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Abstract001

In this work, we prove the NP-completeness002
of two variants of tokenisation, defined as the003
problem of compressing a dataset to at most δ004
symbols by either finding a vocabulary directly005
(direct tokenisation), or selecting a sequence of006
merge operations (bottom-up tokenisation).007

1 Introduction008

Tokenisation is at the heart of natural language pro-009

cessing (NLP) being the first step required to use a010

language model (LM). Given a string of characters011

c, a tokeniser converts it into a string of subwords012

s. Language models are then trained to estimate013

distributions over subword strings—never seeing014

the original character strings. Despite its promi-015

nent role, however, much remains unknown about016

tokenisation. We still do not know, for instance,017

what makes a good tokeniser (Gowda and May,018

2020; Cognetta et al., 2024): which characteristics019

should its produced subwords s have to be a good020

starting point for language modelling? If we knew021

this, then we could define an objective function022

with which we could evaluate tokenisers.023

Another open question is how to—given such024

an objective function—efficiently find a tokeniser025

which maximises it. Byte pair encoding (BPE;026

Gage, 1994; Sennrich et al., 2016), for instance, is027

a greedy solution to find a tokeniser which max-028

imises a text’s compression. UnigramLM (Kudo,029

2018) is a heuristic method to find a tokeniser030

that maximises its tokenised text’s unigram log-031

probability. Both these methods, however, are ap-032

proximate: they do not necessarily find an opti-033

mal tokeniser according to their objective function.034

This raises the question of whether finding such035

optimal tokenisers efficiently is even possible.036

In this paper, we answer this question (at least037

partially), proving the NP-completeness of several038

variants of this tokenisation problem. Specifically,039

we focus on finding tokenisers that maximise the040

compression of a text.1 Given this objective, we 041

then define the tokenisation problem as the task 042

of finding a tokeniser which compresses a dataset 043

to at most δ symbols. Notably, prior work imposes 044

different constraints on how tokenisers are defined; 045

here we consider two variants. In direct tokeni- 046

sation, the desired compression must be reached 047

by choosing a vocabulary (i.e., a set of subwords) 048

which is directly used to represent the text. In 049

bottom-up tokenisation, the desired compression 050

must be reached by finding a sequence of merge op- 051

erations instead, which we apply to the input text. 052

We prove the NP-hardness of both of these to- 053

kenisation problems (as well as of some variants 054

thereof) by reducing from the max 2-satisfiability 055

problem.2 Practically speaking, our results im- 056

ply that we are unlikely to discover an efficient 057

algorithm for the problem of finding optimal to- 058

kenisers, and that we should focus on approximate 059

algorithms (such as BPE or UnigramLM) instead. 060

2 How to Choose a Tokeniser? 061

Given a subword-level language model, we can ex- 062

tract word-level (Pimentel and Meister, 2024; Oh 063

and Schuler, 2024) or character-level (Phan et al., 064

2024; Giulianelli et al., 2024) distributions from 065

it. Further, regardless of which tokeniser is used, a 066

sufficiently expressive language model should be 067

able to represent the exact distributions over char- 068

acters or words that we are interested in. In theory, 069

thus, a researcher’s choice of tokeniser should not 070

influence their language model’s quality. 071

In practice, however, a bad choice of tokeniser 072

1The compression achieved by a tokeniser correlates with
downstream language modelling performance (Gallé, 2019;
Zouhar et al., 2023a) and computational efficiency.

2We note two related concurrent works. Kozma and Voder-
holzer (2024) also prove the NP-completeness of bottom-up
tokenisation; in fact, they prove something stronger: its APX-
hardness. Lim et al. (2025) prove the NP-completeness of
a restricted variant of direct tokenisation, in which a set of
candidate tokens is previously specified.
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can have undesirable effects on downstream appli-073

cations. For instance, performing standard arith-074

metic tasks (e.g., 317 + 421) can be difficult even075

for large models (Nogueira et al., 2021; Muffo076

et al., 2022) due to the arbitrary splitting of num-077

bers into subwords. Indeed, simple changes in how078

numbers are tokenised can improve performance079

in such tasks (Singh and Strouse, 2024). Similar080

issues arise when prompting LMs to count letters in081

words, where even advanced models such as GPT-4082

infamously cannot correctly count the number of083

occurrences of the letter r in the word strawberry.084

This raises the question of how to select a good085

tokeniser. Ideally, we would choose the tokeniser086

which maximises downstream language modelling087

performance. Unfortunately, we do not know how088

to measure such performance without fully train-089

ing a model, making its direct maximisation com-090

putationally infeasible. Rather, we thus optimise091

proxy objectives—assumed to correlate with down-092

stream performance. Among these are unigram log-093

probability (Kudo, 2018), Rényi efficiency (Zouhar094

et al., 2023a), and compression (Gallé, 2019).095

We focus on compression in this paper. Denot-096

ing our tokenisation’s objective function as G, we097

write this objective as: G(s) = −|s|. Improved098

compression leads to: (i) more efficient training099

and inference, due to shortened inputs;3 (ii) im-100

proved downstream performance, at least to a cer-101

tain extent (Gallé, 2019; Rust et al., 2021; Zouhar102

et al., 2023a; Goldman et al., 2024);4 and (iii) fairer103

multilingual treatment—assuming similar compres-104

sion across languages—given models’ limited con-105

text lengths and the per-token costs to use propri-106

etary models (Petrov et al., 2023; Ahia et al., 2023).107

Our Notation’s Colour-coding

• Green for raw data (i.e., characters c ∈ Σ∗);

• Purple for tokeniser-specific data (i.e., subwords s∈
S∗ and merges m∈M∗);

• Blue for functions (e.g., tok).
108

3 Defining a Tokeniser109

A tokeniser can be defined as a 3-tuple110

⟨S, tok, detok⟩, composed of a vocabulary, a to-111

3Recent work tries to improve the computational efficiency
of byte-level models (Yu et al., 2023; Pagnoni et al., 2024).

4Although, see also Ali et al. (2024), who argue that
compression might be a necessary but not sufficient condition
for good downstream performance, and Schmidt et al. (2024),
who argue that compression and downstream performance
have a more complex relationship than prior work suggests.

kenisation and a detokenisation function. Be- 112

fore defining these terms, however, we require 113

some notation. Let c = c1c2 · · · c|c| ∈ Σ∗ be a 114

character-string, i.e., a sequence of characters c 115

from alphabet Σ. Further, let D = {cn}Nn=1 be a 116

dataset of character-strings.5 A subword s ∈ S 117

represents a non-empty character-string c (where 118

sequence c can have length one). Finally, let 119

s = ⟨s1, s2, · · · , s|s|⟩ ∈ S∗ be a subword-string. 120

Just like a single subword, a subword-string s ∈ S∗ 121

represents a character-string via the concatenation 122

of its subwords’ characters: 123

concat(s) = s1 ◦ s2 ◦ ... ◦ s|s| (1) 124

and we say that a pair of character and subword 125

strings are equivalent if: 126

c
◦
= s ⇐⇒ c = concat(s) (2) 127

Given the notation above, we can now define 128

the items in tuple ⟨S, tok, detok⟩. A tokeniser’s 129

vocabulary is a set of subwords S ⊂ Σ+ such that 130

Σ ⊆ S;6 we say its size is |S| = |Σ|+K. Further, 131

a detokenisation function is defined as detok : 132

S∗ → Σ∗ and given a subword-string it outputs the 133

character-string it represents. This function thus is 134

simply defined as detok(s) def
= concat(s). 135

Finally, we are left with defining a tokenisa- 136

tion function tok : Σ∗ → S∗, which maps 137

from character- to subword-strings. Notably, these 138

functions always ensure the equivalence c
◦
= s for 139

s= tok(c). Several tokenisation functions, how- 140

ever, are compatible with this constraint, as given 141

a vocabulary, many subword-strings may be equiv- 142

alent to the same character-string. For instance, 143

given S={a, c, t, at}, the string c=⟨c, a, t⟩ could 144

be tokenised as s = ⟨c, a, t⟩ or as s = ⟨c, at⟩. Most 145

researchers define tokenisation functions in one of 146

two ways, which we term direct and bottom-up 147

tokenisation functions here; we define these next. 148

3.1 Direct Tokenisation Functions 149

In direct tokenisation, a character-string is directly 150

replaced by an optimal subword-string. To 151

5We note that we use set notation here, but our datasets
are actually multisets—datasets can include the same string c
multiple times. We show that tokenisation is still NP-complete
for datasets with no repetitions in §6.3. Further, we impose no
constraint on the kind of string present in these datasets: each
cn can be either a raw or pre-tokenised character-string (i.e.,
either a full document or a whitespace-separated word).

6Σ ⊆ S is typically enforced to guarantee that every
character-string can be represented by at least one token-string.
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implement this, one must thus first define what152

optimal means; this is done through an objective153

function G which, given a subword-string, returns154

a score. Given a previously chosen vocabulary155

S (we discuss how to find S in §5), a direct156

tokenisation function then encodes string c as:157

tok	[S](c) = argmax
s∈S∗

G(s) (3)158

s.t. s
◦
= c159

In words, given a vocabulary S, function tok	 re-160

turns the optimal subword-string s ∈ S∗ which is161

equivalent to the input character-string c. We then162

set tok(c) def
= tok	[S](c). Different choices of G163

recover methods such as UnigramLM (Kudo, 2018)164

or PathPiece (Schmidt et al., 2024). Notably, in gen-165

eral, this function is not efficiently computable.7166

In this paper, we are concerned with tokenisers167

that use compression as their objective: that is, for168

which G(s) = −|s|. In this case, we can rewrite169

the direct tokenisation function as:170

tok	[S](c) = argmin
s∈S∗

|s| (4)171

s.t. s
◦
= c172

Importantly, in the case of compression, this equa-173

tion can be computed efficiently (as shown in §5.1).174

3.2 Bottom-up Tokenisation Functions175

In bottom-up tokenisation, one starts with a set176

of character-strings, and merges their symbols177

bottom-up, one pair at a time.8 Formally, let178

m ∈ M be a merge, defined as a pair of sub-179

words: m = ⟨s1, s2⟩. Further, let M def
= Σ+×Σ+.180

Now, let merge be a functional; given merge181

m = ⟨s1, s2⟩, it returns a function merge[m] :182

S∗ → (S ∪ {s1 ◦ s2})∗ which operates on string s183

left-to-right, replacing every occurrence of s1 fol-184

lowed by s2 in it with subword s′ = s1 ◦ s2. E.g.,185

given s = ⟨wo, r, ld⟩ and m = ⟨wo, r⟩, the output186

of merge[m](s) is ⟨wor, ld⟩.187

Consider now m ∈ M∗, a sequence of merges.188

Given a character-string c ∈ Σ∗, a bottom-up to-189

kenisation function compresses it as:190

tok↑[m](c) =

( |m|⊙
z=1

merge[mz]

)
(c) (5)191

7In fact, Geh et al. (2024) shows that it is NP-complete for
G(s)=

∑|s|
t=1 log pθ(st |s<t), where pθ is a language model.

8Currently, this is likely the most common tokenisation
function, being used in popular tokenisers such as, e.g., GPT-
4’s (OpenAI et al., 2024), LLaMA’s (Touvron et al., 2023a,b),
and Pythia’s (Biderman et al., 2023).

where
⊙

represents function composition, e.g., 192⊙2
z=1 merge[mz] = merge[m2] ⊙ merge[m1]. 193

Bottom-up tokenisers then set tok def
= tok↑[m]. 194

Further, a merge sequence m is also used to set 195

a bottom-up tokeniser’s vocabulary as: 196

S = Σ ∪ {s1 ◦ s2 | ⟨s1, s2⟩ ∈ m} (6) 197

where |m| = K implies this vocabulary has size 198

|S| = |Σ|+K, as before. 199

4 Maximum 2-Satisfiability 200

Our paper’s goal is to prove the NP-completeness 201

of tokenisation. To show this, we must reduce 202

an NP-hard problem to tokenisation in polyno- 203

mial time. We will rely on the maximum 2- 204

satisfiability problem (max-2-SAT) for this, whose 205

definition we provide here. The NP-hardness of 206

max-2-SAT was proven by Garey et al. (1974). 207

Definition 1. Let X = {Xj}Jj=1 be a set of vari- 208

ables; each of these variables are assigned values 209

xj ∈ {F, T}, and we write x = {xj}Jj=1 ∈ {F, T}J . 210

Let L = {(L1
i ∨L2

i )}Ii=1 be a set of clauses,9 where 211

each literal L represents either a variableXj or its 212

negation ¬Xj . The max-2-SAT decision problem 213

requires deciding whether there exists an assign- 214

ment for which at least ψ clauses are satisfied: 215

ψ ≤ max
x ∈{F,T}J

I∑
i=1

1{L1
i ∨ L2

i } (7) 216

where 1 is an indicator function which evaluates 217

the clause and returns one if the clause is satisfied 218

by x and zero otherwise. 219

For mathematical convenience, we will write 220

M2S(X ,L, ψ) for a function which returns T 221

if its input is satisfiable under a max-2-SAT 222

decision problem, and F otherwise. As a con- 223

crete example, consider the set of variables 224

X = {X1, X2} and the set of clauses L = 225

{X1 ∨X2,¬X1 ∨X2, X1 ∨¬X2,¬X1 ∨¬X2}. 226

The assignment x1= T, x2= T leads to 3 clauses 227

being satisfied, which is the optimum. For this 228

example, we thus have that M2S(X ,L, 3) = T, 229

but that M2S(X ,L, 4) = F. 230

5 Finding an Optimal Direct Tokeniser 231

We are now left with the task of finding an optimal 232

tokeniser. We do this by selecting either: its vocab- 233

ulary in direct tokenisation, since tok = tok	[S]; 234

9max-2-SAT also allows clauses to have a single literal Li.
In this case, we can always rewrite the clause as (Li ∨ Li)
with no change to the solution of this decision problem.
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or its merge sequence in bottom-up tokenisation,235

since tok = tok↑[m] and since its vocabulary is236

chosen according to Eq. (6). (Note that in §3, we237

only showed how to apply tokenisers at inference238

time, but not how to find them.) In this section,239

we focus on direct tokenisation, defining its op-240

timisation and decision problems; we then prove241

its NP-completeness. The optimisation problem is242

defined as follows.243

Definition 2. Given a dataset D and a vocabu-244

lary size K, the direct tokenisation optimisation245

problem is to find a vocabulary S⋆ ⊂ Σ+ which246

maximally compresses D:247

S⋆ =argmin
S⊂Σ+

∑
c∈D

|tok	[S](c)| (8)248

s.t. |S| = |Σ|+K249

We can similarly define direct tokenisation’s de-250

cision problem.251

Definition 3. Given a dataset D and a vocabulary252

size K, the direct tokenisation decision problem253

requires deciding whether there exists a vocabulary254

S ⊂ Σ+ which compresses D to at most δ symbols:255

δ ≥ min
S⊂Σ+

∑
c∈D

|tok	[S](c)| (9)256

s.t. |S| = |Σ|+K257

We write Tok	(D,K, δ) for a function which258

returns T if a direct tokenisation decision problem259

with those inputs is satisfiable, and F otherwise.260

Note that, whenever |D| ≤ K, the solution to the261

problem above is trivial, as an optimal solution sim-262

ply requires including all strings cn in vocabulary263

S. As we show next, however, in the general case264

the above decision problem is NP-complete. We265

now state this as a theorem, which we will prove266

in the next two sections.267

Theorem 1. The direct tokenisation decision prob-268

lem, as in Definition 3, is NP-complete.269

Proof. A decision problem is considered to be NP-270

complete if: (i) it is in NP; (ii) it is NP-hard. We271

prove these conditions in §5.1 and §5.2.272

5.1 Direct Tokenisation is in NP273

A decision problem is in the nondeterministic poly-274

nomial time class (NP) if, given a certificate of275

polynomial length, one can verify that certificate in276

polynomial time. Specifically, a certificate usually277

encodes a decision problem’s solution, allowing278

us to verify its satisfiability. In the case of direct 279

tokenisation, this certificate would be a vocabulary 280

S which leads a dataset D to be compressed to at 281

most δ symbols. Verifying this certificate simply 282

requires computing the sum in Eq. (9), i.e.: 283∑
c∈D

|tok	[S](c)| (10) 284

Lemma 1. The direct tokenisation decision prob- 285

lem, as in Definition 3, is in NP. 286

Proof. As noted above, whenever |D| ≤ K, each 287

cn ∈ D can be included in the vocabulary S and 288

fully compressed to a single symbol; we can thus 289

verify the problem’s satisfiability by simply check- 290

ing that δ ≥ |D| as this is the best reachable com- 291

pression. Assuming K to be bounded by |D|—and 292

therefore polynomial in the input—we have that 293

the certificate S also has polynomial length. Given 294

such a certificate S, verifying it simply requires 295

computing the sum in Eq. (10). In turn, comput- 296

ing this sum requires |D| calls to function tok	. It 297

follows that, if function tok	 runs in polynomial 298

time, then direct tokenisation is in NP. Luckily, this 299

function can indeed be computed efficiently using 300

Schmidt et al.’s (2024) PathPiece method, which 301

runs in O(|c|2) time. 302

5.2 Direct Tokenisation is NP-hard 303

We now use a reduction from max-2-SAT to prove 304

the NP-hardness of direct tokenisation. 305

Reduction 1. Let us have an instance of the 306

max-2-SAT decision problem as in Definition 1. 307

To reduce this instance to an instance of the direct 308

tokenisation decision problem, as in Definition 3, 309

we first define alphabet Σ = {⊚} ∪ {xTj , xFj}Jj=1. 310

We then construct three sets of strings: 311

D1 = {⊚xTj⊚}Jj=1 ∪ {⊚xFj⊚}Jj=1 (11a) 312

D2 = {⊚xTj ⊚ xFj⊚}Jj=1 (11b) 313

D3 = {⊚L1
i⊚L

2
i⊚}Ii=1 (11c) 314

In these strings Li is replaced by either character 315

xTj or xFj , depending on whether it representsXj or 316

¬Xj , respectively. We then construct our dataset 317

D, and choose K and δ as: 318

D =

( f⋃
_=1

D1

)
∪
( f ′⋃

_=1

D2

)
∪ D3 (12a) 319

K = J, δ = (4f + 3f ′) J + 5 I − 2ψ (12b) 320

where we set f ′ def
= 4I +1 and f def

= 4f ′J +4I +1. 321
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We write R1(X ,L, ψ) to represent a function322

which, given an instance of max-2-SAT, returns an323

instance of the tokenisation problem given by our324

reduction (i.e., D,K, δ). For our reduction to be325

correct, we must have that:326

M2S(X ,L, ψ) ⇐⇒ Tok	(R1(X ,L, ψ)) (13)327

meaning that a max-2-SAT instance is satisfiable if328

and only if its reduced direct tokenisation instance329

is as well. We now set out to prove this. We start330

by proving the forward direction of this iff clause.331

Lemma 2. If a max-2-SAT instance is satisfiable,332

then the direct tokenisation instance output by Re-333

duction 1 is also satisfiable. Formally:334

M2S(X ,L, ψ) =⇒ Tok	(R1(X ,L, ψ)) (14)335

Proof sketch. See a formal proof in App. A. Our336

proof works by first fixing a satisfying solution to337

max-2-SAT with values x⋆j . Given this solution,338

for each variable, we add to our vocabulary S a339

subword ⊚xTj⊚ if x⋆j is true, or ⊚xFj⊚ if x⋆j is false.340

Given these subwords, strings in D1 and D2 occupy341

a total length of (4f + 3f ′) J . Further, since at342

least ψ of the max-2-SAT clauses are satisfied by343

x⋆j , the strings in D3 will occupy a total length344

smaller or equal to 5 I − 2ψ. This solution to the345

tokenisation problem thus gives us a total length346

which is smaller or equal to δ = (4f + 3f ′) J +347

5 I − 2ψ.348

Now, we are left with proving the backward di-349

rection of the iff clause in Eq. (13). We do so in the350

following lemma.351

Lemma 3. If the direct tokenisation instance out-352

put by Reduction 1 is satisfiable, the max-2-SAT353

instance which generated it is as well. Formally:354

Tok	(R1(X ,L, ψ)) =⇒ M2S(X ,L, ψ) (15)355

Proof sketch. See a formal proof in App. B. Our356

proof works in three steps. First, we show that all357

satisfying solutions must only have subwords of358

the form ⊚xTj⊚ or ⊚xFj⊚, since this is required to359

compress strings in D1 to at most 4fJ symbols.360

Second, we show that all satisfying solutions must361

only have either subword ⊚xTj⊚ or ⊚xFj⊚ for any362

variable Xj ; this is required to compress strings in363

D2 to at most 3f ′J symbols. Finally, we show that364

if a tokeniser compresses strings in D3 to 5I − 2ψ,365

then there is an assignment x which satisfies at366

least ψ of the original max-2-SAT problem.367

Given both lemmas above, we can now trivially 368

prove that direct tokenisation is NP-hard. 369

Lemma 4. The direct tokenisation decision prob- 370

lem, as in Definition 3, is NP-hard. 371

Proof. First, it is easy to see that Reduction 1 runs 372

in polynomial time. Second, max-2-SAT is an NP- 373

hard problem (Garey et al., 1974). This lemma 374

then follows trivially from Lemmas 2 and 3, which 375

together show that an instance of the tokenisation 376

problem generated through Reduction 1 is satisfi- 377

able if and only if the max-2-SAT instance used to 378

produce it is also satisfiable. 379

6 Finding Optimal Bottom-up Tokenisers 380

In this section, we shift our attention to bottom- 381

up tokenisation. We define both its optimisation 382

and decision problems, and then prove its NP- 383

completeness. We start with defining the optimisa- 384

tion problem. 385

Definition 4. Given a dataset D and a vocabulary 386

size K, the bottom-up tokenisation optimisation 387

problem is to find a merge sequence m⋆ ∈ M∗ 388

which maximally compresses D: 389

m⋆ =argmin
m∈M∗

∑
c∈D

|tok↑[m](c)| (16) 390

s.t. |m| = K 391

As can be seen, this optimisation problem is sim- 392

ilar to the direct tokenisation problem, albeit its 393

target is to find a merge sequence instead of a vo- 394

cabulary. We similarly define a decision problem. 395

Definition 5. Given a dataset D and a vocabulary 396

size K, the bottom-up tokenisation decision prob- 397

lem requires deciding whether there exists a merge 398

sequence m ∈ M∗ which compresses D to at most 399

δ symbols: 400

δ ≥ min
m∈M∗

∑
c∈D

|tok↑[m](c)| (17) 401

s.t. |m| = K 402

We write Tok↑(D,K, δ) for a function which 403

returns T if a bottom-up tokenisation decision prob- 404

lem with those inputs is satisfiable, and F other- 405

wise. We spend the rest of this section showing 406

that bottom-up tokenisers are NP-complete. 407

Theorem 2. The bottom-up tokenisation decision 408

problem, as in Definition 5, is NP-complete. 409

Proof. We prove this in two steps below. We first 410

prove that this problem is in NP, in §6.1. We then 411

prove that this problem is NP-hard, in §6.2. 412
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6.1 Bottom-up Tokenisation is in NP413

We can verify this using a solution, the merge se-414

quence m ∈ M∗, as a certificate. By showing that415

this certificate has polynomial length and that it can416

be verified in polynomial time, we prove this prob-417

lem is in NP. To verify this certificate, we simply418

need to compute the sum in Eq. (17), i.e.:419 ∑
c∈D

|tok↑[m](c)| (18)420

which we show now can be done efficiently.421

Lemma 5. The bottom-up tokenisation decision422

problem, as in Definition 5, is in NP.423

Proof. First, if K is larger than the total number424

of characters in D, i.e.,
∑

c∈D |c|, then this dataset425

can be compressed to |D| by merging each string426

down to a single symbol; further, compressing D427

more than that is not possible independently of K.428

Verifying the satisfiability of such an instance of the429

tokenisation problem is thus trivial, only requiring430

checking if δ ≥ |D|. Second, if K is bounded by431

|D|—and therefore polynomial in the input—the432

certificate m has polynomial length. Given such433

a certificate m, verifying it then simply requires434

computing the sum in Eq. (18). In turn, comput-435

ing this sum requires |D| calls to function tok↑. It436

follows that, if function tok↑ runs in polynomial437

time, then bottom-up tokenisation is in NP. The438

computation of tok↑, can be done in polynomial439

time following the structure described in §3.2. For440

each m = ⟨s1, s2⟩ ∈ m, scan the current c and441

replace each occurrence of s1, s2 by s′. This takes442

time O(|c|) for each merge. Afterwards, the result-443

ing string can be compared against the desired size.444

We obtain a total runtime of O(|D||c||m|).445

6.2 Bottom-up Tokenisation is NP-hard446

As before, we use a reduction from max-2-SAT to447

prove bottom-up tokenisation’s NP-hardness.448

Reduction 2. Let us have an instance of the449

max-2-SAT decision problem as in Definition 1. To450

reduce this instance to an instance of the bottom-up451

tokenisation decision problem, as in Definition 5,452

we first define alphabet Σ = {⊚,⊗}∪{xTj , xFj}Jj=1.453

We then construct five sets of strings:454

D1={⊚xTj}Jj=1∪{xFj⊚}Jj=1∪{xTj⊚}Jj=1 (19)455

∪ {⊚xFj}Jj=1∪{xTj⊗}Jj=1∪{⊗xFj}Jj=1456

D2={⊚xTj⊚}Jj=1 ∪ {⊚xFj⊚}Jj=1457

∪ {⊚xTj⊗}Jj=1 ∪ {⊗xFj⊚}Jj=1458

D3={⊚xTj ⊚ xFj⊚}Jj=1∪{⊗xFj ⊚ xTj⊗}Jj=1 459

D4={⊚xFj ⊚ xTj⊗}Jj=1∪{⊗xFj ⊚ xTj⊚}Jj=1 460

D5=


⊚xT

j ⊚ xF
j′⊚ if L1

i = Xj and L2
i = ¬Xj′

⊚xT
j′ ⊚ xF

j⊚ if L1
i = ¬Xj and L2

i = Xj′

⊗xF
j ⊚ xF

j′⊚ if L1
i = ¬Xj and L2

i = ¬Xj′

⊚xT
j ⊚ xT

j′⊗ if L1
i = Xj and L2

i = Xj′


I

i=1

461

We then construct our dataset D, and choose K 462

and δ as: 463

D =

f⋃
_=1

D1∪
f ′⋃

_=1

D2∪
f ′′⋃

_=1

D3∪
f ′′′⋃
_=1

D4∪D5 (20) 464

K = 8J, δ = (6f+6f ′+4f ′′+4f ′′′) J+3 I−ψ 465

where we set: 466

f ′′′
def
= 5I, f ′′

def
= 10f ′′′J + 5I (21a) 467

f ′
def
= (10f ′′ + 10f ′′′) J + 5I (21b) 468

f
def
= (12f ′ + 10f ′′ + 10f ′′′) J + 5I (21c) 469

As before, we write R2(X ,L, ψ) for a function 470

which, given an instance of the max-2-SAT prob- 471

lem, returns an instance of the bottom-up tokenisa- 472

tion problem. For our reduction to be correct, we 473

must have that: 474

M2S(X ,L, ψ) ⇐⇒ Tok↑(R2(X ,L, ψ)) (22) 475

We follow the same proof strategies as before, start- 476

ing by proving the forward direction of this iff 477

statement. 478

Lemma 6. If a max-2-SAT instance is satisfiable, 479

then the bottom-up tokenisation instance output by 480

Reduction 2 is also satisfiable. Formally: 481

M2S(X ,L, ψ) =⇒ Tok↑(R2(X ,L, ψ)) (23) 482

Proof sketch. See a formal proof in App. C. With- 483

out loss of generality, let a satisfying solution to 484

max-2-SAT have values x⋆j . Our proof works by 485

first defining the three following lists of merges, 486

which must be included in any satisfying solution 487

to this tokenisation problem: 488

m1 = ⃝J
j=1[⟨⊗, xFj ⟩, ⟨xTj ,⊗⟩] (24a) 489

m3 = ⃝J
j=1[⟨xFj ,⊚⟩, ⟨⊚, xTj ⟩] (24b) 490

m5 = ⃝J
j=1[⟨⊚, xFj ⟩, ⟨xTj ,⊚⟩] (24c) 491

We then construct two other lists of merges, 492

which depend on the satisfying assignments to 493
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max-2-SAT:494

m2 = ⃝J
j=1

[
⟨⊚, xTj⊗⟩ if x⋆j = T

⟨⊗xFj ,⊚⟩ else

]
(25a)495

m4 = ⃝J
j=1

[
⟨⊚xTj ,⊚⟩ if x⋆j = T

⟨⊚, xFj⊚⟩ else

]
(25b)496

Finally, we create a merge sequence by concatenat-497

ing these lists in order:498

m = m1 ◦m2 ◦m3 ◦m4 ◦m5 (26)499

Note that we have exactly K = 8J merges in this500

list. Given this merge sequence, it is easy to verify501

that strings in D1 to D4 will use exactly (6f +502

6f ′+4f ′′+4f ′′′) J symbols after being tokenised.503

Further, since at least ψ of the max-2-SAT problem504

are satisfied by x⋆j , the strings in D5 will occupy505

a total length smaller or equal to 3 I − ψ. This506

solution to the tokenisation problem thus gives us507

a tokeniser which will compress D to at most δ =508

(6f+6f ′+4f ′′+4f ′′′) J + 3 I − ψ.509

We now prove the backward direction of the iff510

clause in Eq. (22).511

Lemma 7. If the bottom-up tokenisation instance512

output by Reduction 2 is satisfiable, the max-2-SAT513

instance which generated it is as well. Formally:514

Tok↑(R2(X ,L, ψ)) =⇒ M2S(X ,L, ψ) (27)515

Proof sketch. See a formal proof in App. D. Our516

proof works in five steps. First, we show that all517

satisfying solutions must include merges m1, m3,518

and m5 from Eq. (24), since this is required to519

compress strings in D1 to at most 6fJ symbols.520

Second, we show the other merges of any satisfying521

solution must be of the form:522

m⊚
j =

{
⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}
(28a)523

m⊗
j =

{
⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩

}
(28b)524

this is required to compress strings in D2 to at most525

6f ′J symbols. Third, we show that any satisfying526

solution will have at least one merge of each set527

m⊚
j and one of each set m⊗

j ; this is required to528

compress strings in D3 to at most 4f ′′J symbols.529

Fourth, we show that any satisfying solution will530

have—for each j ∈ {1, J}—both its merges in sets531

m⊚
j and m⊗

j containing character xTj or containing532

character xFj ; this is required to compress strings in533

D4 to at most 4f ′′′J symbols. Finally, we show that 534

if a tokeniser compresses strings in D5 to 3I − ψ, 535

then there is an assignment x which satisfies at 536

least ψ of the original max-2-SAT problem. 537

Finally, given both lemmas above, we can now 538

prove that bottom-up tokenisation is NP-hard. 539

Lemma 8. The bottom-up tokenisation decision 540

problem, as in Definition 5, is NP-hard. 541

Proof. First, it is easy to see that Reduction 2 runs 542

in polynomial time. Second, max-2-SAT is an NP- 543

hard problem (Garey et al., 1974). This lemma then 544

follows trivially from Lemmas 6 and 7. 545

6.3 Other Definitions of Tokenisation 546

We now expand our discussion to consider varia- 547

tions of the above tokenisation problems. 548

Deduped Datasets. Our definitions of both 549

direct and bottom-up tokenisation allow datasets 550

D to include repeated entries. It is common, 551

however, to deduplicate datasets in NLP—thus 552

removing repeated entries. A small change to 553

both our reductions is enough to adapt it to this 554

deduplicated dataset case: simply append each 555

string in the repeated datasets (either D1 and 556

D2 in Reduction 1 or D1 to D4 in Reduction 2) 557

with a unique character {ay}∞y=1 and increase 558

the target compression size δ accordingly (by 559

f + f ′ or f + f ′ + f ′′ + f ′′′, respectively). These 560

new characters will never be included in optimal 561

tokenisers’ solutions, and thus the previous proofs 562

hold, with the difference that each dataset will 563

require extra symbols once compressed. 564

A Single Long String. In the previous sections, 565

we considered tokenisers trained on a dataset D. 566

Work on compression, however, usually considers 567

a single long string c as its input. It is easy to see 568

that direct tokenisation is not an NP-complete prob- 569

lem if its input is a single long string; including 570

this string in vocabulary S already achieves opti- 571

mal compression. Bottom-up tokenisation, how- 572

ever, is still NP-complete even when given a single 573

string as input. As before, this can be shown with 574

a similar strategy to Reduction 2, but where we 575

first append each string in dataset D with a unique 576

character {ay}∞y=1 and then concatenate all these 577

strings. As in the deduped case above, characters 578

ay will never be merged by any optimal tokeniser; 579

they will thus serve as virtual string delimiters and 580

will not affect our proofs beyond an increase to the 581

target compression size δ. 582
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A Hybrid Approach. Finally, the last variant we583

consider is a hybrid between direct and bottom-up584

tokenisation, where we find a merge sequence m585

which—when we extract a vocabulary from it as586

S = Σ∪{s1 ◦s2 | ⟨s1, s2⟩ ∈ m}—optimally com-587

presses a dataset D using the direct tokenisation588

function in Eq. (4). We can easily prove the NP-589

hardness of this tokenisation variant by relying on590

Reduction 2; as our proof in Lemma 8 did not make591

use of the order of merges in m, only of the sub-592

words composed by it, this lemma’s proof strategy593

can be similarly applied to this hybrid variant.594

7 Tokenisation’s Connection to595

Compression596

The variants of tokenisation that we consider here—597

with compression as their objective function—are598

closely related to the field of dictionary compres-599

sion. In both fields, we wish to reduce the size600

of an input (c or D) by exploiting repetitive ele-601

ments. In fact, the most popular tokenisation algo-602

rithm to date, BPE, was originally proposed as a603

compression algorithm (Gage, 1994) and has only604

somewhat recently been ported into NLP to find605

tokenisers (by Sennrich et al., 2016).606

Not surprisingly, prior work has also consid-607

ered, from a theoretical perspective, the compres-608

sion tokenisers achieve. Zouhar et al. (2023b),609

for instance, analyse bottom-up tokenisation and610

prove an approximation bound on the compression611

achieved by the tokenisers found using BPE. More612

recently, Kozma and Voderholzer (2024) also analy-613

ses bottom-up tokenisation, proving a tighter bound614

on this compression achieved by BPE.615

A popular dictionary compression method, the616

straight-line program (SLP; Kieffer and Yang,617

2000; Charikar et al., 2005), can be used to illus-618

trate the similarities and differences between to-619

kenisers and compressors.10 Given a string c, an620

SLP describes a context-free grammar from which621

c can be uniquely derived. Formally, an SLP in622

Chomsky normal form (CNF) is a set of rules of623

form X → a or X → AB, where X,A,B are624

called nonterminals and a is a terminal.11 Start-625

ing from a special nonterminal S, applying these626

10See Lohrey (2012) for an overview of straight-line pro-
grams, and Kempa and Prezza (2018); Kociumaka et al. (2023)
for a more detailed overview of compression in general.

11Although not originally defined that way, SLP’s gram-
mars are typically assumed to be in CNF, for simplicity. This
does not make a big difference for compression, but will be
important for our purposes.

rules exhaustively—until only terminals are left— 627

produces exactly the desired string c. Notably, 628

given a string c, it is NP-complete to find the small- 629

est SLP which generates it (Charikar et al., 2005). 630

On the one hand, SLPs in CNF are closely linked 631

to bottom-up tokenisation; each of its rules expands 632

to two nonterminals, and thus corresponds to a 633

merge. However, while SLPs must find the mini- 634

mum number of merges (or rules) to fully compress 635

a string into a single symbol, bottom-up tokenisers 636

must maximally compress the string given a fixed 637

number of merges. On the other hand, SLPs which 638

are not in CNF (that is, for which other context- 639

free production rules are allowed, as long as the 640

decoding stays unique) are closely linked to direct 641

tokenisation. In this case, a direct tokeniser could 642

be converted into an SLP with depth two; this gram- 643

mar has a start rule S → s, and a rule from each 644

subword to its characters s → c. Again, while 645

SLPs must find a minimal grammar representing 646

the string, direct tokenisers must minimise the size 647

of rule S → s given a fixed number of rules s→ c. 648

The paragraphs above highlights two important 649

differences between tokenisers and compressors. 650

First, tokenisers aim to reduce only the size of the 651

resulting tokenised text (i.e., |s|), whereas compres- 652

sors also consider the size of the compression infor- 653

mation (e.g., considering the size required to store 654

S, which would be
∑

s∈S |detok(s)|). This is be- 655

cause tokenisers must create shorter inputs for NLP 656

algorithms, while compressors must make informa- 657

tion compact. Second, tokenisers and compressors 658

have different optimisation parameters. Compres- 659

sion algorithms always compress a string to the 660

best extent possible (e.g., for SLPs, until a single 661

nonterminal is reached), whereas tokenisation algo- 662

rithms are given a maximum vocabulary size (i.e., 663

K) and find tokenisers which only compress their 664

input as much as possible until this limit is reached. 665

8 Conclusion 666

In this work, we proved the NP-completeness of 667

two variants of tokenisation. These results under- 668

line that finding optimal tokenisers most likely will 669

remain a difficult quest and that research should 670

focus on approximate algorithms instead. Regard- 671

ing those, there is potential both in improving the 672

analysis of currently used algorithms, such as BPE, 673

as well as in designing new ones. 674
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Limitations675

While we prove the NP-completeness of multi-676

ple variants of the tokenisation problem—which is677

an important part of modern language modelling678

pipelines—we must note a few limitations in our679

work here. First, we only prove NP-completeness680

of tokenisation with compression as its objective.681

This is an important and popular objective func-682

tion, frequently used to judge the quality of to-683

kenisers; however, it is not perfectly correlated684

with downstream language modelling performance,685

as discussed in §2. Second, our proofs do not as-686

sume a fixed alphabet size, so for fixed alphabets687

tokenisation might not be NP-complete. Tokenis-688

ers are frequently run at the byte level, for which689

efficient algorithms might exist. Finally, while we690

investigated the complexity of two variants of the691

tokenisation problem, similar results for other vari-692

ants (e.g., with other tokenisation functions) remain693

open; this would be exciting future work.694
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and Iryna Gurevych. 2021. How good is your tok-933
enizer? On the monolingual performance of multi-934
lingual language models. In Proceedings of the 59th935
Annual Meeting of the Association for Computational936
Linguistics and the 11th International Joint Confer-937
ence on Natural Language Processing (Volume 1:938
Long Papers), pages 3118–3135, Online. Association939
for Computational Linguistics.940

Craig W. Schmidt, Varshini Reddy, Haoran Zhang, Alec941
Alameddine, Omri Uzan, Yuval Pinter, and Chris942
Tanner. 2024. Tokenization is more than compres-943
sion. In Proceedings of the 2024 Conference on944
Empirical Methods in Natural Language Processing,945
pages 678–702, Miami, Florida, USA. Association946
for Computational Linguistics.947

Rico Sennrich, Barry Haddow, and Alexandra Birch.948
2016. Neural machine translation of rare words with949
subword units. In Proceedings of the 54th Annual950
Meeting of the Association for Computational Lin-951
guistics (Volume 1: Long Papers), pages 1715–1725,952
Berlin, Germany. Association for Computational Lin-953
guistics.954

Aaditya K. Singh and DJ Strouse. 2024. Tokenization955
counts: the impact of tokenization on arithmetic in956
frontier LLMs. Preprint, arXiv:2402.14903.957

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier958
Martinet, Marie-Anne Lachaux, Timothée Lacroix,959
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal960
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard961
Grave, and Guillaume Lample. 2023a. LLaMA:962
Open and efficient foundation language models.963
Preprint, arXiv:2302.13971.964

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 965
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 966
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 967
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 968
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 969
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 970
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 971
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 972
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 973
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 974
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 975
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 976
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 977
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 978
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 979
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 980
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 981
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 982
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 983
Melanie Kambadur, Sharan Narang, Aurelien Ro- 984
driguez, Robert Stojnic, Sergey Edunov, and Thomas 985
Scialom. 2023b. Llama 2: Open foundation and 986
fine-tuned chat models. Preprint, arXiv:2307.09288. 987

Lili Yu, Daniel Simig, Colin Flaherty, Armen Agha- 988
janyan, Luke Zettlemoyer, and Mike Lewis. 2023. 989
MEGABYTE: Predicting million-byte sequences 990
with multiscale transformers. In Thirty-seventh Con- 991
ference on Neural Information Processing Systems. 992

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, 993
Mrinmaya Sachan, and Ryan Cotterell. 2023a. Tok- 994
enization and the noiseless channel. In Proceedings 995
of the 61st Annual Meeting of the Association for 996
Computational Linguistics (Volume 1: Long Papers), 997
pages 5184–5207, Toronto, Canada. Association for 998
Computational Linguistics. 999

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, Tim 1000
Vieira, Mrinmaya Sachan, and Ryan Cotterell. 2023b. 1001
A formal perspective on byte-pair encoding. In Find- 1002
ings of the Association for Computational Linguis- 1003
tics: ACL 2023, pages 598–614, Toronto, Canada. 1004
Association for Computational Linguistics. 1005

11

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/2412.09871
https://openreview.net/forum?id=78yDLKi95p
https://openreview.net/forum?id=78yDLKi95p
https://openreview.net/forum?id=78yDLKi95p
https://arxiv.org/abs/2406.16829
https://arxiv.org/abs/2406.16829
https://arxiv.org/abs/2406.16829
https://arxiv.org/abs/2406.14561
https://arxiv.org/abs/2406.14561
https://arxiv.org/abs/2406.14561
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://aclanthology.org/2024.emnlp-main.40
https://aclanthology.org/2024.emnlp-main.40
https://aclanthology.org/2024.emnlp-main.40
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=JTmO2V9Xpz
https://openreview.net/forum?id=JTmO2V9Xpz
https://openreview.net/forum?id=JTmO2V9Xpz
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.findings-acl.38


A Proof of Lemma 21006

Lemma 2. If a max-2-SAT instance is satisfiable, then the direct tokenisation instance output by Reduc-1007

tion 1 is also satisfiable. Formally:1008

M2S(X ,L, ψ) =⇒ Tok	(R1(X ,L, ψ)) (14)1009

Proof. First, note that if M2S(X ,L, ψ), then we have that Eq. (7) holds:1010

ψ ≤ max
x ∈{F,T}J

I∑
i=1

1{L1
i ∨ L2

i } (29)1011

Now, without loss of generality, let a satisfying solution have values x⋆j . In this case, for each variable Xj ,1012

we construct token ⊚xTj⊚ if x⋆j is true, or ⊚xFj⊚ if x⋆j is false. This gives us a total of J new tokens, so1013

satisfies the |S| = |Σ| +K condition. Now we just need to count the symbols output by this solution1014

to see if Eq. (9) is satisfied, since any given tokenisation tok(·,S) will provide an upper bound on the1015

optimal tokenisation in terms of compression:1016 ∑
c∈D

|tok	[S](c)| ≥ min
S′⊂Σ+

∑
c∈D

|tok	[S ′](c)| (30)1017

s.t. |S ′| = |Σ|+K1018

For each pair of strings ⊚xTj⊚ and ⊚xFj⊚ in D1, one is compressed into a single subword while the other1019

is kept as originally—using 3 symbols. We thus have that the strings in D1 will occupy a total of (1+ 3)J1020

characters, and:1021 ∑
c∈(

⋃f
_=1 D1)

|tok	[S](c)| = 4fJ (31)1022

Similarly, for each string in D2 of form ⊚xTj ⊚ xFj⊚, we have that either token ⊚xTj⊚ or ⊚xFj⊚ exists. So1023

each of these strings is compressed from 5 into 3 symbols. We thus have:1024 ∑
c∈(

⋃f ′
_=1 D2)

|tok	[S](c)| = 3f ′J (32)1025

Finally, we have strings in D3 of form ⊚L1
i ⊚ L2

i⊚. These strings will be compressed into 3 symbols if1026

⊚L1
i⊚ or ⊚L2

i⊚ (or both) exist, and kept with 5 symbols otherwise. We thus have:1027

∑
c∈D3

|tok	[S](c)| =
∑
c∈D3

(
5− 21

{⊚L1
i⊚ ∈ S
or

⊚L2
i⊚ ∈ S

})
(33a)1028

= 5I − 2
∑
c∈D3

1

{⊚L1
i⊚ ∈ S
or

⊚L2
i⊚ ∈ S

}
(33b)1029

= 5I − 2
I∑
i=1

1{L1
i ∨ L2

i } (33c)1030

≤ 5I − 2ψ (33d)1031

where, by construction, we have that a subword ⊚Li⊚ ∈ S if and only if its associated variable (xj or1032

¬xj) is true. Summing together the lengths in Eqs. (31) to (33), we get that1033 ∑
c∈D

|tok	[S](c)| ≤ δ = (4f + 3f ′) J + 5 I − 2ψ (34)1034

which concludes the proof.1035
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B Proof of Lemma 3 1036

Lemma 3. If the direct tokenisation instance output by Reduction 1 is satisfiable, the max-2-SAT instance 1037

which generated it is as well. Formally: 1038

Tok	(R1(X ,L, ψ)) =⇒ M2S(X ,L, ψ) (15) 1039

Proof. First, note that the dataset D output by Reduction 1 has a total number of characters: 1040∑
c∈D

|c| = (6f + 5f ′)J + 5I (35) 1041

Further, let: 1042

toklen(D,S) def
=
∑
c∈D

|tok	[S](c)|, S0 =
J⋃
j=1

{⊚xTj⊚,⊚xFj⊚} (36) 1043

The maximum number of symbols in this dataset after compression is set to δ = (4f +3f ′) J +5 I − 2ψ. 1044

This means that, to satisfy this objective, there must exist a vocabulary whose tokeniser compresses the 1045

text by at least (2f + 2f ′) J + 2ψ symbols. We now prove this lemma in three steps: 1 we show that 1046

any solution which compresses the text by at least 2fJ symbols must only have subwords of the form 1047

⊚xTj⊚ or ⊚xFj⊚; 2 we show that any solution which compresses the text by at least (2f +2f ′)J symbols 1048

must only have either subword ⊚xTj⊚ or ⊚xFj⊚ for any variable Xj ; 3 we show that any solution which 1049

compresses the text by at least (2f + 2f ′)J + 2ψ symbols must be produced by a max-2-SAT instance 1050

which has at least ψ clauses that are simultaneously satisfiable. 1051

LemmaProofStep 1. (Step 1 ). Any solution which compresses the text by at least 2fJ symbols must 1052

only have nontrivial subwords12 of the form ⊚xTj⊚ or ⊚xFj⊚, i.e.,: 1053(
toklen(D,S) ≤ (4f + 5f ′)J + 5I︸ ︷︷ ︸∑

c∈D |c|−2fJ

)
=⇒ S ⊂ S0 (37) 1054

Proof. First, given a solution with S ⊂ S0, each subword s ∈ S will replace at least f strings in D1—i.e., 1055

with form ⊚xTj⊚ or ⊚xFj⊚—for a single subword, thus saving 2f characters. Since we have |S| = K = J 1056

tokens, we save exactly 2fJ symbols: 1057

S ⊂ S0 =⇒
(
toklen(D1,S ′) = 4fJ︸︷︷︸∑

c∈D1
|c|−2fJ

)
(38) 1058

Note now that any solution S ′ for which S ′ ̸⊂ S0 has at least one subword which is not of the form ⊚xTj⊚ 1059

or ⊚xFj⊚; this subword s /∈ S0 will thus not compress strings in D1 by 2f symbols, but by at most f : 1060

S ′ ̸⊂ S0 =⇒
(
toklen(D1,S ′) ≥ 4f(J − 1) + 5f︸ ︷︷ ︸∑

c∈D1
|c|−2fJ+f

)
(39) 1061

Even if this new subword were able to fully compress strings in D2 and D3 to a single symbol each, it 1062

would reach a compression of at most 4f ′J + 4I . Since by design f = 4f ′J + 4I + 1, we get that: 1063

S ′ ̸⊂ S0 =⇒
(
toklen(D,S ′) ≥ 4fJ + f + f ′J + I > (4f + 5f ′)J + 5I

)
(40) 1064

which concludes this step of the proof. 1065
12We define nontrivial subwords as subwords with more than one character. Remember that by definition Σ ⊆ S, so all

characters are always included in tokenisers’ vocabularies. Also note that |S| = |Σ| +K, so those trivial subwords are not
counted towards vocabulary size K.
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LemmaProofStep 2. (Step 2 ). Any solution which compresses the text by at least (2f + 2f ′)J symbols1066

must only have either subword ⊚xTj⊚ or ⊚xFj⊚ for any variable Xj , i.e.,:1067 (
toklen(D,S) ≤ (4f + 3f ′)J + 5I︸ ︷︷ ︸∑

c∈D |c|−(2f+2f ′)J

)
=⇒ ∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1 (41)1068

Proof. In this step of the proof, we show that satisfying solutions must have one and only one of subwords1069

⊚xTj⊚ and ⊚xFj⊚ for any variable Xj . As before, it’s easy to see that a solution of the form described1070

achieves at least (2f + 2f ′)J symbol compression. Each subword of form ⊚xTj⊚ or ⊚xFj⊚ saves exactly1071

2f characters in the strings in D1. Further, because we always have either subword ⊚xTj⊚ or ⊚xFj⊚ for1072

each value of j, we also get 2f ′ compression in the strings in D2:1073

∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1 (42)1074

=⇒
(
toklen(D1,S) = 4fJ︸︷︷︸∑

c∈D1
|c|−2fJ

)
and

(
toklen(D2,S) = 3f ′J︸︷︷︸∑

c∈D2
|c|−2f ′J

)
1075

Now note that this is not true if both ⊚xTj⊚ and ⊚xFj⊚ exist for a single j; in this case, only one of1076

the tokens can be applied to ⊚xTj ⊚ xFj⊚, and thus both tokens together lead to a benefit of 2 instead1077

of 4. If both ⊚xTj⊚ and ⊚xFj⊚ exist for any token Xj , this implies that neither of ⊚xTj′⊚ and ⊚xFj′⊚1078

exists for some other Xj′ , resulting in an uncompressed string. Then, we get at most a compression of1079

2fJ + 2f ′(J − 1) + 4I:1080

∃j∈{1,...,J} |S ′ ∩ {⊚xTj⊚,⊚xFj⊚}| ≠ 1 =⇒
(
toklen(D,S ′) ≥ (4f + 3f ′)J + f ′ + I︸ ︷︷ ︸∑

c∈D |c|−(2f+2f)′J+f ′−4I

)
(43)1081

By construction f ′ = 4I + 1, which leads to:1082

∃j∈{1,...,J} |S ′ ∩ {⊚xTj⊚,⊚xFj⊚}| ≠ 1 =⇒
(
toklen(D,S ′) > (4f + 3f ′)J + 5I

)
(44)1083

This concludes the proof.1084

LemmaProofStep 3. (Step 3 ). Any instance of the tokenisation problem with a solution which com-1085

presses the text by at least (2f + 2f ′)J + 2ψ symbols must be produced by a max-2-SAT problem with at1086

least ψ satisfied clauses, i.e.,:1087 (
toklen(D,S) ≤ (4f + 3f ′)J + 5I − 2ψ︸ ︷︷ ︸∑

c∈D |c|−(2f+2f ′)J+2ψ

)
=⇒ M2S(X ,L, ψ) (45)1088

Proof. Finally, we now know any solution with this compression must have—for any variable Xj—1089

either subword ⊚xTj⊚ or ⊚xFj⊚. We can thus create a bijection ConvS→x between the set of possible1090

vocabularies respecting this condition, and the set of T/F assignments to SAT variables x :1091

ConvS→x (S) =
{

T if⊚xTj⊚ ∈ S
F if⊚xFj⊚ ∈ S

}J
j=1

(46)1092

Further, note that vocabularies of this form (as shown in Eq. (42)) lead to exactly (2f + 2f ′)J symbols1093

being compressed in D1 and D2. To achieve the target compression, a solution must thus compress D31094

by at least 2ψ symbols. Now note that for any string ⊚L1
i ⊚ L2

i⊚ in D3 we have three compression1095

options: ⊚L1
i⊚ will be compressed, saving 2 symbols; ⊚L2

i⊚ will be compressed, also saving 2 symbols;1096

or nothing will be compressed. More specifically, ⊚L1
i⊚ can be compressed if L1

i represents Xj1097

and subword ⊚xTj⊚ exists, or if L1
i represents ¬Xj and subword ⊚xFj⊚ exists; the same is true for1098
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⊚L2
i⊚. They cannot both be compressed, however, as there is only one symbol ⊚ between the literals. 1099

We thus get a compression of 2 symbols for each of these strings if at least one of its literals has an 1100

associated subword in S. Note thus that whenever a string ⊚L1
i⊚ is compressed by 2 symbols using 1101

vocabulary S , the max-2-SAT disjunction L1
i ∨L2

i will also be satisfied by assignment x = ConvS→x (S); 1102

similarly, whenever this string suffers no compression (i.e., having a compression of zero), the max-2-SAT 1103

disjunction will not be satisfied. As our condition assumes a compression of at least 2ψ symbols, we know 1104

that we have at least ψ strings for which a literal has an associated subword. We can thus write: 1105

2ψ ≤ max
S⊂Σ∗

∑
c∈D3

|c| − |tok	[S](c)| (47a) 1106

s.t. |S| = J and ∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1 1107

= max
S⊂Σ∗

∑
⊚L1

i⊚L
2
i⊚∈D3

21

{ ⊚L1
i⊚ ∈ S
or

⊚L2
i⊚ ∈ S

}
(47b) 1108

s.t. |S| = J and ∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1 1109

= max
x ∈{0,1}J

I∑
i=1

21{L1
i ∨ L2

i } (47c) 1110

=⇒ M2S(X ,L, ψ) (47d) 1111

We thus know that, if a satisfying tokenisation solution exists, then the associated max-2-SAT problem 1112

will also be satisfiable. This concludes the proof. 1113

C Proof of Lemma 6 1114

Lemma 6. If a max-2-SAT instance is satisfiable, then the bottom-up tokenisation instance output by 1115

Reduction 2 is also satisfiable. Formally: 1116

M2S(X ,L, ψ) =⇒ Tok↑(R2(X ,L, ψ)) (23) 1117

Proof. Our proof starts by first defining the three following lists of merges, which will be included in any 1118

satisfying solution to the tokenisation problem: 1119

m1 =
J
⃝
j=1

[
⟨⊗, xFj ⟩, ⟨xTj ,⊗⟩

]
, m3 =

J
⃝
j=1

[
⟨xFj ,⊚⟩, ⟨⊚, xTj ⟩

]
, m5 =

J
⃝
j=1

[
⟨⊚, xFj ⟩, ⟨xTj ,⊚⟩

]
(48) 1120

Now, without loss of generality, let a satisfying solution to max-2-SAT have values x⋆j . We then construct 1121

two other lists of merges, which depend on this max-2-SAT solution: 1122

m2 =
J
⃝
j=1

[
⟨⊚, xTj⊗⟩ if x⋆j = T

⟨⊗xFj ,⊚⟩ else

]
, m4 =

J
⃝
j=1

[
⟨⊚xTj ,⊚⟩ if x⋆j = T

⟨⊚, xFj⊚⟩ else

]
(49) 1123

in words, we create merges ⟨⊚, xTj⊗⟩ and ⟨⊚xTj ,⊚⟩ if x⋆j is true, or ⟨⊗xFj ,⊚⟩ and ⟨⊚, xFj⊚⟩ if x⋆j is false. 1124

We then create a merge sequence by concatenating these lists in order: 1125

m = m1 ◦m2 ◦m3 ◦m4 ◦m5 (50) 1126

This gives us a total of |m| = K = 8J merges. Now we just need to count the symbols output by this 1127

solution to see if Eq. (17) is satisfied, since any given tokenisation tok↑[m] will provide an upper bound 1128

on the optimal tokenisation in terms of compression: 1129∑
c∈D

|tok↑[m](c)| ≥ min
m′∈M∗

∑
c∈D

|tok↑[m′](c)| (51) 1130

s.t. |m′| = K 1131
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c tok↑[m1](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4 ◦m5](c) |tok↑[m](c)|

⟨⊚, xTj ⟩ · ⟨⊚xTj ⟩ · 1
⟨xFj ,⊚⟩ · ⟨xFj⊚⟩ · 1
⟨xTj ,⊚⟩ · · ⟨xTj⊚⟩ 1
⟨⊚, xFj ⟩ · · ⟨⊚xFj ⟩ 1
⟨xTj ,⊗⟩ ⟨xTj⊗⟩ · · 1
⟨⊗, xFj ⟩ ⟨⊗xFj ⟩ · · 1

Table 1: Example of applying m in D1 of bottom-up tokenisation problem obtained from Reduction 2. The dot
symbol · denotes the string not changing under the given merge.

c tok↑[m1](c) tok↑[m1 ◦m2](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4](c) |tok↑[m](c)|

x⋆j = T x⋆j = F x⋆j = T x⋆j = F x⋆j = T x⋆j = F

⟨⊚, xTj ,⊚⟩ · · · ⟨⊚xTj ,⊚⟩ ⟨⊚xTj⊚⟩ ⟨⊚, xTj⊚⟩ 1 2
⟨⊚, xFj ,⊚⟩ · · · ⟨⊚, xFj⊚⟩ ⟨⊚, xFj⊚⟩ ⟨⊚xFj⊚⟩ 2 1
⟨⊚, xTj ,⊗⟩ ⟨⊚, xTj⊗⟩ ⟨⊚xTj⊗⟩ ⟨⊚, xTj⊗⟩ · · · 1 2
⟨⊗, xFj ,⊚⟩ ⟨⊗xFj ,⊚⟩ ⟨⊗, xFj⊚⟩ ⟨⊗xFj⊚⟩ · · · 2 1

Table 2: Example of applying m in D2 of bottom-up tokenisation problem obtained from Reduction 2. The dot
symbol · denotes the string not changing under the given merge.

By applying the merges m, each string in D1 will be compressed into a single subword; note that m21132

and m4 will have no effect on these strings. This is easy to see by applying merges sequentially to these1133

strings, as displayed in Tab. 1. leading to:1134

∑
c∈(

⋃f
_=1 D1)

|tok↑[m](c)| = 6fJ (52)1135

1136

For each pair of strings ⊚xTj⊚ and ⊚xFj⊚ in D2, one is compressed into a single subword while the1137

other is only compressed to two subwords—the one with xTj is compressed to a single symbol if x⋆j = T1138

and the one with xFj otherwise. The same is true for each pair of strings ⊚xTj⊗ and ⊗xFj⊚, also in D2.1139

This is displayed in Tab. 2. We thus have that, for each variable Xj , the strings in D2 will occupy a total1140

of (1 + 2 + 1 + 2)J characters, and:1141

∑
c∈(

⋃f
_=1 D1)

|tok↑[m](c)| = 6f ′J (53)1142

Similarly, each string in D3 and D4 will be compressed into only 2 symbols after this tokeniser is applied1143

to it. We thus have:1144

∑
c∈(

⋃f ′′
_=1 D3)

|tok↑[m](c)| = 4f ′′J,
∑

c∈(
⋃f ′′′

_=1 D4)

|tok↑[m](c)| = 4f ′′′J (54)1145

Finally, we have the strings in D5. These strings are constructed such that they will be compressed into 21146

symbols if either L1
i or L2

i evaluates to T, and kept with 3 symbols otherwise; see Tab. 4 for a detailed1147

16



D c tok↑[m1](c) tok↑[m1 ◦m2](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4](c) tok↑[m1 ◦m2 ◦m3 ◦m5](c) |tok↑[m](c)|

x⋆j = T x⋆j = F x⋆j = T x⋆j = F x⋆j = T x⋆j = F x⋆j = T x⋆j = F

D3 ⟨⊚, xTj ,⊚, xFj ,⊚⟩ · · · ⟨⊚xTj ,⊚, xFj⊚⟩ ⟨⊚xTj⊚, xFj⊚⟩ ⟨⊚xTj ,⊚xFj⊚⟩ · · 2
D3 ⟨⊗, xFj ,⊚, xTj ,⊗⟩ ⟨⊗xFj ,⊚, xTj⊗⟩ ⟨⊗xFj ,⊚xTj⊗⟩ ⟨⊗xFj⊚, xTj⊗⟩ · · · · · · 2
D4 ⟨⊚, xFj ,⊚, xTj ,⊗⟩ ⟨⊚, xFj ,⊚, xTj⊗⟩ ⟨⊚, xFj ,⊚xTj⊗⟩ · · ⟨⊚, xFj⊚, xTj⊗⟩ · ⟨⊚xFj⊚, xTj⊗⟩ ⟨⊚xFj ,⊚xTj⊗⟩ · 2
D4 ⟨⊗, xFj ,⊚, xTj ,⊚⟩ ⟨⊗xFj ,⊚, xTj ,⊚⟩ · ⟨⊗xFj⊚, xTj ,⊚⟩ ⟨⊗xFj ,⊚xTj ,⊚⟩ · ⟨⊗xFj ,⊚xTj⊚⟩ · · ⟨⊗xFj⊚, xTj⊚⟩ 2

Table 3: Example of applying m in D3 and D4 of the bottom-up tokenisation problem obtained from Reduction 2.
The dot symbol · denotes the string not changing under the given merge.

Assignment Condition c tok↑[m1](c) tok↑[m1 ◦m2](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4](c) |tok↑[m](c)|

L1
i = Xj and L2

i = ¬Xj′

x⋆j = T ∧ x⋆j′ = T

⟨⊚, xTj ,⊚, xFj′ ,⊚⟩

· ·

⟨⊚xTj ,⊚, xFj′⊚⟩

⟨⊚xTj⊚, xFj′⊚⟩ 2
x⋆j = F ∧ x⋆j′ = T · · ⟨⊚xTj ,⊚, xFj′⊚⟩ 3
x⋆j = T ∧ x⋆j′ = F · · ⟨⊚xTj⊚, xFj′⊚⟩ 2
x⋆j = F ∧ x⋆j′ = F · · ⟨⊚xTj ,⊚xFj′⊚⟩ 2

L1
i = ¬Xj and L2

i = Xj′

x⋆j = T ∧ x⋆j′ = T

⟨⊚, xTj′ ,⊚, xFj ,⊚⟩

· ·

⟨⊚xTj′ ,⊚, xFj⊚⟩

⟨⊚xTj′⊚, xFj⊚⟩ 2
x⋆j = F ∧ x⋆j′ = T · · ⟨⊚xTj′⊚, xFj⊚⟩ 2
x⋆j = T ∧ x⋆j′ = F · · ⟨⊚xTj′ ,⊚, xFj⊚⟩ 3
x⋆j = F ∧ x⋆j′ = F · · ⟨⊚xTj′ ,⊚xFj⊚⟩ 2

L1
i = ¬Xj and L2

i = ¬Xj′

x⋆j = T ∧ x⋆j′ = T

⟨⊗, xFj ,⊚, xFj′ ,⊚⟩ ⟨⊗xFj ,⊚, xFj′ ,⊚⟩

· ⟨⊗xFj ,⊚, xFj′⊚⟩ · 3
x⋆j = F ∧ x⋆j′ = T ⟨⊗xFj⊚, xFj′ ,⊚⟩ ⟨⊗xFj⊚, xFj′⊚⟩ · 2
x⋆j = T ∧ x⋆j′ = F · ⟨⊗xFj ,⊚, xFj′⊚⟩ ⟨⊗xFj ,⊚xFj′⊚⟩ 2
x⋆j = F ∧ x⋆j′ = F ⟨⊗xFj⊚, xFj′ ,⊚⟩ ⟨⊗xFj⊚, xFj′⊚⟩ · 2

L1
i = Xj and L2

i = Xj′

x⋆j = T ∧ x⋆j′ = T

⟨⊚, xTj ,⊚, xTj′ ,⊗⟩ ⟨⊚, xTj ,⊚, xTj′⊗⟩
⟨⊚, xTj ,⊚xTj′⊗⟩ ⟨⊚xTj ,⊚xTj′⊗⟩ ⟨⊚xTj ,⊚xTj′⊗⟩ 2

x⋆j = F ∧ x⋆j′ = T 2
x⋆j = T ∧ x⋆j′ = F · ⟨⊚xTj ,⊚, xTj′⊗⟩ ⟨⊚xTj⊚, xTj′⊗⟩ 2
x⋆j = F ∧ x⋆j′ = F · 3

Table 4: Example of applying m in D5 of the bottom-up tokenisation problem obtained from Reduction 2. The dot
symbol · denotes the string not changing under the given merge.

simulation of why this is the case. We thus have: 1148

∑
c∈D3

|tok↑[m](c)| =
∑
c∈D3


3− 11



L1
i = Xj and ⟨⊚, xTj⊗⟩, ⟨⊚xTj ,⊚⟩ ∈ m

or
L1
i = ¬Xj and ⟨⊗xFj ,⊚⟩, ⟨⊚, xFj⊚⟩ ∈ m

or
L2
i = Xj′ and ⟨⊚, xTj′⊗⟩, ⟨⊚xTj′ ,⊚⟩ ∈ m

or
L2
i = ¬Xj′ and ⟨⊗xFj′ ,⊚⟩, ⟨⊚, xFj′⊚⟩ ∈ m




(55a) 1149

= 3I −
I∑
i=1

1{L1
i ∨ L2

i } (55b) 1150

≤ 3I − ψ (55c) 1151

where, by construction, we have that a merge in our sequence (e.g., ⟨⊚, xTj⊗⟩ or ⟨⊗xFj ,⊚⟩), if and only if 1152

its value is in a satisfying assignment (e.g., x⋆j = T or x⋆j = F respectively). Summing together the lengths 1153

in Eqs. (52) to (55), we get that: 1154∑
c∈D

|tok↑[m](c)| ≤ δ = (6f + 6f ′ + 4f ′′ + 4f ′′′) J + 3 I − ψ (56) 1155

which concludes the proof. 1156

1157

D Proof of Lemma 7 1158

Lemma 7. If the bottom-up tokenisation instance output by Reduction 2 is satisfiable, the max-2-SAT 1159

instance which generated it is as well. Formally: 1160

Tok↑(R2(X ,L, ψ)) =⇒ M2S(X ,L, ψ) (27) 1161
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Proof. First, note that:1162 ∑
c∈D

|c| = (12f + 12f ′ + 10f ′′ + 10f ′′′) J + 5 I (57)1163

Further, let:1164

toklen(D,m)
def
=
∑
c∈D

|tok↑[m](c)|, m0 = m1 ◦m2 ◦m3 ◦m4 ◦m5 (58)1165

m1 = ⃝J
j=1[⟨⊗, xFj ⟩, ⟨xTj ,⊗⟩], m3 = ⃝J

j=1[⟨xFj ,⊚⟩, ⟨⊚, xTj ⟩], m5 = ⃝J
j=1[⟨⊚, xFj ⟩, ⟨xTj ,⊚⟩]1166

m2 = ⃝J
j=1

[
⟨⊚, xTj⊗⟩ if x⋆j = T

⟨⊗xFj ,⊚⟩ else

]
, m4 = ⃝J

j=1

[
⟨⊚xTj ,⊚⟩ if x⋆j = T

⟨⊚, xFj⊚⟩ else

]
1167

m⊚
j =

{
⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}
, m⊗

j =

{
⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩

}
1168

mT
j =

{
⟨⊚xTj ,⊚⟩, ⟨⊚, xTj⊗⟩,
⟨⊚, xTj⊚⟩, ⟨⊚xTj ,⊗⟩,

}
, mF

j =

{
⟨⊚, xFj⊚⟩, ⟨⊗xFj ,⊚⟩,
⟨⊚xFj ,⊚⟩, ⟨⊗, xFj⊚⟩,

}
1169

The maximum number of symbols in this dataset after compression is set to δ = (6f+6f ′+4f ′′+4f ′′′) J+1170

3 I−ψ. This means that to satisfy this objective, there must exist a vocabulary whose tokeniser compresses1171

the text by at least (6f + 6f ′ + 6f ′′ + 6f ′′′) J + 2I + ψ symbols. We now prove this lemma in five1172

steps: 1 we show that any solution which compresses the text by at least 6fJ symbols must include1173

all merges in m1, m3, and m5; 2 we show that any solution which compresses the text by at least1174

(6f + 6f ′)J symbols must only include either merges in m1, m3, m5, or in either m⊚
j or m⊗

j ; 3 we1175

show that any solution which compresses the text by at least (6f + 6f ′ + 6f ′′)J symbols must include,1176

for each j ∈ {1, J}, exactly one merge in set m⊚
j and one in set m⊗

j ; 4 we show that any solution which1177

compresses the text by at least (6f + 6f ′ + 6f ′′ + 6f ′′′)J symbols must include, for each j ∈ {1, J},1178

exactly two merge in either set mT
j or in set mF

j ; 5 we show that any solution which compresses the1179

text by at least (6f + 6f ′ + 4f ′′ + 4f ′′′)J + 6f ′′ + 6f ′′)J + 2I + ψ symbols must be produced by a1180

max-2-SAT problem with at least ψ satisfied clauses.1181

LemmaProofStep 1. (Step 1 ). Any solution which compresses the text by at least 6fJ symbols must1182

include all merges in m1, m3, and m5, i.e.,:1183 (
toklen(D,m) ≤ 6fJ + (12f ′ + 10f ′′ + 10f ′′′) J + 5 I︸ ︷︷ ︸∑

c∈D |c|−6fJ

)
(59)1184

=⇒ ⃝J
j=1[⟨⊗, xFj ⟩, ⟨xTj ,⊗⟩]︸ ︷︷ ︸

m1

⊂ m, ⃝J
j=1[⟨xFj ,⊚⟩, ⟨⊚, xTj ⟩]︸ ︷︷ ︸

m3

⊂ m, ⃝J
j=1[⟨⊚, xFj ⟩, ⟨xTj ,⊚⟩]︸ ︷︷ ︸

m5

⊂ m1185

Proof. We prove this statement by contradiction. Assume that one of the subwords above is not present1186

in the tokenisers’ merge sequence m. In that case, the strings in D1 which contain this character string1187

will not be compressed, and will thus still be represented with 2 symbols. There will thus be at most1188

6J − 1 strings in D1 represented with a single symbol, and at least one represented with two symbols.1189

The minimum length achievable would thus be:1190

toklen(D,m) =
∑

c∈
⋃f

_=1 D0

|tok↑[m](c)|

︸ ︷︷ ︸
≥(6J−1)f+2f

+
∑

c∈D\(
⋃f

_=1 D0)

|tok↑[m](c)|

︸ ︷︷ ︸
>0

(60a)1191

> (6J + 1)f By construction f = (12f ′ + 10f ′′ + 10f ′′′) J + 5I
(60b)

1192

= (6f + 12f ′ + 10f ′′ + 10f ′′′) J + 5I (60c)1193

which contradicts the proofs statement.1194

18



LemmaProofStep 2. (Step 2 ). Any solution which compresses the text by at least (6f + 6f ′)J symbols 1195

must only include either merges in m1, m3, m5, or in either m⊚
j or m⊗

j , i.e.,: 1196(
toklen(D,S) ≤ (6f + 6f ′)J + (10f ′′ + 10f ′′′) J + 5 I︸ ︷︷ ︸∑

c∈D |c|−(6f+6f ′)J

)
(61) 1197

=⇒ m \ (m1 ◦m3 ◦m5) ⊆
{
⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩, ⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩, ⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}J
j=1︸ ︷︷ ︸⋃J

j=1(m
⊚
j ∪m⊗

j )

1198

Proof. We again prove this statement by contradiction. Assume that m has all merges m1,m3,m5, but 1199

one of its other merges is in neither of the sets m⊚
j and m⊗

j . This means that at least one of the sets 1200

m⊚
j and m⊗

j will have no merge in the solution; this is because there are 2J such sets, which—coupled 1201

together with the 6J already selected merges in m1,m3,m5—would amount to the maximum of 8J 1202

merges. In that case, the strings (e.g., ⊚xTj⊚, ⊚xFj⊚, ⊚xTj⊗ and ⊗xFj⊚) in D2 containing the characters 1203

this absent merge represents will not be fully compressed to a single symbol, being represented with 2 1204

symbols instead. There will thus be at most 6J − 1 strings in D2 represented with a single symbol, and at 1205

least one represented with two symbols. The minimum length achievable would thus be: 1206

toklen(D,m) =
∑

c∈
⋃f

_=1 D1

|tok↑[m](c)|

︸ ︷︷ ︸
=6fJ

+
∑

c∈
⋃f ′

_=1 D2

|tok↑[m](c)|

︸ ︷︷ ︸
≥(6J−1)f ′+2f ′

+
∑

c∈D\(D1∪D2)

|tok↑[m](c)|

︸ ︷︷ ︸
>0

(62a) 1207

> 6fJ + (6J + 1)f ′ By construction f ′ = (10f ′′ + 10f ′′′) J + 5I (62b) 1208

= (6f + 6f ′ + 10f ′′ + 10f ′′′) J + 5 I (62c) 1209

which contradicts the proofs statement. 1210

LemmaProofStep 3. (Step 3 ). Any solution which compresses the text by at least (6f + 6f ′ + 6f ′′)J 1211

symbols must include all merges in m1, m3, m5, and, for each j ∈ {1, J}, exactly one merge in set m⊚
j 1212

and one in set m⊗
j , i.e.,: 1213(

toklen(D,m) ≤ (6f + 6f ′ + 4f ′′)J + 10f ′′′ J + 5 I︸ ︷︷ ︸∑
c∈D |c|−(6f+6f ′+6f ′′)J

)
(63) 1214

=⇒ ∀j∈{1,...,J}
∣∣∣∣m ∩

{
⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}
︸ ︷︷ ︸

m⊚
j

∣∣∣∣ = 1 and

∣∣∣∣m ∩
{
⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩

}
︸ ︷︷ ︸

m⊗
j

∣∣∣∣ = 1 1215

Proof. We again prove this statement by contradiction. First, assume that m contains all the merges in 1216

m1,m3,m5; further, assume all its other merges are contained in sets m⊚
j and m⊗

j . Note now that, if any 1217

merge in m⊗
j is in the selected merges m, the string ⊗xFj ⊚ xTj⊗ in D3 will be compressed to 2 symbols 1218

(e.g., ⟨⊗xFj ,⊚xTj⊗⟩); if none of these merges is present, however, this string will only be compressed 1219

to 3 symbols (e.g., ⟨⊗xFj ,⊚, xTj⊗⟩). The same is true for strings ⊚xTj ⊚ xFj⊚ and merges in m⊚
j . Now, 1220

assume the contradictory case: for a value of j ∈ {1, J}, m does not satisfy the condition above. As, by 1221

construction, our solution has K = 8J merges, and because |m1 ◦m3 ◦m5| = 6J , we know that we have 1222

2J merges in sets m⊚
j and m⊗

j . As there are exactly 2J such sets, if the condition above does not hold, at 1223

least one of these sets must have no merge present in m. In that case, the strings in D3 which contain the 1224

character string represented by these absent merges will be compressed to three symbols, while others 1225

will be compressed to two symbols. There will thus be at most 2J − 1 strings in D3 represented with two 1226

19



symbols, and at least one represented with three symbols. The minimum length achievable would thus be:1227

1228

toklen(D,m) =
∑

c∈
f⋃

_=1
D1∪

f ′⋃
_=1

D2

|tok↑[m](c)|

︸ ︷︷ ︸
=(6f+6f ′)J

+
∑

c∈
f ′′⋃

_=1
D3

|tok↑[m](c)|

︸ ︷︷ ︸
≥(2J−1)2f ′′+3f ′′

+
∑

c∈
f ′′′⋃
_=1

D4∪D5

|tok↑[m](c)|

︸ ︷︷ ︸
>0

(64a)1229

> (6f + 6f ′)J + (4J + 1)f ′′ By construction f ′′ = 10f ′′′ J + 5I
(64b)

1230

= (6f + 6f ′ + 4f ′′ + 10f ′′′) J + 5 I (64c)1231

which contradicts the proof’s statement.1232

LemmaProofStep 4. (Step 4 ). Any solution which compresses the text by at least (6f + 6f ′ + 6f ′′ +1233

6f ′′′)J symbols must include all merges in m1, m3, m5, and, for each j ∈ {1, J}, exactly one merge in1234

set m⊚
j and one in set m⊗

j , such that either both these merges are in mT
j or both are in mF

j , i.e.,:1235 (
toklen(D,m) ≤ (6f + 6f ′ + 4f ′′ + 4f ′′′)J + 5 I︸ ︷︷ ︸∑

c∈D |c|−(6f+6f ′+6f ′′+6f ′′′)J

)
(65)1236

=⇒ ∀j∈{1,...,J} |m ∩
{
⟨⊚xTj ,⊚⟩, ⟨⊚, xTj⊗⟩,
⟨⊚, xTj⊚⟩, ⟨⊚xTj ,⊗⟩,

}
︸ ︷︷ ︸

mT
j

| = 2 or |m ∩
{
⟨⊚, xFj⊚⟩, ⟨⊗xFj ,⊚⟩,
⟨⊚xFj ,⊚⟩, ⟨⊗, xFj⊚⟩,

}
︸ ︷︷ ︸

mF
j

| = 21237

(66)1238

Proof. First, note that the conditions of the step of our proof are stricter than previous ones, so we assume1239

the conditions of steps 1 to 3 hold—i.e., m contains all merges in m1,m3,m5; further, it has one and1240

only one merge from each set m⊚
j and m⊗

j . (Note that m⊚
j ∪m⊗

j = mT
j ∪mF

j , and that the just-mentioned1241

condition implies |m ∩ (mT
j ∪mF

j )| = 2.) We now again prove this statement by contradiction. Consider1242

now the case:1243 ∣∣∣∣m ∩
{
⟨⊚xTj ,⊚⟩, ⟨⊚, xTj⊗⟩,
⟨⊚, xTj⊚⟩, ⟨⊚xTj ,⊗⟩,

}
︸ ︷︷ ︸

mT
j

∣∣∣∣ = 2 or

∣∣∣∣m ∩
{
⟨⊚, xFj⊚⟩, ⟨⊗xFj ,⊚⟩,
⟨⊚xFj ,⊚⟩, ⟨⊗, xFj⊚⟩,

}
︸ ︷︷ ︸

mF
j

∣∣∣∣ = 2 (67)1244

If this is true, then strings ⊚xFj ⊚ xTj⊗ and ⊗xFj ⊚ xTj⊚ in D4 will be compressed to 2 symbols each (e.g., to1245

⟨⊚xFj ,⊚xTj⊗⟩ and ⟨⊗xFj ,⊚xTj⊚⟩ or ⟨⊚xFj⊚, xTj⊗⟩ and ⟨⊗xFj⊚, xTj⊚⟩ ); if this condition is false, however,1246

one of these strings will only be compressed to 3 symbols (e.g., to ⟨⊚xFj ,⊚xTj⊗⟩ and ⟨⊗xFj ,⊚, xTj⊚⟩).1247

Now, assume the contradictory case: for a value of j ∈ {1, J}, m does not satisfy the condition above. In1248

that case, the strings in D4 for which the condition does not hold will be compressed to 3 + 2 symbols,1249

while others will be compressed to 2 + 2 symbols. There will thus be at most 2J − 1 strings in D41250

represented with two symbols, and at least one represented with three symbols. The minimum length1251

achievable would thus be:1252

toklen(D,m) =
∑

c∈
f⋃

_=1
D1∪

f ′⋃
_=1

D2∪
f ′′⋃

_=1
D3

|tok↑[m](c)|

︸ ︷︷ ︸
=(6f+6f ′+4f ′′)J

+
∑

c∈
f ′′′⋃
_=1

D4

|tok↑[m](c)|

︸ ︷︷ ︸
≥(2J−1)2f ′′′+3f ′′′

+
∑
c∈D5

|tok↑[m](c)|︸ ︷︷ ︸
>0

(68a)1253

> (6f + 6f ′ + 4f ′′)J + (4J + 1)f ′′′ By construction f ′′′ = 5I (68b)1254

= (6f + 6f ′ + 4f ′′ + 4f ′′′) J + 5 I (68c)1255

which contradicts the proof’s statement.1256
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LemmaProofStep 5. (Step 5 ). Any instance of the tokenisation problem with a solution which com- 1257

presses the text by at least (6f +6f ′+6f ′′+6f ′′)J +2I+ψ symbols must be produced by a max-2-SAT 1258

problem with at least ψ satisfied clauses, i.e.,: 1259(
toklen(D,S) ≤ (6f + 6f ′ + 4f ′′ + 4f ′′′)J + 3I − ψ︸ ︷︷ ︸∑

c∈D |c|−(6f+6f ′+6f ′′+6f ′′′)J−2I−ψ

)
=⇒ M2S(X ,L, ψ) 1260

Proof. Finally, we now know any solution with this compression must have—for any variable Xj—either 1261

two merges in mT
j or in mF

j (and never both). We can thus create a bijection Convm→x between the set 1262

of possible merge sequences respecting this condition, and the set of T/F assignments to SAT variables x : 1263

Convm→x (m) =

{
T if |m ∩mT

j | = 2

F if |m ∩mF
j | = 2

}J
j=1

(69) 1264

Further, note that merge sequences of this form (as shown in Eq. (42)) lead to exactly (6f + 6f ′ + 6f ′′ + 1265

6f ′′′)J symbols being compressed in datasets D1 to D4. To achieve the target compression, a solution 1266

must thus compress D5 by at least 2I + ψ symbols. Now note that for any string, e.g., ⊚xTj ⊚ xFj′⊚, in 1267

D5 we have three compression options: ⊚xTj⊚ and xFj′⊚ will be compressed, saving 3 symbols; ⊚xTj and 1268

⊚xFj′⊚ will be compressed, also saving 3 symbols; or only ⊚xTj and xFj′⊚ will be compressed saving only 1269

2 symbols. More specifically, ⊚xTj⊚ will be compressed to a single symbol if merge ⟨⊚, xTj⊚⟩ exists; 1270

similarly, ⊚xFj′⊚ will be compressed to a single symbol if merge ⟨⊚xFj′ ,⊚⟩ exists. They cannot both 1271

be compressed, however, as there is only one symbol ⊚ between the literals. We thus get a reduction 1272

of 3 symbols for each of these strings if at least one of its literals has an associated merge in m. Note 1273

thus that whenever a string ⊚xTj ⊚ xFj′⊚ is compressed by 3 symbols using merges m, the max-2-SAT 1274

disjunction Xj ∨ ¬Xj′ will also be satisfied by assignment x = Convm→x (m); similarly, whenever this 1275

string is only compressed by two symbols, the max-2-SAT disjunction will not be satisfied. A similar 1276

logic applies to all potential strings in D5: ⊚xTj ⊚ xFj′⊚, ⊚xTj′ ⊚ xFj⊚, ⊗xFj ⊚ xFj′⊚, and ⊚xTj ⊚ xTj′⊗. As 1277

our condition assumes a compression of at least 2I + ψ symbols, we know that we have at least ψ strings 1278

for which a literal has an associated merge. We can thus write: 1279

2I + ψ ≤ max
m∈M∗

∑
c∈D5

|c| − |tok↑[m](c)| (70a) 1280

=2I + max
m∈M∗

∑
c∈D5

1



(
xTj ∈ c

)
and

(
|mT

j ∩m| = 2
)

or(
xFj ∈ c

)
and

(
|mF

j ∩m| = 2
)

or(
xTj′ ∈ c

)
and

(
|mT

j′ ∩m| = 2
)

or(
xFj′ ∈ c

)
and

(
|mF

j′ ∩m| = 2
)


(70b) 1281

=2I + max
x ∈{0,1}J

I∑
i=1

1{L1
i ∨ L2

i } (70c) 1282

=⇒ M2S(X ,L, ψ) (70d) 1283

We thus know that, if a satisfying tokenisation solution exists, then the associated max-2-SAT problem 1284

will also be satisfiable. This concludes the proof. 1285
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