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Abstract

We establish THUMB, a rubric-based human
evaluation protocol for image captioning mod-
els. Our scoring rubrics and their definitions
are carefully developed based on machine- and
human-generated captions on the MSCOCO
dataset. Each caption is evaluated along two
main dimensions in a tradeoff (precision and
recall) as well as other aspects that measure
the text quality (fluency, conciseness, and in-
clusive language). Our evaluations demon-
strate several critical problems of the current
evaluation practice. Human-generated cap-
tions show substantially higher quality than
machine-generated ones, especially in coverage
of salient information (i.e., recall), while most
automatic metrics say the opposite. Our rubric-
based results reveal that CLIPScore, a recent
metric that uses image features, better corre-
lates with human judgments than conventional
text-only metrics because it is more sensitive to
recall. We hope that this work will promote a
more transparent evaluation protocol for image
captioning and its automatic metrics.1

1 Introduction

Recent progress in large-scale training has pushed
the state of the art in vision-language tasks (Li et al.,
2020; Zhang et al., 2021, inter alia). One of these
tasks is image captioning, whose objective is to
generate a caption that describes the given image.
The performance in image captioning has been pri-
marily measured in automatic metrics (e.g., CIDEr,
Vedantam et al., 2015; SPICE, Anderson et al.,
2016) on popular benchmarks, such as MSCOCO
(Lin et al., 2014) and Flickr8k (Hodosh et al., 2013).
Use of these metrics is justified based on their corre-
lation with human judgments collected in previous
work (Hodosh et al., 2013; Elliott and Keller, 2014;
Kilickaya et al., 2017, inter alia).

∗Work was done during an internship at AI2.
1All data are available at https://github.com/

jungokasai/THumB.

Machines P R CIDEr
A red fire hydrant spewing water on a street. 5 3 139.2
A red fire hydrant spraying water on a street. 5 3 205.2
Human
A busted red fire hydrant spewing water all
over a street creating a rainbow.

5 5 120.5

Figure 1: These machine captions are precise (in the
scale of 1–5) but lose points in recall (i.e., coverage of
salient information); they both ignore the rainbow in
the picture. Automatic metrics, such as CIDEr, do not
capture this failure.

Continuous use of these previous human judg-
ments, however, raises significant concerns for de-
velopment of both captioning models and auto-
matic metrics because of their lack of transparency.
In previous work, annotators (crowdworkers, typi-
cally) rate image captions directly (Hodosh et al.,
2013), pairwise (Vedantam et al., 2015), or along
multiple dimensions such as thoroughness (Aditya
et al., 2015) and truthfulness (Yatskar et al., 2014).
These scoring judgments depend highly on individ-
ual annotators’ discretion and understanding of the
annotation scheme (Freitag et al., 2021; Clark et al.,
2021), making it difficult to decompose, interpret,
and validate annotations. This lack of transparency
also makes it difficult to interpret evaluation re-
sults for downstream applications where some as-
pects are particularly important (e.g., accessibil-
ity for people with visual impairments; Gleason
et al., 2019, 2020). Further, these annotations were
done only on relatively old models (e.g., MSCOCO
leaderboard submissions in 2015; Anderson et al.,

https://github.com/jungokasai/THumB
https://github.com/jungokasai/THumB


2016). Correlations of automatic metrics with hu-
man judgments can break down especially when
model types change (Callison-Burch et al., 2006),
or generation models become increasingly pow-
erful (Ma et al., 2019; Edunov et al., 2020). We
thus develop an up-to-date, transparent human eval-
uation protocol to better understand how current
models perform and how automatic metrics are
correlated when applied to current models.

At the core of our rubrics are two main scores in
a tradeoff: precision and recall (Fig. 1). The former
measures accuracy of the information in a caption,
and the latter assesses how much of the salient
information in the image is covered. We then pe-
nalize a caption if we find a problem in fluency,
conciseness, or inclusive language. Two or more
authors evaluate every instance and collaborate to
resolve disagreements, ensuring high quality of the
annotations. We assess outputs from four strong
models as well as human-generated reference cap-
tions from MSCOCO. We call our scores THUMB
1.0 (Transparent Human Benchmark), and release
them publicly.

Key Findings We made several key observations
from the evaluations.

• Machine-generated captions from recent models
have been claimed to achieve superhuman perfor-
mance using popular automatic metrics (human
performance is ranked at the 250th place in the
MSCOCO leaderboard),2 but they still show sub-
stantially lower quality than human-generated
ones.

• Machines fall short of humans, especially in re-
call (Fig. 1), but most automatic metrics say the
opposite. This finding is consistent with prior
work that showed that machines tend to pro-
duce less diverse captions than humans (van Mil-
tenburg et al., 2018).

• Human performance is underestimated in the cur-
rent leaderboard paradigm, and there is still much
room for improvement on MSCOCO captioning.

• CLIPScore and RefCLIPScore (Hessel et al.,
2021), recently proposed metrics that use im-
age features, improve correlations particularly in
recall. While they fail to score human generation
much higher than machine one, they capture an

2https://competitions.codalab.org/
competitions/3221#results.

aspect that is less reflected in text-only metrics.

• Currently available strong captioning models gen-
erate highly fluent captions. Fluency evaluation
is thus no longer crucial in ranking these models.

2 Evaluation Protocol

We establish a transparent evaluation protocol for
English image captioning models. Our rubrics and
rules are developed through discussions among all
annotators (first four authors of this paper) and
designed to increase the reliability of evaluation
(Jonsson and Svingby, 2007)

2.1 Evaluation Setups and Quality Control

We used images from the test data in the stan-
dard Karpathy split (Karpathy and Fei-Fei, 2015)
of the MSCOCO dataset (Lin et al., 2014). The
dataset consists of 113K, 5K, and 5K train/dev./test
everyday-scene photos sampled from Flickr. We
randomly sampled 500 test images and prepared
one human- and four machine-generated captions
for every image (§2.3). We first performed de-
velopmental evaluations of 250 captions for 50
images and created rubrics. We then proceeded
with the rest of the captions. For every image, cap-
tions were shuffled, and thus annotators did not
know which caption corresponded to which model,
thereby avoiding a potential bias from knowledge
about the models. We conducted two-stage anno-
tations: the first annotator scores all captions for
given images, and the second annotator checks and
modifies the scores when necessary. After the de-
velopmental phase, the κ coefficient (Cohen, 1960)
was 0.86 in precision and 0.82 in recall for the
rest of the evaluated captions (§2.2.1).3 The first
four authors of this paper conducted all evaluations;
none of them are color blind or low vision, two are
native English speakers, and one is a graduate stu-
dent in linguistics. We finally ensured that at least
one native speaker evaluated the fluency of every
caption (§2.2.2), meaning that if a caption is anno-
tated by the two non-native speakers, one native
speaker checks the fluency in an additional round.

3Furthermore, we found that a third annotator did not
change the scores for all 100 captions randomly sampled for
meta-evaluations, confirming the sufficiently high quality of
our two-stage annotations. Disagreement in ratings can also
result from a certain degree of subjectivity (Misra et al., 2016).

https://competitions.codalab.org/competitions/3221#results
https://competitions.codalab.org/competitions/3221#results


2.2 THUMB 1.0

Similar to the framework of the automatic SPICE
metric (Anderson et al., 2016), we base our manual
evaluations on two main scores: precision and
recall. We also consider three types of penalty:
fluency, conciseness, and inclusive language. The
overall score is computed by averaging precision
and recall and deducting penalty points.

2.2.1 Main Scores
The two main scores are assessed in the scale of
1–5. They balance information accuracy and cover-
age.

Precision Precision (P) measures how precise the
caption is given the image. For instance, Caption 1-
B in Table 1 is perfectly precise, while 1-A (dog vs.
otter, one vs. two frisbees) and 1-C (three vs. two
frisbees) are not precise. Precision guards against
hallucinations from the language model (table in 2-
B) that are known to be common failures of image
captioning models (Rohrbach et al., 2018). The
score of 4 is reserved for relatively minor issues,
such as attributes that are almost correct (e.g., pink
vs. red in 4-C, Table 1) or cases where the caption
does not contradict the image but is not guaranteed
to be true (e.g., it is unclear whether the girl is
sitting on a couch in 3-B). In addition to objects
themselves, precision deals with information like
properties, attributes, occasions, locations, and re-
lations between objects (e.g., in a red suitcase vs.
on a red suitcase in 4-A).

Recall Recall (R) measures how much of the
salient information (e.g., objects, attributes, and
relations) from the image is covered by the cap-
tion. This includes color (e.g., color of the frisbees
in 1-A, 1-B, and 1-C) and guards against generic,
uninformative captions that machines tend to pro-
duce (Wang et al., 2020). For instance, an otter is a
small animal, and thus small animal is precise (1-
C); however, it is much less informative (and less
natural; Ordonez et al., 2013) than saying an otter.
Similarly, Caption 5-B only says a woman is stand-
ing behind a counter at a donut shop, but she is sell-
ing donuts, not buying or looking at donuts, which
is salient information from the picture. We do not
take a point off if missing information is already
expected from the caption (e.g., a double-decker
bus is typically red). We often find it useful to take
a generative approach when evaluating recall: what
image does the caption lead us to imagine? When

the caption entails many potential images that sub-
stantially diverge from the given image, the recall
score should be low.4

2.2.2 Penalties
Fluency Fluency (Flu.) measures the quality of
captions as English text regardless of the given im-
age. Initially, we scored fluency in the scale of 1–5,
similar to P and R, but we found most captions
from modern neural network models were highly
fluent. Thus, we instead decided to take points off
from the average of P and R if there’s a fluency
problem to account for minor issues that are much
less problematic than losing one P/R point. The
four annotators had extensive discussions and de-
veloped rubrics for fluency. Similar to recent work
on professional evaluations for machine translation
(Freitag et al., 2021), we evaluated under the fol-
lowing principle: if a fluency problem is expected
to be easily corrected by a text postprocessing algo-
rithm (e.g., grammatical error correction: Yuan and
Briscoe, 2016; Sakaguchi et al., 2017), the penalty
should be 0.1. This includes obvious misspellings
or grammatical errors (e.g., A otter in 1-B) and
missing determiners/hyphens (multi colored in 2-
C). 0.5+ points were subtracted for more severe
problems, such as duplication (e.g., A display case
of donuts and doughnuts), ambiguity (e.g., A cat is
on a table with a cloth on it), and broken sentences
(e.g., A large concrete sign small buildings behind
it.). See Table 6 in §A.1 for more extensive fluency
rubrics. Note that the average fluency penalty was
0.01; this confirms that fluency is no longer crucial
in ranking models for MSCOCO captioning and
contrasts with human evaluations previously done
for older captioning models.

Conciseness The scores so far do not take into
account conciseness of captions. Specifically, a
model could simply increase all scores by describ-
ing every detail in a picture. For instance, the
following caption is overly repetitive: a woman
lying on her back with knees bent on a beach towel
under a multicolored, striped beach umbrella, sur-
rounded by sand, and with clear blue sky above.
We subtract 0.5 points for these captions. Note that
most machine captions were short, and this penalty
was only applied to two human-generated captions.
It might become more crucial for future models

4Prior work found recall (or specificity) can vary across
cultures or languages (van Miltenburg et al., 2017). We focus
on the English language in this work.



Image Caption P R Flu. Total

1-A: Up-Down 3 4 0 3.5A dog playing with a frisbee on the ground.

1-B: VinVL-base 5 4 0.1 4.4A otter is laying on the sand next to two frisbees.

1-C: VinVL-large 4 3 0 3.5A small animal laying on a rock with three frisbees.

2-A: Up-Down 5 3 0 4A close up of a plate of broccoli.

2-B: Unified-VLP, VinVL-base, VinVL-large 4 4 0 4A plate of pasta and broccoli on a table.

2-C: Human 5 5 0.1 4.9A multi colored dish with broccoli and white twisted pasta in it.

3-A: Unified-VLP 3 4 0 3.5A little girl holding a video game controller.

3-B: VinVL-large 4 5 0 4.5A little girl is blow drying her hair on a couch.

3-C: Human 5 5 0 5A little girl holding a blow dryer next to her head.

4-A: Up-Down 3 5 0 4A black cat laying in a red suitcase.

4-B: Unified-VLP, VinVL-base, VinVL-large 5 5 0 5A black cat sitting on top of a red suitcase.

4-C: Human 4 5 0 4.5A large black cat laying on top of a pink piece of luggage.

5-A: Up-Down, Unified-VLP 3 2 0 2.5A man standing in front of a display of donuts.

5-B: VinVL-large 5 3 0 4A woman standing behind a counter at a donut shop.

5-C: Human 5 5 0.3 4.7Woman selling doughnuts with doughnut stock in the background.

Table 1: Example evaluations of machine- and human-generated captions. None of these captions get penalties in
conciseness and inclusive language. Evaluated captioning models are described in §2.3. All MSCOCO images are
provided under a Creative Commons Attribution 4.0 License (Lin et al., 2014).

with a more powerful object detection module that
catches many objects in the picture.

Inclusive Language We found that some in-
stances substantially diverge from inclusive lan-
guage when humans are described (van Miltenburg,
2020), raising a concern for downstream applica-
tions. In these cases, we added a penalty: 0.5 points
were deducted for a subjective comment about ap-
pearance (e.g., very pretty girl), and 2 points for
more severe problems (e.g., beautiful breasts).

2.2.3 Rules of THUMB
In our development phase, we established the fol-
lowing additional rules to clarify our annotation
scheme.

Avoiding Double Penalties When an error is ac-
counted for in precision, we correct the error be-

fore scoring the recall, thereby avoiding penalizing
the precision and recall for the same mistake. For
example, P=3 is given to Caption 1-A in Table 1
because of its wrong detection (dog vs. otter; one
vs. two frisbees), but we score the recall assuming
that the caption is now an otter playing with two
frisbees on the ground. This ensures that a generic,
useless caption, such as there is something on some-
thing (P=5, R=1), would be ranked considerably
lower than a dog on the beach with two pink and
yellow frisbees (P=3, R=5). Similarly, the wrong
detection in 5-A (man vs. woman) is handled only
in precision. Note that such error correction is
not applicable to hallucinations because there is no
alignment between a part of the image and a hallu-
cinated object (e.g., table in 2-B). This rule departs
from the definition of recall in SPICE (Anderson
et al., 2016), an automatic metric that measures the



F1 score in scene graphs predicted from reference
and generated captions; their alignment is limited
to WordNet synonyms (Miller, 1995). This means
that classifying an otter as a dog or even a small
animal would result in cascading errors both in
precision and recall, overrating captions that com-
pletely overlook the otter or ones that make a more
severe classification error (e.g., miscategorize the
otter as a car, compared to a dog).

Object Counts as Attributes All counts are con-
sidered as object attributes, and wrong counts are
handled in precision. This simplifies the distinction
between precision and recall. For instance, both a
frisbee (1-A) and three frisbees (1-C) are precision
problems, while saying some frisbees would be a
recall problem when it is clear that there are exactly
two frisbees. Note that this is in line with SPICE,
which treats object counts as attributes in a scene
graph, rather than duplicating a scene graph for
every instance of an object (Anderson et al., 2016).

Black and White Photo MSCOCO contains
black and white or gray-scale pictures. Some cap-
tions explicitly mention that they are black and
white, but we disregard this difference in our evalu-
ations. The crowdsource instructions for creating
reference captions do not specify such cases (Chen
et al., 2015). Further, we can potentially run post-
processing to determine whether it is black and
white to modify the caption accordingly, depend-
ing on the downstream usage.

Text Processing Image captioning models often
differ slightly in text preprocessing. As a result,
we found that generated captions were sometimes
slightly different in format (e.g., tokenized or detok-
enized; lowercased or not). For better reproducibil-
ity, we follow the spirit of SACREBLEU (Post,
2018), which has become the standard package to
compute BLEU scores for machine translation: all
evaluations, including automatic metrics, should be
done on clean, untokenized text, independently of
preprocessing design choices. We apply the follow-
ing minimal postprocessing to the model outputs
and human captions.
• Remove unnecessary spaces at the start or end of

every caption.
• Uppercase the first letter.
• Add a period at the end if it doesn’t exist, and

remove a space before a period if any.
We keep the postprocessing minimal for this work
and encourage future model developers to follow

the standard practice in machine translation: every
model has to output clean, truecased, untokenized
text that is ready to be used in downstream modules.
This also improves the transparency and repro-
ducibility of automated evaluations (Post, 2018).

2.3 Evaluated Captions

We evaluated the following four strong models
from the literature as well as human-generated cap-
tions. They share similar pipeline structure: object
detection followed by crossmodal caption genera-
tion. They vary in model architecture, (pre)training
data, model size, and (pre)training objective. Eval-
uating captions from them will enable us to better
understand what has been improved and what is
still left to future captioning models.
• Up-Down (Anderson et al., 2018) trains Faster

R-CNN (Ren et al., 2015) on the Visual Genome
datset (Krishna et al., 2016) for object detection.
It then uses an LSTM-based crossmodal genera-
tion model.

• Unified-VLP (Zhou et al., 2020) uses the same
object detection model as Up-Down. The
transformer-based generation model is initialized
with base-sized BERT (Devlin et al., 2019) and
further pretrained with 3M images from Concep-
tual Captions (Sharma et al., 2018).

• VinVL-base and VinVL-large (Zhang et al.,
2021) train a larger-scale object detection model
with the ResNeXt-152 C4 architecture (Xie et al.,
2017) on ImageNet (Deng et al., 2009). The
transformer generation model is initialized with
BERT and pretrained with 5.7M images.

• Human randomly selects one from the
five human-generated reference captions in
MSCOCO. Those captions were created by
crowdworkers on Amazon Mechanical Turk
(Chen et al., 2015).

Further details are described in §A.3 of Appendix.

3 Results and Analysis

We present results and analysis from our evalu-
ations. Our transparent evaluations facilitate as-
sessments and analysis of both captioning models
(§3.1) and automatic metrics (§3.2).

3.1 Comparing Models

Seen in Table 2 (left section) is the model perfor-
mance that is averaged over the 500 test images and
broken down by the rubric categories. Overall, Hu-
man substantially outperforms all machines in the



THUMB 1.0 Automatic Metrics
Model P↑ R↑ Flu.↓ Con.↓ Inc.↓ Total↑ BLEU ROUGE BERT-S SPICE CIDEr CLIP-S RefCLIP-S
Human 4.82 4.35 0.019 0.02 0.00 4.56+0.03−0.03 26.2 50.4 0.938 23.7 111.5 0.791 0.834

VinVL-large 4.54 3.97 0.005 0.00 0.00 4.25+0.04−0.04 33.3 56.5 0.946 26.4 141.8 0.784 0.834

VinVL-base 4.47 3.95 0.001 0.00 0.00 4.21+0.04−0.04 32.3 55.9 0.945 25.6 138.4 0.779 0.830

Unified-VLP 4.35 3.77 0.004 0.00 0.00 4.06+0.04−0.04 31.6 55.8 0.945 24.3 128.5 0.771 0.821

Up-Down 4.29 3.50 0.014 0.00 0.00 3.88+0.05−0.05 28.4 52.2 0.939 21.0 110.7 0.746 0.803

Table 2: Performance of image captioning models with respect to THUMB 1.0 (left) and automatic metrics (right).
All scores are averaged over 500 images randomly sampled from the Karpathy test split. P: precision; R: recall; Flu.:
fluency; Con.: conciseness; Inc.: inclusive language. 90% confidence intervals for total scores are calculated by
bootstrapping (Koehn, 2004). All reference-based metrics take as input the same four crowdsourced captions that
are not used in Human for fair comparisons. THUMB 1.0 scores Human substantially higher than the machines,
unlike all automatic metrics.

P, R, and total scores. In particular, we see a large
gap between Human and the machines in recall
(e.g., Human 4.35 vs. VinVL-large 3.97). This con-
trasts with the automatic metric-based ranking of
the MSCOCO leaderboard, where Human is ranked
at the 250th place.5 This result questions claims
about human parity or superhuman performance
on MSCOCO image captioning. The four machine
captioning models are ranked in the expected order,
though the small difference between VinVL-large
and VinVL-base suggests that simply scaling up
models would not lead to a substantial improve-
ment. We see that the three models that are ini-
tialized with pretrained BERT (VinVL-large/base,
Unified-VLP) are particularly fluent, but the prob-
lem is small in the other models as well.

While we compute representative, total scores,
our transparent rubrics allow for adjusting weight-
ing of the categories depending on the applica-
tion of interest. For instance, in the social media
domain, recall can be more important than pre-
cision to make captions engaging to users (Shus-
ter et al., 2019). To assess the models indepen-
dently of these aggregation decisions, we count
the number of times when each model outper-
forms/underperforms all the others both in P and
R (strictly best/worst, Table 3). We see patterns
consistent with Table 2. For example, Human is
most likely to be strictly best and least likely to be
strictly worst. This suggests that machine caption-
ing models would still fall short of crowdworkers
in a wide range of downstream scenarios.

5The official leaderboard ranks submissions using CIDEr
(Vedantam et al., 2015) with 40 references on the hidden test
data. We use the public Karpathy test split instead, but we
suspect the same pattern would hold on the hidden data as
well, given the large gap between machines and Human.

Model Human Vin-large Vin-base U-VLP Up-Down
# Best ↑ 327 180 161 112 74
# Worst ↓ 65 128 150 190 269

Table 3: # times when each captioning model is strictly
best/worst in the caption set (i.e., best/worst both in
precision and recall).

3.2 Comparing Automatic Metrics

While carefully-designed human judgments like
ours should be considered more reliable, automatic
metrics allow for faster development cycles. Our
transparent evaluations can also be used to analyze
how these automatic metrics correlate with differ-
ent aspects of image captioning. Table 2 (right
section) shows automatic scores of the captioning
models over 7 popular metrics for image caption-
ing. CLIP-S (Hessel et al., 2021) is a referenceless
metric that uses image features from CLIP (Rad-
ford et al., 2021), a crossmodal retrieval model
trained on 400M image-caption pairs from the web.
RefCLIP-S augments CLIP-S with similarities be-
tween the generated and reference captions. All
other metrics, such as SPICE (Anderson et al.,
2016) and CIDEr (Vedantam et al., 2015), only
use reference captions without image features.

These automatic metrics generally agree with
our evaluations in ranking the four machines,
but completely disagree in the assessment of Hu-
man. Most metrics rank Human near the bot-
tom, showing that they are not reliable in evalu-
ating high-quality, human-generated captions. The
two metrics with powerful image and text fea-
tures (CLIP-S and RefCLIP-S) give high scores
to Human compared to the other metrics, but they
still fail to score Human substantially higher than
VinVL-large. This suggests that automatic metrics



should be regularly updated as our models become
stronger (and perhaps more similar to humans), and
raises a significant concern about the current prac-
tice that fixes evaluation metrics over time (Kasai
et al., 2022).

w/o Human w/ Human
Metric P R Total P R Total
RefCLIP-S 0.34 0.27 0.44 0.31 0.26 0.41+0.05−0.05

RefOnlyC 0.42 0.14 0.41 0.37 0.11 0.34+0.04−0.05

CLIP-S 0.18 0.27 0.32 0.17 0.28 0.32+0.05−0.05

CIDEr 0.27 0.18 0.33 0.21 0.11 0.23+0.04−0.04

BERT-S 0.27 0.18 0.33 0.20 0.10 0.21+0.04−0.04

SPICE 0.26 0.15 0.30 0.20 0.09 0.21+0.04−0.04

ROUGE-L 0.26 0.17 0.31 0.18 0.07 0.18+0.04−0.04

BLEU 0.21 0.13 0.25 0.15 0.04 0.13+0.04−0.04

Table 4: Instance-level correlations of automatic evalua-
tion scores. RefCLIP-S and CLIP-S use image features
unlike the others, and all but CLIP-S require references.
All of these reference-based metrics use the same subset
of four captions as in Table 2 that exclude Human. All
metrics had correlations lower than 0.1 for fluency.

Seen in Table 4 are instance-level Pearson cor-
relation scores between automatic scores and our
evaluations.6 We also add an ablation study: Re-
fOnlyC removes image features from RefCLIP-S to
quantify the effect of image features. We consider
two types of scenarios: one with Human and one
without. Correlations drop from the latter to the
former for all metrics and aspects except CLIP-S,
again showing that the metrics are not reliable in
assessing human-generated captions. Interestingly,
CLIP-S correlates best in recall (0.28 w/ Human)
but suffers in precision (0.17 w/ Human). RefOn-
lyC, in contrast, achieves the best correlations in P
at the expense of R. RefCLIP-S balances the two
and achieves the best correlation in total scores.
This indicates that the CLIP image features par-
ticularly help assess coverage of salient informa-
tion that can be ignored in some reference captions
from crowdworkers.7 Prior work (Hessel et al.,

6Instance-level Pearson correlations with human judg-
ments were often computed in prior work to compare auto-
matic metrics for image captioning (e.g., Hessel et al., 2021).
An alternative is system-level correlations, but they would be
uninformative with five systems only.

7The low recall correlations of reference-only metrics can
be partly because the maximum (as opposed to minimum or av-
erage) is typically taken over multiple reference captions (e.g.,
BERTScore, Zhang et al., 2020). Nevertheless, this alone does
not explain the recall gap from image-based metrics because
RefCLIP-S also takes the maximum score over all references.
Future work can explore the relation between precision/recall
and different treatments of multiple references.

2021) found that SPICE can still improve correla-
tions when combined with CLIP-S, even though
CLIP-S better correlates with human judgments
than SPICE. This implies that image-based and
reference-only metrics capture different aspects of
image captioning. Our analysis indeed agrees with
their finding and, further, identifies that recall is
one such aspect. For an extensive description of
these metrics and their configurations, see §A.2.

3.3 Score Distributions

Seen in Fig. 2 are distributions of precision and
recall scores for human and machine-generated
captions. We see that the precision distribution
looks similar between Human and machines, but
not recall. This provides further support for our
claim that current machines fall short of humans
particularly in recall.
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Figure 2: Precision/recall histograms for human- and
machine-generated captions.

3.4 Machine vs. Human Examples

Table 5 provides examples that contrast machine-
and human-generated captions. We see that
machine-generated captions ignore salient infor-
mation or make critical errors for these images.
These problems often occur in relatively rare cases:
a tennis player is showing excitement rather than
hitting a ball; a bride and groom are cutting a wed-
ding cake; a boy is wearing a tie without a shirt;
a man is putting clothing and a tie on a dummy
instead of a person. But these situations are ex-
actly the most important information because of
their atypicality (Feinglass and Yang, 2021). This
illustrates fundamental problems of current image



Image Caption P R Flu. Total

6-A: Up-Down 5 3 0 4A man holding a tennis racquet on a tennis court.

6-B: Unified-VLP, VinVL-base, VinVL-large 5 3 0 4A man holding a tennis racket on a tennis court.

6-C: Human 5 5 0 5A tennis player shows controlled excitement while a crowd watches.

7-A: Up-Down 3 3 0 3A person cutting a cake with a knife.

7-B: Unified-VLP 3 5 0 4A person cutting a wedding cake with a knife.

7-C: VinVL-base 5 3 0 4A couple of cakes on a table with a knife.

7-D: VinVL-large 3 3 0 3A woman cutting a cake with a knife.

7-E: Human 5 5 0.1 4.9Bride and grooms arms cutting the wedding cake with fruit on top.

8-A: Up-Down 3 3 0 3A young boy wearing a blue shirt and a blue tie.

8-B: Unified-VLP 3 3 0 3A young boy wearing a shirt and a tie.

8-C: VinVL-base 5 3 0 4A young boy wearing a tie standing in front of a lamp.

8-D: VinVL-large 3 3 0 3A young man wearing a tie and a shirt.

8-E: Human 4 5 0 4.5A man wearing only a tie standing next to a lamp.

9-A: Up-Down 2 2 0 2A couple of men standing next to each other.

9-B: Unified-VL 2 2 0 2Two men standing in a room.

9-C: VinVL-base 2 2 0 2A couple of men standing in a room.

9-D: VinVL-large 2 2 0 2Two men standing next to each other in a room.

9-E: Human 5 3 0 4A man standing next to a dummy wearing clothes.

Table 5: Examples that contrast machine- and human-generated captions. All machine-generated captions overlook
or misinterpret salient information: the excitement the tennis player expresses, the bride and groom cutting a
wedding cake, the boy not wearing a shirt, and the man putting a tie on a dummy. None of these captions are
penalized for conciseness or inclusive language. See §A.4 in Appendix for more examples.

captioning models that are left to future work.

4 Related Work

Human Evaluations for Image Captioning Sev-
eral prior works conducted human evaluations for
image captioning with varying models, datasets,
and annotation schemes. Much work used crowd-
workers from Amazon Mechanical Turk on Flickr-
based datasets, including the PASCAL (Rashtchian
et al., 2010), Flickr8k/30k (Hodosh et al., 2013;

Young et al., 2014), and MSCOCO datasets. Anno-
tators scored the overall quality directly (Kulkarni
et al., 2011; Hodosh et al., 2013), pairwise (Vedan-
tam et al., 2015), or along multiple dimensions,
such as truthfulness/correctness (Yatskar et al.,
2014; Anderson et al., 2016), thoroughness (Aditya
et al., 2015), relevance (Yang et al., 2011; Li et al.,
2011), and grammaticality/readability (Mitchell
et al., 2012; Elliott and Keller, 2013). There are
similarities between our rubrics and previous an-



notations, but our framework defines every dimen-
sion in a decomposable way through discussions
among all annotators, while focusing on outputs
from strong models currently available. Apart from
these conventional Flickr-based datasets, some
other work evaluated image captions for social
media (engagingness, Shuster et al., 2019; acces-
sibility for Twitter users with vision impairments,
Gleason et al., 2019, 2020) and news articles (Biten
et al., 2019). Our transparent evaluations would
enable us to adjust the aggregation method based
on the nature of downstream applications. More
specializing categories can be added for these ap-
plications in later versions (e.g., THUMB 2.0).

Human Evaluations for Other Generation Tasks
Much previous work explored human evaluations
for other language generation tasks than image cap-
tioning. The WMT shared task (Akhbardeh et al.,
2021) conducts human evaluations of state-of-the-
art machine translation systems every year; partic-
ipants or crowdworkers directly rate a translation
in a 100-point scale, which is a method developed
by Graham et al. (2013, 2014, 2017). GENIE takes
a similar approach but hosts human evaluations in
leaderboards for machine translation, summariza-
tion, and commonsense reasoning (Khashabi et al.,
2021). Kryscinski et al. (2019) and Fabbri et al.
(2021) assessed many summarization models in a
similar annotation scheme to the DUC 2006/2007
evaluations (Dang, 2006). Our transparent evalua-
tion framework is inspired by rubric-based machine
translation judgments by professional translators
(Freitag et al., 2021), which resulted in different
system rankings than the WMT evaluations. As
top-performing models and automatic metrics are
becoming increasingly similar across various natu-
ral language generation tasks, our findings on im-
age captioning may be useful for other generation
tasks as well.

5 Conclusion

We developed THUMB 1.0, transparent evalua-
tions for the MSCOCO image captioning task. We
refined our rubrics through extensive discussions
among all annotators, and ensured the high quality
by two-stage annotations. Our evaluations demon-
strated critical limitations of current image cap-
tioning models and automatic metrics. While re-
cent image-based metrics show promising improve-
ments, they are still unreliable in assessing high-
quality captions from crowdworkers. We hope that

our annotation data will help future development
of better captioning models and automatic metrics,
and this work will become a basis for transparent
human evaluations for the image captioning task
and beyond.
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A Appendix

A.1 Fluency Rubrics
Table 6 presents our fluency rubrics. They were
developed by the first four authors (two of whom
were native English speakers, and one was a grad-
uate student in linguistics). Generally, if a fluency
problem is expected to be easily corrected by a text
postprocessing algorithm, the penalty is 0.1. More
severe errors (e.g., broken sentence and ambiguity)
are penalized more.

A.2 Automatic Metrics
Here we discuss details and configurations of the
automatic metrics used in §3.2. CLIPScore and Re-
fCLPScore use image features from CLIP (Radford
et al., 2021), a crossmodal retrieval model trained
on 400M image-caption pairs from the web. All
the other five metrics only use reference captions.

BLEU BLEU (Papineni et al., 2002) is a
precision-oriented metric and measures n-gram
overlap between the generated and reference cap-
tions. We use the SACREBLEU implementation
of BLEU-4 and get sentence-level scores (Post,
2018).8

ROUGE ROUGE (Lin, 2004) measures the num-
ber of overlapping n-grams between the generated
and reference captions. We use the rouge-score
implementation of ROUGE-L.9

CIDEr CIDEr (Vedantam et al., 2015) measures
the cosine similarity between the n-gram counts of
the generated and reference captions with TF-IDF
weighting. We use the implementation from the
pycocoevalcap package.10

SPICE SPICE (Anderson et al., 2016) predicts
scene graphs from the generated and reference cap-
tions using the Stanford scene graph parser (Schus-
ter et al., 2015). It then measures the F1 score
between scene graphs from the generated and refer-
ence captions. WordNet Synsets are used to cluster
synonyms (Miller, 1995). We again use the imple-
mentation from the pycocoevalcap package.

BERTScore BERTScore (Zhang et al., 2020)
aligns tokens between the generated and refer-
ence captions using contextual word representa-

8https://github.com/mjpost/sacreBLEU/
blob/v1.2.12/sacrebleu.py#L999.

9https://pypi.org/project/rouge-score/.
10https://github.com/salaniz/

pycocoevalcap.
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Fluency Error Type Penalty Example
Obvious spelling error, one vs. two words 0.1 cel phone, surf board
Grammatical error that can be easily fixed 0.1 a otter
Casing issue 0.1 tv, christmas
Hyphenation 0.1 horse drawn carriage
Interpretable but unnatural wording 0.1 double decked bus
Non-trivial punctuation 0.2 A bird standing in the wooded area with leaves all around.
Misleading spelling error 0.5 A good stands in the grass next to the water. (good→goose)
Duplication 0.5 A display case of donuts and doughnuts.
Ambiguity 0.5 A cat is on a table with a cloth on it.
Awkward construction 0.1–0.5 There is a freshly made pizza out of the oven.
Broken sentence 0.5+ A large concrete sign small buildings behind it.

Table 6: Fluency penalty rubrics.

tions from BERT (Devlin et al., 2019). We use the
HuggingFace implementation (Wolf et al., 2020)
and compute the F1 score. As in Zhang et al.
(2020), we take the maximum score over all refer-
ence captions.

CLIPScore CLIPScore (Hessel et al., 2021) is
the only referenceless metric out of the 7 metrics.
It measures the cosine similarity between the gen-
erated caption and given image using the represen-
tations from CLIP. It is shown to correlate better
with human judgments from prior work, compared
to previous reference-based metrics (Hessel et al.,
2021). We use the official implementation by the
authors.11

RefCLIPScore RefCLIPScore augments CLIP-
Score with the maximum similarity between the
generated and reference captions. We again use the
official implementation.

A.3 Evaluated Captions

We evaluated the following four strong models
from the literature as well as human-generated cap-
tions. They share similar pipeline structure but vary
in model architecture, (pre)training data, model
size, and (pre)training objective. Evaluating cap-
tions from them will enable us to better understand
what has been improved and what is still left to
future captioning models.

Up-Down The bottom-up and top-down atten-
tion model (Up-Down, Anderson et al., 2018) per-
forms pipelined image captioning: object detection
that finds objects and their corresponding image
regions and crossmodal generation that predicts a

11https://github.com/jmhessel/
pycocoevalcap.

caption based on the features from object detec-
tion. The bottom-up attention finds salient image
regions during object detection, and the top-down
one attends to these regions during crossmodal gen-
eration. Up-Down uses Faster R-CNN (Ren et al.,
2015) and LSTMs (Hochreiter and Schmidhuber,
1997) for object detection and crossmodal gener-
ation respectively. Faster R-CNN is trained with
the Visual Genome dataset (Krishna et al., 2016),
and the crossmodal generation model is trained on
the MSCOCO dataset. We generate captions for
the test data with a model optimized with crossen-
tropy.12

Unified-VLP Unified-VLP (Zhou et al., 2020)
also runs a pipeline of object detection and cross-
modal generation. Faster R-CNN and the trans-
former architecture (Vaswani et al., 2017) are used
for object detection and crossmodal generation
respectively. Similar to Up-Down, the Faster R-
CNN object detection model is trained with the Vi-
sual Genome dataset. The transformer generation
model, on the other hand, is initialized with base-
sized BERT (Devlin et al., 2019) and pretrained
on the Conceptual Captions dataset (3M images,
Sharma et al., 2018) with the masked and left-to-
right language modeling objectives for the captions.
The crossmodal generation model is then finetuned
on the MSCOCO dataset. We apply beam search
of size 5 to the model with CIDEr optimization.

VinVL-base, VinVL-large VinVL with Oscar
(Li et al., 2020; Zhang et al., 2021) performs a
similar pipeline of object detection, followed by
crossmodal generation. The crossmodal model is
initialized with BERT (Devlin et al., 2019) as in

12https://vision-explorer.allenai.org/
image_captioning.
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Unified-VLP but uses detected object tags to en-
courage alignments between image features and
word representations. The object detection model
with the ResNeXt-152 C4 architecture (Xie et al.,
2017) is pretrained with ImageNet (Deng et al.,
2009) and trained on 2.5M images from various
datasets. The transformer-based crossmodal gener-
ator is initialized with BERT, pretrained with 5.7M
images, and finetuned for MSCOCO captioning.
We use VinVL-base and VinVL-large that are both
finetuned with CIDEr optimization13 and generate
captions with beam search of size 5.

Human In addition to machine-generated cap-
tions from the four models, we assessed the qual-
ity of human-generated reference captions from
MSCOCO. This will allow us to understand the
performance gap between machines and humans,
as well as the quality of crowdsourced captions.
Human-generated captions were created using
Amazon Mechanical Turk (Chen et al., 2015).
Crowdworkers were only given the following in-
structions (Chen et al., 2015):

• Describe all the important parts of the scene.
• Do not start the sentences with “There is.”
• Do not describe unimportant details.
• Do not describe things that might have happened

in the future or past.
• Do not describe what a person might say.
• Do not give people proper names.
• The sentences should contain at least 8 words.

Every image has five human-generated captions,
and we randomly selected one for each to evalu-
ate. We found, however, a non-negligible number
of noisy captions in the MSCCOCO dataset from
annotation spammers. We often find subjective ad-
jectives (e.g., very nice/clean/cute) or words that
diverge from inclusive language in reference cap-
tions, probably because crowdworkers increased
the number of words in captions effortlessly (see
the last instruction item that says captions have to
have 8+ words). To better estimate the performance
of a human that invests reasonable effort into the
captioning task, we resampled a caption for 13%
of the test images, which would have been given a
total score lower than 4.0.

13https://github.com/microsoft/
Oscar/blob/master/VinVL_MODEL_ZOO.md#
Image-Captioning-on-COCO.

A.4 Additional Machine vs. Human Examples
Table 7 provides an additional example that con-
trasts machine- and human-generated captions. All
machines generate generic captions and ignore
the most important information that a traditional
Thanksgiving dinner is being served on the table.
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Image Caption P R Total

10-A: Up-Down 5 2 3.5A table that has some food on it.

10-B: Unified-VLP 5 2 3.5A table with plates of food on a table.

10-C: VinVL-base 4 2 3A red table topped with plates of food and bowls of food.

10-D: VinVL-large 5 3 4A table with a turkey and other food on it.

10-E: Human 5 5 5A table set for a traditional Thanksgiving dinner.

Table 7: Additional example that contrasts machine- and human-generated captions. Similar to Table 5, machine-
generated captions ignore the most salient information: Thanksgiving dinner. Note that this case is specific to North
America; such salient information can vary across cultures or languages (van Miltenburg et al., 2017). None of
these captions are penalized for fluency, conciseness, or inclusive language.


