identifying the head with the densest vision
sinks. It then broadcasts this attention distribution
across the layer, aligning the layer’s attention and
the head’s vision sink distribution with that of the
selected head.

We conduct extensive experiments, focusing
specifically on hallucination issues, and test main-
stream MLLMs to validate the effectiveness of
EVAS in reducing hallucinations across various
model architectures. Our results demonstrate that
EVAS is a highly effective plug-and-play solu-
tion for mitigating hallucinations across various
MLLMs. Specifically, our contributions can be
summarized as follows:

* This paper investigates how information flow re-
lates to hallucinations in MLLMs. Our analysis



reveals a consistent pattern where denser vision
sinks and a larger number of vision sink heads
in the shallow layers are associated with fewer
hallucinations.

* We propose a plug-and-play training-free
method called Enhancing Vision Attention Sinks
(EVAS), which alleviates hallucinations by find-
ing the head with the densest vision sink and
broadcasting it to other heads.

* Experiments on multiple models validate the
plug-and-play convenience and strong general-
ization of this method.

2 Related Work

2.1 Attention Sink and Information Flow

While the mechanisms of LLMs and MLLMs re-
main complex and not fully understood, several
approaches focusing on information flow and at-
tention sink patterns provide valuable insights into
their operation and offer potential solutions to is-
sues such as hallucinations and inefficiencies.

Streamingl.LM (Xiao et al., 2023) first intro-
duces the concept of attention sink. The authors
observe an intriguing phenomenon: initial tokens,
while seemingly less important for the overall con-
tent generation, consistently receive high atten-
tion scores. This is visualized in the attention
map as columns with notably high attention scores,
which is counterintuitive. Furthermore, because
of the autoregressive nature of generative models,
these initial tokens continue to receive more at-
tention from subsequent tokens, amplifying their
impact on the generation process. To address this,
Streamingl.LLM leverages these attention-sink to-
kens during the pre-training phase to enhance the
model’s performance.

In the context of MLLMs, OPERA (Huang et al.,
2024) introduces a novel perspective by linking
the causes of hallucinations with attention sinks.
This approach provides new insights into the inter-
pretability of MLLMs. OPERA reveals that during
the inference phase, the generation of key tokens
such as ’-’, ’?°, or tokens that summarize previ-
ous ones can lead the model to produce halluci-
nated content. To address this issue, OPERA im-
poses penalty constraints on the attention scores
of these summarization tokens. In light of this,
DOPRA (Wei and Zhang, 2024) addresses the over-
reliance by improving the strategy of weighted
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Figure 5: Differences in analysis perspectives between
OPERA (Huang et al., 2024), TAME (Tang et al., 2025),
Vissink (Kang et al., 2025) and our method.

overlay penalties and redistribution in specific lay-
ers.

Difference between These Methods:

EVAS differs from existing methods while re-
maining non-conflicting and even complementary.
Existing methods primarily adjust decoding strate-
gies by modifying logits. For example, OPERA
(Huang et al., 2024) and DOPRA(Wei and Zhang,
2024) identify that anchor output token can lead to
hallucinated token generation and try to penalize
anchor tokens’ logits. TAME(Tang et al., 2025)
focuses on anchor token propagation in all layer,
dynamically adjusting these anchor token. Vissink
(Kang et al., 2025) found that the vision atten-
tion sink in the middle and deep layers converged
on some <cls> or image-irrelevant tokens, which
was attributed to the massive activation(Sun et al.,
2024), so they redistributed the attention of these
vision anchor tokens.

In contrast, EVAS directly intervenes attention
weights, rather than adjusting logits, providing a
novel mechanism to enhance the attention sink of
the image token, that is, to weaken the attention
sink of the text token.

3 Method

3.1 Relationship between Vision Sink and
Hallucinations

Popular VLMs, such as LLaVA-1.5 (Liu et al.,
2024a), Minigemini (Li et al., 2024d), Instruct-
BLIP (Dai et al., 2024), Shikra (Chen et al., 2023),
MiniGPT-4 (Zhu et al., 2023), Qwen-VL (Bai et al.,
2023), and InternVL (Chen et al., 2024d), consis-
tently exhibit a notable pattern: vision sinks are
densely concentrated within the first and second
layers, gradually becoming more sparse in deeper
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layers. As illustrated in Figure 2, Figure 3, and Fig-
ure 4, we conclude that a lower density of vision
sinks and fewer vision sink heads correlate with
an increased likelihood of hallucinations in model
outputs. We hypothesize that maintaining dense
attention sinks in shallow layers may help allevi-
ate hallucinations, as concentrated attention in the
early layers enhances the transfer of image infor-
mation to subsequent layers. Therefore, a practical
method is proposed to reduce hallucinations by en-
suring a dense vision sink of attention heads by
layer1 and layer2. Please refer to the Appendix for
more attention-map visualization results of differ-
ent LVLMs.

3.2 Vision Sink

Definition of Mask Matrix M. To ignore diagonal
elements in the attention map during calculations,
we define a mask matrix M as follows:

M + eye(r,c) — diag(1), (5)

where eye(r, c) generates an identity matrix of
size (r,c), and we set the diagonal elements to
zero.

Definition of Vision Sink. Let h; ; represent the
attention map of the j-th head at the i-th layer, with
h; j[z][y] being the element at row x and column
y. We define a “vision sink" as the column in the
attention map within the image token range (e.g.,
k € [36,611]), where the average attention score of
one element of the column within the image token
range exceeds a threshold 3.

For each column vy, the "vision sink" condition
is defined as:

2ot higlallyl - M 5 ®
r—k

vision sink =

where k € [36,611], M is an upper triangular mask
matrix.

Definition of Dense Vision Sink Head: For a
head (i, 7), we calculate the proportion of columns
that meet the vision sink condition, denoted as 7.
If this proportion of vision sinks within the range of
image tokens (e.g., 576) exceeds a preset threshold
v, we classify the head as a "dense vision sink
head." which is defined as follows:

o — Num(vision sink) S
076 -
where o/ represents the attention density score
of the j-th head at the ¢-th layer. Num(vision sink)
is the count of columns that satisfy the vision
sink condition. ~ is the threshold for determin-
ing whether a head qualifies as a "dense vision sink
head."
If a®J > ~, then the attention head (i, j) is iden-
tified as a "dense vision sink head."

(N

3.3 Enhancing Attention Vision Sink

As mentioned above, we introduce a training-free,
plug-and-play method called Enhancing Vision
Attention Sinks (EVAS) to keep attention heads
densely concentrated in the early layers. This ap-
proach identifies the attention head with the most
dense attention sinks and broadcasts its attention



map across other heads. This is to reinforce the
attention pattern of a particular head or to broad-
cast the attention pattern under certain specific con-
ditions (e.g. when a predefined threshold is ex-
ceeded).

The algorithmic process is shown in Algorithm
1, let A be a 4D tensor, where A[i][] denotes the
attention matrix of the j;;, head of the iy, layer.
Let S5 be the threshold, image-token-start-index be
s, image-token-end-index be e and M be a mask
matrix of the same size as h; ;. We define h; ; as
the attention-map of a head:

Initialization. Set the threshold 3 and initialize
the variables: k as a randomly selected index within
the range [s, e], where s = 36 is the starting index
of the image tokens and e = 611 is the end index;
also initialize n = 0 and H = | | (an empty list).

Step1: Iteration over Heads. Select a specific
attention layer ¢ (i € {0,1,2}), iterate on each
head j (j € [0, 31]).

Step2: Calculate Vision Sinks. For each col-
umn y in h; j, calculate whether its column is a
vision sink based on:

vt Pijlw,yl - M
0 = {(ay) | Zomt VA gy

where id; ; stores the indices (, y) where the aver-
age attention score exceeds [3.

Step3: Store Count of Vision Sinks for each
Attention Head. Compute the count of marked
indices for each head:

C;,; = count(id, ;), )
then append (C; ;, j) to H:

H=HU{(Ci;,j)} (10)

Step4: Update Head Index n with Maximum
Vision Sinks. Find the index n of the head with
the maximum count C; ; in H:

1D

n =arg max

Cij-
(Cij.g)eH

This step dynamically updates n to track the head
with the most vision sinks across the layer.

Step5: Enhance Attention Heads across the
Layer. For each layer 7, set the matrix of head j
with the head with the highest number of vision
sinks to be the n-th position in A[i]:

forj=0,1,...,31: Ali][j] = A[i][n]. (12)

Algorithm 1 Attention Process Calculation,
nonzero() represents an operation with a non-zero
index, and ) | represents a sum, h; ; represents the
1 layer, 7 head, k represents the index of token.
x and y represent the rows and columns of h; ;,
respectively.

1: procedure ATTEN_PROCESS_CAL(A)
2: Step 1: threshold <— B,n+ 0 H « [ ]

3: Step 2: Loop over heads in a specific layer ¢, i €
{0,1,2}:

4 for j € {0,1,2,...,31} do:

5 hij <= Ali]ls]

6: s < 36,e <+ 611

7 Step 3: Calculate significant token indices:

8 M + (eye(r,c) — diag(1))

9 ids  nonzero ( Ze=n iy M :“_Jk[wy]M >3

10: Step 4: Store the count of vision sinks and its
corresponding head index in H:

11: Ciyj <—c0unt(id,-,j),H<— HU{(C@j,j)}

12: Step 5: Update head index n with maximum vi-
sion sinks:

13: n = argmax(c; ;,jen Ci;j

14: end for

15: for j € [0,31] do

16: Ali][7] < Ald][n]

17: end for

18: return updated A
19: end procedure

4 Experiment

Baseline. To demonstrate the broad applicabil-
ity of our method in LVLM architecture, we ap-
plied and evaluated the latest models, including
LLaVA-v1.5/1.6 (Liu et al., 2024a), Qwen/2-VL
(Wang et al., 2024), Intern-VL (Chen et al., 2024d),
MiniGPT4 (Li et al., 2024d), Instructblip (Dai et al.,
2024) and MiniGemini (Li et al., 2024d).

Evaluation Benchmarks. We conduct evalu-
ations on image benchmarks. For image bench-
marks, we assess three categories: (1) Comprehen-
sive benchmarks (MMBench (Liu et al., 2024c¢),
LLaVAW (Liu et al., 2024a), MM-Vet (Yu et al.,
2023); (2) General VQA benchmarks (VizWiz (Gu-
rari et al., 2018), SEED (Li et al., 2023a) and
GQA (Hudson and Manning, 2019); (3) Hallucina-
tion benchmarks (POPE(Li et al., 2023b), CHAIR
(Rohrbach et al., 2018)).

4.1 Evaluation Results

CHAIR and POPE Evaluations. EVAS on Hallu-
cination BenchmarksIt is shown in Table 1, that the
methods to mitigate hallucinations can be broadly
classified into three groups. The first group in-
cludes OPERA (Huang et al., 2024), DOPRA
(Wei and Zhang, 2024), VCD (Leng et al., 2024),



Table 1: Compare results of SARA with other SOTA methods on POPE, CHAIR and MME datasets. The
best performances within each setting are bolded, baseline: LLaVA-1.5-7B. Please note that these results are all

reproduced by us.

Method Venue ‘ POPE ‘ CHAIR MME

F11t Acct | Csl Cil Recall Ilength | Exist.f Countf Pos.t Colorf Totalf
Beam Search - 854 84.0 | 51.0 152 752 102.2 | 175.67 124.67 114.00 151.00 565.34
Dola (Chuang et al., 2023) ICLR 2024 80.2 831 | 57.0 152 782 97.5 180.10 12740 11930 154.60 594.10
VCD (Leng et al., 2024) CVPR 2024 || 853 850 | 51.0 149 772 101.9 | 184.66  137.33  128.67 153.00 603.66
OPERA (Huang et al., 2024) CVPR 2024 || 842 852 | 470 146 785 95.3 180.67 13333  111.67 123.33  549.00
DOPRA (Wei and Zhang, 2024) MM 2024 84.6 843 | 463 138 78.2 96.1 185.67 13833  120.67 133.00 577.67
HALC (Chen et al., 2024c) ICML 2024 || 83.9 84.0 | 50.2 124 784 97.2 190.00 14330 128.30 160.00 621.60
CCA-LLaVA (Xing et al., 2024b)  NIPS 2024 86.4 865 | 43.0 115 80.4 96.6 190.00 14833  128.33 153.00 641.66
RITUAL (Woo et al., 2024) Arxiv2024 || 852 843 | 452 132 783 99.2 187.50  139.58  125.00 164.17 616.25
AGLA (An et al., 2024) CVPR 2025 || 84.6 855 | 43.0 14.1 78.9 98.8 195.00 153.89 129.44 156.67 635.00
SID (Huo et al., 2025) ICLR 2025 85.6 858 | 442 122 730 99.4 183.90 13220 127.80 15590  599.80
TAME (Tang et al., 2025) ICLR 2025 854 857 | 413 122 744 98.8 183.00 13733  129.00 154.67 604.00
Vissink (Kang et al., 2025) ICLR 2025 86.0 86.5 | 524 145 79.1 113.0 | 190.00 13833 14833 155.00 631.33
EVAS - 857 86.0 | 364 99 752 97.7 190.00 158.33 128.00 163.33 639.66

Table 2: Evaluation results of EVAS on general
vision-language benchmarks, baseline: LLaVA1.5-7B,
Layer = 2, 5 = 0.002.

Table 3: Generalization study of EVAS on other LVLMs
models about CHAIR and POPE dataset, metrics are
CHAIRg, CHAIR; and POPE-F'1 — score.

Method MM-Vet 1 VizWizt Seedt GQAT MMB?
Baseline 311 501 576 620 642
VCD(Leng et al., 2024) 29.4 505 583 616 614
OPERA(Huang etal.,, 2024)  30.0 524 594 620 648
SID (Huo et al., 2025) 312 508 589 621 650
TAME (Tang et al., 2025) 30.5 516 594 617 653
Ours 317 539 602 623 658

HACL (Chen et al., 2024¢), RITUAL (Woo et al.,
2024)and SID (Huo et al., 2025), which address
hallucinations by altering the decoding process.
The second group, represented by SFT methods
such as CCA-LLaVA (Xing et al., 2024b), adjusts
the logits of the end-of-sequence (EOS) symbol
to control its positioning, allowing the model to
terminate earlier, thus reducing hallucinations. The
third group includes Vissink (Kang et al., 2025),
TAME (Tang et al., 2025) and EVAS, which aim to
adjust attention heads to enhance the truthfulness
of the model’s output during inference. Compared
to Vissink (Kang et al., 2025) and TAME (Tang
et al., 2025), EVAS’s CHAIR performance is more
prominent. TAME allocates the attention on the
system token to other tokens, but still ignores the
visual information, while Vissink only intervenes
with the visual attention sink and ignores the con-
textual association of the text output.

MME and Other Benchmarks/Models Eval-
uations. It is shown that in Table 2 and Table 3,
compared to the baseline model LLaVA1.5, our
EVAS method achieves non-negligible gains on all
benchmark datasets without introducing additional
computation during inferencing. Such performance
improvements highlight the potential of EVAS in
enhancing LVLM’s general visual perception capa-
bilities.

Model CHAIRg| CHAIR;| POPE-F11
Qwen2-VL 25.0 7.3 86.6
+ EVAS 231 (+19) 6.2 (+1.1) 87.4(+0.8)
QwenVL-Chat 45.6 12.5 87.0
+ EVAS 44.6 (+1.0) 11.9 (+0.6) 87.8 (+0.8)
MiniGPT-4 31.8 9.9 70.3
+ EVAS 304 (+1.4)  9.5(+0.4) 70.7 (+0.7)
Instructblip 58.8 23.7 84.4
+ EVAS 56.0 (+2.8) 15.7 (+8.0) 85.2 (+0.6)
Shikra 55.8 15.4 82.5
+ EVAS 479 (+7.9) 13.7(+1.7) 83.5(+1.0)
Mini-Gemini 32.6 8.7 85.6
+ EVAS 27.8 (+4.8) 85(+0.2) 86.8 (+1.2)
LLaVALl.5 47.0 13.8 84.9
+ EVAS 36.4 (+10.6) 9.9 (+3.8) 85.7 (+0.8)
LLaVA1.6 42.6 14.4 86.5
+ EVAS 343 (+8.3) 10.2(+4.2) 87.5(+1.0)
InternVL 45.8 12.9 86.4
+ EVAS 324 (+134) 9.0(+39) 87.8(+1.4)

In contemporary MLLMs, images are processed
by a CLIP model, mapped through different pro-
jectors, and integrated with LLMs. We hypoth-
esize that the convergence of information flow
in the early layers is affected by how different
projectors—such as Linear, MLP, Cross-attention,
and Q-former—map images to tokens. As shown
in Table 3, to test this hypothesis, we apply the
EVAS method to various models. Notably, Shikra,
LLaVA, Intern-VL, Qwen-VL, and Mini-Gemini
use greedy search for decoding, while InstructBLIP
uses beam search with a beam size of 5. Despite
the different decoding strategies and projectors, all
models exhibit a consistent pattern of dense atten-
tion sink in the shallow layers and sparse attention
sink in the deeper layers. Applying EVAS to these



Table 4: Results for ablation study of the hyperparam-
eter on CHAIR(Rohrbach et al., 2018) and POPE(Li
et al., 2023b) dataset, Threshold: 3, N: broadcast top N/
head, baseline: LLaVA1.5-7B, metrics: CHAIR s=51.0,
CHAIR;=15.2 and POPE-F[-score=84.9.

Layer 1 Layer 2 Layer 3

N B C.l Cr{ P-F11|Csl Cr| P-F11\Cs | Cr| P-F1T

0..15(39.4 9.9 854 |40.611.9 85.2 |49.014.3 85.0
0.20/141.810.4 853 [36.4 9.9 85.7 |46.813.8 84.9

0..15141.210.3 853 |40.611.7 85.5 |49.814.1 84.9
0.20(42.2109 852 |42.411.9 85.5 |49.614.0 84.9

0.15141.611.2 852 |44.412.0 85.3 |48.413.8 84.9
0.20142.011.0 85.1 |44.212.5 85.2 |48.213.7 84.8

W WIN N =

models consistently improves performance, demon-
strating its effective plug-and-play capability and
broad applicability. In the Appendix, we provide
several attention maps for different LVLMs.

4.2 Ablation study

Effect of Hyper-parameter. Table 4 presents the
ablation study results for the parameters Threshold:
B, Layer: L, Top Head: N. The experimental
results indicate that the configuration with layer=2,
$=0.002, and A'=topl, yields the best performance,
achieving Cg of 36.6 and C; of 9.9.

The improvement achieved by broadcasting the
top attention head primarily benefits from the cen-
tralization of attention. Since most vision sinks are
concentrated in the first and second layers, broad-
casting the attention map of the head with the dens-
est vision sink in these layers to the other heads
helps unify each head’s focus on visual informa-
tion, forming a "consensus" attention pattern. Ulti-
mately, the high-density vision sink pattern enables
the model to capture key information from the im-
age, effectively reducing hallucinations.

Effect of EVAS on Video Understanding
Benchmark. As shown in the Table 5, We con-
ducted validation experiments of the effectiveness
of EVAS on LLaVA-onevision (Li et al., 2024a)
and VideoLLaMA?2 (Cheng et al., 2024). The video
understanding and linguistic-related tasks includ-
ing EgoSchema (Mangalam et al., 2023), MVbench
(Li et al., 2024c¢) and VideoMME (Fu et al., 2024).
The results demonstrate that EVAS not only mit-
igates hallucination and enhances factual consis-
tency, but in turn amplifies these gains to produce
significant improvements in all benchmark tests.
EVAS can improve accuracy and robustness in real-
world multimodal tasks.

!_ayer14

Layer20 Layer28

¥+ EVAS ¥+EVAS ¥+ EVAS

Figure 7: The attention-map results of LLaVA1.5 and
LLaVAL1.5 after adding EVAS, which is visualization of
attention maps over image for ‘bus’.

& Please describe the image in detail
& The image depicts an urban street scene

featuring a red London United DUS
prominently in the foreground. The bus is
marked with route number 440" and
destination "Chiswick.” ..

Table 5: Generalization study of EVAS on video under-
standing dataset including EgoSchema (Mangalam et al.,
2023), MVBench (Li et al., 2024c) and VideoMME (Fu
et al., 2024).

Model | EgoSchemat MVBench?  VideoMME?T
LLaVA-onevision 60.1 56.7 58.29
+ EVAS 63.9 (+3.8) 599 (+3.2) 61.16 (+2.87)
VideoLLaMA2 42.2 45.5 62.40
+ EVAS 457 (+3.5) 49.9(+4.4) 66.88 (+4.48)

4.3 Visualization of Attention Maps with
EVAS

As shown in Figure 7, which is visualization of
attention map with EVAS, We can find that some
attention layers/heads that originally do not focus
on the correct region will also gradually focus on
the correct region when the EVAS is added. EVAS
makes the original model pay more attention to the
area of objects such as “bus” etc.

This result demonstrates that the EVAS method,
which enhances attention heads in shallow/deep
layers, improves the model’s generalization ability.
It enables the model to focus more on essential
regions in the image, strengthening the flow of
information and enhancing its overall capabilities.

5 Conclusion

In this paper, we introduce a plug-and-play method
named Enhancing Vision Attention Sinks to allevi-
ate the challenge of hallucinations in multimodal
language models (MLLMs). EVAS is designed to
enhance the densities and distribution of image to-
ken attention sinks in the shallow layers, thereby
mitigating hallucinations. Our extensive bench-
mark tests on hallucination and generalization ex-
periments demonstrate the effectiveness of EVAS
as a training-free approach.



6 Limitations

The results of this paper validate ITI’s (Li et al.,
2024b) conclusion that only a subset of attention
heads plays a significantly more prominent role.
Effectively optimizing these key attention heads is
likely to yield substantial improvements in model
efficiency and overall performance. To address
hallucination issues more fundamentally, we be-
lieve that improved alignment of projectors and
advanced training methods, such as RLHF, is nec-
essary for more effective resolution.
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A Appendix

A.1 Generalization Study of EVAS on LLM
Models

As mentioned above, we find a similar pattern in
LLMs and LVLMs. To verify the feasibility of
EVAS on LLMs. As shown in Table.6, we chose
four models including LLaMA3.1-instruct (Dubey
et al., 2024), Ministral-8B-Inst (Jiang et al., 2023),
Qwen-2-7B-Inst (Yang et al., 2024) and Qwen-2.5-
7B-Inst (Team, 2024). The datasets are GSM8K
(Cobbe et al., 2021) and Truthful QA (Lin et al.,
2021), respectively. The results are shown in Ta-
ble.6, which demonstrates that EVAS can produce
consistency gains in LLM as well.

Model Dataset Metric Baseline w/ EVAS

GSMBK Acct 85.29 87.25((+1.96)
Truthful-QA Acc T 49.27 53.17((+3.90)

GSMBK Acc T 90.00 91.36((+1.36)
Truthful-QA Acc 1 47.80 51.22((+3.42)

GSMBK Acct 88.63 89.22((+0.59)
Truthful-QA Acc 1 45.85 46.34((+0.49)

GSMBK Acct 92.72 93.63((+0.91)
Truthful-QA Acc 1 52.68 56.10((+3.42)

Llama-3.1-8B-Inst(Dubey et al., 2024)

Ministral-8B-Inst (Jiang et al., 2023)

Qwen-2-7B-Inst (Yang et al., 2024)

Qwen-2.5-7B-Inst (Team, 2024)

Table 6: Generation study of EVAS on LLM models.

A.2 Why EVAS in Q/K before V

The reason for intervening before V is that the at-
tention matrix attn_weights (i.e., attention_map)
represents the weight distribution between differ-
ent queries and keys. EVAS (Enhancing Attention
Heads) specifically modifies these weights to ad-
just the attention distribution. If the intervention
happens before V, it allows direct control over the
attention concentration during the soft weight al-
location stage, making attn_weights more focused
on the relevant image information. The adjusted
attn_weights, when multiplied with V, will more
effectively filter out important information.

If the intervention occurs after V, the effect of
EVAS will be limited to the final attn_output value,
rather than modifying the attention matrix itself.
This makes it harder to effectively control the at-
tention on specific tokens.

Therefore, intervening at the attn_weights stage
before V allows for a more direct impact on the
model’s focus on different tokens, thereby improv-
ing performance.

A.3 Comparison of Generation Time

In Figure 9, we compare the generation time of
EVAS with existing methods for alleviating hal-
lucinations. Both EVAS and OPERA (Huang
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Figure 8: The generalization results on the datasets for the seven multimodal models (MMEs) demonstrate that
EVAS combined with LLaVA1.5 enhances the metrics compared to LLaVA1.5 alone. This not only highlights
the exceptional performance of EVAS in addressing hallucinations but also reinforces the notion that EVAS can

generally enhance the model’s overall performance.

et al., 2024) are methods that require atten-
tion intervention, and we utilize a standard self-
attention implementation. In contrast, other meth-
ods such as Greedy, DoLA, VCD, and HALC
(Chen et al., 2024¢c) do not necessitate attention
intervention. All methods were tested on a single
A100-80GB GPU. Our observations indicate that
EVAS achieves a decoding time similar to that of
VCD (Leng et al., 2024). It is slightly longer than
the Greedy and DoLA (Chuang et al., 2023) meth-
ods due to our intervention in the attention weights
at layer 1.2 during inference. In comparison, the
other methods inevitably introduce additional com-
putational overhead.

Generation Time of a Single Caption.

cally designed to evaluate hallucination phenomena
in multimodal large models. Using LLaVA1.5 as
the baseline, we incorporated our proposed Enhanc-
ing Attention Heads (EVAS) method. The results
demonstrated a significant performance improve-
ment after applying EVAS, particularly in reducing
hallucinations. Compared to the baseline model,
EVAS effectively concentrated the visual attention
in shallow attention heads, enhancing the model’s
ability to capture relevant regions in images and
thereby reducing the likelihood of hallucinations.
This indicates that EVAS can significantly improve
the robustness and reliability of multimodal reason-
ing tasks.

HallusionBench (Guan et al., 2023)

25 A

20 A

159

101

Decoding Time per Sample (seconds)

Greedy DoLA OPERA VCD HALC Ours

Figure 9: Generation time of a single response.

A.4 Experiment results on other hallucination
benchmark

In our ablation study, we utilized the Hallusion-
Bench dataset (Guan et al., 2023), which is specifi-

split method aAcc T fAcc 1 qAcct
Overall LLaVA1.5-7B  35.54154 17.63006 11.20879
w/ EVAS 44.37434 17.91908 14.50549

A.5 Qualitative Experiment of Thresholds
and Layers

Table 7 presents the results of our ablation experi-
ments, which assess the impact of various thresh-
olds and layers on model performance. We test dif-
ferent thresholds (0.0006, 0.0008, 0.0015, 0.002)
and layers (1, 2, 3, 4, 16, 32) to observe their ef-
fects on the model’s performance with the CHAIR
dataset.

The results show that the model achieves its high-
est performance on the CHAIR; and CHAIR ; met-
rics, with scores of 36.6 and 10.0, respectively,
when applying EVAS at the second layer with a



Table 7: Qualitative experiment of layer and thresh-
old on CHAIR dataset (baseline: LLaVA-1.5-7B,
head=top1).

Table 8: Qualitative experiment of enhancing head num-
ber on CHAIR dataset (baseline: LLaVA-1.5-7B).

Layer Copy Head ‘ CHAIRs | CHAIR;| RecallT Avg.Len

Layer Threshold ‘ CHAIRgs | CHAIR; | RecallT Avg.Len

1 0.0006 46.4 13.9 76.9 96.1
1 0.0008 46.0 12.9 77.1 101.2
1 0.0015 39.4 9.9 72.2 108.6
1 0.002 41.8 10.4 729 112.4
2 0.0006 41.4 12.3 76.4 95.6
2 0.0008 43.0 11.6 74.9 100.9
2 0.0015 40.6 11.9 74.9 102.7
2 0.002 36.4 9.9 73.9 97.7
3 0.0006 49.0 14.3 78.0 98.6
3 0.0008 49.4 14.3 78.3 98.4
3 0.0015 49.0 14.3 779 98.5
3 0.002 46.8 13.8 78.5 98.7
4 0.0006 46.4 13.6 76.9 96.1
4 0.0008 50.0 14.7 78.3 97.6
4 0.0012 49.6 14.6 78.4 97.7
4 0.002 49.4 14.5 78.2 97.5
16 0.0006 53.0 14.8 779 100.9
16 0.0008 49.2 14.8 77.4 100.5
16 0.0015 52.6 15.0 78.0 100.9
16 0.002 472 14.1 77.3 98.7
32 0.0006 50.8 14.4 78.1 98.7
32 0.008 50.8 14.4 78.1 98.7
32 0.0015 47.0 13.8 76.9 95.8
32 0.002 53.0 14.8 779 100.9

threshold of 0.002. However, both metrics signifi-
cantly decrease as the number of layers increases.
This supports our hypothesis that information flow
converges in early layers and diverges in deeper
layers, and keeping the attention sink dense in shal-
low layers will effectively alleviate the hallucina-
tion. As the depth increases, both CHAIR; and
CHAIR] values rise and exceed the baseline, sug-
gesting that the likelihood of the model generating
hallucinations at deeper layers increases. This oc-
curs because attention sinks become more sparse in
deeper layers and the differences between attention
heads diminish. Therefore, even if the most densely
concentrated attention-sink head is identified and
broadcasted to other heads, its impact may still be
limited.

A.6 Qualitative Experiment of Heads Number

As demonstrated in the previous section, the first
two layers contain the most attention sinks. There-
fore, we focus on applying the EVAS strategy to
these layers. In Table 8, we present a qualitative
experiment to assess the impact of increasing the
number of attention heads affected. We test this by
broadcasting the densest attention head across 4,
8, 16, and 32 heads. For instance, when broadcast-
ing to 4 heads, the attention map from the densest
head is duplicated across these 4 heads, while the
remaining 28 heads remain unchanged.

The results indicate that broadcasting the dens-

1 4 51.0 14.7 78.1 98.9
1 8 494 14.5 78.5 99.5
1 16 48.4 13.5 77.1 99.8
1 28 40.6 11.8 74.1 103.8
1 32 394 9.9 72.2 108.6
2 4 50.8 14.4 78.1 98.7
2 8 49.6 13.7 77.6 100.0
2 16 47.4 14.0 71.5 100.5
2 28 422 11.9 74.9 98.1
2 32 36.4 9.9 73.9 97.7

est attention head to 32 heads achieves the best
performance. This suggests that using the densest
attention pattern from the early layers improves the
model’s focus on image information, enabling the
model to concentrate on global image information
rather than allowing attention to converge on spe-
cific tokens. This approach significantly helps to
alleviate hallucinations. More attention map and
results are shown in Figure10, Figure 11, Figure 12,
Figure 13, Figure 14, Figure 15, Figure 16, Figure
17, Figure 18, Figure 19

A.7 Text quality evaluation

To assess the quality of generated text from mul-
tiple perspectives, we adopt Perplexity (PPL) as a
reference-free metric and employ GPT-4 to evalu-
ate grammaticality, fluency, and naturalness. The
evaluation is performed on 1,000 randomly selected
MSCOCO images using the LLaVA-1.5 7B model.
As shown in Table 9, PPL.1 and PPL2 correspond
to the perplexity scores from GPT-2 and GPT-2-
medium. Results show that EVAS consistently
preserves text quality under both automatic and
model-based evaluations.

Table 9: We evaluate text quality using two types of
metrics: PPL1 and PPL2 computed with GPT-2 and
GPT-2-medium from HuggingFace, and GPT-4-based
ratings covering grammar, fluency, and naturalness.

Model [PPL1| PPL2| Grammar? Fluency! Natural{
LLaVAL.5-7B 12.7210.27 9.58 9.01 8.52
+ OPERA (Huang et al., 2024)| 11.67 9.31 9.54 8.93 8.53
+ICD (Zhang et al., 2023) | 12.67 10.5 9.42 8.90 8.52
+ EVAS 11.22  8.96 9.68 9.21 8.59
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LLaVAL1.5-7B

The image features a bathroom with a sink and a mirror above it. The sink is white, and the
|nput image mirror is large, covering most of the wall above it. The bathroom has a pink color scheme,
giving it a warm and inviting atmosphere.\n\nThere are several items placed around the
sink, including a toothbrush, a cup, and a bottle. Above the sink, there are two pictures
hanging on the wall, adding a decorative touch to the space. Additionally, there are
two towels hanging on the wall, one on the left side and the other on the right side of

the mirror.
©
@‘

LLaVA1.5-7B+EAH

The image features a bathroom with a sink and a mirror. The sink is white, and the mirror is
placed above it. The bathroom is decorated with a pink color scheme, giving it a warm and
inviting atmosphere. There is a picture hanging on the wall above the sink, adding a
personal touch to the space.\n\nIn addition to the sink and mirror, there are several items
placed around the bathroom. A bottle can be seen on the counter, and a cup is also present. A
toothbrush is located near the sink, indicating that the bathroom is well-used and
functional. The overall appearance of the bathroom is clean and well-maintained, making it

a comfortable and pleasant space for daily routines S

-

Figure 17: Results of LLaVA1.5 with EVAS, EVAS can significantly reduce hallucinations while maintaining the
original sentence length.

Input image InternVL-7B

The image features a young girl riding a white horse near a river. The girl is wearing
a red shirt and is seated on the horse, which is positioned close to the water. The
scene appears to be a peaceful and enjoyable outdoor activity for the girl.\n\nIn the
background, there are several boats visible on the water, adding to the scenic
atmosphere. Additionally, there are two other people in the scene, one standing

near the left side of the image and another person closer to the right side. @-@

InternVL-7B+EAH

The image features a young girl riding a white horse along a path near a river. The
girl is wearing a red shirt and is seated on the horse, enjoying the ride. The horse is
positioned on the left side of the image, and the girl is sitting on its back.\n\nIn the
background, there are several boats visible on the river, adding to the scenic
atmosphere. The scene appears to be a pleasant outdoor activity for the girl and her

horse. D O

-

Figure 18: Results of Intern-VL with EVAS, EVAS can significantly reduce hallucinations while maintaining the
original sentence length.

Input image Shikra-7B

The image features a large flatbread pizza placed on a wooden cutting board,
which is resting on a dining table. The pizza is cut into square slices and is
generously topped with cheese and a variety of herbs. Additionally, there are fresh
basil leaves scattered across the pizza, adding a touch of greenery to the dish.\n\
nThere are two chairs visible in the scene, one on the left side of the table and
another on the right side, inviting people to sit and enjoy the pizza. A person can

be seen in the background, partially cut off by the left edge of the image. @‘@

Shikra-7B+EAH

The image features a large, rectangular pizza placed on a wooden cutting board.
The pizza is topped with tomato sauce and cheese, and it appears to be freshly
baked. There are several slices of the pizza visible, indicating that it has been cut
into smaller portions. The pizza is placed on a dining table, suggesting that it is

ready to be served or enjoyed as a meal

-

Figure 19: Results of Shikra with EVAS, EVAS can significantly reduce hallucinations while maintaining the
original sentence length.
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