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Abstract
Training certifiably robust neural networks is an
important but challenging task. While many
algorithms for (deterministic) certified training
have been proposed, they are often evaluated on
different training schedules, certification meth-
ods, and systematically under-tuned hyperparam-
eters, making it difficult to compare their perfor-
mance. To address this challenge, we introduce
CTBENCH, a unified library and a high-quality
benchmark for certified training that evaluates
all algorithms under fair settings and systemati-
cally tuned hyperparameters. We show that (1)
almost all algorithms in CTBENCH surpass the
corresponding reported performance in literature
in the magnitude of algorithmic improvements,
thus establishing new state-of-the-art, and (2) the
claimed advantage of recent algorithms drops sig-
nificantly when we enhance the outdated baselines
with a fair training schedule, a fair certification
method and well-tuned hyperparameters. Based
on CTBENCH, we provide new insights into the
current state of certified training, including (1)
certified models have less fragmented loss sur-
face, (2) certified models share many mistakes,
(3) certified models have more sparse activations,
(4) reducing regularization cleverly is crucial for
certified training especially for large radii and (5)
certified training has the potential to improve out-
of-distribution generalization. We are confident
that CTBENCH will serve as a benchmark and
testbed for future research in certified training.

1. Introduction
As a crucial component of trustworthy artificial intelligence,
adversarial robustness (Szegedy et al., 2014; Goodfellow
et al., 2015), i.e., resilience to small input perturbations, has
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established itself as an important research area. While ini-
tially the community focused on heuristic methods to craft
adversarial examples and defenses against them, it turned
out that such defenses are often brittle and can be evaded
by adaptive adversaries (Athalye et al., 2018; Tramèr et al.,
2020). Thus, neural network certification has emerged as a
method for providing provable guarantees on the robustness
of a given network (Gehr et al., 2018; Wong & Kolter, 2018;
Zhang et al., 2018; Singh et al., 2019).

Two families of neural network certification methods have
been proposed: complete methods (Katz et al., 2017; Tjeng
et al., 2019) which compute the exact bounds but are ex-
tremely computationally expensive, and convex-relaxation
based methods (Zhang et al., 2018; Singh et al., 2019) which
are more scalable but provide approximate bounds. State-
of-the-art (SOTA) verifiers (Xu et al., 2021; Ferrari et al.,
2022; Zhang et al., 2022) combine both approaches, by us-
ing convex relaxations to speed up the solving of complete
methods via Branch-and-Bound (Bunel et al., 2020).

However, the scalability of neural network certification is
still a major challenge since the computational complexity
of SOTA verifiers grows exponentially with network size.
To tackle this issue, certified training (Mirman et al., 2018;
Gowal et al., 2018) was proposed to train neural networks
that are amenable to certification. Such methods are typi-
cally categorized into two groups: (1) training with a sound
upper bound of the robust loss (Gowal et al., 2018; Zhang
et al., 2020; Shi et al., 2021), and (2) training with an un-
sound surrogate loss that approximates the exact robust loss
(Müller et al., 2023; Mao et al., 2023; De Palma et al., 2024).
The latter group has been shown to be more effective.

While certified training has made significant advances, there
is currently no benchmark that can be used to fairly evaluate
the effectiveness of the different certified training methods.
Specifically, the literature often compares against previous
methods using quoted numbers due to high computational
costs, although the verifier and certification budget differ.
These unfair comparisons ultimately hinder the community
from drawing reasonable conclusions on the effectiveness
of certified training methods. In addition, existing works
systematically under-tune hyperparameters, in order to show
effectiveness against baselines, thus establishing a weaker
SOTA. Further, there is no unified codebase for these meth-
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Figure 1: Reduction in certified error on MNIST ϵ = 0.3
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ods, making future development and comparison difficult.

This work: a Unified Library and High-quality Bench-
mark for Certified Training We address these challenges,
for the first time unifying SOTA certified training methods
into a single codebase called CTBENCH. This enables a
fair comparison between certified training methods and re-
establishes a much stronger SOTA by fixing problematic
implementations and systematically tuning hyperparame-
ters. As shown in Figure 1, these steps lead to significant
improvements uniformly. In addition, we show that the
claimed advantage of recent SOTA reduces significantly
when we apply the same budget and hyperparameter tuning
to all methods. Based on our released model checkpoints,
we provide an extensive analysis of the model properties,
highlighting many new insights on its loss landscape, mis-
take patterns, regularization strength, model utilization, and
out-of-distribution generalization. We are confident that
CTBENCH will serve as a benchmark and testbed for future
work in certified training.

2. Related Work
We now briefly review works mostly related to ours.

Benchmarking Certified Robustness Li et al. (2023) pro-
vides the first benchmark for certified robustness, covering
not only deterministic certified training but also random-
ized certified training and certification methods. However,
it is outdated and thus provides little insight into the cur-
rent SOTA methods. For example, it reports 89% and 51%
best certified accuracy for MNIST ϵ = 0.3 and CIFAR-10
ϵ = 2

255 in its benchmark, respectively, while recent meth-
ods have achieved more than 93% and 62% (Müller et al.,
2023; Mao et al., 2023; De Palma et al., 2024).

Certified Training DIFFAI (Mirman et al., 2018) and
IBP (Gowal et al., 2018) apply box relaxation to upper
bound the worst-case loss for training. Efforts have been
made towards applying more precise approximations: Wong
et al. (2018) and Balunovic & Vechev (2020) apply DEEPZ

(Singh et al., 2018), and Zhang et al. (2020) incorporate
linear relaxations (Zhang et al., 2018; Singh et al., 2019).
While these approximations are more precise (Baader et al.,
2024; Mao et al., 2025), they often lead to worse training
results, attributed to non-smoothness (Lee et al., 2021), dis-
continuity and sensitivity (Jovanović et al., 2022) of the loss
surface. Some recent work (Balauca et al., 2024) aims to
mitigate these problems, however, the most effective train-
ing approximation is still the least precise box relaxation. In
this regard, the focus of the community has shifted towards
improving IBP: Shi et al. (2021) propose a new regulariza-
tion and initialization paradigm to speed up IBP training;
De Palma et al. (2022) apply IBP regularization to make
adversarial training certifiable; Müller et al. (2023), Mao
et al. (2023) and De Palma et al. (2024) propose unsound but
more effective IBP-based surrogate losses for training; Mao
et al. (2024) propose to use wider models instead of deeper
models for IBP-based methods. These methods achieve
universal advantages over non-IBP-based methods, and are
thus the focus of our work.

3. Background
We now introduce the necessary background for our work,
both concepts and training algorithms.

3.1. Training for Robustness

We present the mathematical notations on adversarial and
certified training here. We consider a neural network classi-
fier fθ(x) that estimates the log-probability of each class and
predicts the class with the highest estimated log-probability.

Adversarial Training A classifier fθ(x) is said to be
adversarially robust with radius ϵ w.r.t. Lp perturbation
if fθ(x + δ) = y for all ∥δ∥p ≤ ϵ, where y is the
ground truth label of x. Finding an adversarially robust
classifier is formally defined to solve a min-max problem
θ = argminθ Ex,y max∥δ∥p≤ϵ L(x+ δ). In this regard, ad-
versarial training solves the inner maximization problem
by generating adversarial examples during training, and the
outer minimization problem by optimizing the empirical
loss of adversarial examples.

Certified Training A classifier fθ(x) is said to be cer-
tifiably robust if it is adversarially robust and there ex-
ists a sound verifier that certifies the robustness. A ver-
ifier typically computes an upper bound on the margin
fi(x + δ) − fy(x + δ) and certifies its robustness if the
upper bound is negative for all i ̸= y. Certified training
thus replaces the inner maximization problem with an up-
per bound and minimizes the upper bound during training
instead. Since existing certified training algorithms focus
solely on L∞ distance, we only consider L∞ perturbations
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Figure 2: Conceptual overview of core algorithms built into CTBENCH.

in this work and omit the distance type in the notation.

Metrics The main metric for certified training is certified
accuracy, defined to be the ratio of certifiably robust sam-
ples in the dataset; certified error is defined as one minus the
certified accuracy. The ratio of correctly classified samples
in the dataset is thus called natural accuracy. For reference,
we include adversarial accuracy as well, defined to be the
ratio of adversarially robust samples in the dataset. We ap-
ply one of the most widely used SOTA certification methods,
MN-BAB (Ferrari et al., 2022), as the verifier. To compute
adversarial accuracy, we apply the strong AUTOATTACK
(Croce & Hein, 2020) for adversarially trained models, and
a combination of PGD attack and branch-and-bound at-
tack from MN-BAB for certifiably trained models. Both
attacks have similar empirical strengths, with the latter be-
ing slightly stronger on models trained by certified training
algorithms due to the completeness of the branch-and-bound
attack.

3.2. Algorithms in CTBENCH

Now we briefly introduce the core algorithms built into CT-
BENCH. Concepts behind them are visualized in Figure 2.
A theoretical complexity analysis is provided in Table 11 in
App. C.6.

PGD and EDAC Projected Gradient Descent
(PGD) (Madry et al., 2018) is the most widely rec-
ognized adversarial training method. Starting from a
randomly initialized point, PGD solves the inner maxi-
mization problem by iteratively taking a step towards the
gradient ascent direction and clipping the solution into
the valid perturbation set. Then, it uses the generated
adversarial input x′ to lower bound the worst case loss as
L(x′). Croce & Hein (2020) find that PGD-trained models
remains effective against strong attacks, thus it is popular
as an integrated part of many certified training methods
(Müller et al., 2023; Mao et al., 2023; De Palma et al.,
2024). To further improve adversarial robustness, Zhang
et al. (2023) improves adversarial generalization via an

extra-gradient method called EDAC, which remains one of
the SOTA methods in adversarial training. These methods
achieve good but uncertifiable adversarial robustness, hence
we use them as adversarial robustness baselines.

IBP Interval Bound Propagation (IBP) (Mirman et al.,
2018; Gowal et al., 2018) uses interval analysis to approx-
imate the output range of each layer. For example, for the
toy network y = 2 − ReLU(x1 + x2) with input bounds
x1, x2 ∈ [−1, 1], it first computes the output range of the
first layer as x1 + x2 ∈ [−1, 1] + [−1, 1] ⊆ [−2, 2], the
second layer as ReLU([−2, 2]) ⊆ [0, 2] and then final layer
as 2 − [0, 2] ⊆ [0, 2], thus proving y ≥ 0 for all possible
x1, x2 ∈ [−1, 1]. Similarly, IBP computes the layer-wise
bounds and then derives an upper bound of the worst-case
loss based on the output bounds of the final layer. To stably
train models with IBP, Shi et al. (2021) propose to rescale
the parameter initialization to ensure constant growth of
IBP bounds and a specialized regularization to control the
activation status of neurons. They also show that adding
a batch norm (Ioffe & Szegedy, 2015) layer before every
ReLU layer can improve IBP training. These training tricks
are adopted by every IBP-based method introduced below.
For brevity, we refer to this variant as IBP in the rest of the
paper unless otherwise stated, since it improves the original
IBP universally with tricks that facilitate training.

CROWN-IBP CROWN-IBP (Zhang et al., 2020) tight-
ens the imprecise interval analysis with linear relaxations of
ReLU layers based on IBP bounds and only solves the lin-
ear constraints for the final layer output based on CROWN
(Zhang et al., 2018), avoiding prohibitive costs during train-
ing. To further reduce the cost of solving the bounds for
each class, Xu et al. (2020) propose a loss fusion trick to
only solve for the final loss, thus reducing the asymptotic
complexity by a factor equal to the number of classes. For
brevity, we refer to this variant as CROWN-IBP in the
rest of the paper unless otherwise stated, since the original
CROWN-IBP cannot scale to datasets with many classes,
such as TINYIMAGENET.
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SABR Since IBP is often criticized for the increasingly
strong regularization w.r.t. input radius imposed on the
neural network, SABR (Müller et al., 2023) proposes to
use IBP only for a carefully chosen small box inside the
original input box for IBP training. More specifically, it
first conducts a PGD attack in the input domain to find
an approximately worst-case input, and then takes the sur-
rounding small box with radius λϵ around the found input as
the input box for IBP training, where λ is a pre-defined ra-
tio. For exceptional cases (specifically CIFAR-10 ϵ = 2

255 ),
SABR further shrinks the output box of every ReLU to-
wards zero by a pre-defined constant to further reduce the
regularization.

TAPS and STAPS Observing that IBP relaxation error
grows exponentially w.r.t. model depth (Müller et al., 2023;
Mao et al., 2024), TAPS (Mao et al., 2023) proposes to split
the network into two subparts, using IBP for the first subpart
and PGD for the other. This way, the over-approximation
from IBP and the under-approximation from PGD partially
cancel out, yielding a more precise approximation of the
worst-case loss. Further, TAPS uses a separate PGD attack
to estimate the bounds of every class to align better with the
certification objective. STAPS (Mao et al., 2023) combines
TAPS with SABR by using the adversarial small box for
TAPS training, thus further reducing regularization.

MTL-IBP De Palma et al. (2024) formalizes a family of
surrogate loss functions that interpolate between PGD and
IBP training. We study MTL-IBP, one of the most effective
algorithms in this family. MTL-IBP linearly interpolates
between PGD loss and IBP loss, i.e., L = (1− τ)LPGD +
τLIBP, where τ is the pre-defined IBP coefficient. To allow
more fine-grained control of the interpolation, MTL-IBP
uses a larger input radius for the PGD attack for CIFAR-10
when ϵ = 2

255 .

4. A Unified Library and High-quality
Benchmark for Certified Training

We now discuss CTBENCH, both the unified library and the
corresponding benchmark.

4.1. The CTBENCH library

We implement every algorithm described in Section 3.2
in a unified framework. The training loss is composed of
three components: the natural loss which measures per-
formance on clean inputs, the robust loss which measures
robust performance depending on the concrete algorithms
and regularization losses which are used to stabilize training
and improve generalization. Formally, the training loss is
defined as L = (1−wrob)Lnat+wrobLrob+Lreg. We mainly
use L1 regularization to reduce overfitting and the warmup

regularization proposed by Shi et al. (2021) to improve cer-
tified training methods. The IBP initialization (Shi et al.,
2021) is applied for every certified training method, while
adversarial training is initialized with Kaiming uniform (He
et al., 2015). Every method has a warmup phase where ϵ is
increased from 0 to the target value and a fine-tuning phase
where the model continues to train at the targeted ϵ to con-
verge. The learning rate is held constant during the warmup
phase and decayed twice in the fine-tuning phase with a
constant multiplier. We use CNN7 as the model architecture,
in agreement with recent literature (Shi et al., 2021; Müller
et al., 2023; Mao et al., 2023; De Palma et al., 2024).

Due to the importance of batch norm in certified training,
we consider it as a native part of CTBENCH. Specifically,
the best practice so far is to set batch norm statistics based
on the clean input and use this for computing IBP bounds.
However, we find several problematic implementations of
batch norm in the literature: (1) when gradient accumula-
tion is involved, the batch norm statistics are not updated
correctly, as sub-batch statistics are applied for training; (2)
batch norm statistics change more than once before taking
a gradient step, as typically the exponentially accumulated
statistics are used for conducting a PGD attack and thus
evaluating Lrob, while Lnat is evaluated with batch statistics.
The first problem makes gradient accumulation ineffective
since the quality of batch statistics depends highly on the
batch size, and the second problem prevents training with
wrob ∈ (0, 1) due to the varied parameters. To address the
first problem, we propose to use full batch statistics during
gradient accumulation, which leads to slim overheads but
allows arbitrary gradient accumulation, as a forward pass is
usually much cheaper than a full batch update in certified
training. To address the second problem, we conduct PGD
attacks with the batch statistics as well and evaluate every-
thing with the current batch statistics. This way, the batch
norm statistics are set once per batch just like standard train-
ing, allowing training with the combination of Lnat and Lrob.
We remark that the identified problems are systematically
ignored in the literature, thus may only be discovered by
carefully reading the implementations, which is infeasible
for most researchers.

In addition, we find that models trained with the hyperpa-
rameters reported in the literature frequently show strong
overfitting patterns. To remediate this, we conduct a magni-
tude search for L1 regularization until the train and valida-
tion performance roughly match. To further aid generaliza-
tion, we apply Stochastic Weight Averaging (Izmailov et al.,
2018) for methods that cannot provide metrics for model
selection, e.g., MTL-IBP. A more detailed description of
the implementation can be found in App. C.
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Table 1: CTBENCH results with comparison to the literature. We include the natural accuracy of standard training with CNN7

on each dataset for reference. The best numbers are in bold and those exceeding the literature results are underlined.

Dataset
ϵ∞ Training Method Source Nat. [%] Cert. [%] Adv. [%]

Std. Nat. [%] Literature CTBENCH Literature CTBENCH CTBENCH

MNIST

0.1

PGD / / 99.47 / ≈0† 98.97
EDAC / / 99.58 / ≈0† 98.95

IBP Shi et al. (2021) 98.84 98.87 97.95 98.26 98.27
CROWN-IBP Xu et al. (2020) 98.83 98.94 97.76 98.21 98.23

SABR Müller et al. (2023) 99.23 99.08 98.22 98.40 98.47
TAPS Mao et al. (2023) 99.19 99.16 98.39 98.52 98.58

STAPS Mao et al. (2023) 99.15 99.11 98.37 98.47 98.50
MTL-IBP De Palma et al. (2024) 99.25 99.18 98.38 98.37 98.44

99.50

0.3

PGD / / 99.43 / ≈0† 93.83
EDAC / / 99.51 / ≈0† 95.02

IBP Shi et al. (2021) 97.67 98.54 93.10 93.80 94.30
CROWN-IBP Xu et al. (2020) 98.18 98.48 92.98 93.90 94.29

SABR Müller et al. (2023) 98.75 98.66 93.40 93.68 94.46
TAPS Mao et al. (2023) 97.94 98.56 93.62 93.95 94.66

STAPS Mao et al. (2023) 98.53 98.74 93.51 93.64 94.36
MTL-IBP De Palma et al. (2024) 98.80 98.74 93.62 93.90 94.55

CIFAR-10

2
255

PGD / / 88.67 / ≈0† 72.41
EDAC / / 89.18 / ≈0† 72.42

IBP Shi et al. (2021) 66.84 67.49 52.85 55.99 56.10
CROWN-IBP Xu et al. (2020) 71.52 67.60 53.97 57.11 57.28

SABR Müller et al. (2023) 79.24 77.86 62.84 63.61 65.56
TAPS Mao et al. (2023) 75.09 74.44 61.56 61.27 62.62

STAPS Mao et al. (2023) 79.76 77.05 62.98 64.21 66.09
MTL-IBP De Palma et al. (2024) 80.11 78.82 63.24 64.41 67.69

91.27

8
255

PGD / / 78.71 / ≈0† 35.93
EDAC / / 78.95 / ≈0† 42.48

IBP Shi et al. (2021) 48.94 48.51 34.97 35.28 35.48
CROWN-IBP Xu et al. (2020) 46.29 48.25 33.38 32.59 32.77

SABR Müller et al. (2023) 52.38 52.71 35.13 35.34 36.11
TAPS Mao et al. (2023) 49.76 49.96 35.10 35.25 35.69

STAPS Mao et al. (2023) 52.82 51.49 34.65 35.11 35.54
MTL-IBP De Palma et al. (2024) 53.35 54.28 35.44 35.41 36.02

TINYIMAGENET 1
255

PGD / / 46.78 / ≈0† 33.16
EDAC / / 46.79 / ≈0† 33.16

IBP Shi et al. (2021) 25.92 26.77 17.87 19.82 19.84
CROWN-IBP Xu et al. (2020) 25.62 28.44 17.93 22.14 22.31

47.96 SABR Müller et al. (2023) 28.85 30.58 20.46 20.96 21.16
TAPS Mao et al. (2023) 28.34 28.64 20.82 21.58 21.71

STAPS Mao et al. (2023) 28.98 30.63 22.16 22.31 22.57
MTL-IBP De Palma et al. (2024) 37.56 35.97 26.09 27.73 28.49

† None of the first 10 samples are certified due to the time limit of 1000 seconds per sample.

4.2. The CTBENCH benchmark

Table 1 shows the results of CTBENCH using the method-
ology described in Section 4.1. We further include the
average and standard deviation obtained from independent
runs in App. D.1, to validate the significance of our results.
We find that CTBENCH achieves consistent improvements
in certified accuracy for almost all settings, accompanied
by increases in natural accuracy in most cases. In par-
ticular, it establishes the new SOTA by a margin match-
ing algorithmic advances everywhere except CIFAR-10
ϵ = 8

255 , where we have 0.03% lower certified accuracy
compared to De Palma et al. (2024) but 0.93% higher nat-
ural accuracy. This proves the effectiveness of our im-
plementation and the importance of setting batch norm

statistics properly in certified training. We also observe
the following: (1) when ϵ is large, the claimed advantage
of recent SOTA over IBP drops significantly, e.g., from
(100−93.10)/(100−93.62)−1 = 8.15% relative certified
error reduction to (100−93.8)/(100−93.95)−1 = 2.48%
on MNIST ϵ = 0.3; (2) when the model has sufficient ca-
pacity, e.g., on MNIST ϵ = 0.1, certified training can get
close to the natural accuracy of standard training (99.18%
for MTL-IBP vs 99.50% for standard training), and they
also get similar adversarial accuracy to adversarial training
(98.58% for TAPS vs 98.95% for EDAC), while certified
accuracy is boosted (98.52% for TAPS vs almost 0% for
EDAC); (3) when ϵ is large, certified training even gets
better adversarial accuracy than PGD training (94.66% for

5



CTBENCH: A Library and Benchmark for Certified Training

TAPS vs 93.83% for PGD on MNIST ϵ = 0.3 and 36.11%
for SABR vs 35.93% for PGD on CIFAR-10 ϵ = 8

255 ), but
there is still a gap between the adversarial accuracy of the
SOTA adversarial training methods and that of the SOTA
certified training methods, as well as a similar gap for natu-
ral accuracy. We further include a comparison on another
architecture, CNN5, between CTBENCH and the implemen-
tation of De Palma et al. (2024) in App. D.2, to validate the
stability of CTBENCH results across architectures.

5. Evaluating and Understanding Certified
Models

We now preform an extensive evaluation on models trained
with CTBENCH. Our evaluation provides insights into
the current state of certified training and addresses sev-
eral key questions, including the loss fragmentation (Sec-
tion 5.1), shared mistakes (Section 5.2), model utilization
(Section 5.3), regularization strength (Section 5.4), and out-
of-distribution generalization (Section 5.5).

5.1. Loss Fragmentation

ReLU networks are known to have a fragmented loss sur-
face over the input space, due to the activation switch of
neurons. Fragmentation leads to a non-smooth loss surface
and increases the difficulty of finding a good approximation
of the worst-case loss via gradient-based methods like PGD.
Further, SOTA complete certification algorithms relies on
branching on different linear regions, and reducing the num-
ber of linear regions reduces the certification difficulty. Due
to these reasons, in this section, we investigate the frag-
mentation of loss surfaces in certified models. Specifically,
we answer: (1) do certified models have less fragmenta-
tion, thus easing adversarial search, and (2) how does the
fragmentation change w.r.t. ϵ?

Fragmentation is closely related to the number of unstable
neurons, i.e., neurons that switch activation status in the
neighborhood, as all fragments are defined by a group of
unstable neurons. Vice versa, in most cases, a switching
neuron introduces at least one fragmentation since every
activation pattern defines a local linear function. Therefore,
we can quantify the fragmentation by the ratio of unstable
neurons. Since the exact ratio is NP-complete to compute,
we use a heuristic but effective method to estimate it: first,
a group of inputs is sampled in the input box; second, these
inputs are fed into the model to get the corresponding activa-
tion pattern; finally, we count the ratio of unstable neurons
observed in the sampled activations. This method always es-
tablishes a lower bound of the true ratio and gets arbitrarily
close when sample size is large enough. In our experiments,
we sample the noise 50 times from a standard Gaussian
clipped to [−1, 1] and rescale it by ϵ. This sampling fo-
cuses more on the neighborhood of the clean input and the

Table 2: Observed count of common mistakes of models
on MNIST against their expected values assuming indepen-
dence across model mistakes.

# models succeeded
0 1 2 3 4 5 6

ϵ = 0.1
obs. 93 25 21 30 32 56 9743
exp. 0 0 0 1 37 900 9062

ϵ = 0.3
obs. 452 73 53 51 80 111 9180
exp. 0 0 2 39 445 2698 6816

boundary of the input box, where new fragments appear
most likely. We find this sampling process extremely effec-
tive; empirically the ratio of unstable neurons observed is
very close to the upper bounds derived by IBP for certified
models.

Figure 3 shows the result of certified models trained at
ϵ = 0.1 and ϵ = 0.3 on MNIST, respectively. We eval-
uate the fragmentation of every model at both ϵ = 0.1
and ϵ = 0.3. First, we observe that both adversarial train-
ing and certified training greatly reduce loss fragmentation
compared to standard training, even though many certified
training algorithms involve no adversarial attacks. Second,
comparing different training methods within each group
of and , we observe that certified training consistently
has significantly less fragmentation than adversarial train-
ing when evaluated at the train radius, e.g., IBP reduces
fragmentation by 3x compared to EDAC when trained and
evaluated at ϵ = 0.1, facilitating the approximation of the
worst case loss via adversarial attacks. This is consistent
with the practice where a weak single-step attack is adopted
in certified training (De Palma et al., 2024), resulting in sim-
ilar performance as strong attacks but improved efficiency.
Third, comparing models trained at different ϵ ( vs and

vs ), we observe that further increasing training ϵ does
not necessarily reduce fragmentation, yet the trend is con-
sistent with adversarial training. These observations prove
that certified training can further boost the fragmentation
reduction effect of adversarial training, thus introducing
more local smoothness into the model. Consistent results
on CIFAR-10 are included in App. D.4 as Figure 9.

5.2. Shared Mistakes

We now study the correlation between certified models,
specifically: do certified models share common mistakes?

We consider models trained by six certified training methods
on MNIST at ϵ = 0.1 and ϵ = 0.3 and calculate the dis-
tribution of their common mistakes. Specifically, we count
the number of models that successfully certify the input,
for each sample in the test set containing 10k samples. The
observed value is compared with the expected value, defined
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Figure 3: Ratio of unstable neurons for models trained on MNIST with different methods and ϵ.

as expected counts when models with the same certified ac-
curacy make mistakes independently (rounded to the closest
integer if necessary), e.g., two models with 90% certified
accuracy are expected to have 81% of inputs certified by
both. The result is shown in Table 2. Accordingly, certified
models share many mistakes, as the number of samples that
are certified by none of these models systematically exceeds
the expected value. In addition, the number of samples that
are certified by all six models is much larger than the corre-
sponding expected value as well. These facts suggest that
there could be an intrinsic difficulty score for each input,
thus curriculum learning (Bengio et al., 2009; Ionescu et al.,
2016) could be a promising direction to improve certified
training. This phenomenon is also observed across differ-
ent certification methods, different model architectures and
different datasets, as shown in App. D.3, confirming that
this is not a context-specific property but rather an intrinsic
property of certified models.

5.3. Model Utilization

Model utilization represents how much the model capacity
is utilized for the task. IBP is shown to systematically deac-
tivate neurons (Shi et al., 2021) to gain precision. However,
it is not yet clear whether more advanced certified training
methods deactivate fewer neurons, thus utilizing the model
capacity better.

We define model utilization to be the ratio of neurons acti-
vated by the clean input. Figure 4 visualizes the result for
models trained on MNIST at ϵ = 0.1 and ϵ = 0.3. Surpris-
ingly, we find that more advanced certified training methods,
TAPS and MTL-IBP, deactivate more neurons than IBP
on MNIST ϵ = 0.1. This is previously believed to be detri-
mental (Shi et al., 2021), but these models achieve better
natural and certified accuracy than IBP. Interestingly, these
methods, but not IBP, can retain more utilization on ϵ = 0.3
for better performance where IBP struggles to keep high
natural accuracy. Further, we observe that the advanced ad-
versarial training method, EDAC, shows similar behaviors

to TAPS and MTL-IBP, and gets higher adversarial accu-
racy than PGD. This suggests that the ability to adaptively
keep necessary utilization could be crucial to both adver-
sarial and certified robustness. Since dying neurons (Lu
et al., 2019) are hard to activate again, future work on better
warmup (Shi et al., 2021) could be beneficial, as IBP still
struggles to keep necessary model utilization even with the
improvements by Shi et al. (2021). More results on CIFAR-
10 are included in App. D.4 as Figure 10. There, however,
all certified training methods cannot activate more neurons
when ϵ is large, just like IBP in MNIST, while adversarial
training methods show similar behavior to MNIST. This
suggests that the current certified training methods have not
fully solved the utilization problem, especially when ϵ is
large.

5.4. Regularization Strength

Previous work (Mao et al., 2024) has shown that IBP bounds
are close to optimal bounds for IBP-based certified training,
and this condition is established via strong constraints on the
model parameters. They quantify this regularization effect
by propagation tightness, defined to be the ratio between
the optimal bound radius and the IBP bound radius, approx-
imating the ReLU network locally with a linear replacement.
Intuitively, a close-to-1 propagation tightness means IBP
bounds approximately match the exact bounds, and a close-
to-0 propagation tightness means IBP bounds are far from
the exact bounds. In addition, a high propagation tightness
implies strong regularization itself. In this section, we ex-
tend the study of propagation tightness to more certified
training methods and investigate how it interacts with certi-
fied accuracy. Specifically, using propagation tightness as
the representative of regularization strength, we answer: (1)
does less regularization lead to better certified models, and
(2) how does the input radius ϵ affect this?

Figure 5 shows the interaction between certified accuracy
and propagation tightness for certified models trained on
MNIST and CIFAR-10. When ϵ is small (Figure 5a and
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Figure 4: Model utilization for models trained on MNIST with different methods and ϵ. We note that standard training has
42.99% utilization.
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Figure 5: Certified accuracy vs. propagation tightness for models trained on MNIST and CIFAR-10.

Figure 5c), certified accuracy has a perfectly negative corre-
lation with propagation tightness, i.e., better certified mod-
els exhibits less regularization consistently; the best models
have close-to-0 propagation tightness. However, when ϵ
is large (Figure 5b and Figure 5d), the correlation is not
as clear, and the best model in certified accuracy does not
necessarily have the lowest propagation tightness. Instead,
models with similar propagation tightness can have signif-
icantly different certified accuracy. Nevertheless, models
trained for larger radius exhibits much higher propagation
tightness. Therefore, we conclude that reducing regulariza-
tion strength cleverly is crucial for certified training, and the
effect is more pronounced when ϵ is small, while improper
reduction could hurt certified accuracy, especially when ϵ
is large. This is consistent with the observation made in
Müller et al. (2023) and De Palma et al. (2024) that the best
models for small ϵ often require much less regularization.

5.5. Out-of-Distribution Generalization

Out-of-distribution (OOD) generalization is closely related
to adversarial robustness (Gilmer et al., 2019). However,
the interaction between certified robustness and OOD gen-
eralization is not yet clear. We thus investigate the OOD
generalization of certified models and answer: (1) do certi-
fied models generalize to OOD data, and (2) how does this

compare to adversarial training?

We use MNIST-C (Mu & Gilmer, 2019) to evaluate OOD
generalization, defined to be the ratio between OOD accu-
racy and natural accuracy. MNIST-C includes 15 carefully
chosen corruptions, covering a broad range of corruptions
that are not covered by adversarial robustness while preserv-
ing the semantics. We evaluate models trained with both
adversarial training and certified training under ϵ = 0.1 and
ϵ = 0.3, and report the corresponding OOD accuracy of the
model trained via standard training. We note that none of
the models has seen these corruptions during training.

Figure 6 depicts the result of OOD generalization for each
model on all corruptions. We observe the following: (1)
certified training improves OOD generalization compared to
standard training except on the brightness corruption where
both adversarial and certified training fail; (2) certified train-
ing shows different OOD generalization patterns to adversar-
ial training, e.g., certified training boosts generalization on
the canny edges corruption while adversarial training wins
on the stripe corruption. In general, we find that certified
training either greatly boosts the OOD generalization or sig-
nificantly downgrades the OOD generalization depending
on the corruption, and the failure cases are usually those in
which adversarial training performs worse than or similarly
to standard training. Therefore, we hypothesize that these
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Figure 6: Out-of-distribution generalization evaluated on
MNIST-C for models trained on MNIST at ϵ = 0.3 (top),
ϵ = 0.1 (middle) and standard training (bottom).

corruptions are at odds with adversarial robustness. Further,
different training ϵ does not significantly affect the OOD
generalization except few cases, and ranking in certified
accuracy does not show strong correlations with the ranking
in OOD generalization. Overall, these results suggest that
certified training has the potential to improve OOD gen-
eralization to corruptions that standard training struggles
with, and the effect is exaggerated when adversarial train-
ing improves over standard training. Consistent results on
CIFAR-10-C (Hendrycks & Dietterich, 2019) are included
in App. D.4 as Figure 11.

6. Discussion
Future Directions Section 5.1 shows that certified train-
ing consistently reduces loss fragmentation, which also ben-
efits adversarial attacks. Therefore, future works may ex-
plore architectures and training algorithms that explicitly
have little loss fragmentation. In addition, Section 5.2 shows
that certified models share mistakes on some hard samples,
thus curriculum learning with some well-defined difficulty
ranking could facilitate training, where optimization has
been known to be particularly hard (Jovanović et al., 2022).
Moreover, Section 5.3 shows that even the most advanced
certified training method, MTL-IBP, struggles to keep nec-
essary model utilization on large ϵ. Further, Section 5.4 finds
that reducing regularization has a different consequence in
small and large radius settings; while reducing regulariza-
tion benefits small radius, it risks decreased performance in

large radius settings. Overall, future work is still required to
improve the learning process of certified training. Despite
the challenges, Section 5.5 finds that certified models can
have surprising and qualitatively different improvement on
OOD generalization, which could be a promising applica-
tion for certified training beyond certified robustness.

Limitations We only consider deterministic certified train-
ing in CTBENCH, while randomized certified robustness
(Cohen et al., 2019) has also made substantial progress.
Moreover, we only consider the adversarial robustness,
while other types of robustness, such as robustness against
patch attacks (Salman et al., 2022) is also important. Finally,
we only focus on L∞ robustness because there exists no
scalable deterministic certified training algorithm regarding
other norms, and leave them as future work.

Connection to Randomized Certified Training The is-
sue of unfair comparison highlighted in this work may gen-
eralize to the domains of randomized certified robustness,
particularly Randomized Smoothing (RS) as introduced by
Cohen et al. (2019). Recent RS literature shows consider-
able difference in evaluation regarding important aspects
such as network architectures, training procedures, hyperpa-
rameter configurations, and the noise distributions employed
for certification. These inconsistencies suggest that unfair
comparisons may also be prevalent in RS studies. There-
fore, we believe that a similar unified library and benchmark
for randomized certified training would be beneficial to the
community, allowing for fair comparisons and systematic
hyperparameter tuning. We leave this as future work.

7. Conclusion
We introduced CTBENCH, a unified library and high-quality
benchmark for deterministic certified training on L∞-norm
robustness. Based on CTBENCH, we extensively evalu-
ated certified models trained via state-of-the-art methods,
analyzing their regularization strength and utilities. Our
analysis reveals that certified training schemes can reduce
loss fragmentation, adaptively keep model utilization, make
shared mistakes, and generalize well on data with certain
corruptions. We are confident that the insights and tools
provided by CTBENCH will facilitate future research on
certified training and its applications.

Reproducibility Statement
We release the complete codebase of CTBENCH, includ-
ing the implementation of all certified training methods
and the model checkpoints for the benchmark. The code-
base is available at https://github.com/eth-sri/CTBench. A
complete description of the experiment setup and hyperpa-
rameters is provided in App. C.
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A. Improvement Decomposition
Decomposition of the universal modifications we made such as batch norm fixes and the hyperparameter tuning is not
always possible, as these modifications allow additional vectors of hyperparameter for tuning. For example, we fix batch
norm statistics in one batch rather than reset it multiple times as done in some original implementations, allowing wrob to be
tuned within [0, 1], while in the literature wrob has to be fixed to 1. Therefore, we cannot formally decompose the effects of
hyperparameter tuning and batch norm behaviors, as they are closely dependent on each other.

The literature results are run with three different random seeds, and only the best results among them are reported. This
prevents us from substituting our fine-tuned hyperparameter to the original implementation because merely using the same
hyperparameters even based on the original implementation hardly reproduces the same number as reported in the literature.
In contrast, we run every experiment with the same fixed random seed to allow fair and faithful comparison. Nevertheless,
we can showcase the effect for one setting: IBP on MNIST ϵ = 0.3. The literature reports 93.1% certified accuracy, while
the same hyperparameter results in 93.18% in our implementation. Further tuning the hyperparameters as in the CTBench
benchmark gets 93.8%. While this proves the effectiveness of both the implementation and our hyperparameter tuning, we
would like to note that based on previous arguments, this does not faithfully decompose the effect of hyperparameter tuning
and batch norm changes, and such decomposition efforts are doomed to fail.

While full disentanglement is infeasible, we conduct preliminary studies to separate implementation advantages from
hyperparameter tuning. Table 18 compares CNN5 performance using CTBench and the SOTA codebase, applying CNN7-
tuned hyperparameters to both to reduce tuning bias, showing CTBench’s universal implementation benefits. Additionally,
Table 3 (L1 regularization on IBP-trained networks) and Figure 7 (effects of varying λ for SABR and STAPS and α for
MTL-IBP on the robustness-accuracy trade-off) illustrate hyperparameter impact.

B. Additional Discussions
B.1. Ablation on L1 Regularization

Table 3 shows the effect of L1 regularization on the certified accuracy of IBP-trained networks. We observe that L1

regularization tuned within a small range of hyperparameter choices can improve certified accuracy in most cases, especially
for small perturbation sizes.

Table 3: Effect of L1 regularization for IBP-trained networks on different datasets and perturbation sizes.

Setting L1 weight Nat. [%] Cert. [%]

MNIST 0.1

0 98.92 98.21
1 · 10−6 98.84 98.22
2 · 10−6 98.87 98.26
5 · 10−6 98.85 98.13

MNIST 0.3

0 98.52 93.56
1 · 10−6 98.54 93.82
2 · 10−6 98.51 93.66
5 · 10−6 98.40 93.76

CIFAR 2/255

0 67.81 55.45
1 · 10−6 67.49 55.99
2 · 10−6 66.15 55.01
5 · 10−6 65.41 54.11

CIFAR 8/255 0 48.51 35.28
1 · 10−6 48.31 34.36

TIN 1/255

0 25.68 19.04
2 · 10−6 26.26 19.82
5 · 10−6 26.37 19.80
1 · 10−5 26.77 19.82

B.2. Robustness-Accuracy Trade-off

The robustness-accuracy trade-off is well-known, where higher certified accuracy often comes at the cost of natural accuracy.
Most methods, including SABR and MTL-IBP, have hyperparameters (e.g., λ, α) that directly regulate this trade-off. Our
goal, like in prior work, is to maximize certified accuracy, with natural accuracy improvements seen as a bonus. For
completeness, we further provide robustness-accuracy curves, as shown in Figure 7.
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Consistent with prior work (Müller et al. (2023, Figure 7) and De Palma et al. (2024, Figure 1)), we observe that reducing
regularization initially improves both robustness and natural accuracy, but beyond an optimal point, further reduction
severely hurts certifiability while increasing natural accuracy.

76 77 78 79 80 81
Natural Accuracy [%]

62

63

64

Certified Accuracy [%]

SABR

MTL-IBP

STAPS

Figure 7: Robustness-Accuracy Trade-off for SABR, STAPS and MTL-IBP on CIFAR-10, ϵ = 2/255.

Additionally, we provide a visualization of how the robustness-accuracy trade-off changes for all certification settings in
Figure 8, comparing CTBENCH results with literature results. The transparent points represent previously reported best
literature results, while the solid points represent CTBENCH results.

B.3. Extending L∞ Deterministic Certified Robustness to Other Norms

Our work focuses on deterministic certified training using bound propagation for the L∞ norm, as it remains the most reliable
and widely adopted approach for robustness guarantees. While Li et al. (2023) explores various norms for certification, it
also limits deterministic certified training to L∞, reflecting the current state of the field, with practical deterministic methods
focused on L∞.

Certification under other norms, such as L2, faces scalability challenges. For example, Wang et al. (2023) evaluate L2

certification on small models with only 192 hidden nodes, while our CNN7 network has over 10M parameters, making
their method impractical. Similarly, Soletskyi & Dalrymple (2024) use expensive SDP methods, limiting their approach to
synthetic toy datasets (Spheres) and does not naturally extend to L∞. Furthermore, while Soletskyi & Dalrymple (2024)
address L2-norm robustness, their methods do not naturally extend to L∞.

Bound propagation is difficult for norms other than L∞. For example, for the L2 norm, it is difficult to track the exact shape
of the L2 ball after passing through a linear and ReLU layer. To apply bound propagation, the typical L2 ball with radius
ϵ = 1 used in randomized smoothing must be over-approximated by the full [0, 1]d input set, which guarantees meaningless
results. Notably, Wang et al. (2023) do not attempt bound propagation. Developing new deterministic certification methods
for other norms is out of the scope of this work.

Exploring deterministic certified training for other norms is a valuable future direction. However, due to scalability
limitations and the lack of effective methods for other norms (even on MNIST), our focus remains on L∞.

B.4. Comparison with L∞ Randomized Certified Robustness

In this section, we conduct a preliminary study on comparing L∞-norm robustness certified by RS to our results based on
deterministic algorithms. Specifically, we compare the numbers by the state-of-the-art L∞-norm RS algorithm of Lyu et al.
(2024) on CIFAR-10 at ϵ = 2/255 and ϵ = 8/255 with CTBench results in Table 4. We find that the current RS approaches
yield lower certified accuracy compared to CTBench, in agreement with the literature where deterministic methods dominate
the L∞-norm robustness.

B.5. General Trends Across Datasets

Across the datasets considered in this work, several performance trends emerge, offering insights into how different
certification and training methods generalize. For both MNIST and CIFAR-10, we observe that IBP shows decent
performance at larger perturbation sizes, while other methods show limited improvement over IBP. This suggests that
as perturbations increase in magnitude, stronger regularization is crucial for maintaining certifiability. In the context of
corrupted datasets (MNIST-C and CIFAR-10-C), adversarial and certified training methods effectively enhance robustness
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Figure 8: Visualization of CTBENCH improvements on the robustness-accuracy trade-off for each certification setting.
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Table 4: Comparison between Deterministic Certified Training (this work) and Adaptive Randomised Smoothing (Lyu et al.,
2024) on CIFAR-10.

Method Nat. [%] Cert. at ϵ = 2
255 [%] Cert. at ϵ = 8

255 [%]

IBP 67.49 55.99 /
IBP 48.51 / 35.28
SABR 77.86 63.61 /
SABR 52.71 / 35.34
MTL-IBP 78.82 64.41 /
MTL-IBP 54.28 / 35.41

ARS σ = 0.12 79.21 48.79 0.00
ARS σ = 0.25 73.61 48.79 0.00
ARS σ = 0.50 65.47 51.98 8.96
ARS σ = 0.75 57.71 44.64 11.91
ARS σ = 1.00 49.96 40.71 14.07
ARS σ = 1.50 39.86 31.41 14.57

against localized perturbations such as blur, noise, and pixelation. However, these methods remain less resilient to global
transformations like brightness and contrast changes compared to standard training. This observation aligns with the intuition
that adversarial and certified training primarily improve robustness in the immediate neighborhood of the original inputs,
whereas global changes fall outside this region. More diverse data augmentation strategies may mitigate this problem,
though this may also come at the cost of reduced certified adversarial accuracy.

When examining network-level properties such as neuron instability and network utilization, trends across datasets are less
straightforward. In all cases, standard training results in the highest neuron instability, as expected due to the absence of
regularization aimed at minimizing this effect. However, network utilization does not follow a consistent pattern. In some
scenarios, certified training increases network utilization compared to adversarial training, indicating the learning of more
complex patterns and relationships. Nevertheless, this trend is not universally observed, suggesting that the underlying
dynamics of network utilization may be context-specific.

Overall, these findings highlight that while some performance trends persist across datasets, others are context-dependent,
underscoring the need for context-specific analysis when evaluating the current stage of certified robustness methods.

B.6. Comparing the OOD Generalization of Certified and Adversarial Training

On corrupted datasets (MNIST-C, CIFAR-10-C), adversarial and certified training improve robustness against localized
perturbations like blur, noise, and pixelation but struggle with global shifts like brightness and contrast changes. This
aligns with the intuition that these methods enhance robustness mainly in the Euclidean neighborhood of the original inputs,
whereas global changes fall outside this specification. Moreover, the stronger regularization induced by certified training
when compared to adversarial training often exceeds what’s needed for untargeted corruptions.

B.7. Comparing our Loss Fragmentation Result with Shi et al. (2021)

While our approach and the results of Shi et al. (2021) share common concepts and both target to quantify the difficulty of
certification, we clarify that Shi et al. (2021) analyze only IBP-bounded instability, which is an over-approximation of the
real instability of neurons. In contrast, our analysis applies an estimate of the true number of unstable neurons. To illustrate
this difference, we provide a comparison between the two variants in Table 5. We observe that the gap between our lower
bound estimate and IBP is larger for SOTA methods, which also reflects in the certification gap between IBP and MN-BAB
for these models (Table 22).

Both approaches aimed at quantifying neuron instability are hard to generalize to non-ReLU networks. However, this is of
critical importance to the certification of ReLU networks, beyond measuring the difficulty of adversarial attacks which may
also be indicated by other smoothness metrics. Concretely, branch-and-bound (BaB), the dominating strategy for complete
certification of ReLU networks, directly branches the unstable neurons; thus, the number of unstable neurons provides a
direct metric for the difficulty of certification. Since ReLU networks dominate certified training, we adopt the number of
unstable neurons as the main metric.
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Table 5: Unstable neuron estimates using our sampling method (lower bound) and IBP (upper bound) for networks trained
on CIFAR-10 ϵ = 2/255.

Method
Unstable Neurons [%]

lower bound upper bound (IBP)

IBP 0.97 1.26
CROWN-IBP 1.16 1.69
SABR 1.37 2.82
TAPS 1.00 1.68
STAPS 1.32 2.64
MTL-IBP 1.53 3.42

C. Experiment Details
C.1. Dataset

We use the MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky et al., 2009) and TINYIMAGENET (Le & Yang, 2015)
datasets for our experiments. All are open-source and freely available with unspecified license. The data preprocessing
mostly follows De Palma et al. (2024). For MNIST, we do not apply any preprocessing. For CIFAR-10 and TINYIMAGENET,
we normalize with the dataset mean and standard deviation and augment with random horizontal flips. We apply random
cropping to 32× 32 after applying a 2 pixel zero padding at every margin for CIFAR-10, and random cropping to 64× 64
after applying a 4 pixel zero padding at every margin for TINYIMAGENET. We train on the corresponding train set and
certify on the validation set, as adopted in the literature (Shi et al., 2021; Müller et al., 2023; Mao et al., 2023; De Palma
et al., 2024).

C.2. Model Architectures

We follow Shi et al. (2021); Müller et al. (2023) and use a CNN7 with Batch Norm for our main experiments. CNN7 is a
convolutional network with 7 convolutional and linear layers. All but the last linear layer are followed by a Batch Norm
and ReLU layer. This architecture is found to achieve uniformly better results across settings (Shi et al., 2021), and thus is
adopted by the literature (Shi et al., 2021; Müller et al., 2023; Mao et al., 2023; De Palma et al., 2024). For TINYIMAGENET,
the stride of the last convolution is doubled to reduce the cost.

C.3. Training Details

Initialization Adversarial training methods are initialized by Kaiming uniform (He et al., 2015), while certified training
methods are initialized by IBP initialization (Shi et al., 2021).

Training Schedule We mostly follow the training schedule of (De Palma et al., 2024), but in some cases a shorter schedule
to reduce cost. Specifically, the warmup phase is 20 epochs for MNIST ϵ = 0.1 and ϵ = 0.3, 80 epochs for CIFAR-10
ϵ = 2

255 , 120 epochs for CIFAR-10 ϵ = 8
255 and 80 epochs for TINYIMAGENET ϵ = 1

255 . In addition, for CIFAR-10
and TINYIMAGENET, we use standard training for 1 additional epoch at the beginning. We apply the IBP regularization
proposed by (Shi et al., 2021), with weight equals 0.5 on MNIST and CIFAR-10, and 0.2 on TINYIMAGENET, during
the warmup phase. In total, we train 70 epochs for MNIST ϵ = 0.1 and ϵ = 0.3, 160 epochs for CIFAR-10 ϵ = 2

255 , 240
epochs for CIFAR-10 ϵ = 8

255 , and 160 epochs for TINYIMAGENET ϵ = 1
255 .

Optimization We use Adam (Kingma & Ba, 2015) with a learning rate of 0.0005. The learning rate is decayed by a factor
of 0.2 at epoch 50 and 60 for MNIST ϵ = 0.1 and ϵ = 0.3, at epoch 120 and 140 for CIFAR-10 ϵ = 2

255 , at epoch 200
and 220 for CIFAR-10 ϵ = 8

255 , and at epoch 120 and 140 for TINYIMAGENET ϵ = 1
255 . We use a batch size of 256 for

MNIST, and 128 for CIFAR-10 and TINYIMAGENET. Gradients of each step are clipped to 10 in L2 norm. No weight
decay is applied and L1 regularization only on weights of linear and convolution layers is used. Further, Wu & Johnson
(2021) find that running statistics lag behind the population statistics and propose to use the population statistics for testing.
We adopt this strategy in CTBENCH, since it only needs to compute Lnat and is much cheaper than the computation of Lrob.
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Table 6: Best hyperparameter for MNIST ϵ = 0.1.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 1× 10−5 1× 10−5 2× 10−6 2× 10−6 1× 10−6 1× 10−6 1× 10−6 1× 10−5

wrob 1.0 1.0 1.0 1.0 0.7 0.7 0.7 0.7
Train ϵ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
ϵ shrink ratio / / / / 0.4 / 0.4 /
Classifier size / / / / / 3 1 /
TAPS gradient scale / / / / / 4 4 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.02

C.4. Tuning Scheme

We conduct a hyperparameter tuning for each method to ensure the best performance, and reduce the search space whenever
appropriate based on human knowledge. The search space for each hyperparameter is as follows:

• L1 regularization: {1× 10−6, 2× 10−6, 5× 10−6, 1× 10−5, 2× 10−5, 5× 10−5}. We include 3× 10−6 specifically
for CIFAR-10 ϵ = 2

255 , as this is the value reported by De Palma et al. (2024).

• wrob: {0.7, 0.8, 0.9, 1.0}. Surprisingly, wrob not equal to 1 can improve both certified and natural accuracy by a large
margin when ϵ is small.

• Train ϵ: we use 2x train ϵ for MNIST ϵ = 0.1, and tune within {1x, 1.25x, 1.5x} specifically for CIFAR-10 ϵ = 2
255 . For

others, we use the test ϵ for training.

• ϵ shrink ratio for SABR and STAPS: we mostly keep the value in the literature. When we observe large certifibility gap,
we increase the shrink ratio by 0.1 until the performance fails to increase consistently.

• Classifier size for TAPS and STAPS: we keep the value in the literature for TAPS, and include only 1 ReLU layer in the
classifier for STAPS universally.

• TAPS gradient scale: {1, 2, 3, 4, 6, 8}.

• ReLU shrink ratio for SABR and STAPS: we keep the value in the literature, thus shrinking the output box of each ReLU
by multiplying 0.8 on CIFAR-10 ϵ = 2

255 and do not apply this in other settings.

• IBP coefficient for MTL-IBP: {0.01, 0.02, 0.05} for MNIST ϵ = 0.1, CIFAR-10 ϵ = 2
255 and TINYIMAGENET ϵ = 1

255 ,
and {0.4, 0.5, 0.6} for MNIST ϵ = 0.3, CIFAR-10 ϵ = 8

255 .

• Attack Strength: we use 3 restarts everywhere for the attack. By default, we use 10 steps for MNIST ϵ = 0.1, 5 steps
for MNIST ϵ = 0.3, 8 steps for CIFAR-10 ϵ = 2

255 , 10 steps for CIFAR-10 ϵ = 8
255 , and 1 step for TINYIMAGENET

ϵ = 1
255 . However, we find MTL-IBP benefits from using only 1 step everywhere, while more steps will hurt certified

accuracy, thus we only use 1 step specifically for MTL-IBP except CIFAR-10 ϵ = 2
255 , consistent to De Palma et al.

(2024). We further only use 2x attack ϵ for MTL-IBP on CIFAR-10 ϵ = 2
255 .

We report the best hyperparameter for each method respectively in Table 6, Table 7, Table 8, Table 9, and Table 10.

C.5. Certification Details

We combine IBP (Gowal et al., 2018), CROWN-IBP (Zhang et al., 2020), and MN-BAB (Ferrari et al., 2022) for
certification running the most precise but also computationally costly MN-BAB only on samples not certified by the other
methods. The timout for each input is set to 1000 seconds.
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Table 7: Best hyperparameter for MNIST ϵ = 0.3.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 5× 10−6 5× 10−6 1× 10−6 1× 10−6 2× 10−6 2× 10−6 2× 10−6 1× 10−6

wrob 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Train ϵ 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
ϵ shrink ratio / / / / 0.8 / 0.8 /
Classifier size / / / / / 1 1 /
TAPS gradient scale / / / / / 3 1 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.5

Table 8: Best hyperparameter for CIFAR-10 ϵ = 2/255.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 2× 10−5 5× 10−6 1× 10−6 1× 10−6 1× 10−6 2× 10−6 5× 10−6 3× 10−6

wrob 1.0 1.0 1.0 1.0 0.7 1.0 1.0 0.9
Train ϵ 2/255 2/255 2/255 2/255 3/255 2/255 3/255 2/255
ϵ shrink ratio / / / / 0.1 / 0.1 /
Classifier size / / / / / 5 1 /
TAPS gradient scale / / / / / 5 5 /
ReLU shrink ratio / / / / 0.8 / 0.8 /
IBP coefficient / / / / / / / 0.01

Table 9: Best hyperparameter for CIFAR-10 ϵ = 8/255.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 1× 10−6 1× 10−6 0 0 0 0 0 0
wrob 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Train ϵ 8/255 8/255 8/255 8/255 8/255 8/255 8/255 8/255
ϵ shrink ratio / / / / 0.7 / 0.9 /
Classifier size / / / / / 1 1 /
TAPS gradient scale / / / / / 2 2 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.5

Table 10: Best hyperparameter for TINYIMAGENET ϵ = 1/255.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP

L1 regularization 5× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 5× 10−5

wrob 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7
Train ϵ 1/255 1/255 1/255 1/255 1/255 1/255 1/255 1/255
ϵ shrink ratio / / / / 0.4 / 0.6 /
Classifier size / / / / / 1 1 /
TAPS gradient scale / / / / / 8 4 /
ReLU shrink ratio / / / / / / / /
IBP coefficient / / / / / / / 0.05
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C.6. Computation

We train and certify MNIST ϵ = 0.1, MNIST ϵ = 0.3 and CIFAR-10 ϵ = 8
255 models on a single NVIDIA GeForce RTX

2080 Ti with Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz and 530GB RAM. We train and certify CIFAR-10 ϵ = 2
255

and TINYIMAGENET ϵ = 1
255 models on a single NVIDIA L4 with Intel(R) Xeon(R) CPU @ 2.20GHz CPU and 377 GB

RAM. The training and certification time for each method is reported in Table 12. We provide a detailed complexity analysis
for each training method in Table 11.

Table 11: Detailed breakdown of training costs for each Certified Training method.

Method Training cost per batch Details

Standard T Forward + Backward
PGD / EDAC (M+1)T M attack steps + Standard loss computation
IBP 2T Lower and Upper Bounds propagation
CROWN-IBP + LF 4T IBP pass + back-substitution of IBP bounds
SABR (M+2)T IBP + PGD
MTL-IBP (M+2)T IBP + PGD
TAPS 2t + K*(M+1)*(T-t) IBP for first network split and PGD for second split for each class
STAPS 2t + K*(M+1)*(T-t) + (M+1)T TAPS + PGD

Legend

T Time cost for Standard Training (Includes Forward + Backward Pass)
M Number of adversarial attack steps (including repeats)
K Number of classes
t Time cost for Standard Training in the first network split (TAPS)
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Table 12: Training and certification time for each method on different datasets and ϵ.

Dataset ϵ Method Train Time (seconds) Certification Time (seconds)

MNIST

0.1

PGD 1.5× 104 /
EDAC 3.1× 104 /

IBP 2.1× 103 2.5× 103

CROWN-IBP 5.6× 103 1.8× 103

SABR 1.8× 104 6.0× 103

TAPS 3.8× 104 6.0× 103

STAPS 2.5× 104 6.9× 103

MTL-IBP 6.8× 103 6.8× 103

0.3

PGD 1.1× 104 /
EDAC 2.2× 104 /

IBP 2.6× 103 3.2× 104

CROWN-IBP 5.4× 103 2.6× 104

SABR 9.7× 103 5.2× 104

TAPS 7.1× 103 4.7× 104

STAPS 1.4× 104 5.1× 104

MTL-IBP 5.5× 103 4.4× 104

CIFAR-10

2
255

PGD 2.8× 104 /
EDAC 1.3× 105 /

IBP 1.2× 104 1.3× 105

CROWN-IBP 2.7× 104 1.9× 105

SABR 2.4× 104 1.6× 105

TAPS 1.1× 105 1.1× 105

STAPS 4.5× 104 3.0× 105

MTL-IBP 3.6× 104 2.7× 105

8
255

PGD 6.4× 104 /
EDAC 1.3× 105 /

IBP 1.1× 104 1.9× 104

CROWN-IBP 2.1× 104 2.0× 104

SABR 4.1× 104 6.5× 104

TAPS 3.3× 104 4.0× 104

STAPS 9.9× 104 4.2× 104

MTL-IBP 2.2× 104 5.6× 104

TINYIMAGENET 1
255

PGD 1.0× 105 /
EDAC 2.0× 105 /

IBP 6.7× 104 4.9× 103

CROWN-IBP 2.0× 105 1.3× 104

SABR 1.1× 105 1.8× 104

TAPS 2.8× 105 1.5× 104

STAPS 3.3× 105 2.6× 104

MTL-IBP 1.5× 105 5.1× 103
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D. Additional Results
D.1. Result Significance

In Tables 13–17, we present the natural and certified accuracy across certified training algorithms, datasets and perturbation
levels. We report the average and standard deviation across 3 random seeds for each method. The results show that our
improvements over previously reported values in the literature are significant, in most cases the statistical difference being
larger than 3σ.

Table 13: Comparison of Natural and Certified Accuracy between CTBENCH and previous literature results on MNIST
ϵ = 0.1. We report average and standard deviation across 3 random seeds for each method.

Method Source Nat. [%] Cert. [%]

IBP Literature 98.84 97.95
This work 98.86 ± 0.06 98.25 ± 0.03

CROWN-IBP Literature 98.83 97.76
This work 98.93 ± 0.01 98.17 ± 0.05

SABR Literature 99.23 98.22
This work 99.15 ± 0.08 98.42 ± 0.03

TAPS Literature 99.19 98.39
This work 99.20 ± 0.05 98.5 ± 0.04

STAPS Literature 99.15 98.37
This work 99.15 ± 0.04 98.38 ± 0.10

MTL-IBP Literature 99.25 98.38
This work 99.16 ± 0.03 98.31 ± 0.06

Table 14: Comparison of Natural and Certified Accuracy between CTBENCH and previous literature results on MNIST
ϵ = 0.3. We report average and standard deviation across 3 random seeds for each method.

Method Source Nat. [%] Cert. [%]

IBP Literature 97.67 93.10
This work 98.55 ± 0.02 93.82 ± 0.10

CROWN-IBP Literature 98.18 92.98
This work 98.46 ± 0.03 93.84 ± 0.12

SABR Literature 98.75 93.40
This work 98.69 ± 0.03 93.64 ± 0.06

TAPS Literature 97.94 93.62
This work 98.58 ± 0.03 93.90 ± 0.11

STAPS Literature 98.53 93.51
This work 98.69 ± 0.06 93.60 ± 0.05

MTL-IBP Literature 98.80 93.62
This work 98.75 ± 0.02 93.82 ± 0.21
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Table 15: Comparison of Natural and Certified Accuracy between CTBENCH and previous literature results on CIFAR-10
ϵ = 2/255. We report average and standard deviation across 3 random seeds for each method.

Method Source Nat. [%] Cert. [%]

IBP Literature 66.84 52.85
This work 66.85 ± 0.72 55.32 ± 0.68

CROWN-IBP Literature 71.52 53.97
This work 67.56 ± 0.04 56.69 ± 0.58

SABR Literature 79.24 62.84
This work 77.82 ± 0.28 63.62 ± 0.22

TAPS Literature 75.09 61.56
This work 74.76 ± 0.34 61.37 ± 0.09

STAPS Literature 79.76 62.98
This work 76.88 ± 0.15 63.96 ± 0.27

MTL-IBP Literature 80.11 63.24
This work 78.91 ± 0.16 64.00 ± 0.37

Table 16: Comparison of Natural and Certified Accuracy between CTBENCH and previous literature results on CIFAR-10
ϵ = 8/255. We report average and standard deviation across 3 random seeds for each method.

Method Source Nat. [%] Cert. [%]

IBP Literature 48.94 34.97
This work 48.74 ± 0.23 34.99 ± 0.28

CROWN-IBP Literature 46.29 33.38
This work 48.24 ± 0.09 32.49 ± 0.18

SABR Literature 52.38 35.13
This work 52.51 ± 0.38 34.97 ± 0.62

TAPS Literature 49.76 35.10
This work 49.82 ± 0.28 34.89 ± 0.40

STAPS Literature 52.82 34.65
This work 51.46 ± 0.25 35.32 ± 0.25

MTL-IBP Literature 53.35 35.44
This work 53.72 ± 0.49 35.23 ± 0.18

23



CTBENCH: A Library and Benchmark for Certified Training

Table 17: Comparison of Natural and Certified Accuracy between CTBENCH and previous literature results on TINYIMA-
GENET ϵ = 1/255. We report average and standard deviation across 3 random seeds for each method.

Method Source Nat. [%] Cert. [%]

IBP Literature 25.92 17.87
This work 26.4 ± 0.45 19.87 ± 0.19

CROWN-IBP Literature 25.62 17.93
This work 28.16 ± 0.27 21.69 ± 0.42

SABR Literature 28.85 20.46
This work 30.96 ± 0.41 21.14 ± 0.2

TAPS Literature 28.34 20.82
This work 28.59 ± 0.09 21.54 ± 0.22

STAPS Literature 28.98 22.16
This work 30.25 ± 0.33 22.03 ± 0.25

MTL-IBP Literature 37.56 26.09
This work 35.97 ± 0.17 27.49 ± 0.21

D.2. Architecture Generalization

In Table 18 we present the natural and certified accuracy on CNN5, which is a five-layer CNN smaller than CNN7. We observe
that the improvements are consistent across different settings even with CNN5, showing that the improvements are not specific
to a certain architecture.

Table 18: Comparison on CNN5 between CTBENCH and the implementation of De Palma et al. (2024).

Method Code and hyperparameters Nat. [%] Cert. [%]

IBP CTBENCH 98.19 92.88
(De Palma et al., 2024) 93.16 81.81

SABR CTBENCH 98.41 92.62
(De Palma et al., 2024) 97.33 90.87

MTL-IBP CTBENCH 98.41 92.49
(De Palma et al., 2024) 98.39 91.45
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D.3. Ablation on Certification Algorithms & Additional Analysis on Shared Mistakes

In Table 19 we present the correlation between the certification capabilities of two SOTA verifiers (MN-BAB (Ferrari et al.,
2022) and OVAL (De Palma et al., 2022)). We observe that there is a very high correlation between the two verifiers, which
is expected since both are based on the same underlying principles. This shows that the certification algorithms have reached
a certain level of maturity and are converging to similar results. Combining the verified sets of the two verifiers, we get a
marginal improvement in certified accuracy at the cost of a much larger certification time. Therefore, we only use MN-BAB
for certification in our main experiments.

Table 19: Observed count of common mistakes of certification algorithms (MN-BAB (Ferrari et al., 2022) and OVAL (De
Palma et al., 2022)) on CIFAR-10 against their expected values assuming independence across certification mistakes.

neither certify one certifies both certify

ϵ = 2/255
obs. 3549 15 6436
exp. 1264 4585 4151

ϵ = 8/255
obs. 6454 9 3537
exp. 4171 4575 1254

In Table 20 we present the observed count of common mistakes that different certified training models make on CIFAR-10
against their expected values assuming independence across model mistakes. We observe that the observed count is
significantly higher than the expected count, indicating that the models are highly correlated in their mistakes.

Table 20: Observed count of common mistakes on CIFAR-10 against their expected values assuming independence across
model mistakes.

# models succeeded
0 1 2 3 4 5 6

ϵ = 2
255

obs. 2350 653 520 564 708 894 4311
exp. 35 330 1296 2704 3163 1965 507

ϵ = 8
255

obs. 5206 679 487 388 387 585 2268
exp. 766 2457 3283 2339 937 200 18

Furthermore, Table 21 examines shared mistakes between CNN5 and CNN7, revealing common patterns across architectures.

Table 21: Additional results on CNN5 and CNN7 shared mistakes for MNIST 0.3

Models Number of not certified samples

Observed Expected if independent

CNN5 IBP 771 /
CNN5 SABR 793 /
CNN5 MTL-IBP 746 /
CNN7 IBP 620 /
CNN7 SABR 632 /
CNN7 MTL-IBP 610 /

CNN5, CNN7 IBP 526 48
CNN5, CNN7 SABR 541 50
CNN5, CNN7 MTL-IBP 516 46
All 3 CNN5 networks 593 5

D.4. Deferred Results on CIFAR-10

In Figures 9 and 10, we present additional analyses on the neuron statistics for different models trained on CIFAR-10. We
analyze the amount of unstable neurons and the model utilization for each model.
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PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
10−1

100

101

102
Unstable (%)

evaluated at ε = 2/255

evaluated at ε = 8/255

trained at ε = 2/255

trained at ε = 8/255

trained at ε = 0

Figure 9: Ratio of unstable neurons for models trained on CIFAR-10 with different methods and ϵ.

PGD EDAC IBP CROWN-IBP SABR TAPS STAPS MTL-IBP
10

30

50

70
Utilization [%]

trained at ε = 2/255

trained at ε = 8/255

Figure 10: Model utilization for models trained on CIFAR-10 with different methods and ϵ. We note that standard training
has 35.79% utilization.

In Figure 11, we present the out-of-distribution generalization evaluated on CIFAR-10-C for models trained on CIFAR-10 at
ϵ = 8/255, ϵ = 2/255 and standard training. We observe that the models trained with certified training methods have better
out-of-distribution generalization compared to standard training.

D.5. Results with Incomplete Certification Algorithms

In Table 22, we present the results of the certification with more efficient, but incomplete methods (IBP and CROWN-IBP).
We observe that the incomplete methods have a significant impact on the certified accuracy, and the results are consistent
with the previous findings in the literature.

Table 22: A comparison of incomplete certification (IBP and CROWN-IBP) against complete certification (MN-BAB) on
CIFAR-10 ϵ = 2/255.

Train Method Nat [%]
Cert [%]

Adv [%]
IBP CROWN-IBP MN-BAB

IBP 67.49 54.22 54.57 55.99 56.10
CROWN-IBP 67.60 49.92 54.86 57.11 57.28
SABR 77.86 12.12 44.79 63.61 65.56
TAPS 74.44 28.22 50.14 61.27 62.62
STAPS 77.05 0.72 30.92 64.21 66.09
MTL-IBP 78.82 0.62 23.31 64.41 67.69
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PGD

EDAC

IBP

CROWN-IBP

SABR

TAPS

STAPS

MTL-IBP

94 47 94 93 66 84 92 97 92 91 98 89 98 93 98 96 98 92

96 49 95 93 69 86 92 96 92 91 98 90 98 95 97 96 97 93

88 57 97 94 68 69 95 91 95 77 98 94 98 92 93 92 91 95

89 58 97 95 70 69 96 93 95 88 98 94 98 93 94 93 93 96

86 55 96 94 67 66 94 92 94 81 98 92 98 92 94 93 93 94

88 57 96 93 69 70 94 90 95 77 98 93 98 91 92 92 90 94

87 55 96 94 69 68 95 92 95 78 98 93 98 92 94 93 92 94

87 53 95 93 67 69 94 91 94 79 98 92 98 92 93 94 91 93

PGD

EDAC

IBP

CROWN-IBP

SABR

TAPS

STAPS

MTL-IBP

98 54 92 92 75 91 89 88 86 80 97 86 96 94 91 95 91 90

97 53 92 92 74 90 88 90 86 82 97 86 96 94 93 94 92 90

91 47 91 90 63 76 88 85 90 67 98 86 97 92 89 91 89 88

92 48 94 92 64 74 91 94 93 89 98 89 98 92 96 96 95 91

93 48 93 92 66 82 90 96 92 91 98 87 97 92 97 94 97 90

92 49 94 92 67 80 91 95 93 92 99 89 98 93 96 95 96 92

94 49 94 92 66 82 91 97 92 93 98 88 98 94 98 95 98 91

94 49 94 92 68 83 91 95 92 91 98 89 98 93 96 95 96 92
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Figure 11: Out-of-distribution generalization evaluated on CIFAR-10-C for models trained on CIFAR-10 at ϵ = 8/255 (top),
ϵ = 2/255 (middle) and standard training (bottom).
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