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Abstract

Epistemic voting interprets votes as noisy signals
about a ground truth. We consider contexts where
the truth consists of a set of objective winners,
knowing a lower and upper bound on its cardinal-
ity. A prototypical problem for this setting is the
aggregation of multi-label annotations with prior
knowledge on the size of the ground truth. We posit
noise models, for which we define rules that output
a set of winners corresponding to local maxima
of the data likelihood function. We report on ex-
periments on multi-label annotations (which we
collected).

1 INTRODUCTION

The epistemic view of voting assumes the existence of a
ground truth which, usually, is either an alternative or a
ranking over alternatives. Votes reflect opinions or beliefs
about this ground truth; the goal is to aggregate these votes
so as to identify it. Usual methods define a noise model
specifying the probability of each voting profile given the
ground truth, and output the alternative that is the most
likely state of the world, or the ranking that is most likely
the true ranking.

Now, there are contexts where the ground truth does not
consist of a single alternative nor a ranking, but of a set of
alternatives. Typical examples are multi-label crowdsourc-
ing (find the items in a set that satisfy some property, e.g. the
sport teams appearing on a picture) or finding the objectively
k best candidates (best papers at a conference, best perfor-
mance in artistic sports, k patients with highest probabilities
of survival if being assigned a scarce medical resource).

These alternatives that are truly in the ground truth are called
‘winning’ alternatives. Depending on the context, the num-
ber of winning alternatives can be fixed, unconstrained, or

more generally, constrained to be in a given interval. This
constraint expresses some prior knowledge on the cardinal-
ity of the ground truth. This prior knowledge is held by the
central authority that aggregates the votes, and not necessar-
ily by the voters themselves. Here are some examples:

• Picture annotation via crowdsourcing: participants are
shown a picture taken from a soccer match and have to
identify the team(s) appearing in it. The ground truth
is known to contain one or two teams.

• Guitar chord transcription: voters are base classifier
algorithms Nguyen et al. [2020] which, for a given
chord, select the set of notes constitute it. The true set
of notes can contain three to six alternatives.

• Jury: participants are members of a jury which has to
give an award to three papers presented at a conference:
the number of objective winners is fixed to three. (In a
variant, the number of awards would be at most three.)

We assume that voters provide a simple form of information:
approval ballots, indicating which alternatives they consider
plausible winners. These approval ballots are not subject to
any cardinality constraint: a voter may approve a number
of alternatives, even if it does not lie in the interval bearing
on the output. This is typically the case for totally ignorant
voters, who may plausibly approve all alternatives.

Sometimes, the aggregating mechanism has some prior in-
formation about the likelihood of alternatives and the re-
liability of voters. We first study a simple case where this
information is specified in the input: in the noise model,
each voter has a probability pi (resp. qi) of approving a win-
ning (resp. non-winning) alternative, and each alternative
has a prior probability to be winning. This departs from
classical voting, where voters are usually treated equally
(anonymity), and similarly for alternatives (neutrality).

This simple case serves as a building component for the
more complex case where these parameters are not known
beforehand but estimated from the votes: votes allow to
infer information about plausibly winning alternatives, from
which we infer information about voter reliabilities, which
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leads to revise information about winning alternatives, and
so on until the process converges to a local optimum of the
likelihood function. Here we move back to an anonymous
and neutral setting, since all alternatives (resp. voters) are
treated equally before votes are known.

After discussing related work (Section 2), we introduce the
model (Section 3) and give an estimation algorithm (Section
4), first in the case where the parameters are known, and
then in the case where they are estimated from the votes. In
Section 5 we present a data gathering task and analyse the
results of the experiments. Section 6 concludes.

2 RELATED WORK

Epistemic social choice Epistemic social choice consists
in recovering an objective ground truth from votes seen
as noisy reports about the ground truth, using maximum
likelihood estimation. It dates back from Condorcet’s jury
theorem [Condorcet, 1785]: n independent, equally reliable
voters vote on two alternatives that are a priori equally
likely; if every vote is correct with probability p > 1

2 , then
majority outputs the correct alternative with a probability
increasing with n and tending to 1 when n grows to infinity.

There are several extensions of Condorcet’s jury theo-
rem: Young [1988] for an arbitrary number of alterna-
tives; Shapley and Grofman [1984] and Drissi-Bakhkhat
and Truchon [2004] for voters with various competence de-
grees; Ben-Yashar and Nitzan [1997] and Ben-Yashar and
Paroush [2001] for nonuniform priors over alternatives; Pi-
vato [2013] and Pivato [2017] for dependent voters. Conitzer
and Sandholm [2005] and Conitzer et al. [2009] characterize
various voting rules as maximum likelihood estimators, each
associated with a particular noise model. See Nitzan and
Paroush [2017] and Elkind and Slinko [2016]. for surveys
on recent developments.

Multi-winner voting Multi-winner voting rules map vot-
ing profiles into sets of alternatives. A voting profile can
be either a collection of subsets of alternatives (approval
ballots) or a collection of ranking over alternatives (ordi-
nal ballots). The output is often constrained to have a fixed
cardinality, but not always: see Kilgour [2016], Faliszewski
et al. [2020]. There have been a lot of recent developments
in the field: see the recent surveys Faliszewski et al. [2017])
and Lackner and Skowron [2020]. They, however, deal only
with the classical (non-epistemic) view of social choice,
where votes express preferences.

Multi-winner epistemic voting Multi-winner epistemic
voting has received only little attention so far. Procaccia et al.
[2012] assume a ground truth ranking over alternatives, and
identify rules that output the k alternatives maximizing the
likelihood to contain the best alternative, or the likelihood
to coincide with the top-k alternatives. The last section of

[Xia and Conitzer, 2011] defines a noise model where the
ground truth is a set of k alternatives (and the reported votes
are partial orders). The only work we know where the noise
models produce random approval votes from a ground truth
consisting of a set of alternatives is [Caragiannis et al.,
2020]. They define a family of distance-based noise mod-
els, whose prototypical instance generates approval votes
selecting an alternative in the ground truth (resp. not in the
ground truth) with probability p (resp. 1− p); as we see fur-
ther, this is a specific case of our noise model. Generalizing
multiwinner voting, Xia et al. [2010] study epistemic voting
on combinatorial (or multi-attribute) domains.

Epistemic approval voting Epistemic voting with ap-
proval ballots has scarcely been considered. Procaccia and
Shah [2015] assume that the ground truth is a ranking over
alternatives, and identify noise models for which approval
voting is optimal given k-approval votes, in the sense that
the objectively best alternative gets elected. Allouche et al.
[2022] continue this line of research but assume instead that
the ground truth consists of a single alternative. They define
various noise models and show that those that work best
on real datasets are those that give a higher confidence to
voters who approve few alternatives. Caragiannis and Micha
[2017] study the number of samples needed to recover the
ground truth ranking over alternatives with high enough
probability from approval ballots; they show that is is expo-
nential if ballots are required to approve k candidates, but
polynomial if the size of the ballots is randomized.

Crowdsourcing and social choice A social choice-
theoretic study of collective annotation tasks was done by
Kruger et al. [2014] and Qing et al. [2014]. Mechanisms
for incentive-compatible elicitation with approval ballots
in crowdsourcing applications have been designed by Shah
and Zhou [2020]. Meir et al. [2019] define a method to ag-
gregate votes weighted according to their average proximity
to the other votes as an estimation of their reliability.

Prelec et al. [2017] introduce the Bayesian truth serum
approach: eliciting, in addition to the voters’ answers, their
prediction of the distribution of answers, gives much better
results. This approach was generalized by Hosseini et al.
[2021] to contexts where the ground truth is a ranking.

Beyond social choice, collective multi-label annotation was
first addressed by Nowak and Rüger [2010], who study the
agreement between experts and non-experts in some multi-
labelling tasks, and by Deng et al. [2014], who solve the
multi-label estimation problem with a scalable aggregation
method.

3 THE MODEL

Let N = {1, . . . , n} be a set of voters, and A =
{a1, . . . , am} a set of alternatives (possible objects in im-



ages, notes in chords, papers, patients...). Consider a set of
L instances: an instance z consists of an approval profile
Az = (Az

1, . . . , A
z
n) where Az

i ⊆ A is an approval ballot
for every i ∈ N . For example, in a crowdsourcing context,
a task usually contains multiple questions, and an instance
comprises the voters’ answers to one of these questions.

For each instance z ∈ L, there exists an unknown ground
truth S∗

z belonging to S = 2A, which is the set of objectively
correct alternatives in instance z. It is prior knowledge by
the central authority (but not necessarily by voters), that the
number of alternatives in each of them lies in the interval
[l, u]: S∗

z ∈ Sl,u = {S ∈ S, l ≤ |S| ≤ u}, for given bounds
0 ≤ l ≤ u ≤ m.

Our goal is to unveil the ground truth for each of these
instance using the votes and the prior knowledge on the
number of winning alternatives. We define a noise model
consisting of two parametric distributions, namely, a condi-
tional distribution of the approval ballots given the ground
truth, and a prior distribution on the ground truth. Here
we depart from classical noise models in epistemic social
choice, as we suppose that the parameters of these distribu-
tions may be unknown and thus need to be estimated.

For each voter i ∈ N , we suppose that there exist two
unknown parameters (pi, qi) in (0, 1) such that the approval
ballot Az

i on an instance z ∈ L is drawn according to the
following distribution: for each a ∈ A,

P (a ∈ Az
i |S∗

z = S) =

{
pi if a ∈ S
qi if a /∈ S

where pi (resp. qi) is the (unknown) probability that voter
i approves a correct (resp. incorrect) alternative. Then we
make the following assumptions:

(1) A voter’s approvals of alternatives are mutually in-
dependent given the ground truth and parameters
(pi, qi)i∈N .

(2) Voters’ ballots are mutually independent given the
ground truth.

(3) Instances are independent given the parameters
(pi, qi)i∈N and the ground truths.

To model the prior probability of any set S to be the ground
truth S∗, we define parameters tj = P (aj ∈ S∗). tj can
be understood as the prior probability of aj to be in the
ground truth set S∗ before the cardinality constraints are
taken into account. These, together with an independence
assumption on the events {aj ∈ S∗}, gives P (S = S∗) =∏
aj∈S

tj
∏

aj /∈S

1− tj . Note that the choice of the parameters

tj is not crucial when running the algorithm for estimating
the ground truth: we will see in Section 4.3 that it converges
whatever their values. The distribution conditional to the
prior knowledge on the size of the ground truth P̃ (S) can
be seen as a projection on the constraints followed by a
normalization:

P (S∗ = S|l ≤ |S∗| ≤ u) =
P (S∗ = S ∩ |S∗| ∈ [l, u])

P (|S∗| ∈ [l, u])

It follows:

P̃ (S) =

{ 1
β(l,u,t)

∏
aj∈S

tj
∏

aj /∈S

(1− tj) if S ∈ Sl,u

0 if S /∈ Sl,u

where β(l, u, t) =
∑

S∈Sl,u

∏
aj∈S

tj
∏

aj /∈S

(1− tj).

The ground truths associated with different instances are
assumed to be mutually independent given the parameters.

Two particular cases are worth discussing. First, when
(l, u) = (0,m), the problem is unconstrained and we have
β(0,m, t) = P (|S∗| ∈ [0,m]) = 1, so P̃ (S) = P (S =
S∗). In this case the problem degenerates into a series of
independent binary label-wise estimations (see Subsection
4.1).

Second, in the single-winner case (l, u) = (1, 1), we have

P̃ ({aj}) =
tj

∏
h̸=j 1−th

β(1,1,t) , therefore, for any approval profile
A:

P (S∗ = aj |A) ∝ P (A|S = aj)P̃ (aj)

= P (A|S = aj)×
tj

∏
h ̸=j

(1− th)

β

= P (A|S = aj)×
1

(1− tj)

tj
∏

1≤h≤m

(1− th)

β

∝ P (A|S = aj)×
tj

(1− tj)

We recover the same estimation problem if we simply
introduce αj = P (S∗ = {aj}) with

∑
αj = 1 as in

Ben-Yashar and Paroush [2001], in which case we have
P (S∗ = aj |A) ∝ αjP (A|S∗ = aj).

4 ESTIMATING THE GROUND TRUTH

Our aim is the intertwined estimation of the ground truth
and the parameters via maximizing the total likelihood of
the instances:

L(A,S, p, q, t) =

L∏
z=1

P̃ (Sz)

n∏
i=1

P (Az
i |Sz)

where:

P (Az
i |Sz) = p

|Az
i ∩Sz |

i q
|Az

i ∩Sz |
i (1− pi)

|Az
i ∩Sz |(1− qi)

|Az
i ∩Sz |

To this aim, we will introduce an iterative algorithm whose
main two steps will be presented in sequence, in the next
subsections, before the main algorithm is formally defined
and its convergence shown. These two steps are:

• Estimating the ground truths given the parameters.
• Estimating the parameters given the ground truths.

Simply put, the algorithm consists in iterating these two
steps until it converges to a fixed point.



4.1 ESTIMATING THE GROUND TRUTH GIVEN
THE VOTES AND THE PARAMETERS

Since instances are independent given the parameters, we
focus here on one instance with ground truth S∗ and profile
A = (A1, . . . , An). Before diving into maximum likelihood
estimation (MLE), we introduce some notions and prove
some lemmas. In this subsection, we suppose that the pa-
rameters (pi, qi)i∈N and (tj)j∈A are known (later on, these
parameters will be replaced by their estimations at each
iteration of the algorithm). Thus, all in all, input and output
are as follows:

• Input: approval profile A; parameters (pi, qi)i∈N and
(tj)j∈A.

• Output: MLE of the ground truth S∗.

Definition 1 (weighted approval score). Given an approval
profile (A1, . . . , An), noise parameters (pi, qi)1≤i≤n and
prior parameters (tj)1≤j≤m, define:

appw(aj) = ln

(
tj

1− tj

)
+

∑
i:aj∈Ai

ln

(
pi(1− qi)

qi(1− pi)

)

The scores appw(aj) can be interpreted as weighted ap-
proval scores for a (n+m)-voter profile where:

• for each voter 1 ≤ i ≤ n: i has a weight wi =

ln
(

pi(1−qi)
qi(1−pi)

)
and casts approval ballot Ai.

• for each 1 ≤ j ≤ m: there is a virtual voter with
weight wj = ln

(
tj

1−tj

)
who casts approval ballot

Aj = {aj}.

While the weight of each voter i ∈ N depends on her relia-
bility, each prior information on an alternative plays the role
of a virtual voter who only selects the concerned alternative,
with a weight that increases as the prior parameter increases.

From now on, we suppose without loss of generality that
the alternatives are ranked according to their score:

appw(a1) ≥ appw(a2) ≥ · · · ≥ appw(am)

Definition 2 (threshold and partition). Define the threshold:

τn =

n∑
i=1

ln

(
1− qi
1− pi

)
and the partition of the set of alternatives in three sets: Sτn

max = {a ∈ A, appw(a) > τn}
Sτn
tie = {a ∈ A, appw(a) = τn}

Sτn
min = A\(Sτn

max ∪ Sτn
tie)

and let kτnmax = |Sτn
max|, k

τn
tie = |Sτn

tie|, k
τn
min = |Sτn

min|.

The next result characterizes the sets in S that are MLEs of
the ground truth given the parameters.

Theorem 1. S̃ ∈ argmaxS∈S L(A,S, p, q, t) if and only if
there exists k ∈ [l, u] such that S̃ is the set of k alternatives
with the highest k values of appw and:{

|S̃ ∩ Sτn
max| = min(u, kτnmax)

|S̃ ∩ Sτn
min| = max(0, l − kτntie − kτnmax)

(1)

So the estimator S̃ is made of some top-k alternatives, where
the possible values of k are determined by Eq. (1). The
first equation imposes that S̃ includes as many elements as
possible from Sτn

max (without exceeding the upper-bound
u), whereas the second one imposes that S̃ includes as few
elements as possible from Sτn

min (without getting below the
lower-bound l). An example is included in the appendix.

Proof. Since P̃ (S) > 0 ⇐⇒ S ∈ Sl,u, we have that
argmaxS∈S L(S) = argmaxS∈Sl,u

L(S). Moreover, we
have that for any S ∈ Sl,u:

L(S) = P̃ (S)

n∏
i=1

p
|Ai∩S|
i q

|Ai∩S|
i (1− pi)

|Ai∩S|(1− qi)
|Ai∩S|

= P̃ (S)

n∏
i=1

p
|Ai∩S|
i q

|Ai|−|Ai∩S|
i (1− pi)

|S|−|Ai∩S|

(1− qi)
|Ai|−|S|+|Ai∩S|

∝ P̃ (S)

n∏
i=1

[
1− pi
1− qi

]|S| [
pi(1− qi)

qi(1− pi)

]|Ai∩S|

∝ 1

β

∏
aj∈S

tj
∏
aj /∈S

(1− tj)

n∏
i=1

[
1− pi
1− qi

]|S| [
pi(1− qi)

qi(1− pi)

]|Ai∩S|

∝
∏
aj∈S

tj
1− tj

n∏
i=1

[
1− pi
1− qi

]|S| [
pi(1− qi)

qi(1− pi)

]|Ai∩S|

Thus the log-likelihood ℓ(S) reads:

∑
aj∈S

ln
tj

1− tj
+

n∑
i=1

|S| ln 1− pi
1− qi

+ |Ai ∩ S| ln pi(1− qi)

qi(1− pi)

=
∑
aj∈S


l(aj)︷ ︸︸ ︷

ln
tj

1− tj
+

∑
i:aj∈Ai

ln
pi(1− qi)

qi(1− pi)︸ ︷︷ ︸
appw(aj)

−
n∑

i=1

ln
1− qi
1− pi︸ ︷︷ ︸

τn


This means that a ∈ Sτn

max if and only if ℓ(a) > 0 , a ∈
Sτn
min if and only if ℓ(a) < 0 and a ∈ Sτn

tie if and only if
ℓ(a) = 0. Now, let SM be a maximizer of the likelihood.
Since ℓ(aj) ≥ ℓ(ah) ⇐⇒ appw(aj) ≥ appw(ah) we
have that SM , which maximizes

∑
aj∈S ℓ(aj), is made of

top-k alternatives for some k ∈ [l . . u].

Furthermore, |SM ∩Sτn
min| = max(0, l−kτntie−kτnmax). Start

by noticing that |SM ∩ Sτn
min| ≥ max(0, l − kτntie − kτnmax),



since |SM ∩Sτn
min| ≥ l−|SM ∩Sτn

max|− |SM ∩Sτn
tie| ≥ l−

kτnmax−kτntie. Suppose that |SM ∩Sτn
min| > max(0, l−kτntie−

kτnmax). Then we have that |SM | > l because otherwise, if
|SM | = l, then |SM ∩ Sτn

max| + |SM ∩ Sτn
tie| = l − |SM ∩

Sτn
min| < kτnmax + kτntie, which would mean that there are

elements in Sτn
tie and Sτn

max which are not in SM , which is a
contradiction since |SM ∩ Sτn

min| > 0 and SM is a top-k set.
Now consider a ∈ SM ∩ Sτn

min, we have that |SM\{a}| ≥ l
and l(SM ) = l(SM\{a}) + l(a) < l(SM\{a}) which is a
contradiction.

With the same idea we can prove that |SM ∩ Sτn
max| =

min(u, kτnmax).

Conversely, consider an admissible set S of top-k alterna-
tives that verifies the constraints (1). Let SM be a MLE
which, by the first part of the proof, is a top-k′ set that
also satisfies the same constraints (1). Thus we have that
|SM ∩ Sτn

max| = |S ∩ Sτn
max| = min(u, kτnmax), and since S

and SM are top-k and top-k′ sets, we have that S ∩Sτn
max =

SM ∩Sτn
max. Similarly we have that S∩Sτn

min = SM ∩Sτn
min.

This suffices to prove that ℓ(S) = ℓ(SM ) is maximal.

Notice that when (l, u) = (0,m), the problem degenerates
into a collection of label-wise problems, one for each alter-
native: aj is selected if aj ∈ Sτn

max, rejected if aj ∈ Sτn
min,

and those that are on the fence can be arbitrarily selected or
not.

Example 1. Consider 5 alternatives A = {a, b, c, d, e}
and 10 voters N all sharing the same parameters (p, q) =
(0.7, 0.4). We thus have that all voters share the same weight

w = ln
(

p(1−q)
q(1−p)

)
= 1.25 and τn =

∑n
i=1 ln

(
1−q
1−p

)
=

6.93. We consider the constraints (l, u) = (1, 4)

First, suppose that td = 0.6 and that tj = 0.5 for all the
remaining candidates. Consider also the approval counts
(and weighted approval scores) in the table below.

Candidate a b c d e
Approval count 9 8 7 5 5

appw 11.25 10 8.75 6.65 6.25

We can easily check, by Theorem 1 that S̃ =
argmaxS∈S P (S = S∗|A) = {a, b, c}. We have that
Sτn
max = {a, b, c}, Sτn

tie = ∅ and Sτn
min = {d, e}. We know

that there exists some k ∈ [1, 4] such that S̃ would consist
of the top k alternatives. We also have that:

{
|S̃ ∩ Sτn

max| = min(u, kτn
max) = 3 =⇒ {a, b, c} ⊆ S̃

|S̃ ∩ Sτn
min| = max(0, l − kτn

tie − kτn
max) = 0 =⇒ d, e /∈ S̃

So the only possibility is S̃ = {a, b, c}.

4.2 ESTIMATING THE PARAMETERS GIVEN
THE GROUND TRUTH

4.2.1 Estimating the prior parameters over
alternatives

Once the ground truths are estimated at one iteration of
the algorithm, the next step consists in estimating the prior
parameters (tj)j∈A, with the ground truths being given (in
Subsection 4.3 the ground truth will be replaced by its esti-
mation at each iteration). The next proposition explicits the
closed-form expression of the MLE of the prior parameter
of each alternative given the ground truth of each instance
S∗
z once the prior parameters of all other alternatives are

fixed.

• Input: Approval profile (A1, . . . , An), ground truths
S∗
z , and all but one prior parameters (th)h ̸=j .

• Output: MLE of tj .

Proposition 2. For every aj ∈ A:

argmax
t∈(0,1)

L(A,S, p, q, t, t−j) =
occ(j)αj

(L− occ(j))αj + occ(j)αj

where:



αj =
∑

S∈Sl,u

aj∈S

∏
ah∈S
h̸=j

th
∏

ah /∈S

(1− th)

αj =
∑

S∈Sl,u

aj /∈S

∏
ah∈S

th
∏

ah /∈S
h ̸=j

(1− th)

occ(j) = |z ∈ {1, . . . , L}, aj ∈ Sz|

Notice that αj = P (l ≤ |S∗| ≤ u|aj ∈ S∗) and αj =
P (l ≤ |S∗| ≤ u|aj /∈ S∗) so β = αjtj+αj(1−tj). occ(j)
is the number of instances whose ground truth contains aj .

Proof. Fix all sets Sz ∈ Sl,u and all the noise parameters
(pi, qi)i and all the prior parameters th but for one tj for
some j ≤ m, and let t ∈ (0, 1):

L(S, t, t−j) ∝
L∏

z=1

1

β(l, u, t)

∏
ah∈Sz

th
∏

ah /∈Sz

(1− th)

∝
L∏

z=1

1

β(l, u, t, t−j)

∏
ah∈Sz

th
∏

ah /∈Sz

(1− th)

∝
(

1

β(l, u, t, t−j)

)L ∏
z:aj∈Sz

t

︸ ︷︷ ︸
tocc(j)

∏
z:aj /∈Sz

(1− t)

︸ ︷︷ ︸
(1−t)L−occ(j)

Taking the log we can write the function as:

ℓ(t) = −L log β + occ(j) log t+ (L− occ(j)) log(1− t)

Its derivative reads:

∂ℓ

∂t
= −L

αj − αj

αjt+ αj(1− t)
+occ(j)

1

t
+(occ(j)−L)

1

1− t



Canceling it, we obtain:

t =
occ(j)αj

(L− occ(j))αj + occ(j)αj

The derivative vanishes in a single point in (0, 1) and
limt→0 ℓ(t) = limt→1 ℓ(t) = −∞ thus ℓ reaches a unique
maximum.

We will see later that the algorithm applies Proposition 2
sequentially to estimate the alternatives’ parameters one by
one (see Example 2).

4.2.2 Estimating the voter parameters

Once the ground truths are known (or estimated), we can
estimate the voters’ parameters (p, q).

• Input: Instances (A1, . . . , AL), ground truths
(S∗

1 , . . . , S
∗
L).

• Output: MLE of voter reliabilities (p, q).

The next result simply states that the maximum likelihood
estimator of pi of some voter is the fraction of alternatives
that the voter approves and that actually belong to the ground
truth; the estimation of qi is similar. See Example 2.

Proposition 3. Fix sets Sz ∈ Sl,u and prior parameters tj .
Then:

argmax
(p,q)∈(0,1)2n

L(A,S, p, q, t) = (p̂, q̂)

where: p̂i =
∑

z∈L |Az
i∩Sz|∑

z∈L |Sz| , q̂i =
∑

z∈L |Az
i∩Sz|∑

z∈L |Sz|

The (simple) proof is omitted.

4.3 ALTERNATING MAXIMUM LIKELIHOOD
ESTIMATION

Now the estimation of the ground truths and that of the pa-
rameters are intertwined to maximize the overall likelihood
L(A,S, p, q, t) by the Alternating Maximum Likelihood Es-
timation algorithm. AMLE is an iterative procedure similar
to the Expectation-Maximization procedure introduced in
Baharad et al. [2011] but with a coordinate-steepest-ascent-
like iteration, whose aim is to intertwinedly estimate the
voter reliabilities, the alternatives’ prior parameters and the
instances’ ground truths. The idea behind this estimation
consists in alternating a MLE of the ground truths given
the current estimate of the parameters, and an updating of
these parameters via a MLE based on the current estimate of
the ground truths.1 Each of these steps have been discussed

1In case of ties between subsets when estimating the ground
truth, a tie-breaking priority over subsets is used. No ties occurred
in our experiments.

Algorithm 1 AMLE procedure
Input: Approval ballots (Az

i )1≤z≤L,i∈N
Initial parameters θ̂(0),Bounds (l, u), error ε

Output: Estimations (Ŝz), (p̂i, q̂i), (t̂j)

repeat
for z = 1 . . . L do

Compute Ŝ
(v+1)
z = {a1, . . . , ak} with k ∈ [l, u]

and:

|Ŝ(v+1)
z ∩ S

(v)
max,z| = min(u, k

(v)
max,z)

|Ŝ(v+1)
z ∩ S

(v)
min,z| = max(0, l − k

(v)
tie,z − k

(v)
max,z)

end for
for i = 1 . . .N do

Update the parameters (pi, qi) given Ŝ(v+1):

p̂
(v+1)
i =

∑
z∈L

|Az
i ∩ Ŝ

(v+1)
z |∑

z∈L

|Ŝ(v+1)
z |

, q̂
(v+1)
i =

∑
z∈L

|Az
i ∩ Ŝ

(v+1)
z |∑

z∈L

|Ŝ(v+1)
z |

end for
for j = 1 . . .m do

Update t̂
(v+1)
j by:

t̂
(v+1)
j =

occ(v+1)(j)α
(v+1)
j

occ(v+1)(j)α
(v+1)
j + (L− occ(v+1)(j))α

(v+1)
j

where :
occ(v+1)(j) =

∑L
z=1 1{aj ∈ Ŝ

(v+1)
z }

α
(v+1)
j = β((l − 1)+, u− 1, t̂

(v+1)
<j , t̂

(v)
>j )

α
(v+1)
j = β(l, u, t̂

(v+1)
<j , t̂

(v)
>j )

end for
until ||θ̂(v+1) − θ̂(v)|| ≤ ε

in the previous subsections and are now incorporated into
Algo. 1.

The algorithm continues to run until a convergence criterion
is met in the form of a bound on the norm of the change
in the parameters’ estimations. In practice we chose ℓ∞,
but any other norm could be used in Algorithm 1 as in
finite dimensions, all norms are equivalent (if a sequence
converges according to one norm then it does so for any
norm).

We define the vector of parameters θ̂(v) = (p̂(v), q̂(v), t̂(v))
containing the voters’ estimated noise parameters as well as
the prior information estimated parameters at iteration v. In
particular θ̂(0) is the input initial values. The choice of the
exact initial values depends on the application at hand.

Note that at convergence, only local optimality is guaran-
teed.



Theorem 4. For any initial values θ̂(0), AMLE converges
to a fixed point after a finite number of iterations.

We only provide a sketch of proof and defer the full proof
to the Appendix.

Proof. First we have by Theorem 1 that:

L(A, Ŝ(v+1), θ̂(v)) ≥ L(A, Ŝ(v), θ̂(v))

By Proposition 2 and Proposition 3, we deduce that:

L(A, Ŝ(v+1), θ̂(v+1)) ≥ L(A, Ŝ(v+1), θ̂(v))

Hence, the likelihood increases at every step. Since there is a
finite number of possible values for the ground truth (namely
2mL), the convergence of the algorithm is guaranteed.

Because L(A, Ŝ(v+1), θ̂(v+1)) ≥ L(A, Ŝ(v+1), θ̂(v)) ≥
L(A, Ŝ(v), θ̂(v)), the likelihood increases at each step of
the algorithm. This guarantees that whenever the execution
stops, the likelihood is closer to the maximum than it ini-
tially was. Therefore the algorithm can not only be run until
convergence, but it can also be run as an anytime algorithm.

Example 2. Take n = 3, m = 5, l = 1, u = 2, L = 4, and
the following profile and initial parameters:

A1 A2 A3 A4

Voter 1 {a1, a4} {a1} {a3} {a1}
Voter 2 {a2} {a5} {a4} {a1}
Voter 3 {a2, a3, a4} {a2, a3, a5} {a2, a3} {a3}


p̂
(0)
1 = 0.5 p̂

(0)
2 = 0.5 p̂

(0)
3 = 0.5

q̂
(0)
1 = 0.44 q̂

(0)
2 = 0.41 q̂

(0)
3 = 0.32

t̂
(0)
1 = · · · = t̂

(0)
5 = 0.5

Estimating the ground truth: The first step is the appli-
cation of Theorem 1 to estimate the ground truth of the
instances given the initial parameters, yielding Ŝ

(1)
1 =

{a2, a4}, Ŝ(1)
2 = {a2, a5}, Ŝ(1)

3 = {a2, a3}, Ŝ(1)
4 =

{a1, a3}

Estimating the voter reliabilities: In the next step we use
these estimates of the ground truths to compute the MLEs
of the voter reliabilities. For instance, voter 1 has 2 false
positive labels from a total of 12 negative labels so q̂

(1)
1 =

2
12 = 0.17 and she has 3 true positive labels out of 8 positive
ones so p̂

(1)
1 = 3

8 = 0.38. In the end, we get:{
p̂
(1)
1 = 0.38 p̂

(1)
2 = 0.38 p̂

(1)
3 = 0.88

q̂
(1)
1 = 0.17 q̂

(1)
2 = 0.08 q̂

(1)
3 = 0.17

Estimating the prior parameters: The final step of this
iteration consists in updating the estimations of the prior
parameters by applying Proposition 2 sequentially. First
we estimate t̂

(1)
1 given Ŝ(1) and t̂

(0)
2 , . . . , t̂

(0)
5 by max-

imum likelihood estimation. We first compute α1 =
β(0, 1, t2, . . . , t5) = 0.3125, α1 = β(1, 2, t2, . . . , t5) = 1
and occ(a1) = 1. Then the MLE of t1 is:

t̂1 =
occ(a1)α1

(L− occ(a1))α1 + occ(a1)α1
= 0.09

The next steps are to estimate t̂
(1)
2 given t̂

(1)
1 , t̂

(0)
3 , t̂

(0)
4 , t̂

(0)
5

and so on. Finally, we get:

t̂
(1)
1 = 0.09, t̂

(1)
2 = 0.56, t̂

(1)
3 = 0.28, t̂

(1)
4 = 0.14, t̂

(1)
5 = 0.20

Fix ε = 10−5. We repeat all steps until convergence (ac-
cording to ℓ∞), after 5 full iterations. In the fixed point, the
estimations of the ground truths are:

Ŝ1 = {a2, a3}, Ŝ2 = {a2, a3}, Ŝ3 = {a2, a3}, Ŝ4 = {a3}

5 EXPERIMENTS

5.1 EXPERIMENT DESIGN AND DATA
COLLECTION

We designed an image annotation task as a football quiz.2

We selected 15 pictures taken during different matches be-
tween two of the following teams: Real Madrid, Inter Milan,
Bayern Munich, Barcelona, Paris Saint-Germain. In each
picture, it may be the case that players from both teams
appear, or players from only one team, therefore l = 1 and
u = 2. Each participant is shown the instances one by one,
and is each time asked to select all the teams she can spot
(see Figure 1). We designed a simple incentive for partici-
pants, consisting in ranking them according to the following
principle:

• The participants get one point whenever their answer
contains all correct alternatives for a picture. They are
then ranked according to their cumulated points.

• To break ties, the participant who selected a smaller
number of alternatives overall is ranked first.

We gathered the answers of 76 participants: only two of
them spammed by simply selecting all the alternatives. Fig-
ure 2 shows that voters responded well to the incentives by
mostly selecting one or two alternatives.

5.2 ANNA KARENINA’S INITIALIZATION

Inspired by the Anna Karenina Principle in Meir et al.
[2019], we assign more weight to voters who are closer

2The dataset and code are accessible at https://github.com/
taharallouche/Football-Quiz-Crowdsourcing

https://github.com/taharallouche/Football-Quiz-Crowdsourcing
https://github.com/taharallouche/Football-Quiz-Crowdsourcing


Figure 1: Example of Annotation Task

Figure 2: Histogram of answers’ size

to the others on average, initializing the precision parame-
ters (pi, qi) accordingly. This suits our context, where voter
competence is highly polarized: some voters are experts and
cast similar answers close to the ground truth, the others
are less reliable and their answers are dispersed among all
combinations.

We use the following heuristics (see Algorithm 2) for the
initialization:

Algorithm 2 Initializing (pi, qi)i

Input: Approval ballots (Az
i )z,i

Output: Initialization (p̂
(0)
i , q̂

(0)
i )

-Compute wmax = n
1+n , wmin = 1

1+n
-Compute di =

∑
j ̸=i

dJacc(Ai, Aj) (Jaccard distance)

-Compute dmax = max di, dmin = min di

-Compute wi = (wmax − wmin)
(

1/di−1/dmax
1/dmin−1/dmax

)
+

wmin

-Fix p̂
(0)
i = 1

2 and q̂
(0)
i =

1− ewi−1
ewi+1

2

Algorithm 2 guarantees that the parameters (p̂(0)i , q̂
(0)
i ) of a

voter are such that her initial weight is equal to wi, and that
wmax

wmin
= n: therefore, initially, the voter closest in average

to the other voters counts n times more than the voter with
the largest average distance.

In the Appendix we give an example illustrating this initial-
ization, and an empirical comparison with other classical
initializations.
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Figure 3: Accuracies of different aggregation methods

5.3 RESULTS

To assess the importance of prior information on the size of
the ground truth, we tested the AMLE algorithm with free
bounds (l, u) = (0,m) (will be referred to as AMLEf ) and
the AMLEc algorithm with (l, u) = (1, 2). We also apply
the modal rule Caragiannis et al. [2020] which outputs the
subset of alternatives that most frequently appears as an ap-
proval ballot argmaxS∈S |i ∈ N , S = Ai|, and a variant of
label-wise majority rule which outputs the subset of alterna-
tives S such that a ∈ S ⇐⇒ |i ∈ N , a ∈ Ai| > n

2 . If this
subset is empty it is replaced by the alternative with highest
approval count, and if it has more than two alternatives then
we only keep the top-2 alternatives.

We took 20 batches of n = 10 to n = 74 randomly drawn
voters and applied the four methods to all of them (see Fig-
ure 3a,3b). As classically done in the literature Nguyen et al.
[2020], we use the Hamming accuracy 1

mL

∑L
z=1 |S∗

z ∩
Ŝz|+ |S∗

z ∩ Ŝz| and the 0/1 accuracy 1
L

∑L
z=1 1{S∗

z = Ŝz}
as metrics and report their 0.95 confidence intervals.

We notice that the majority and the modal rule are out-
performed by AMLE, which can be explained by the fact
that they do not take into account the voters’ reliabilities.
Comparing the performances of AMLEc and AMLEf em-
phasizes the importance of the prior knowledge on the com-
mittee size to improve the quality of the estimation.

We also compared the execution time of AMLEc and
AMLEf (see Figure 4) when run on Intel Core i7-10610U
CPU @1.80Ghz 4 cores, 8 threads and 32Gb RAM. Unsur-



prisingly, AMLEc needs more running time, especially for
more than 40 voters.

Figure 4: Execution time

6 CONCLUSION

We study multi-winner approval voting from an epistemic
point of view. The specificity of our work is threefold: (a)
the ground truth consists of a set of alternatives; (b) the input
consists of approval votes; (c) the competence of the various
voters is not known a priori but learnt from the input. We
proposed a noise model that incorporates the prior belief
about the size of the ground truth. Then we derived an iter-
ative algorithm to intertwinedly estimate the ground truth
labels, the voter noise parameters and the prior belief param-
eters and we prove its convergence. Our algorithm is based
on a simplification of Expectation-Maximization (EM), and
its simple steps are more easily explainable to voters than
EM and other similar statistical learning approaches.

Although we mainly considered a general multi-instance
task that fits the collective annotation framework, where
each voter answers several questions on the same set of
alternatives, we can nonetheless apply the same algorithm
to single-instance problems (such as the allocation of scarce
medical resources) where only one question is answered.
In this case, the prior parameters cannot be updated and it
suffices to fix them once and for all and alternate between
the estimation of the ground truth and the voter parameters.

In some contexts (e.g., patients in a hospital), alternatives
and votes are not observed at once but streamed. To cope
with this online setup we consider extending our AMLE
algorithm in the spirit of Cappé and Moulines [2009].
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