
Optimization over Sparse Support-Preserving Sets: Two-Step Projection with
Global Optimality Guarantees

William de Vazelhes 1 Xiao-Tong Yuan 2 Bin Gu 3

Abstract
In sparse optimization, enforcing hard constraints
using the ℓ0 pseudo-norm offers advantages like
controlled sparsity compared to convex relax-
ations. However, many real-world applications
demand not only sparsity constraints but also
some extra constraints. While prior algorithms
have been developed to address this complex sce-
nario with mixed combinatorial and convex con-
straints, they typically require the closed form pro-
jection onto the mixed constraints which might
not exist, and/or only provide local guarantees of
convergence which is different from the global
guarantees commonly sought in sparse optimiza-
tion. To fill this gap, in this paper, we study
the problem of sparse optimization with extra
support-preserving constraints commonly encoun-
tered in the literature. We present a new variant
of iterative hard-thresholding algorithm equipped
with a two-step consecutive projection operator
customized for these mixed constraints, serving
as a simple alternative to the Euclidean projec-
tion onto the mixed constraint. By introducing a
novel trade-off between sparsity relaxation and
sub-optimality, we provide global guarantees in
objective value for the output of our algorithm,
in the deterministic, stochastic, and zeroth-order
settings, under the conventional restricted strong-
convexity/smoothness assumptions. As a funda-
mental contribution in proof techniques, we de-
velop a novel extension of the classic three-point
lemma to the considered two-step non-convex
projection operator, which allows us to analyze
the convergence in objective value in an elegant
way that has not been possible with existing tech-
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niques. In the zeroth-order case, such technique
also improves upon the state-of-the-art result from
(de Vazelhes et al., 2022), even in the case without
additional constraints, by allowing us to remove a
non-vanishing system error present in their work.

1. Introduction
In sparse optimization, directly enforcing sparsity with the
ℓ0 pseudo-norm has several advantages over its convex re-
laxation counterpart. In compressive sensing for instance
(Foucart & Rauhut, 2013), one may seek to recover an un-
known vector, which sparsity level is known to be at most k.
Similarly, in portfolio optimization, due to transaction costs,
one may seek to ensure hard constraints on the maximum
number of assets invested in (Brodie et al., 2009; DeMiguel
et al., 2009). However, in several use cases, one may also
seek to enforce additional constraints, such as, for instance,
a budget constraint in the case of portfolio optimization,
which can be enforced through an extra ℓ1 constraint, as in
Takeda et al. (2013). As another example, in sparse non-
negative matrix factorization, when estimating the hidden
components, one seeks to enforce at the same time a norm
constraint and a sparsity constraint (Hoyer, 2002). The
problem of ℓ0 empirical risk minimization (ERM) with ad-
ditional constraints can be formulated as follows, where R
is an empirical risk function, Γ ⊆ Rd denotes a convex con-
straint set, and ∥ · ∥0 denotes the ℓ0 pseudo-norm (number
of non-zero components of a vector):

min
w∈Rp

R(w), s.t. ∥w∥0 ≤ k and w ∈ Γ. (1)

We assume throughout this paper that Problem (1) is well-
posed, with R being bounded from below and the set of
minimizers being non-empty. In the literature, several algo-
rithms have been developed to address such a problem with
mixed constraints, but they typically require the existence of
a closed form for the projection onto the mixed constraint,
and/or their convergence guarantees are only local, which
makes it difficult to estimate the sub-optimality of the output
of the algorithm. More precisely, on one hand, some works
provide convergence analyses for variants of a (non-convex)
projected gradient descent, explicitly for mixed sparse con-
straints (Metel, 2023; Pan et al., 2017; Lu, 2015; Beck &
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Hallak, 2016), or for general proximal terms (which encom-
passes our mixed constraints) (Frankel et al., 2014; Xu et al.,
2019b; Attouch et al., 2013; De Marchi & Themelis, 2022;
Yang & Yu, 2020; Gu et al., 2018; Yang & Li, 2023; Bolte
et al., 2014; Boţ et al., 2016; Xu et al., 2019a; Li & Lin,
2015; Bauschke et al., 2017; 2019), but such analyses are
only local. On the other hand, several existing works on
Iterative Hard Thresholding (IHT) provide global guaran-
tees on sub-optimality gap (Jain et al., 2014; Nguyen et al.,
2017; Li et al., 2016; Shen & Li, 2017; de Vazelhes et al.,
2022), but they do not apply to the mixed constraint case
we consider. In between the two approaches, one can also
find (Foygel Barber & Ha, 2018) and (Liu & Foygel Barber,
2020) which, in the deterministic case, give global guar-
antees for general non-convex constraints or thresholding
operators, but which do not provide explicit convergence
guarantees for the particular mixed constraint setting that we
consider: their rates depend on some constants (the relative
concavity or the local concavity constant) for which, up to
our knowledge, an explicit form is still unknown for the
mixed constraints we consider. We present a more detailed
review of related works in Appendix B, and an overview
of them in Table 1. To fill this gap, we focus on solving
problem 1 in the case where Γ belongs to a general family
of support-preserving sets, which encompasses many usual
sets encountered in the literature. As will be described in
more detail in Section 2, such sets are convex sets for which
the projection of a k-sparse vector onto them gets its support
preserved, such as for instance ℓp norm balls (for p ≥ 1),
or a broader family of sign–free convex sets described for
instance in (Lu, 2015) and (Beck & Hallak, 2016).

Adapted to the properties of such constraints, we propose
a new variant of IHT, with a two-step projection operator,
which, as a first step, identifies the set S of coordinates
of the top k components of a given vector and sets the
other components to 0 (hard-thresholding), and as a sec-
ond step projects the resulting vector onto Γ. This two-step
projection can offer a simpler alternative to Euclidean pro-
jection onto the mixed constraint in the cases where there is
a closed form for the latter projection, and handle the cases
where there is not. We then provide global sub-optimality
guarantees without system error for the objective value, for
such an algorithm as well as its stochastic and zeroth-order
variants, under the restricted strong-convexity (RSC) and
restricted smoothness (RSS) assumptions, in Theorems 3.7,
4.3, and 4.8. Key to our analysis is a novel extension of the
three-point lemma to such non-convex setting with mixed
constraints, which also allows, as a byproduct, to simplify
existing proofs of convergence in objective value for IHT
and its variants. In the zeroth-order case, such technique
also allows to obtain, up to our knowledge, the first conver-
gence in risk result without system error for a zeroth-order
hard-thresholding algorithm. Additionally, our results high-

light a compromise between sparsity and sub-optimality gap
specific to the additional constraints setting: through a free
parameter ρ, one can obtain smaller upper bounds in terms
of risk but at the cost of relaxing further the sparsity level
of the iterates, or, alternatively, enforce sparser iterates but
at the cost of a larger upper bound on the risk.

Contributions. We summarize the main contributions of
our paper as follows:

1. We present a variant of IHT to solve hard sparsity prob-
lems with additional support-preserving constraints, us-
ing a novel two-step projection operator.

2. We describe a novel extension of the three-point lemma to
such constraint which allows to simplify existing proofs
for IHT and to provide global convergence guarantees
in objective value without system error for the algorithm
above, in the RSC/RSS setting, highlighting a novel trade-
off between sparsity of iterates and sub-optimality gap in
such mixed constraints setting.

3. We extend the above algorithm to the stochastic and
zeroth-order optimization settings, obtaining similar
global optimality guarantees in objective value (without
system error) for such mixed constraints setting. In the
zeroth-order case, this also provides, up to our knowledge,
the first convergence result in objective value without sys-
tem error for a zeroth-order hard-thresholding algorithm
(with or without extra constraints).

2. Preliminaries
Throughout this paper, we adopt the following notations.
For any w ∈ Rd, ΠΓ(w) denotes a Euclidean projection
of w onto Γ, that is ΠΓ(w) ∈ argminz∈Γ ∥w − z∥2, and
wi denotes the i-th component of w. B0(k) denotes the ℓ0
pseudo-ball of radius k, i.e. B0(k) = {w ∈ Rd : ∥w∥0 ≤
k}, with ∥ · ∥0 the ℓ0 pseudo-norm (i.e. the number of non-
zero components of a vector). Hk denotes the Euclidean
projection onto B0(k), also known as the hard-thresholding
operator (which keeps the k largest (in magnitude) com-
ponents of a vector, and sets the others to 0 (if there are
ties, we can break them e.g. lexicographically)). ∥ · ∥p
denotes the ℓp norm for p ∈ [1,+∞), and ∥ · ∥ the ℓ2 norm
(unless otherwise specified). [n] denotes the set {1, ..., n}
for n ∈ N∗. For any S ⊆ [d], |S| denotes its number of
elements. For any w ∈ Rd, supp(w) denotes its support,
i.e. the set of coordinates of its non-zero components. We
also introduce below the usual assumptions on R for IHT
proofs, i.e. RSC (Jain et al., 2014; Negahban et al., 2009;
Loh & Wainwright, 2013; Yuan et al., 2017; Li et al., 2016;
Shen & Li, 2017; Nguyen et al., 2017), and RSS (Jain et al.,
2014; Li et al., 2016; Yuan et al., 2017).

Assumption 2.1 ((νs, s)-RSC). R is νs restricted strongly
convex with sparsity parameter s, i.e. it is differentiable, and
there exists a generic constant νs such that for all (x,y) ∈
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Table 1. Comparison of results for Iterative Hard Thresholding with/without additional constraints. 1 S: symmetric convex sets being
sign-free or non-negative (Lu, 2015), A: sets verifying Definition 2.3. 2 If a paper reports both ∥w − w̄∥ and R(w)−R(w̄), we report
only the latter. T̂ : time index of the w returned by the method (e.g. T̂ = argmint∈[T ] R(wt) ). w̄: k̄-sparse vector in Γ. ∆: System
error (non-vanishing term which depends on the gradient at optimality (e.g. Ei∥∇Ri(w̄)∥, (see corresponding references))). 4: κs = Ls

νs

and κs′ =
Ls′
νs

(cf. corresponding refs. for defs. of s and s′). 3 SM: Lipschitz-smooth, D: Deterministic. S: Stochastic, Z: Zeroth-Order,
L: Lipschitz continuous. 5: see also Thm. 3.4, 6: see also Thm. 4.2. ♣: Notably, we could eliminate ∆ from (de Vazelhes et al., 2022).

Reference Γ1 Convergence2 k Setting3

(Jain et al., 2014)5 Rd R(wT̂ ) ≤ R(w̄) + ε Ω(κ2
sk̄)

D, RSS,
RSC

(Nguyen et al., 2017) Rd E∥wT̂ − w̄∥ ≤ ε+O (∆) Ω(κ2
sk̄)

S, RSS,
RSC

(Li et al., 2016) Rd ER(wT̂ ) ≤ R(w̄) + ε+O(∆) Ω(κ2
sk̄)

S, RSS,
RSC

(Zhou et al., 2018)6 Rd ER(wT̂ ) ≤ R(w̄) + ε Ω(κ2
sk̄)

S, RSS,
RSC

(de Vazelhes et al.,
2022) Rd E∥wT̂ − w̄∥ ≤ ε+O(µ) +O (∆) Ω(κ4

s′ k̄)
S, Z, RSS’,

RSC
(Lu, 2015), (Beck &

Hallak, 2016) Γ ∈ S local convergence - D, SM

(Metel, 2023) ℓ∞ ball
around 0

local convergence - S, Z, L

IHT-2SP (Thm. 3.7) Γ ∈ A R
(
wT̂

)
≤ (1 + 2ρ)R(w̄) + ε Ω

(
κ2
sk̄
ρ2

) D, RSS,
RSC

HSG-HT-2SP
(Thm. 4.3) Γ ∈ A ER(wT̂ ) ≤ (1 + 2ρ)R(w̄) + ε Ω

(
κ2
sk̄
ρ2

) S, RSS,
RSC

HZO-HT (Thm. 4.7) Rd E[R(wT̂ )−R(w̄)] ≤ ε+O(µ)♣ Ω(κ2
s′ k̄)

Z, RSS’,
RSC

HZO-HT-2SP (Thm.
4.8) Γ ∈ A ER(wT̂ ) ≤ (1 + 2ρ)R(w̄) + ε+O(µ) Ω

(
κ2
s′ k̄

ρ2

) Z, RSS’,
RSC

Rd with ∥x−y∥0 ≤ s: R(y) ≥ R(x)+ ⟨∇R(x),y−x⟩+
νs

2 ∥x− y∥2
Assumption 2.2 ((Ls, s)-RSS). R is Ls restricted smooth
with sparsity level s, i.e. it is differentiable, and there exists
a generic constant Ls such that for all (x,y) ∈ Rd with
∥x− y∥0 ≤ s:
R(y) ≤ R(x) + ⟨∇R(x),y − x⟩+ Ls

2 ∥x− y∥2

We then define the notion of support-preserving set that we
will use throughout the paper. It essentially requires that
projecting any k-sparse vector w onto Γ preserves its sup-
port. That is, the convex constraint Γ should be compatible
with the sparsity level constraint ∥w∥0 ≤ k.
Definition 2.3 (k-support-preserving set). Γ ⊆ Rd is k-
support-preserving , i.e. it is convex and for any w ∈ Rd

such that ∥w∥0 ≤ k, supp(ΠΓ(w)) ⊆ supp(w).
Remark 2.4. Below we present some examples of usual sets
that also verify Definition 2.3 (see Appendix D for a proof
of such statements):

• Elementwise decomposable constraints, such as box con-
straints of the form {w ∈ Rd : ∀i ∈ [d], li ≤ wi ≤ ui},

with li ≤ 0 and ui ≥ 0.
• Group-wise separable constraints where the constraint

on each group is k-support-preserving (such as our con-
straints in Appendix H for the index tracking problem).

• Sign-free convex sets (Lu, 2015; Beck & Hallak, 2016)
(def. in App. D), e.g. ℓq norm-balls.

3. Deterministic Case
3.1. Algorithm

Two-Step Projection. In all the algorithms of this paper,
we will make use of a two-step projection operator (2SP),
which is different in general from the usual Euclidean pro-
jection (EP), in order to obtain, from an arbitrary vector
w ∈ Rd, a vector in w ∈ B0(k) ∩ Γ. We consider such a
2SP instead of EP since it enables the derivation of a vari-
ant of three-point lemma (Lemma 3.6) which can handle
our specific non-convex mixed constraints, and is key to
obtaining the convergence analyses we present in Sections
3 and 4. In addition, the 2SP can be more intuitive and
efficient to implement than EP (see App. G for more dis-
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Γ

×w

×
Π̄k

Γ(w)
×Hk(w)

Figure 1. Support-preserving set and two-step projection (d =
2, k = 1).

cussions about 2SP vs EP). The 2SP procedure, which we
denote by Π̄k

Γ, is as follows: we first project w onto B0(k)
through the hard-thresholding operator Hk, to obtain a k-
sparse vector vk = Hk(w). Then, we project vk onto Γ , to
obtain a final vector wS = ΠΓ(vk), where S = supp(vk).
Note that consequently, the obtained wS is not necessarily
the EP of w onto B0(k) ∩ Γ, that is, we do not neces-
sarily have wS = ΠB0(k)∩Γ(w). However, when Γ is a
k-support-preserving set, we have wS ∈ B0(k) ∩ Γ (since,
by definition of a k-support-preserving set (Definition 2.3),
supp(wS) ⊆ supp(vk) and hence ∥wS∥0 ≤ ∥vk∥0 ≤ k),
therefore each iteration remains feasible in the constraint.
We illustrate such a two-step projection on Figure 1. We
now present our full algorithm in the case where R is a deter-
ministic function without further knowledge of its structure.
It is similar to the usual (non-convex) projected gradient
descent algorithm, that is, a gradient update step followed
by a projection step, except that instead of projecting onto
Γ∩B0(k) using the Euclidean projection, we obtain a vector
wk ∈ Γ ∩ B0(k) through the two-step projection method
described above. We describe the algorithm in Algorithm 1
below.

Algorithm 1: Deterministic IHT with extra constraints
(IHT-2SP)
Input: w0: initial value, η: learning rate, T : number of

iterations
for t = 1 to T do

wt ← Π̄k
Γ(wt−1 − η∇R(wt−1));

end
Output: wT

Remark 3.1. In the case where Γ is a symmetric sign-free
convex set (we refer to (Lu, 2015) for the definition of such
sets, which include for instance any ℓp norm constraint set

for p ∈ [1,+∞) ), then the two-step projection is actu-
ally the closed form of an Euclidean projection onto the
mixed constraint Γ ∩ B0(k) (see Theorem 2.1 from (Lu,
2015)). Therefore, in such cases, Algorithm 1 is identical to
a vanilla (non-convex) projected gradient descent algorithm
(for which up to now there was still no global optimality
guarantees in such a mixed constraints setting in the litera-
ture).

3.2. Convergence Analysis

Before proceeding with the convergence analysis, we first
present below a variant of the usual three-point lemma
from constrained convex optimization, which plays a key
role in our proofs. The common three-point lemma for
a projection onto a convex set E relates the distance be-
tween a point w ∈ Rd, its projection ΠE(w), and any
vector w̄ from the set E , through the relation ∥w − w̄∥2 ≥
∥ΠE(w)−w∥2+∥ΠE(w)−w̄∥2. Such a three-point lemma
is used for instance in a general Bregman divergence form
to prove convergence of mirror descent for smooth functions
in (Bubeck et al., 2015). Indeed, although proving the con-
vergence of projected gradient descent in the non-smooth
case only needs the non-expansivity of projection onto a
convex set, the proof for the smooth case usually needs such
a three-point lemma, which can be seen as a stronger ver-
sion of non-expansivity. However, due to the non-convexity
of the ℓ0 pseudo-ball, the convex three-point lemma above
does not hold. Fortunately, building upon Lemma 4.1 from
(Liu & Foygel Barber, 2020), we can obtain a three-point
lemma for projection onto the ℓ0 pseudo-ball.

Lemma 3.2 (ℓ0 three-point lemma, proof in App. E.1.2).
Consider w, w̄ ∈ Rp with ∥w̄∥0 ≤ k̄. For any k̄ ≤ k, with
β := k̄

k , it holds that: ∥Hk(w) − w∥2 ≤ ∥w − w̄∥2 −(
1−√β

)
∥Hk(w)− w̄∥2.

Note that if k ≫ k̄, β → 0 and we approach the usual three-
point lemma from convex optimization. This is coherent
with the literature on IHT, in which relaxing sparsity (i.e.
considering some k ≫ k̄) is known to make the problem
easier to solve (see also Remark 3.5 below). In addition,
the inequality in Lemma 3.2 is tight with respect to the
coefficient

√
β, as illustrated by the following lemma.

Lemma 3.3 (Tightness, proof in App. E.1.3). Consider
an arbitrary pair of integers (k, k̄) with k > k̄ and an
arbitrary scalar ρ ∈ (0, 1). Then there exist w and w̄
with ∥w∥0 = k and ∥w̄∥0 = k̄ such that the following
holds: ∥w −Hk(w)∥2 > ∥w − w̄∥2 − ∥Hk(w)− w̄∥2 +
ρ
√

k̄
k∥Hk(w)− w̄∥2.

Lemma 3.2 allows us to prove the following rate for conver-
gence in risk of IHT without system error, which appeared
first in (Jain et al., 2014). Our proof, however, is simpler
than the original proof from Jain et al. (2014), as we will
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discuss below.

Theorem 3.4. (Equivalent to Thm. 1 from (Jain et al.,
2014), see also Thm. 3.1 from (Liu & Foygel Barber,
2020). Proof in App. E.2.1) Assume that Γ = Rd. Sup-
pose that Assumption 2.1 and Assumption 2.2 hold, for
s = 2k. Let η = 1

Ls
. Let w̄ be an arbitrary k̄-sparse vec-

tor. Suppose that k ≥ 4κ2
sk̄ with κs := Ls

νs
. Then for any

ε > 0, the iterate of IHT satisfies R(wt) ≤ R(w̄) + ε if

t ≥
⌈
2Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2

2ε

)⌉
+ 1.

Proof Sketch. Using the Ls-RSS of R and some algebraic
manipulations, and denoting gt = ∇R(wt) and vt :=
Hk(wt−1 − 1

Ls
gt−1) (= wt when Γ = Rd), we have:

R(vt) ≤ R(wt−1) +
Ls

2
∥vt −wt−1 +

1

Ls
gt−1∥2 (2)

− 1

2Ls
∥gt−1∥2

(a)

≤ R(wt−1) +
Ls

2
∥w̄ −wt−1 +

1

Ls
gt−1∥2 (3)

− Ls

2
(1−

√
β)∥vt − w̄∥2 − 1

2Ls
∥gt−1∥2

(b)

≤ R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 (4)

− Ls

2
(1−

√
β)∥vt − w̄∥2, (5)

where (a) follows from Lemma 3.2, and in (b) we used
the RSC of R with some rearrangements. The proof for
Theorem 3.4 can be concluded with telescopic sum argu-
ments.

Remark 3.5 (Necessity of k = Ω(k̄κ2)). Note that the re-
laxation of k to Ω(k̄κ2) in Theorem 3.4 is unimprovable for
IHT, as we detail in Appendix E.3 with a counter-example,
similar to but slightly simpler than the counter-example from
Appendix E.1 in (Axiotis & Sviridenko, 2022)). Therefore,
we highlight that all of the following results in this paper
will also be expressed in terms of such a relaxed k: this is a
fundamental limitation of IHT, and not a limitation of our
proof techniques. More details on such relaxation (which is
widespread amongst IHT-type algorithms as can be seen in
Table 1) and how it is a natural way to obtain global guar-
antees for sparsity enforcing algorithms, can be found in
Liu & Foygel Barber (2020); Axiotis & Sviridenko (2021;
2022).

Comparison with Previous Proofs. Perhaps the origi-
nal and most widespread proof framework for convergence
in risk of IHT without system error is the one from (Jain
et al., 2014) Theorem 1. Their proof framework is also
used for instance in some stochastic extensions of IHT (see
Theorem 2 in (Zhou et al., 2018), or Theorems 1 and 2 in

(Peste et al., 2021), even if Peste et al. (2021) assume R to
have a k̄-sparse minimizer which is a strong requirement).
The proof from (Jain et al., 2014) uses specific properties
of the hard-thresholding operator to carefully bound the
magnitude of the components of ∇R(wt) on various sets
of coordinates (the support of wt, wt+1, and w̄, and some
intersections and unions of such sets). Using such tech-
niques, however, makes it difficult to derive proofs of IHT
in other settings (stochastic, zeroth-order, extra constraints).
However, recently, Liu & Foygel Barber (2020) provided
a proof of convergence for IHT which avoids such com-
plex considerations about the support sets of the gradient,
using their Lemma 4.1 on the relative concavity of the hard-
thresholding operator. Our work goes in a similar line of
work, but we build upon their Lemma 4.1 to prove a three-
point lemma for hard-thresholding (our Lemma 3.2) which
allows us to obtain simple proof frameworks also for the
stochastic case (retrieving the previous from (Zhou et al.,
2018)) and the zeroth-order case (obtaining a new result).
But perhaps more importantly, we are able to extend our
Lemma 3.2 to the case with extra constraints Γ verifying
Definition 2.3 (Lemma 3.6 below). Such a lemma will
allows us to obtain convergence results in the new extra
constraints setting that we consider in this paper (provid-
ing three new results, in the deterministic, stochastic, and
zeroth-order case). It relates together the four points in-
volved in the two step projection (w ∈ Rd,Hk(w), Π̄k

Γ(w),
and w̄ ∈ Γ ∩ B0(k) ).
Lemma 3.6 (Constrained ℓ0-Three-Point, proof in
App. E.1.4). Suppose that Definition 2.3 holds for a set
Γ. Consider w, w̄ ∈ Rp with ∥w̄∥0 ≤ k̄ and w̄ ∈ Γ. Then
the following holds for any k > k̄:

∥Π̄k
Γ (w)−w∥2 ≤ ∥w − w̄∥2 − ∥Π̄k

Γ (w)− w̄∥2

+
√
β∥Hk(w)− w̄∥2, with β :=

k̄

k
.

Equipped with such lemma, we can now present the conver-
gence analysis of Algorithm 1 below, using the assumptions
from Section 2, and we will describe how the results give
rise to a trade-off between the sparsity of the iterates and the
tightness of the sub-optimality bound, specific to our mixed
constraints setting.
Theorem 3.7 (Proof in App. E.2.2). Suppose that Assump-
tion 2.1 and 2.2 hold with s = 2k, that R is non-negative
(without loss of generality), and let Γ be a set verifying
Definition 2.3 . Let η = 1

Ls
, and w̄ be an arbitrary k̄-

sparse vector. Let ρ ∈ (0, 1
2 ] be an arbitrary scalar. Sup-

pose that k ≥ 4(1−ρ)2L2
s

ρ2ν2
s

k̄. Then for any ε > 0, for

T ≥
⌈
Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2

2ε(1−ρ)

)⌉
+ 1 = O(κs log(

1
ε )),

the iterates of IHT-2SP satisfy:

min
t∈[T ]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε.
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Further, if w̄ is a global minimizer of R over B0(k) :=
{w : ∥w∥0 ≤ k}, then, with ρ = 0.5 in the expressions of
k and T above: mint∈[T ] R (wt) ≤ R(w̄) + ε.

Proof Sketch. To obtain the proof for general Γ, we reiterate
a similar proof as for Theorem 3.4, but this time, instead of
Lemma 3.2, we use our more general Lemma 3.6, adapted
to general Γ and to our two-step projection technique, to
obtain (see the Proof Sketch of Thm. 3.4 for the definition
of vt):

R(wt) ≤ R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2

− Ls

2
∥wt − w̄∥2 + Ls

2

√
β∥vt − w̄∥2. (6)

Finally, taking a convex combination of equations 2 ( ×ρ)
and 6 (×(1 − ρ)) for ρ ∈ (0, 0.5], using the bound ∥wt −
w̄∥2 ≤ ∥vt−w̄∥2 (non-expansiveness of convex projection
onto Γ), and carefully tuning k depending on ρ (resulting in
our final trade-off between sparsity and optimality), we can
fall back to a telescopic sum and conclude the proof.

Remark 3.8. Similarly to the work of (Jain et al., 2014), in
the setting of linear regression with sub-Gaussian design,
we can use results from (Agarwal et al., 2010) to find the
number of samples needed to verify the assumptions of
Theorem 3.4. We provide such analysis in Appendix C.
Remark 3.9. Theorem 3.7 therefore provides a global con-
vergence guarantee in objective value. However, contrary to
usual guarantees for IHT algorithms under RSS/RSC condi-
tions (which are bounds of the form R(wt) ≤ R(w̄)+ε for
some t) , our bound is of the form R (wt) ≤ (1+2ρ)R(w̄)+
ε. There is a trade-off about the choice of ρ ∈ (0, 0.5]. On
one hand, ρ→ 0 is preferred in view of the RHS of above
bound. On the other hand, the sparsity-level relaxation con-
dition k ≥ 4(1−ρ)2L2

s

ρ2ν2
s

k̄ prefers ρ→ 0.5. We illustrate such
a trade-off on some synthetic experiments in Appendix H.1.

4. Extensions: Stochastic and Zeroth-Order
Cases

In this section, we provide extensions of Algorithm 1 to the
stochastic and zeroth-order sparse optimization problems,
and provide the corresponding convergence guarantees in
objective value without system error.

4.1. Stochastic Optimization

In this section, we consider the previous risk minimiza-
tion problem, in a finite-sum setting, i.e. with R(w) =
1
n

∑n
i=1 Ri(w), as in (Zhou et al., 2018; Nguyen et al.,

2017): indeed, stochastic algorithms can tackle more eas-
ily large-scale datasets where estimating the full∇R(w) is
expensive.

4.1.1. ALGORITHM

We describe the stochastic variant of our previous Algo-
rithm 1 in Algorithm 2 below, which is an extension of
the algorithm from (Zhou et al., 2018), to the considered
mixed constraints problem setting, using our two-step pro-
jection. More precisely, we approximate the gradient of R
by a minibatch stochastic gradient with a batch-size increas-
ing exponentially along training, and following the gradient
step, we apply our two-step projection operator.

Algorithm 2: Hybrid Stochastic IHT with Extra Con-
straints (HSG-HT-2SP)
Input: w0: initial point, η: learning rate, T : number of

iterations, {st}: mini-batch sizes.
for t = 1 to T do

Uniformly sample st indices St from [n] without
replacement

Compute the approximate gradient
gt−1 = 1

st−1

∑
it∈St

∇Rit(wt−1)

wt = Π̄k
Γ(wt−1 − ηgt−1);

end
Output: ŵT ∈ argminw∈{w1,...,wT } R(w).

4.1.2. CONVERGENCE ANALYSIS

Before proceeding with the convergence analysis, we make
an additional assumption on the population variance of the
stochastic gradients, similar to the one in (Mishchenko et al.,
2020).

Assumption 4.1 (Bounded stochastic gradient variance).
For any w, the population variance of the gradient estimator
is bounded by B: 1

n

∑n
i=1 ∥∇Ri(w)−∇R(w)∥2 ≤ B.

We now present our convergence analysis, first with Γ = Rd,
retrieving Theorem 2 from (Zhou et al., 2018).

Theorem 4.2 (Equivalent to Theorem 2 from (Zhou et al.,
2018), Proof in App. F.2.2). Assume that Γ = Rd. Sup-
pose that Assumption 2.1 and Assumption 2.2 hold with
s = 3k, and that Assumption 4.1 also holds. Let w̄ be an
arbitrary k̄-sparse vector. Let C be an arbitrary positive
constant. Assume that we run HSG-HT-2SP (Algorithm 2)
for T timesteps, with η = 1

Ls+C , and denote α := C
Ls

+ 1

and κs := Ls

νs
. Suppose that k ≥ 4α2κ2

sk̄. Finally, as-
sume that we take the following batch-size: st :=

⌈
τ
ωt

⌉
with

ω := 1− 1
4ακs

and τ := ηB
C . Then, we have the following

convergence rate:

ER(ŵT )−R(w̄) ≤ 2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
.

Such a Theorem is equivalent to Theorem 2 from (Zhou
et al., 2018), however, the proof from (Zhou et al., 2018) is
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based on the same framework as (Jain et al., 2014), which
makes it more complex. Our proof, on the other hand, is
very similar to our proof of Theorem 3.4 above (i.e. closer to
convex constrained optimization proofs as discussed above),
and simply incorporates the variance of the stochastic gra-
dient estimator (exponentially decreasing thanks to the ex-
ponentially increasing batch-size) in a properly weighted
telescopic sum (with a technique inspired from (Liu &
Foygel Barber, 2020)). We believe this makes the proof
more readily usable for future extensions of IHT. And in
particular, using a similar technique as for Theorem 3.7, we
can extend our result to the case with an extra constraint
Γ verifying Definition 2.3: we present such extension in
Theorem 4.3 below.

Theorem 4.3 (Proof in App. F.2.3). Suppose that Assump-
tions 2.1 and 2.2 hold with s = 2k, that 4.1 holds, that R
is non-negative (without loss of generality), and let Γ be a
set verifying Definition 2.3. Let w̄ be an arbitrary k̄-sparse
vector. Let C be an arbitrary positive constant. Assume
that we run HSG-HT-2SP (Algorithm 2) for T timesteps,
with η = 1

Ls+C , and denote α := C
Ls

+ 1 and κs := Ls

νs
.

Suppose that k ≥ 4α2 1
ρ2κ

2
sk̄ for some ρ ∈ (0, 1). Finally,

assume that we take the following batch-size: st :=
⌈

τ
ωt

⌉
with ω := 1 − 1

4α 1
ρκs

and τ := ηB
C . Then, we have the

following convergence rate:

E min
t∈[T ]

R (wt)− (1 + 2ρ)R(w̄)

≤ 2
α2

ρ(1− ρ)
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
.

Further, if w̄ is a global minimizer of R over B0(k) :=
{w : ∥w∥0 ≤ k}, then, with ρ = 0.5:

E min
t∈[T ]

R (wt)−R(w̄) ≤ 8α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
.

Corollary 4.4 (Proof in App. F.3.). Therefore, the number
of calls to a gradient∇Ri (#IFO), and the number of hard
thresholding operations (#HT) such that the left-hand sides
in Theorem 4.3 above are smaller than some ε > 0, are re-
spectively: #HT = O(κs log(

1
ε )) and #IFO = O

(
κs

νsε

)
.

4.2. Zeroth-Order Optimization (ZOO)

We now consider the zeroth-order (ZO) case (Nesterov &
Spokoiny, 2017), in which one does not have access to
the gradient ∇R(w), but only to function values R(w),
which arises for instance when the dataset is private as
in distributed learning (Gratton et al., 2021; Zhang et al.,
2021) or the model is private as in black-box adversarial
attacks (Liu et al., 2018), or when computing ∇R(w) is
too expensive such as in certain graphical modeling tasks
(Wainwright et al., 2008). The idea is then to approximate

∇R(w) using finite differences. We refer the reader to
(Berahas et al., 2021) and (Liu et al., 2020) for an overview
of ZO methods.

4.2.1. ALGORITHM

In this section, we describe the ZO version of our algorithm.
At its core, it uses the ZO estimator from (de Vazelhes et al.,
2022). We present the full algorithm in Algorithm 3, where
Ds2 is a uniform probability distribution on the following
set B of unit spheres supported on supports of size s2 ≤ d:
B := {w ∈ Rd : ∥w∥0 ≤ s2, ∥w∥2 ≤ 1}. We can sample
from this set by first sampling a random support of size
s2, and then sampling from the unit sphere on that support.
If we choose s2 := d, this estimator simply becomes the
vanilla ZO estimator with unit-sphere smoothing (Liu et al.,
2020). Choosing s2 < d allows to avoid the full-smoothness
assumption and can reduce memory consumption by allow-
ing to sample random vectors of size s2 instead of d (see
(de Vazelhes et al., 2022) for more details on such a ZO
estimator). The difference with (de Vazelhes et al., 2022)
(in addition to the mixed constraint setting and the use of
the 2SP) is that in our case we sample an exponentially in-
creasing number of random directions, which allows us, for
the first time up to our knowledge, to obtain convergence
in risk for a ZO hard-thresholding algorithm without any
system error (except the unavoidable system error due to the
smoothing µ (cf. Remark 5 in (Ajalloeian & Stich, 2020))).

Algorithm 3: Hybrid ZO IHT with Extra Constraints
(HZO-HT-2SP)
Input: w0: initial point, η: learning rate, T : number of

iterations, s2: size of the random supports, {qt}:
number of random directions.

for t = 1 to T do
Uniformly sample qt−1 i.i.d. random directions
{ui}qt−1

i=1 ∼ Ds2

Compute the approximate gradient gt =
1

qt−1

∑qt−1

i=1
d
µ (R(wt−1 + µui)−R(wt−1))ui

wt = Π̄k
Γ(wt−1 − ηgt−1)

end
Output: ŵT ∈ argminw∈{w1,...,wT } R(w).

4.2.2. CONVERGENCE ANALYSIS

Assumption 4.5 ((Ls, s)-RSS’). (Shen & Li, 2017; Nguyen
et al., 2017) R is Ls-restricted strongly smooth with sparsity
level s, i.e. it is differentiable, and there exist a generic
constant Ls such that for all (x,y) ∈ Rd with ∥x−y∥0 ≤ s:
∥∇R(x)−∇R(y)∥ ≤ Ls∥x− y∥.
Remark 4.6. Note that if a convex function R is (Ls, s)-
RSS’, then it is also (Ls, s)-RSS (this can be proven in the
same way as for usual smoothness in convex optimization

7
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(see Lemma 1.2.3 from (Nesterov, 2003)). However, the
converse is not true here, contrary to what holds for usual
smooth and convex functions (cf. Theorem 2.1.5 from (Nes-
terov, 2003)), as we show through some counter-example
in Appendix F.1. Assumption 4.5 is indeed slightly more
restrictive than Assumption 2.2, but it is necessary when
working with ZO gradient estimators (see more details in
(de Vazelhes et al., 2022)).

We now present our main convergence theorem for the ZO
setting, first when Γ = Rd.

Theorem 4.7 (Proof in App. F.4.2). Assume that Γ = Rd.
Let w̄ be an arbitrary k̄-sparse vector. Let s = 3k, and
s2 ∈ {1, ..., d}. Assume that R is (Ls′ , s

′)-RSS’ with
s′ = max(s2, s), and (νs, s)-restricted strongly convex.
Denote κs := Ls′

νs
. Let C be an arbitrary positive con-

stant, and denote εF := 2d
(s2+2)

(
(s−1)(s2−1)

d−1 + 3
)

, εabs :=

2dL2
s′ss2

(
(s−1)(s2−1)

d−1 + 1
)

, and εµ := L2
s′sd. Assume

that we run HZO-HT-2SP (Algorithm 3) for T timesteps,
with η = 1

Ls′+C = 1
αLs′

, with α := C
Ls′

+ 1. Suppose
that k ≥ 16α2κ2

sk̄. Finally, assume that we take the fol-
lowing number qt of random directions at each iteration:
qt :=

⌈
τ
ωt

⌉
with ω := 1 − 1

8ακs
and τ := 16κs

εF
(α−1) .

Then, we have the following convergence rate, with Z =

εµ

(
2
νs

+ 1
C

)
+ εabs

C :

ER(ŵT )−R(w̄)

≤ 4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2,

Such a novel result illustrates the power of proof techniques
based on our three-point lemma. Up to our knowledge, it is
the first global convergence guarantee without system error
for a ZO hard-thresholding algorithm (see Table 1), and
as such, is a significant improvement over the result from
(de Vazelhes et al., 2022). Our proof differs from the one
in (de Vazelhes et al., 2022): that latter uses a bound on
the expansivity of the hard-thresholding operator, and only
provides a result in terms of ∥w−w̄∥, with a non-vanishing
system error which depends on ∇R(w) (cf. Table 1). We
now present our Theorem in the case of a general support-
preserving convex set Γ.

Theorem 4.8 (Proof in App. F.4.3). Suppose that As-
sumptions 2.1, 2.3, and 4.5 hold with s = 3k, that
R is non-negative (without loss of generality), and let
Γ be a set verifying Definition 2.3. Let w̄ be an ar-
bitrary k̄-sparse vector. Let s2 ∈ {1, ..., d}. Denote
κs := Ls′

νs
. Let C be an arbitrary positive constant,

and denote εF := 2d
(s2+2)

(
(s−1)(s2−1)

d−1 + 3
)

, εabs :=

2dL2
s′ss2

(
(s−1)(s2−1)

d−1 + 1
)

, and εµ := L2
s′sd. Assume

that we run HZO-HT-2SP (Algorithm 3) for T timesteps,
with η = 1

Ls′+C = 1
αLs′

, with α := C
Ls′

+ 1. Suppose that

k ≥ 16α2

ρ2 κ
2
sk̄ for some ρ ∈ (0, 1). Finally, assume that we

take qt random directions at each iteration, with qt :=
⌈

τ
ωt

⌉
with ω := 1− 1

8 1
ρακs

and τ := 16κs
εF

(α−1) . Then, we have

the following convergence rate:

E min
t∈[T ]

R(wt)− (1 + 2ρ)R(w̄)

≤ 4
α2

ρ(1− ρ)
Ls′κsω

T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2,

with Z = 1
1−ρ

(
εµ

(
2
νs

+ 1
C

)
+ εabs

C

)
. Further, if w̄ is

a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k},
then, with ρ = 0.5:

E min
t∈[T ]

R (wt)−R(w̄)

≤ 16α2Ls′κsω
T

(
∥w̄ −w0∥2 +

1

3

η∥∇R(w̄)∥2
κsLs′

)
+ Zµ2.

Corollary 4.9 (Proof in App. F.5.). Additionally, the num-
ber of calls to R (#IZO), and the number of hard threshold-
ing operations (#HT) such that the left-hand sides in The-
orem 4.8 above are smaller than ε+ Zµ2, for some ε > 0
are respectively: #HT = O(κs log(

1
ε )) and #IZO =

O
(
εF

κ3
sLs

ε

)
. Note that if s2 = d (in which case Assump-

tion 4.5 becomes the usual (unrestricted) smoothness as-
sumption), we have εF = O(s) = O(k), and therefore we
obtain a query complexity that is dimension independent.

Such a query complexity result also holds when Γ = Rd

(cf. Corollary F.8 in Appendix). (de Vazelhes et al., 2022)
also achieved a dimension independent rate, but their con-
vergence result exhibited a potentially large non-vanishing
system error (cf. Table 1), which we do not have in The-
orems 4.7 and 4.8. In strongly convex and smooth ZOO,
a dimension independent query complexity is impossible
to achieve (Jamieson et al., 2012), unless with additional
assumptions (Golovin et al., 2019; Sokolov et al., 2018;
Wang et al., 2018; Cai et al., 2022; 2021; Balasubrama-
nian & Ghadimi, 2018; Cai et al., 2022; Liu & Yang, 2021;
Jamieson et al., 2012; Nozawa et al., 2024; Yue et al., 2023).
Our work confirms that, instead of making extra assump-
tions, a possible way to obtain a dimension independent
query complexity is to instead consider optimization with
ℓ0 constraints.

5. Conclusion
In this paper, we provided global optimality guarantees for
variants of iterative hard thresholding that can handle extra
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convex support-preserving constraints for sparse learning,
via a two-step projection algorithm. We provided our anal-
ysis in deterministic, stochastic, and zeroth-order settings.
To that end, we used a variant of the three-point lemma,
adapted to such mixed constraints, which allows to sim-
plify existing proofs for vanilla constraints (and to provide
a new kind of result in the ZO setting), as well as obtaining
new proofs in such combined constraints setting. Finally, it
would also be interesting to extend this work to a broader
family of sparsity structures and constraints, for instance, to
matrices or graphs. We leave this for future work.
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Boţ, R. I., Csetnek, E. R., and László, S. C. An inertial
forward–backward algorithm for the minimization of the
sum of two nonconvex functions. EURO Journal on
Computational Optimization, 4:3–25, 2016.

Brodie, J., Daubechies, I., De Mol, C., Giannone, D., and
Loris, I. Sparse and stable markowitz portfolios. Proceed-
ings of the National Academy of Sciences, 106:12267–
12272, 2009.

Bubeck, S. et al. Convex optimization: Algorithms and com-
plexity. Foundations and Trends® in Machine Learning,
8:231–357, 2015.

Cai, H., Lou, Y., McKenzie, D., and Yin, W. A zeroth-
order block coordinate descent algorithm for huge-scale
black-box optimization. In International Conference on
Machine Learning, pp. 1193–1203, 2021.

Cai, H., Mckenzie, D., Yin, W., and Zhang, Z. Zeroth-
order regularized optimization (zoro): Approximately
sparse gradients and adaptive sampling. SIAM Journal
on Optimization, 2022.

9



Optimization over Sparse Support-Preserving Sets: Two-Step Projection

Chang, C.-C. and Lin, C.-J. LIBSVM: A library for sup-
port vector machines. ACM Transactions on Intelligent
Systems and Technology, 2:1–27, 2011.

Damadi, S. and Shen, J. Gradient properties of hard thresh-
olding operator. arXiv preprint arXiv:2209.08247, 2022.

De Marchi, A. and Themelis, A. An interior proximal gradi-
ent method for nonconvex optimization. arXiv preprint
arXiv:2208.00799, 2022.

de Vazelhes, W., Zhang, H., Wu, H., Yuan, X., and Gu,
B. Zeroth-order hard-thresholding: Gradient error vs.
expansivity. Advances in Neural Information Processing
Systems, 35:22589–22601, 2022.

DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R.
A generalized approach to portfolio optimization: Im-
proving performance by constraining portfolio norms.
Management Science, 55:798–812, 2009.

Foucart, S. and Rauhut, H. An invitation to compressive
sensing. In A Mathematical Introduction to Compressive
Sensing, pp. 1–39. Springer, 2013.

Foygel Barber, R. and Ha, W. Gradient descent with non-
convex constraints: local concavity determines conver-
gence. Information and Inference: A Journal of the IMA,
7:755–806, 2018.

Frankel, P., Garrigos, G., and Peypouquet, J. Splitting
methods with variable metric for kurdyka–łojasiewicz
functions and general convergence rates. Journal of Op-
timization Theory and Applications, 165:874–900, sep
2014.

Golovin, D., Karro, J., Kochanski, G., Lee, C., Song, X.,
and Zhang, Q. Gradientless descent: High-dimensional
zeroth-order optimization. In International Conference
on Learning Representations, 2019.

Gratton, C., Venkategowda, N. K., Arablouei, R., and
Werner, S. Privacy-preserved distributed learning with
zeroth-order optimization. IEEE Transactions on Infor-
mation Forensics and Security, 17:265–279, 2021.

Gu, B., Wang, D., Huo, Z., and Huang, H. Inexact prox-
imal gradient methods for non-convex and non-smooth
optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Hoyer, P. O. Non-negative sparse coding. In Proceedings
of the 12th IEEE workshop on neural networks for signal
processing, pp. 557–565. IEEE, 2002.

Jain, P., Tewari, A., and Kar, P. On iterative hard thresh-
olding methods for high-dimensional m-estimation. Ad-
vances in Neural Information Processing Systems, 27,
2014.

Jamieson, K. G., Nowak, R. D., and Recht, B. Query com-
plexity of derivative-free optimization. arXiv preprint
arXiv:1209.2434, 2012.

Kyrillidis, A., Becker, S., Cevher, V., and Koch, C. Sparse
projections onto the simplex. In International Conference
on Machine Learning, pp. 235–243, 2013.

Li, H. and Lin, Z. Accelerated proximal gradient meth-
ods for nonconvex programming. Advances in Neural
Information Processing Systems, 28, 2015.

Li, X., Arora, R., Liu, H., Haupt, J., and Zhao, T. Nonconvex
sparse learning via stochastic optimization with progres-
sive variance reduction. arXiv preprint arXiv:1605.02711,
2016.

Liu, H. and Foygel Barber, R. Between hard and soft thresh-
olding: optimal iterative thresholding algorithms. Infor-
mation and Inference: A Journal of the IMA, 9:899–933,
2020.

Liu, H. and Yang, Y. A dimension-insensitive algorithm
for stochastic zeroth-order optimization. arXiv preprint
arXiv:2104.11283, 2021.

Liu, S., Kailkhura, B., Chen, P.-Y., Ting, P., Chang, S.,
and Amini, L. Zeroth-order stochastic variance re-
duction for nonconvex optimization. arXiv preprint
arXiv:1805.10367, 2018.

Liu, S., Chen, P.-Y., Kailkhura, B., Zhang, G., Hero III,
A. O., and Varshney, P. K. A primer on zeroth-order
optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Sig-
nal Processing Magazine, 37:43–54, 2020.

Loh, P.-L. and Wainwright, M. J. Regularized m-estimators
with nonconvexity: Statistical and algorithmic theory for
local optima. Advances in Neural Information Processing
Systems, 26, 2013.

Lu, Z. Optimization over sparse symmetric sets via a non-
monotone projected gradient method. arXiv preprint
arXiv:1509.08581, 2015.

Metel, M. R. Sparse training with lipschitz continuous
loss functions and a weighted group l0-norm constraint.
Journal of Machine Learning Research, 24:1–44, 2023.

Mishchenko, K., Khaled, A., and Richtárik, P. Random
reshuffling: Simple analysis with vast improvements. Ad-
vances in Neural Information Processing Systems, 33:
17309–17320, 2020.

Negahban, S., Yu, B., Wainwright, M. J., and Ravikumar,
P. A unified framework for high-dimensional analysis of
m-estimators with decomposable regularizers. Advances
in Neural Information Processing Systems, 22, 2009.

10



Optimization over Sparse Support-Preserving Sets: Two-Step Projection

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer, 2003.

Nesterov, Y. and Spokoiny, V. Random gradient-free mini-
mization of convex functions. Foundations of Computa-
tional Mathematics, pp. 527–566, 2017.

Nesterov, Y. et al. Lectures on convex optimization, volume
137. Springer, 2018.

Nguyen, N., Needell, D., and Woolf, T. Linear convergence
of stochastic iterative greedy algorithms with sparse con-
straints. IEEE Transactions on Information Theory, 63:
6869–6895, 2017.

Nozawa, R., Poirion, P.-L., and Takeda, A. Zeroth-order
random subspace algorithm for non-smooth convex opti-
mization. arXiv preprint arXiv:2401.13944, 2024.

Pan, L., Zhou, S., Xiu, N., and Qi, H.-D. A convergent
iterative hard thresholding for nonnegative sparsity opti-
mization. Pacific Journal of Optimization, 13:325–353,
2017.

Peste, A., Iofinova, E., Vladu, A., and Alistarh, D. Ac/dc:
Alternating compressed/decompressed training of deep
neural networks. Advances in Neural Information Pro-
cessing Systems, 34:8557–8570, 2021.

Shen, J. and Li, P. A tight bound of hard thresholding.
Journal of Machine Learning Research, 18:7650–7691,
2017.

Sokolov, A., Hitschler, J., Ohta, M., and Riezler, S. Sparse
stochastic zeroth-order optimization with an applica-
tion to bandit structured prediction. arXiv preprint
arXiv:1806.04458, 2018.

Takeda, A., Niranjan, M., Gotoh, J.-y., and Kawahara, Y.
Simultaneous pursuit of out-of-sample performance and
sparsity in index tracking portfolios. Computational Man-
agement Science, 10:21–49, 2013.

Wainwright, M. J., Jordan, M. I., et al. Graphical models, ex-
ponential families, and variational inference. Foundations
and Trends in Machine Learning, 1:1–305, 2008.

Wang, Y., Du, S., Balakrishnan, S., and Singh, A. Stochastic
zeroth-order optimization in high dimensions. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 1356–1365, 2018.

Xu, Y., Jin, R., and Yang, T. Non-asymptotic analysis of
stochastic methods for non-smooth non-convex regular-
ized problems. Advances in Neural Information Process-
ing Systems, 32, 2019a.

Xu, Y., Qi, Q., Lin, Q., Jin, R., and Yang, T. Stochastic op-
timization for dc functions and non-smooth non-convex
regularizers with non-asymptotic convergence. In Interna-
tional Conference on Machine Learning, pp. 6942–6951,
2019b.

Yang, Y. and Li, P. Projective proximal gradient descent
for a class of nonconvex nonsmooth optimization prob-
lems: Fast convergence without kurdyka-lojasiewicz (kl)
property. arXiv preprint arXiv:2304.10499, 2023.

Yang, Y. and Yu, J. Fast proximal gradient descent for
a class of non-convex and non-smooth sparse learning
problems. In Uncertainty in Artificial Intelligence, pp.
1253–1262, 2020.

Yuan, X.-T., Li, P., and Zhang, T. Gradient hard thresholding
pursuit. Journal of Machine Learning Research, 18:6027–
6069, 2017.

Yue, P., Yang, L., Fang, C., and Lin, Z. Zeroth-order op-
timization with weak dimension dependency. In The
Thirty Sixth Annual Conference on Learning Theory, pp.
4429–4472. PMLR, 2023.

Zhang, Q., Gu, B., Dang, Z., Deng, C., and Huang, H.
Desirable companion for vertical federated learning: New
zeroth-order gradient based algorithm. In Proceedings of
the 30th ACM International Conference on Information
& Knowledge Management, pp. 2598–2607, 2021.

Zhou, P., Yuan, X., and Feng, J. Efficient stochastic gradi-
ent hard thresholding. Advances in Neural Information
Processing Systems, 31, 2018.

11



Optimization over Sparse Support-Preserving Sets: Two-Step Projection

Appendix
1 Introduction 1

2 Preliminaries 2

3 Deterministic Case 3

3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Extensions: Stochastic and Zeroth-Order Cases 6

4.1 Stochastic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Zeroth-Order Optimization (ZOO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Conclusion 8

A Notations 14

B Related Works 14

B.1 Local Guarantees for Combined Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.2 Global Guarantees for IHT and RSC Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C Sample complexity in sub-Gaussian design 15

D Proof of Remark 2.4 15

E Proofs of Section 3 (Deterministic Optimization) 16

E.1 Proof of Lemmas 3.2 and 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

E.2 Proof of Theorems 3.4 and 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

E.3 Lower Bound on the Sparsity Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

F Proofs of Section 4 (Stochastic and Zeroth-Order Optimization) 21

F.1 Discussion on Restricted Smoothness Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

F.2 Proof of Theorems 4.2 and 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

F.3 Proof of Corollary 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

F.4 Proof of Theorems 4.7 and 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

F.5 Proof of Corollary 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

G Differences Between Two-Step Projection and Euclidean Projection 53

H Experiments 53

H.1 Synthetic Experiments: Illustrating the Sparsity/Optimality Trade-Off . . . . . . . . . . . . . . . . . . . 54

12



Optimization over Sparse Support-Preserving Sets: Two-Step Projection

H.2 Real Data Experiment: Portfolio Index Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

H.3 Real Data Experiment: Multiclass Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

13



Optimization over Sparse Support-Preserving Sets: Two-Step Projection

A. Notations
Below we aggregate the various notations used throughout the paper, for ease of reference.

• ΠΓ(w): Euclidean projection of w onto a set Γ, i.e. ΠΓ(w) ∈ argminz∈Γ ∥w − z∥2.

• wi: i-th component of w.

• ∥ · ∥: ℓ0 pseudo-norm (number of non-zero components of a vector).

• B0(k): ℓ0 pseudo-ball of radius k, i.e. B0(k) = {w ∈ Rd : ∥w∥0 ≤ k}.

• Hk: Euclidean projection onto B0(k), also known as the hard-thresholding operator (which keeps the k largest (in
magnitude) components of a vector, and sets the others to 0 (if there are ties, we can break them e.g. lexicographically)).

• Π̄k
Γ: Two-step projection of sparsity k onto the set Γ, i.e. Π̄k

Γ(·) = ΠΓ(Hk(·)).

• ∥ · ∥p: ℓp norm for p ∈ [1,+∞).

• ∥ · ∥: ℓ2 norm.

• [n]: set {1, ..., n} for n ∈ N∗.

• |S|: number of elements of a set S ⊆ [d].

• supp(w): support of a vector w ∈ Rd, i.e. the set of coordinates of its non-zero components.

• 2SP: two-step projection

• EP: Euclidean projection

B. Related Works
Below we present a more detailed review of the related works.

B.1. Local Guarantees for Combined Constraints

Among the works considering optimization over the intersection of the ℓ0 pseudo-ball of radius k and a set Γ, (Metel, 2023)
analyze the convergence of a first-order and zeroth-order stochastic algorithm with a weighted ℓ0 group norm constraint
(which generalizes the ℓ0 norm), combined with an ℓ∞ ball constraint. (Pan et al., 2017) provide a deterministic algorithm
which can tackle extra positivity constraints. (Lu, 2015) and (Beck & Hallak, 2016) analyze the convergence of variants of
hard-thresholding in the deterministic case, with extra constraints that are symmetric and sign-free or positive. Other line of
works such as (Frankel et al., 2014; Xu et al., 2019b; Attouch et al., 2013; De Marchi & Themelis, 2022; Yang & Yu, 2020;
Gu et al., 2018; Yang & Li, 2023; Bolte et al., 2014; Boţ et al., 2016; Xu et al., 2019a; Li & Lin, 2015; Bauschke et al.,
2017; 2019) have a general approach, and analyze the convergence of general proximal algorithms, for composite problems
of the form minw R(w) + h(w) where h is a more general non-convex regularizer which can include the ℓ0 constraint
combined with an additional constraint, as long as the closed form for the projection onto the mixed constraint is known (or
an approximation of it in the case of (Gu et al., 2018)). However, all of these works only provide guarantees of convergence
towards a critical point, or at best, a local optimum. We provide an overview of those works in Table 1. More details about
algorithms with local convergence specialized to ℓ0 optimization can also be found in Table 1 from (Damadi & Shen, 2022).

B.2. Global Guarantees for IHT and RSC Functions

On the other hand, in the case of restricted strongly convex (RSC) and restricted smooth (RSS) functions, existing
approximate global guarantees for the IHT algorithm do not apply to problems with such combined constraints. Indeed,
several works have considered global optimality guarantees for IHT in various settings: the full gradient (deterministic)
setting (IHT (Jain et al., 2014)), the stochastic setting (Nguyen et al., 2017; Li et al., 2016; Shen & Li, 2017), and the
zeroth-order setting (de Vazelhes et al., 2022). However, they do not address the case where the extra constraint Γ is added
to the original sparsity constraint. The works of (Foygel Barber & Ha, 2018; Liu & Foygel Barber, 2020) tackle respectively
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general non-convex thresholding operators, and general non-convex constraints, in the full gradient (deterministic) setting
but however they do not provide explicit convergence rates for the particular type of sets that we consider in this paper: their
rates depend on some constants (the relative concavity or the local concavity constant) for which, up to our knowledge, an
explicit form is still unknown for the sets we consider.

C. Sample complexity in sub-Gaussian design
Similarly to (Jain et al., 2014), we can use (Agarwal et al., 2010), Theorem 22, to find the sample complexity needed to
verify the Assumptions of Theorem 3.4, in the setting of sub-Gaussian design. Let us consider the sparse linear regression
setting, which solves minw∈B0(k), with R(w) = 1

n∥Aw − y∥2, and where n denotes the number of samples in the dataset
(i.e. number of rows of A), and each row of A is a vector of dimension d drawn from a sub-Gaussian distribution with
covariance Σ with Σii ≤ 1 for all i in {1, ..., d}, and where we have for all i in {1, ..., n}, yi = ⟨Ai,·,w⟩+ ξi, where Ai,·
denotes the i-th row of A, and where ξi is some label noise, sampled from a normal distribution of standard deviation σ
(that is ξi ∼ N (0, σ2)). As described in (Jain et al., 2014) using Theorem 22 from (Agarwal et al., 2010), R is (νs, s)-RSC
and (Ls, s)-RSS with probability at least 1 − ec0n, with νs = 1

2σmin(Σ) − c1
s log d

n and Ls = 2σmax(Σ) + c1
s log d

n ,
where σmin(Σ) and σmax(Σ) are the smallest and largest eigenvalues of Σ respectively, and c0 and c1 are universal
constants. Let us set s = 2k as required by Theorem 3.4, and take n > 4c1s log(d)/σmin(Σ) samples. We then obtain
νs ≥ 1

4σmin(Σ) and Ls ≤ 2.25σmax(Σ), which means that Ls/(9νs) ≤ κ(Σ) := σmax(Σ)/σmin(Σ). Thus it is enough
to choose k = 4(9κ(Σ))2k̄ = 324κ(Σ)2k̄ to verify the assumptions of Theorem 3.4 with high probability.

D. Proof of Remark 2.4
Before proceeding with the proof of Remark 2.4, we recall the definition of sign-free convex sets from (Lu, 2015) and
(Beck & Hallak, 2016) below. Essentially, sign-free convex sets are convex sets that are closed by swapping the sign of any
coordinate.

Definition D.1 ((Lu, 2015),(Beck & Hallak, 2016)). A convex set Γ is sign-free if for all y ∈ {−1, 1}d and for all x ∈ Γ,
x⊙ y ∈ Γ, where ⊙ denotes the element-wise vector multiplication (Hadamard product for vectors).

We now proceed with the proof of Remark 2.4.

Proof of Remark 2.4. It is easy to show that any elementwise decomposable constraint such as box constraint is support-
preserving (as projection can be done component-wise, independently). Similarly, for group-wise separable constraints
where the constraint on each group is k-support-preserving (such as the constraint for the index tracking problem in our
Section H), for a k-sparse vector x ∈ Rd, one can project each group of coordinates independently, and each of such
projection will have its support preserved (since each such group of coordinates also contains less than k non-zero elements,
i.e. they are k-sparse). Therefore, we analyze in more detail the case of sign-free convex sets. Let Γ be a sign-free convex
set, and let x ∈ Rd be a k-sparse vector. Define z = ΠΓ(x) and assume that supp(z) ̸⊆ supp(x). This implies that
there exist some non-empty set of coordinates S ⊆ [d], such that for all i ∈ S: zi ̸= 0 and xi = 0. Define z′ such that

z′k =

{
−zk if k ∈ S

zk otherwise
. Since Γ is sign-free, z′ ∈ Γ. Now, define z′′ such that z′′k =

{
0 if k ∈ S

zk if otherwise
. Since Γ is

convex and since z′′ = 1
2z

′ + 1
2z, we have z′′ ∈ Γ. Now, we have:

∥x− z′′∥22 =

d∑
k=1

(xk − z′′k )
2 =

∑
k∈[d]\S

(xk − zk)
2

<
∑

k∈[d]\S

(xk − zk)
2 +

∑
k∈S

(xk − zk)
2 =

d∑
k=1

(xk − zk)
2 = ∥x− z∥22

Therefore, we encounter a contradiction since we have defined z = ΠΓ(x), and therefore, our assumption supp(z) ̸⊆
supp(x) is wrong, which means that supp(z) ⊆ supp(x).
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E. Proofs of Section 3 (Deterministic Optimization)
E.1. Proof of Lemmas 3.2 and 3.6

E.1.1. USEFUL LEMMAS

We first recall some useful definitions and lemmas from the literature.

Definition E.1 (Relative concavity (Liu & Foygel Barber, 2020)). The relative concavity coefficient γk,β of a k-sparse
projection operatorHk, of relative sparsity β := k̄

k with k̄ ≤ k is defined as:

γk,β (Hk) = sup

{
⟨y −Hk(z), z −Hk(z)⟩

∥y −Hk(z)∥22
y, z ∈ Rd, ∥y∥0 ≤ βk,y ̸= Hk(z)

}
.

Lemma E.2 (Lemma 4.1 (Liu & Foygel Barber, 2020)). WhenHk is the hard-thresholding operator at sparsity level k, we
have:

γk,β (Hk) =

√
β

2
=

1

2

√
k̄

k
.

Proof of Lemma E.2. Proof in (Liu & Foygel Barber, 2020).

E.1.2. PROOF OF LEMMA 3.2

Proof of Lemma 3.2. We have:

∥w − w̄∥2 = ∥w −Hk(w)∥2 + ∥Hk(w)− w̄∥2 + 2⟨w −Hk(w),Hk(w)− w̄⟩
(a)

≥ ∥w −Hk(w)∥2 + ∥Hk(w)− w̄∥2 − 2γk,ρ∥Hk(w)− w̄∥2

= ∥w −Hk(w)∥2 + (1− 2γk,ρ)∥Hk(w)− w̄∥2

(b)
= ∥w −Hk(w)∥2 +

(
1−

√
k̄

k

)
∥Hk(w)− w̄∥2,

where (a) follows from Definition E.1 and (b) follows from Lemma E.2. Therefore, rearranging, we obtain:

∥Hk(w)−w∥2 ≤ ∥w − w̄∥2 −
(
1−

√
k̄

k

)
∥Hk(w)− w̄∥2.

The proof is completed.

E.1.3. PROOF OF LEMMA 3.3

Proof of Lemma 3.3. Let a =
√

k
k̄

and b = ρ+1
2 ∈ (ρ, 1). Consider

w = [1, ..., 1︸ ︷︷ ︸
k

, b, ...b︸ ︷︷ ︸
k̄

] ∈ Rk+k̄, w̄ = [0, ..., 0︸ ︷︷ ︸
k

, a, ...a︸ ︷︷ ︸
k̄

] ∈ Rk+k̄.

Then we haveHk(w) = [1, ..., 1︸ ︷︷ ︸
k

, 0, ...0︸ ︷︷ ︸
k̄

] and

∥w −Hk(w)∥2 = b2k̄, ∥w − w̄∥2 = k + (a− b)2k̄, ∥Hk(w)− w̄∥2 = k + a2k̄.

It can be verified that

∥w −Hk(w)∥2 − ∥w − w̄∥2 + ∥Hk(w)− w̄∥2
∥Hk(w)− w̄∥2 =

2abk̄

k + a2k̄
= b

√
k̄

k
> ρ

√
k̄

k
.

This proves the desired inequality.
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E.1.4. PROOF OF LEMMA 3.6

Proof of Lemma 3.6. Let us abbreviate vk := Hk(w). It can be verified that

∥Π̄k
Γ(w)−w∥2 =

∥∥Π̄k
Γ(w)− vk + vk −w

∥∥2
(a)
=
∥∥Π̄k

Γ(w)− vk

∥∥2 + ∥vk −w∥2
(b)

≤∥vk − w̄∥2 − ∥Π̄k
Γ(w)− w̄∥2 + ∥w − w̄∥2 −

(
1−

√
β
)
∥vk − w̄∥2

=∥w − w̄∥2 − ∥Π̄k
Γ(w)− w̄∥2 +

√
β∥vk − w̄∥2,

where (a) is due to Definition 2.3 and the definition of the two-step projection, which imply that Π̄k
Γ(w)− vk and vk −w

have disjoint supporting sets, and (b) uses the three-point-lemma for projection onto a convex set Γ , as well as Lemma 3.2.
The proof is completed.

E.2. Proof of Theorems 3.4 and 3.7

E.2.1. PROOF OF THEOREM 3.4

In this section, we present the proof of Theorem 3.4 for the convergence of Algorithm 1 without the additional constraint,
which as mentioned above, is needed for the proof of Theorem 3.7, but also, as a byproduct, illustrates how the three-point
lemma simplifies previous proofs of Iterative Hard-Thresholding.

Proof of Theorem 3.4. The Ls- restricted smoothness of R implies that

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) +
Ls

2

∥∥∥∥wt −wt−1 +
1

Ls
∇R(wt−1)

∥∥∥∥2 − 1

2Ls
∥∇R(wt−1)∥2

(a)

≤R(wt−1) +
Ls

2

∥∥∥∥w̄ −wt−1 +
1

Ls
∇R(wt−1)

∥∥∥∥2 − Ls

2
(1−

√
β)∥wt − w̄∥2

− 1

2Ls
∥∇R(wt−1)∥2

=R(wt−1) + ⟨∇R(wt−1), w̄ −wt−1⟩+
Ls

2
∥wt−1 − w̄∥2 − Ls

2
(1−

√
β)∥wt − w̄∥2

(b)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
(1−

√
β)∥wt − w̄∥2

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − 2Ls − νs

4
∥wt − w̄∥2, (7)

where (a) uses Lemma 3.2, (b) is due to the νs-restricted strong-convexity of R, while the last step is implied by the condition

on the sparsity level k from the theorem (k ≥ 4L2
s

ν2
s
k̄), and the definition of β (β =

√
k̄
k ).

The update rule composed of the gradient step and the projection from Algorithm 1 can be rewritten into the following
(given that the learning rate is η = 1

Ls
, and by definition of a projection):

wt = arg min
w s.t.∥w∥0≤k

∥∥∥∥w − (wt−1 −
1

Ls
∇R(wt−1)

)∥∥∥∥2
= arg min

w s.t.∥w∥0≤k

2

Ls
⟨∇R(wt−1),w −wt−1⟩+ ∥w −wt−1∥2 +

1

L2
s

∥∇R(wt−1)∥2

= arg min
w s.t.∥w∥0≤k

R(wt−1) + ⟨∇R(wt−1),w −wt−1⟩+
Ls

2
∥w −wt−1∥2.
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Therefore, by definition of an argmin, we have:

R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

≤ R(wt−1) + ⟨∇R(wt−1),wt−1 −wt−1⟩+
Ls

2
∥wt−1 −wt−1∥2

= R(wt−1). (8)

And from the Ls smoothness of R, we also have:

R(wt) ≤ R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2. (9)

Therefore, combining equations 8 and 9, we obtain:

R(wt) ≤ R(wt−1).

That is, the sequence {R(wt)}t≥0 of risk is non-increasing.

Let us now consider

T :=

⌈
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)⌉
.

We claim that R(wt) ≤ R(w̄) + ε for t ≥ T + 1. To show this, suppose that ∃t ∈ [T ] such that R(wt) ≤ R(w̄) + ε. Then
the claim is naturally true by monotonicity. Otherwise assume that R(wt) > R(w̄) + ε for all t ∈ [T ]. Then in view of the
inequality equation 7 we know that

∥wT − w̄∥2 ≤ 2Ls − 2νs
2Ls − νs

∥wT−1 − w̄∥2

≤
(
1− νs

2Ls

)
∥wT−1 − w̄∥2

≤
(
1− νs

2Ls

)T

∥w0 − w̄∥2

= exp

(
T log

(
1− νs

2Ls

))
∥w0 − w̄∥2

≤ exp

(
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε
+ 1

)
log

(
1− νs

2Ls

))
∥w0 − w̄∥2

=

(
1− νs

2Ls

)
exp

(
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)
log

(
1− νs

2Ls

))
∥w0 − w̄∥2

(a)

≤
(
1− νs

2Ls

)
exp

(
2Ls

νs
log

(
2ε

(Ls − νs)∥w0 − w̄∥2
)

νs
2Ls

)
∥w0 − w̄∥2

=

(
1− νs

2Ls

)
2ε

Ls − νs

(b)

≤ 2ε

Ls − νs
,

where (a) follows from the fact that for all x in (−∞, 1): log(1− x) ≤ −x, and (b) uses the fact that
(
1− νs

2Ls

)
≤ 1.

Then according to equation 7 we must have

R(wT+1) ≤ R(w̄) +
Ls − νs

2
∥wT − w̄∥2 ≤ R(w̄) + ε,

which implies the desired claim. The proof is completed.

Remark E.3. Theorem 3.4 recovers the result of Jain et al. (2014, Theorem 1). Our proof is shorter yet more intuitive than in
that paper.
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E.2.2. PROOF OF THEOREM 3.7

Using the above results, we can now proceed to the full proof of convergence of Theorem 3.7 below.

Proof of Theorem 3.7. Denote vt = Hk(wt−1 − 1
Ls
∇R(wt−1)) for any t ∈ N. Similar to the arguments for equation 7,

based on the Ls-restricted smoothness of R we can show that:

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) +
Ls

2

∥∥∥∥wt −wt−1 +
1

Ls
∇R(wt−1)

∥∥∥∥2 − 1

2Ls
∥∇R(wt−1)∥2

(a)

≤R(wt−1) +
Ls

2

∥∥∥∥w̄ −wt−1 +
1

Ls
∇R(wt−1)

∥∥∥∥2 − Ls

2
∥wt − w̄∥2

+
Ls

2

√
β∥vt − w̄∥2 − 1

2Ls
∥∇R(wt−1)∥2

=R(wt−1) + ⟨∇R(wt−1), w̄ −wt−1⟩+
Ls

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2

+
Ls

2

√
β∥vt − w̄∥2

(b)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2 + Ls

2

√
β∥vt − w̄∥2

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls

2
∥wt − w̄∥2 + ρνs

4(1− ρ)
∥vt − w̄∥2, (10)

where (a) uses Lemma 3.2, (b) is due to the νs-restricted strong-convexity of R, and the last step is due to the condition on

sparsity level k from the theorem (k ≥ 4L2
s(1−ρ)2

ν2
sρ

2 k̄), and the definition of β =
√

k̄
k .

In view of equation 7, which is valid under the given conditions, we know that

R(vt) ≤ R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − 2Ls − νs

4
∥vt − w̄∥2. (11)

After proper scaling and summing both sides of equation 10 and equation 11 yields that

(1− ρ)R(wt) + ρR(vt)

≤R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − (1− ρ)Ls

2
∥wt − w̄∥2 − ρ(Ls − νs)

2
∥vt − w̄∥2

=R(w̄) +
Ls − νs

2
∥wt−1 − w̄∥2 − Ls − ρνs

2
∥wt − w̄∥2, (12)

where in the second inequality we have used w̄ ∈ Γ and the non-expansiveness of projection over convex sets.

Let us now consider

T :=

⌈
2Ls

νs
log

(
(Ls − νs)∥w0 − w̄∥2

2ε

)⌉
. (13)

We claim that:

min
t∈[T+1]

{(1− ρ)R(wt) + ρR(vt)} ≤ R(w̄) + ε. (14)

To show this, suppose that ∃t ∈ [T ] such that (1 − ρ)R(wt) + ρR(vt) ≤ R(w̄) + ε. Then the claim is naturally true.
Otherwise assume that (1− ρ)R(wt) + ρR(vt) > R(w̄) + ε for all t ∈ [T ]. Then in view of the inequality equation 12 we
know that
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∥wT − w̄∥2 ≤ Ls − νs
Ls − ρνs

∥wT−1 − w̄∥2 ≤
(
1− (1− ρ)νs

Ls

)
∥wT−1 − w̄∥2

≤
(
1− (1− ρ)νs

Ls

)T

∥w0 − w̄∥2 ≤ 2ε

Ls − νs
.

Then according to equation 12 we must have

(1− ρ)R(wT+1) + ρR(vT+1) ≤ R(w̄) +
Ls − νs

2
∥wT − w̄∥2 ≤ R(w̄) + ε, (15)

which proves the claim from equation 14. Now, recall that we have assumed in the Assumptions of Theorem 3.7,
without loss of generality, that R is non-negative (if not, we can redefine R by adding a constant, without modifying
the gradient of R, keeping the algorithm untouched), which implies that R (vt) ≥ 0. Plugging this in equation 14, for
T ≥

⌈
2Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2

2ε′(1−ρ)

)⌉
+ 1 implies that:

min
t∈[T ]

R (wt) ≤
1

1− ρ
R(w̄) +

ε

1− ρ
≤ (1 + 2ρ)R(w̄) +

ε

1− ρ
. (16)

Plugging the change of variable ε′ = ε
1−ρ into equation 16 above, and in 13, we obtain that when T ≥⌈

2Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2

2ε′(1−ρ)

)⌉
+ 1:

min
t∈[T ]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε′.

Further, consider an ideal case where w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}. Then R (vt) ≥ R(w̄)

is always true for all t ≥ 1. It follows that the bound in equation 14 yields, for T ≥
⌈
2Ls

νs
log
(

(Ls−νs)∥w0−w̄∥2

2ε

)⌉
+ 1:

min
t∈[T ]

{(1− ρ)R (wt) + ρR(w̄)} ≤ min
t∈[T ]

{(1− ρ)R (wt) + ρR (vt)} ≤ R(w̄) + ε,

which implies: mint∈[T ] R (wt) ≤ R(w̄) + ε
1−ρ . In this case, we can simply set ρ = 0.5, and define ε′ = ε

1−ρ = 2ε
similarly as above. This implies the desired claims. The proof is completed.

E.3. Lower Bound on the Sparsity Relaxation

Consider κ > 1, p = k̄ + κ2k̄ and the following defined diagonal matrix A of size p× p and vector b of size p:

A =


κ 0 · · · 0
0 1 · · · 0
...

. . . 0
0 0 · · · 1

 ∈ Rp×p, b = [1, κ, . . . , κ︸ ︷︷ ︸
k̄

, 1, . . . , 1︸ ︷︷ ︸
κ2k̄

]⊤ ∈ Rp.

Clearly, A is κ-smooth and 1-strongly convex. Let us consider the following quadratic objective function:

f(w) =
1

2
(w − b)⊤A(w − b).

Let k ∈ [k̄, κ2k̄] be the relaxed sparsity level used for IHT, and being an even number (without loss of generality). Consider
the following defined p-dimensional sparse vectors such that ∥x̄∥0 = k̄ and ∥x∥0 = k:

w̄ = [1, κ, . . . , κ︸ ︷︷ ︸
k̄

, 0, . . . , 0︸ ︷︷ ︸
κ2k̄

]⊤ ∈ Rp, w = [0, . . . , 0︸ ︷︷ ︸
k̄/2

, κ, . . . , κ︸ ︷︷ ︸
k̄/2

, 1, . . . , 1︸ ︷︷ ︸
k−k̄/2

, 0, . . . , 0︸ ︷︷ ︸
κ2k̄−k+k̄/2

]⊤ ∈ Rp.

We next prove the following theorem which shows that k ≥ O(κ2k̄) is indeed necessary for IHT to converge in some
extreme cases for optimizing f .
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Theorem E.4. If k̄ ≥ 4 and k ≤ κ2k̄
8 , then it holds that

f(w) ≥ f(w̄) +
κ2k̄

16
,

while w is a fixed point of IHT with sparsity level k and step-size η = 1
2κ , i.e.,

w = Hk (w − η∇f(w)) .

Proof. It can be seen that f(w̄) = 1
2κ

2k̄ and

f(w) =
1

2

(
κ+

(
k̄

2
− 1

)
κ2 + κ2k̄ +

k̄

2
− k

)
.

Therefore

f(w)− f(w̄) =
1

2

(
κ+

(
k̄

2
− 1

)
κ2 +

k̄

2
− k

)
≥1

2

((
k̄

2
− 1

)
κ2 − k

)
ζ1
≥1

2

(
k̄

4
κ2 − k

)
≥ κ2k̄

16
,

where ζ1 uses k̄ ≥ 4, and the last inequality is due to k ≤ κ2k̄
8 . Note that

∇f(w) = A(w − b) = [−κ, . . . ,−κ︸ ︷︷ ︸
k̄/2

, 0, . . . , 0︸ ︷︷ ︸
k

,−1, . . . ,−1︸ ︷︷ ︸
κ2k̄−k+k̄/2

]⊤.

Given η = 1
2κ , we can show that

w − η∇f(w) = [0.5, . . . , 0.5︸ ︷︷ ︸
k̄/2

, κ, . . . , κ︸ ︷︷ ︸
k̄/2

, 1, . . . , 1︸ ︷︷ ︸
k−k̄/2

, 0.5/κ, . . . , 0.5/κ︸ ︷︷ ︸
κ2k̄−k+k̄/2

]⊤,

which directly yields (as κ > 1)
w = Hk(w − η∇f(w)),

and thus w is a fixed point of IHT with sparsity level k and step-size η = 1
2κ .

Remark E.5. The example is inspired by the one from (Axiotis & Sviridenko, 2022), though slightly simpler. A main
difference is that in our example the supporting sets of w and w̄ are allowed to be significantly overlapped, while in theirs
the supporting sets of the two vectors are constructed to be disjoint.

F. Proofs of Section 4 (Stochastic and Zeroth-Order Optimization)
F.1. Discussion on Restricted Smoothness Assumptions

In this section, we provide additional details on the difference between Assumptions 2.2 and 4.5. First, we recall the standard
definition of smoothness:

Definition F.1. A differentiable function f is L-smooth if for all x,y ∈ (Rd)2:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

We now provide the counter-example below, illustrating that Assumptions 2.2 and 4.5 are not always equivalent, even if f is
convex (and that those two assumptions are also different from the usual smoothness assumption).

Lemma F.2. Let us consider the following convex function f : R2 → R defined as

∀(x1, x2) ∈ R2 : f(x1, x2) = x2
1 + x2

2 + x1x2

f has the following regularity properties, with the given constants being each time the smallest possible:
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• (i) 3-smooth

• (ii) 2-restricted smooth (Assumption 2.2) with sparsity level 1

• (iii)
√
5-restricted strongly smooth (Assumption 4.5) with sparsity level 1

Proof. F.1.1. PROOF OF (I)

The Hessian of f is:

H =

[
2 1
1 2

]
,

and its diagonalization is:
H = PDP−1,

with:

P =

[
1 −1
1 1

]
,P−1 =

1

2

[
1 1
−1 1

]
, and D =

[
3 0
0 1

]
.

Therefore, the smallest L such that we have H ⪯ LI2×2 is 3, which implies from Lemma 1.2.2 in (Nesterov et al., 2018)
that f is smooth with smoothness constant 3.

F.1.2. PROOF OF (II):

Let us take two x,y in (Rd)2 such that ∥x− y∥0 ≤ 1, which therefore implies that: x1 = y1 or x2 = y2 (or both). Let us
suppose that (E): x2 = y2. Note that this implies that ∥x−y∥2 = (x1− y1)

2. We now need to find the smallest L such that:

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥x− y∥22

⇔

y21 + y22 + y1y2 ≤ x2
1 + x2

2 + x1x2 + (2x1 + x2)(y1 − x1) + (2x2 + x1)(y2 − x2) +
L

2
(x1 − y1)

2

(E)⇔

y21 + x2
2 + y1x2 ≤ x2

1 + x2
2 + x1x2 + (2x1 + x2)(y1 − x1) + (2x2 + x1)(x2 − x2) +

L

2
(x1 − y1)

2

⇔

y21 + x2
1 − 2y1x1 ≤

L

2
(x1 − y1)

2

⇔

(x1 − y1)
2 ≤ L

2
(x1 − y1)

2

Therefore, the smallest L possible which can verify the above is L = 2. By symmetry, we would have the same chain of
equivalence in the alternative case where we would replace x2 = y2 by x1 = y1. Therefore, we need some L that will work
for both cases, so again, such smallest L is 2.

F.1.3. PROOF OF (III)

Let us take two x,y such that ∥x− y∥0 ≤ 1, which therefore implies that: x1 = y1 or x2 = y2 (or both). Let us suppose
that (E): x2 = y2. Note that this means that ∥x− y∥2 = (x1 − y1)

2. What we need to find is the smallest L such that:

∥∇f(x)−∇f(y)∥2 ≤ L2∥x− y∥22
⇔

(2x1 + x2 − (2y1 + y2))
2 + (2x2 + x1 − (2y2 + y1))

2 ≤ L2(x1 − y1)
2

(E)⇔
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(2x1 + x2 − (2y1 + x2))
2 + (2x2 + x1 − (2x2 + y1))

2 ≤ L2(x1 − y1)
2

⇔

4(x1 − y1)
2 + (x1 − y1)

2 ≤ L2(x1 − y1)
2

⇔

5(x1 − y1)
2 ≤ L2(x1 − y1)

2

Therefore, the smallest L possible which can verify the above is L =
√
5. By symmetry, we would have the same chain of

equivalence in the alternative case where we would replace x2 = y2 by x1 = y1. So therefore we need some L that will
work for both cases, so again, that smallest L is

√
5.

F.2. Proof of Theorems 4.2 and 4.3

For the proof of Theorem 4.3, we use a similar technique as in Theorem 3.7 to deal with the extra constraint, i.e. we start
first from the case Γ = Rd (Theorem 4.2). Based on our ℓ0 three-point lemma (Lemma 3.2), such proof of Theorem 4.2 is
simpler than the corresponding proof of (Zhou et al., 2018) (Proof of Theorem 2, Appendix B.3). Also, compared to the
deterministic setting, here, we need to carefully incorporate the exponentially decreasing error of the gradient estimator into
a properly weighted telescopic sum containing terms in ∥wt − w̄∥2. Below we provide several intermediary results needed
for the proof of Theorem 4.3. Then, the proof of Theorem 4.3 will be provided in Section F.2.3.

F.2.1. USEFUL LEMMA

Before starting the proof, we present the following lemma from (Mishchenko et al., 2020), which relates the batch-size st
and the error of the gradient estimator:

Lemma F.3 ((Mishchenko et al., 2020), Lemma 1). Let wt ∈ Rd. Assume that gt is the sampled gradient in Algorithm 2
and that the population variance of Ri(wt) is bounded by B as in Assumption 4.1. Then the gradient estimate gt is an
unbiased estimate of∇R(wt), and its variance is as follows:

E ∥gt −∇R (wt)∥2 ≤
n− st
n− 1

1

st
B, (17)

Note that the original Lemma from (Mishchenko et al., 2020) is written as an equality, in terms of the exact population
variance of a random variable, denoted σ2, but we rewrite it as an inequality here for simplicity, in order to have a general
bound that applies at each iteration.

Proof of Lemma F.3. Proof in (Mishchenko et al., 2020).

F.2.2. PROOF OF THEOREM 4.2

Below we now first present a proof for the convergence of Algorithm 2 without the additional constraint (Theorem 4.2),
which is needed for the proof of Theorem 4.3, and also, as a byproduct, illustrates how the three-point lemma simplifies
such proof.
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Proof of Theorem 4.2. The Ls-smoothness of R implies that

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − (1−

√
β)∥wt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

− η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥∇R(wt−1)− gt−1∥2,

where (a) follows from Lemma 3.2 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2 a

2 + 1
2C b2, for any (a, b) ∈ (Rd)2 with

C > 0 an arbitrary strictly positive constant.

Let us now assume that η = 1
Ls+C : therefore the term

[
Ls− 1

η+C

2

]
∥wt −wt−1∥2 above is 0. We now take the conditional

expectation (conditioned on wt−1, which is the random variable which realizations are wt−1), on both sides, and from
Lemma F.3 we obtain the inequality below (we slightly abuse notations and denote E[·|wt−1 = wt−1] by E[·|wt−1]):

E[R(wt)|wt−1] ≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

B(n− st−1)

2Cst−1(n− 1)

(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 +

[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

B

2Cst−1

=R(w̄) +

[
1
η − νs

2

]
∥w̄ −wt−1∥2 −

1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
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+
B

2Cst−1
,

where (a) follows from the RSC condition, and the fact that st−1 ∈ N∗.

We recall that η = 1
Ls+C . Let us define α := C

Ls
+ 1. Then C = (α− 1)Ls, and η = 1

αLs
. Also recall that κs =

Ls

νs
.

We can simplify the inequality above into:

E[R(wt)|wt−1]−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
∥w̄ −wt−1∥2 − (1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

ηB

Cst−1

]
.

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1
[·]): using the law of total expectation

(E[·] = Ewt−1 [E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]
(18)

Similarly as in (Liu & Foygel Barber, 2020), we now take a weighted sum over t = 1, ..., T , to obtain:

T∑
t=1

2η

(
1− 1

ακs

1−√β

)T−t

E[R(wt)−R(w̄)]

≤
T∑

t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]

=

T∑
t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

=(1−
√
β)

T∑
t=1

(1− 1
ακs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

ακs

1−√β

)T−t

E∥wt − w̄∥2


+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

(a)
=(1−

√
β)

(1− 1
ακs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤(1−
√

β)

(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤
(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1
, (19)

where (a) follows from simplifying the telescopic sum.
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We now choose k and st as follows: we choose k ≥ 4α2κ2
sk̄, which implies that:√

β ≤ 1

2ακs

=⇒
√
β ≤ 1

2ακs − 1

=⇒ 1−
√
β ≥ 1− 1

2ακs − 1
=

2ακs − 2

2ακs − 1
=

1− 1
ακs

1− 1
2ακs

=⇒
(
1− 1

ακs

1−√β

)
≤ 1− 1

2ακs
. (20)

And we choose st :=
⌈

τ
ωt

⌉
with ω := 1− 1

4ακs
and τ := ηB

C .

Let us call ν := 1− 1
2ακs

. Note that we have:

ν ≤ ω. (21)

And that we have the inequality below:

ν

ω
=

1− 1
2ακs

1− 1
4ακs

=
4ακs − 2

4ακs − 1
= 1− 1

4ακs − 1
≤ 1− 1

4ακs
= ω. (22)

This allows us to simplify equation 19 into:

E
T∑

t=1

2η

(
1− 1

ακs

1−√β

)T−t

[R(wt)−R(w̄)] ≤ νT ∥w̄ −w0∥2 +
T∑

t=1

νT−tωt−1

= νT ∥w̄ −w0∥2 +
ωT

ω

T∑
t=1

( ν
ω

)T−t

= νT ∥w̄ −w0∥2 +
ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

)
≤ νT ∥w̄ −w0∥2 +

ωT

ω

1

1−
(
ν
ω

)
(a)

≤ νT ∥w̄ −w0∥2 +
ωT

ω

1

1− ω
(b)

≤ νT ∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
(c)

≤ ωT ∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

4

3
ωT 1

1− ω

=
ωT

1− ω

(
∥w̄ −w0∥2 +

4

3

)
= 4ακsω

T

(
∥w̄ −w0∥2 +

4

3

)
,

where in the left hand side we have used the linearity of expectation, and where (a) uses equation 22, (b) uses the fact that
1
ω = 1

1− 1
4ακs

≤ 1
1− 1

4

= 4
3 (since κs ≥ 1 and α ≥ 1 (indeed, from the theorem’s assumption α = C

Ls
+ 1 with C > 0)), (c)

uses equation 21, and (d) uses the fact that ω < 1 so 1 < 1
1−ω .
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Let us now normalize the above inequality:

E

∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t

R(wt)∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t
≤ R(w̄) +

4ακsω
T
(
∥w̄ −w0∥2 + 4

3

)
∑T

t=1 2η
(

1− 1
ακs

1−
√
β

)T−t
.

The left hand side above is a weighted sum, which is an upper bound on the smallest term of the sum. Regarding the right

hand side, we can simplify it using the fact that 0 <
(

1− 1
ακs

1−
√
β

)
, and therefore:

T∑
t=1

(
1− 1

ακs

1−√β

)T−t

≥ 1.

Therefore, we obtain:

E min
t∈{1,..,T}

R(wt)−R(w̄) ≤ 4ακsω
T
(
∥w̄ −w0∥2 + 4

3

)
2η

= 2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
Which can be simplified into the expression below, using the definition of ŵT :

ER(ŵT )−R(w̄) ≤ 2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
.

The proof is completed.

Corollary F.4. Under the assumptions of Theorem 4.2, let ε be a small enough positive number ε > 0. To achieve an
error ER(ŵT ) − R(w̄) ≤ ε using Algorithm 2 the number of calls to a gradient ∇Ri (#IFO), and the number of hard
thresholding operations (#HT) are respectively:

#HT = O(κs log(
1

ε
)), #IFO = O

(
κs

νsε

)
.

Proof of Corollary F.4. Let ε ∈ R∗
+. Let us find T to ensure that ER(ŵT )−R(w̄) ≤ ε. This will be enforced if:

2α2Lsκsω
T

(
∥w̄ −w0∥2 +

4

3

)
≤ ε

⇐⇒ T log(ω) ≤ log

(
ε

2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

))

⇐⇒ T ≥ 1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
.

Therefore, let us take:

T :=

⌈
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)⌉
. (23)

We can now derive the #IFO and #HT. First, we have one hard-thresholding operation at each iteration, therefore #HT= T .
Using the fact that 1

log( 1
ω )

= 1
− log(ω) = 1

− log(1− 1
4ακs

)
≤ 1

1
4ακs

= 4ακs (since by property of the logarithm, for all

x ∈ (−∞,−1) : log(1− x) ≤ −x ), we obtain that #HT = O(κs log
(
1
ε

)
).
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We now turn to computing the #IFO. At each iteration t we have st gradient evaluations, therefore:

#IFO =

T−1∑
t=0

st

≤
T−1∑
t=0

( τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω − 1

≤ T +
τ

1
ω − 1

(
1

ω

)T

= T +
τ

1
ω − 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
τ

1
ω − 1

exp

(
log

(
1

ω

)[
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ 1

])

= 1 +
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ
ω

1
ω − 1

2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ

1− ω

2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ τ

8α3Lsκ
2
s

(
∥w̄ −w0∥2 + 4

3

)
ε

(b)
= 1 +

1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
B

αLs

1

Ls(α− 1)

8α3Ls

ε

Ls

νs
κs

(
∥w̄ −w0∥2 +

4

3

)
= 1 +

1

log( 1
ω )

log

(
2α2Lsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

8Bα2κs

(
∥w̄ −w0∥2 + 4

3

)
(α− 1)νs

1

ε
,

where (a) follows from equation 23, and for (b) we recall that τ = ηB
C , η = 1

αLs
and C = Ls(α− 1).

Therefore, overall, the IFO complexity is in O( κs

νsε
).

F.2.3. PROOF OF THEOREM 4.3

We now proceed with the full proof of Theorem 4.3.

Proof of Theorem 4.3. Similary as in the proof of Theorem 4.2 in Section F.2.2, let us take: η := 1
Ls+C , and α := C

Ls
+ 1.

Then C = (α− 1)Ls, and η = 1
αLs

. Recall that κs :=
Ls

νs
. Denote vt = Hk(wt−1 − η∇R(wt−1)) for any t ∈ N.
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Similarly as in Section F.2.2, the Ls-smoothness of R implies that

R(wt) ≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − ∥wt − w̄∥2 +

√
β∥vt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2

+

√
β

2η
∥vt − w̄∥2 − η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2 (24)

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

+

[
Ls − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥∇R(wt−1)− gt−1∥2, (25)

where (a) follows from Lemma 3.6 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2 a

2 + 1
2C b2, for any (a, b) ∈ (Rd)2 with

C > 0 an arbitrary strictly positive constant. Let us now take η := 1
Ls+C : therefore the term

[
Ls− 1

η+C

2

]
∥wt −wt−1∥2

above is 0. We now take the conditional expectation (conditioned on wt−1, which is the random variable which realizations
are wt−1), on both sides, and from Lemma F.3 we obtain the inequality below (we slightly abuse notations and denote
E[·|wt−1 = wt−1] by E[·|wt−1]):

E[R(wt)|wt−1] ≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

B(n− st−1)

2Cst−1(n− 1)

(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 +

[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

B

2Cst−1

=R(w̄) +

[
1
η − νs

2

]
∥w̄ −wt−1∥2 −

1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

B

2Cst−1
, (26)
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where (a) follows from the RSC condition, and the fact that st−1 ∈ N∗.

Now recall that we have taken η = 1
Ls+C , and let us define α := C

Ls
+ 1. Then C = (α− 1)Ls, and η = 1

αLs
. Also recall

that κs =
Ls

νs
.

We can simplify the inequality above into:

E[R(wt)|wt−1]−R(w̄)

≤ 1

2η

[(
1− 1

ακs

)
∥w̄ −wt−1∥2 − E

[
∥wt − w̄∥2|wt−1

]
+
√
βE
[
∥vt − w̄∥2|wt−1

]
+

ηB

Cst−1

]
.

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1
[·]): using the law of total expectation

(E[·] = Ewt−1 [E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − E∥wt − w̄∥2 +

√
βE∥vt − w̄∥2 + ηB

Cst−1

]
.

Additionally, in view of equation 18 applied at vt instead of wt, (since vt here corresponds to the wt from Section F.2.2, i.e.
vt is the hard-thresholding of an iterate after a gradient step), we know that:

ER(vt)−R(w̄) ≤ 1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]
.

We now take a convex combination similarly as in the case without additional constraint (section E.2), for some ρ ∈ (0, 1).

E(1− ρ)R(wt) + ρR(vt)

≤R(w̄) +
1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

+
(
(1− ρ)

√
β − (1−

√
β)ρ
)
E∥vt − w̄∥2 + ηB

Cst−1

]
=R(w̄) +

1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥vt − w̄∥2 + ηB

Cst−1

]
(b)

≤R(w̄) +
1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥wt − w̄∥2 + ηB

Cst−1

]
=R(w̄) +

1

2η

[(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]
,

where in (b), we have assumed that
√
β ≤ ρ (later we will verify that our choice of k ensures such a condition), and have

used the fact that projection onto a convex set is non-expansive (which implies that ∥vt − w̄∥2 ≥ ∥wt − w̄∥2). Similarly
as in F.2.2, we now take a weighted sum over t = 1, ..., T , to obtain:
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T∑
t=1

2η

(
1− 1

ακs

1−√β

)T−t

E[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤
T∑

t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 + ηB

Cst−1

]

=

T∑
t=1

(
1− 1

ακs

1−√β

)T−t [(
1− 1

ακs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

=(1−
√
β)

T∑
t=1

(1− 1
ακs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

ακs

1−√β

)T−t

E∥wt − w̄∥2


+
T∑

t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

(a)
=(1−

√
β)

(1− 1
ακs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤(1−
√

β)

(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1

≤
(
1− 1

ακs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

ακs

1−√β

)T−t
ηB

Cst−1
, (27)

where (a) follows from simplifying the telescopic sum.

We now choose k and st as follows: we choose k ≥ 4 1
ρ2α

2κ2
sk̄, which implies that:

ρ ≥ √β (thereby verifying the assumption made earlier), and that:

√
β ≤ 1

2α 1
ρκs

=⇒
√
β ≤ 1

2α 1
ρκs − 1

=⇒ 1−
√
β ≥ 1− 1

2α 1
ρκs − 1

=
2α 1

ρκs − 2

2α 1
ρκs − 1

=
1− 1

α 1
ρκs

1− 1
2α 1

ρκs

(a)

≥
1− 1

ακs

1− 1
2α 1

ρκs

=⇒
(
1− 1

ακs

1−√β

)
≤ 1− 1

2α 1
ρκs

, (28)

where (a) follows from the fact that ρ ≤ 1.

And we now choose st :=
⌈

τ
ωt

⌉
, with ω := 1− 1

4α 1
ρκs

and τ := ηB
C .

Let us call ν := 1− 1
2α 1

ρκs
. Note that we have:

ν ≤ ω. (29)
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And that we have the inequality below:

ν

ω
=

1− 1
2α 1

ρκs

1− 1
4α 1

ρκs

=
4α 1

ρκs − 2

4α 1
ρκs − 1

= 1− 1

4α 1
ρκs − 1

≤ 1− 1

4α 1
ρκs

= ω. (30)

This allows us to simplify equation 27 into:

E
T∑

t=1

2η

(
1− 1

ακs

1−√β

)T−t

[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤ νT ∥w̄ −w0∥2 +
T∑

t=1

νT−tωt−1

= νT ∥w̄ −w0∥2 +
ωT

ω

T∑
t=1

( ν
ω

)T−t

= νT ∥w̄ −w0∥2 +
ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

)
≤ νT ∥w̄ −w0∥2 +

ωT

ω

1

1−
(
ν
ω

)
(a)

≤ νT ∥w̄ −w0∥2 +
ωT

ω

1

1− ω
(b)

≤ νT ∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
(c)

≤ ωT ∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

4

3
ωT 1

1− ω

=
ωT

1− ω

(
∥w̄ −w0∥2 +

4

3

)
= 4α

1

ρ
κsω

T

(
∥w̄ −w0∥2 +

4

3

)
,

where in the left hand side we have used the linearity of expectation, and where (a) uses equation 30, (b) uses the fact that
1
ω = 1

1− 1

4α 1
ρ
κs

≤ 1
1− 1

4

= 4
3 (since κs ≥ 1 and α ≥ 1 (indeed, from the theorem’s assumption α = C

Ls
+ 1 with C > 0), so

consequently α 1
ρ ≥ 1), (c) uses equation 29, and (d) uses the fact that ω < 1 so 1 < 1

1−ω .

Let us now normalize the above inequality:

E

∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t

(1− ρ)R(wt) + ρR(vt)∑T
t=1 2η

(
1− 1

ακs

1−
√
β

)T−t
≤ R(w̄) +

4α 1
ρκsω

T
(
∥w̄ −w0∥2 + 4

3

)
∑T

t=1 2η
(

1− 1
ακs

1−
√
β

)T−t
.

The left hand side above is a weighted sum, which is an upper bound on the smallest term of the sum.

Regarding the right hand side, we can simplify it using the fact that 0 <
(

1− 1
ακs

1−
√
β

)
, and therefore:

T∑
t=1

(
1− 1

ακs

1−√β

)T−t

≥ 1.

32



Optimization over Sparse Support-Preserving Sets: Two-Step Projection

Therefore, we obtain:

E min
t∈{1,..,T}

(1− ρ)R(wt) + ρR(vt)−R(w̄) ≤
4α 1

ρκsω
T
(
∥w̄ −w0∥2 + 4

3

)
2η

= 2α2 1

ρ
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
. (31)

We denote by εT the right-hand side above:

εT = 2α2 1

ρ
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
.

We now proceed similarly as in the proof of Theorem 3.7 above. Recall that we have assumed in the Assumptions of
Theorem 4.3, without loss of generality, that R is non-negative, which implies that R (vt) ≥ 0. Plugging this in equation 31
implies that:

E min
t∈[T ]

R (wt) ≤
1

1− ρ
R(w̄) +

εT
1− ρ

≤ (1 + 2ρ)R(w̄) +
εT

1− ρ
. (32)

Plugging the change of variable ε′T = εT
1−ρ into equation 32 above, we obtain that:

E min
t∈[T ]

R (wt) ≤ (1 + 2ρ)R(w̄) + ε′T .

Further, consider an ideal case where w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}. Then R (vt) ≥ R(w̄)
is always true for all t ≥ 1. It follows that the bound in equation 32 yields:

E min
t∈[T ]

{(1− ρ)R (wt) + ρR(w̄)} ≤ E min
t∈[T ]

{(1− ρ)R (wt) + ρR (vt)} ≤ R(w̄) + εT ,

which implies: Emint∈[T ] R (wt) ≤ R(w̄) + εT
1−ρ . In this case, we can simply set ρ = 0.5, and define ε′T = εT

1−ρ = 2εT
similarly as above.. The proof is completed.

F.3. Proof of Corollary 4.4

Proof of Corollary 4.4. We proceed similarly as in the proof of Corollary F.4 in Section F.2.2:

Let ε ∈ R∗
+. Let us find T to ensure that Emint∈{1,..,T}(1− ρ)R(wt) + ρR(vt)−R(w̄) ≤ ε This will be enforced if:

2α2 1

ρ
Lsκsω

T

(
∥w̄ −w0∥2 +

4

3

)
≤ ε

⇐⇒ T log(ω) ≤ log

(
ε

2α2 1
ρLsκs

(
∥w̄ −w0∥2 + 4

3

))

⇐⇒ T ≥ 1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
.

Therefore, let us take:

T :=

⌈
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)⌉
. (33)

We can now derive the #IFO and #HT. First, we have one hard-thresholding operation at each iteration, therefore #HT= T .
Using the fact that 1

log( 1
ω )

= 1
− log(ω) = 1

− log(1− 1

4α 1
ρ
κs

)
≤ 1

1

4α 1
ρ
κs

= 4α 1
ρκs (since by property of the logarithm, for all

x ∈ (−∞,−1) : log(1− x) ≤ −x ), we obtain that #HT = O(κs log
(
1
ε

)
).
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We now turn to computing the #IFO. At each iteration t we have st gradient evaluations, therefore:

#IFO =

T−1∑
t=0

st

≤
T−1∑
t=0

( τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω − 1

≤ T +
τ

1
ω − 1

(
1

ω

)T

= T +
τ

1
ω − 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
τ

1
ω − 1

exp

(
log

(
1

ω

)[
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ 1

])

= 1 +
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ
ω

1
ω − 1

2α2 1
ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

τ

1− ω

2α2 1
ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

= 1 +
1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+ τ

8α3 1
ρ2Lsκ

2
s

(
∥w̄ −w0∥2 + 4

3

)
ε

(b)
= 1 +

1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)

+
B

αLs

1

Ls(α− 1)

8α3 1
ρ2Ls

ε

Ls

νs
κs

(
∥w̄ −w0∥2 +

4

3

)
= 1 +

1

log( 1
ω )

log

(
2α2 1

ρLsκs

(
∥w̄ −w0∥2 + 4

3

)
ε

)
+

8Bα2 1
ρ2κs

(
∥w̄ −w0∥2 + 4

3

)
(α− 1)νs

1

ε
,

where (a) follows from equation 33, and for (b) we recall that τ = ηB
C , η = 1

αLs
and C = Ls(α− 1). Therefore, overall,

the IFO complexity is in O( κs

νsε
).

F.4. Proof of Theorems 4.7 and 4.8

Our proof for Theorem 4.8 is similar to the one for Theorem 4.3, though we needed to refine some results from (de Vazelhes
et al., 2022) to properly express the variance of the ZO gradient estimator and incorporate it into the telescopic sum. Before
proving the main Theorem 4.8, below we provide several intermediary results needed for the proof of Theorem 4.8. Then,
the proof of Theorem 4.3 will be provided in Section F.4.3.

F.4.1. USEFUL LEMMAS

We first recall the following results from (de Vazelhes et al., 2022):

Proposition F.5 (Proposition 1 (i) (de Vazelhes et al., 2022)). Let us consider any support F ⊆ [d] of size s (|F | = s).
For the Z0 gradient estimator gt in Algorithm 3 at wt, with qt random directions, and random supports of size s2, and
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assuming that R is (Ls2 , s2)-RSS’ , we have, with [u]F denoting the hard thresholding of a vector u on F (that is, we set all
coordinates not in F to 0):

∥[Egt]F − [∇R(wt)]F ∥2 ≤ εµµ
2 (34)

with εµ := L2
s2sd

Proof of Proposition F.5. Proof in (de Vazelhes et al., 2022).

Lemma F.6 (Lemma C.2 (de Vazelhes et al., 2022)). For any (Ls2 , s2)-RSS’ function R, using the gradient estimator gt
defined in Algorithm 3 with qt = 1, we have, for any support F ⊆ [d], with |F | = s, and F c := [d] \ F :

E∥[gt]F ∥2 = εF ∥[∇R(wt)]F ∥2 + εF c ∥[∇R(wt)]F c∥2 + εabsµ
2 (35)

with:
(i) εF := 2d

(s2+2)

(
(s−1)(s2−1)

d−1 + 3
)

(ii) εF c := 2d
(s2+2)

(
s(s2−1)
d−1

)
(iii) εabs := 2dL2

sss2

(
(s−1)(s2−1)

d−1 + 1
)

.

Proof of Lemma F.6. Proof in (de Vazelhes et al., 2022).

We now use the above lemma to bound the variance of the zeroth-order gradient estimator gt.

Lemma F.7. The gradient estimator gt defined in Algorithm 3 verifies the following properties for any qt ∈ N∗:

E∥[gt]F − E[gt]F ∥2 ≤
εF
qt
∥∇R(w)∥2 + εabs

qt
µ2 (36)

with εF and εabs defined above in Lemma F.6

Proof of Lemma F.7. If qt = 1, we have:

E∥[gt]F − E[gt]F ∥2
(a)
= E∥[gt]F ∥2 − ∥[Eg]F ∥2

≤ E∥[gt]F ∥2
(35)

≤ εF ∥[∇R(w)]F ∥2 + εF c∥[∇R(w)]F c∥2 + εabsµ
2

(b)

≤ εF ∥∇R(w)∥2 + εabsµ
2,

where (a) follows from the bias-variance formula E∥X − E[X]∥22 = E∥X∥22 − ∥EX∥22 for a multidimensional random
variable X , and (b) follows from the fact that

εF =
2d

s2 + 2

(
s(s2 − 1)

d− 1
+ 3− s2 − 1

d

)
>

2d

s2 + 2

(
s(s2 − 1)

d− 1

)
= εF c

(since s2 ≤ d), and since ∥[∇R(w)]F ∥2 + ∥[∇R(w)]F c∥2 = ∥∇R(w)∥2 (by definition of the Euclidean norm).

Now, if qt ≥ 1, we know that the variance of an average of qt i.i.d. realizations of a random variable of total variance σ2 is
σ2

qt
(and its expected value remains the same by linearity of expectation): indeed, for any random multidimensional random
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variable X , for which we consider the q i.i.d. random variables Xi of same distribution, we have:

E

∥∥∥∥∥ 1

qt

qt∑
i=1

Xi − E

[
1

qt

qt∑
i=1

Xi

]∥∥∥∥∥
2

2

= E

∥∥∥∥∥ 1

qt

qt∑
i=1

(Xi − EXi)

∥∥∥∥∥
2

2

=
1

q2t

(
qt∑
i=1

(Xi − EXi)

)⊤( qt∑
i=1

(Xi − EXi)

)
(a)
=

1

q2t

qt∑
i=1

∥Xi − EXi∥22

=
1

q2t

qt∑
i=1

∥X − EX∥22

=
1

q2t
qt∥X − EX∥22

=
1

qt
∥X − EX∥22,

where (a) follows from the fact that Xi are i.i.d hence for i ̸= j: Cov(Xi, Xj) = E(Xi−EXi)
⊤(Xj−EXj) = 0. Applying

this to the random variable which realizations are [gt]F , this concludes the proof.

F.4.2. PROOF OF THEOREM 4.7

Below we now first present some results (and their proofs) for the convergence of Algorithm 3 without the additional
constraint, which is needed for the proof of Theorem 4.8, and also, as a byproduct, provides, up to our knowledge, the first
convergence guarantee in objective value without system error for a zeroth-order hard-thresholding algorithm.

Proof of Theorem 4.7. Let us denote for simplicity: C1 := εF
qt

, C2 := εabs

qt
, and C3 := εµµ

2. Moreover, let us denote
F := supp(wt) ∪ supp(wt−1) ∪ supp(w̄), where supp denotes the support of a vector, i.e. the set of coordinates of its
non-zero components. Note that therefore we have |F | ≤ 2k + k̄ ≤ 3k. In addition [u]F denotes the thresholding of u to
the support F , that is, the vector u with its components that are not in F set to 0.

The fact that R is (Ls′ , s
′)-RSS’, therefore also (Ls′ , s)-RSS’, implies from the remark in 4.5 that it is also (Ls′ , s)-RSS,

therefore:

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls′

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls′

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls′

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2

+ ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − (1−

√
β)∥wt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2
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− η

2
∥gt−1∥2 +

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls′ − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
(1−

√
β)∥wt − w̄∥2

+

[
Ls′ − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F ∥2

=R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩+ ⟨[∇R(wt−1)− gt−1]F ,wt−1 − w̄⟩

− 1

2η
(1−

√
β)∥wt − w̄∥2 +

[
Ls′ − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F ∥2,

where (a) follows from Lemma 3.2 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2 a

2 + 1
2C b2, for any (a, b) ∈ (Rd)2 with

C > 0 an arbitrary strictly positive constant.

Let us now choose η := 1
Ls′+C : therefore the term

[
Ls′− 1

η+C

2

]
∥wt −wt−1∥2 above is 0. We now take the conditional

expectation (conditioned on wt−1, which is the random variable which realizations are wt−1), on both sides, and from
Lemma F.3 we obtain the inequality below (we slightly abuse notations and denote E[·|wt−1 = wt−1] by E[·|wt−1]):

E[R(wt)|wt−1]

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+ ⟨[∇R(wt−1)− E [gt−1|wt−1]]F ,wt−1 − w̄⟩

+ E
[

1

2C
∥[∇R(wt−1)− gt−1]F ∥2|wt−1

]
(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2

+
1

2G
∥wt−1 − w̄∥2 + 1

2C
E
[
∥∇R(wt−1)− gt−1∥2|wt−1

]
=R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2

+
1

2C
E
[
∥[∇R(wt−1)− gt−1]F ∥2|wt−1

]
(b)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2

+
1

2C

(
2∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2 + 2∥[gt−1 − E[gt−1|wt−1]]F ∥2

)
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(34)+(36)

≤ R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C3 + 2C1∥∇R(wt−1)∥2 + 2C2µ

2
)

(c)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C1

(
2∥∇R(wt−1)−∇R(w̄)∥2 + 2∥∇R(w̄)∥2

)
+ 2C2µ

2 + 2C3

)
(d)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C1

(
2L2

s′∥wt−1 − w̄∥2 + 2∥∇R(w̄)∥2
)
+ 2C2µ

2 + 2C3

)
=R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(e)

≤R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 +

[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
=R(w̄) +

[
1
η − νs

2
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(f)

≤R(w̄) +

[
1
η − νs

2
+

1

2G
+

2εFL
2
s′

τC

]
∥w̄ −wt−1∥2

− 1

2η
(1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
, (37)

where (a) follows from the inequality ⟨a, b⟩ ≤ G
2 a

2 + 1
2Gb2, for any (a, b) ∈ (Rd)2 with G > 0 an arbitrary strictly positive

constant, (b) and (c) follow from the inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2 for any (a, b) ∈ (Rd)2, (d) follows from the
fact that R is (Ls′ , s

′)-RSS’ (Assumption 4.5 with sparsity level s′), therefore it is also (Ls′ , s2)-RSS’, (e) follows from
the RSC condition, and for (f), we recall that C1 = εF

qt
, and we define qt =

⌈
τ
ωt

⌉
, for some ω > 1 and τ > 0 that will be

chosen later in the proof. Recall that we have chosen η = 1
Ls′+C . Let us define α := C

Ls′
+ 1. Then C = (α− 1)Ls′ , and

η = 1
αLs′

. Also recall that κs =
Ls′
νs

.

We will now choose the constant G and C, in order to simplify the inequality above, such that it matches as much as possible
the structure of the previous proofs:

We will seek to rewrite:[ 1
η−νs

2 + 1
2G +

2
εF
τ L2

s′
C

] (
= 1

2η

[
1 + 1

GαLs′
+

4L2
s′

εF
τ

(α−1)αL2
s′
− 1

ακs

])
, into :

1
2η

[
1− 1

α′κs

]
for some α′ > 0 (we will seek α′ ∝ α, with a dimensionless proportionality constant for simplicity).
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Therefore, let us choose G := 4
νs

, which implies:

1

GαLs′
=

1

4ακs
. (38)

And let us choose τ := 16κsεF
(α−1) , which implies:

4L2
s′

εF
τ

(α− 1)αL2
s′

=
1

4ακs
. (39)

Therefore, using equations 38 and 39, we obtain:[
1
η − νs

2
+

1

2G
+

2 εF
τ L2

s′

C

]
=

1

2η

[
1 +

1

GαLs′
+

4L2
s′

εF
τ

(α− 1)αL2
s′
− 1

ακs

]
=

1

2η

[
1 +

1

4ακs
+

1

4ακs
− 1

ακs

]
=

1

2η

[
1− 1

2ακs

]
=

1

2η

[
1− 1

α′κs

]
,

where for simplicity we have denoted α′ = 2α. We can therefore simplify (37) into:

E[R(wt)|wt−1]−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
∥w̄ −wt−1∥2 − (1−

√
β)E

[
∥wt − w̄∥2|wt−1

]
+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
.

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1
[·]): using the law of total expectation

(E[·] = Ewt−1
[E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 (40)

+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
(41)

Let us call A := 2η
(
G
2 C3 +

1
C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))
for simplicity. Similarly as in (Liu & Foygel Barber,

2020), we now take a weighted sum over t = 1, ..., T , to obtain:

T∑
t=1

2η

(
1− 1

α′κs

1−√β

)T−t

E[R(wt)−R(w̄)]

≤
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 +A

]

=

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

=(1−
√
β)

T∑
t=1

(1− 1
α′κs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

α′κs

1−√β

)T−t

E∥wt − w̄∥2


+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A
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(a)
=(1−

√
β)

(1− 1
α′κs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤(1−
√
β)

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

A

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2
εF
qt
∥∇R(w̄)∥2 + εabsµ

2

qt
+ C3

))

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2 + εabsµ

2

C

)

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηC3

(
G

2
+

1

C

)

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2

C

)

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
Cqt

)

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2

C

)

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
C

)
, (42)

where (a) follows from simplifying the telescopic sum. Let us denote for simplicity ζ := 2η(2εF ∥∇R(w̄)∥2)
C = 4ηεF ∥∇R(w̄)∥2

C

and Z := εµ
(
G
2 + 1

C

)
+ εabs

C .

We now choose k and qt as follows: we choose k ≥ 4α′2κ2
sk̄, which implies that:√

β ≤ 1

2α′κs

=⇒
√

β ≤ 1

2α′κs − 1

=⇒ 1−
√
β ≥ 1− 1

2α′κs − 1
=

2α′κs − 2

2α′κs − 1
=

1− 1
α′κs

1− 1
2α′κs

=⇒
(
1− 1

α′κs

1−√β

)
≤ 1− 1

2α′κs
. (43)

We recall that we previously defined qt =
⌈

τ
ωt

⌉
, with τ := 16κsεF

(α−1) . We now set the value of ω, to ω := 1− 1
4α′κs

.

Let us call ν := 1− 1
2α′κs

. Note that we have:
ν ≤ ω. (44)

And that we have the inequality below:

40



Optimization over Sparse Support-Preserving Sets: Two-Step Projection

ν

ω
=

1− 1
2α′κs

1− 1
4α′κs

=
4α′κs − 2

4α′κs − 1
= 1− 1

4α′κs − 1
≤ 1− 1

4α′κs
= ω. (45)

This allows us to simplify equation 42 into:

E

 T∑
t=1

2η

(
1− 1

α′κs

1−√β

)T−t

[R(wt)−R(w̄)]


≤ νT ∥w̄ −w0∥2 +

ζ

τ

T∑
t=1

νT−tωt−1 +

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= νT ∥w̄ −w0∥2 +
ζ

τ

ωT

ω

T∑
t=1

( ν
ω

)T−t

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= νT ∥w̄ −w0∥2 +
ζ

τ

ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

) +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

≤ νT ∥w̄ −w0∥2 +
ζ

τ

ωT

ω

1

1−
(
ν
ω

) + T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(a)

≤ νT ∥w̄ −w0∥2 +
ζ

τ

ωT

ω

1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(b)

≤ νT ∥w̄ −w0∥2 +
ζ

τ

4

3
ωT 1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(c)

≤ ωT ∥w̄ −w0∥2 +
ζ

τ

4

3
ωT 1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

ζ

τ

4

3
ωT 1

1− ω
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

=
ωT

1− ω

(
∥w̄ −w0∥2 +

ζ

τ

4

3

)
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= 4α′κsω
T

(
∥w̄ −w0∥2 +

ζ

τ

4

3

)
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2,

where in the left hand side we have used the linearity of expectation, and where (a) uses equation 45, (b) uses the fact that
1
ω = 1

1− 1
4α′κs

≤ 1
1− 1

4

= 4
3 (since κs ≥ 1 and α′ ≥ 1 (indeed, we have α′ = 2α = 2( C

Ls′
+ 1) with C > 0)), (c) uses

equation 44, and (d) uses the fact that ω < 1 so 1 < 1
1−ω .

Let us now normalize the above inequality:

E

∑T
t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t

R(wt)

∑T
t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t
≤ R(w̄) +

4α′κsω
T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
∑T

t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t
+ Zµ2.

The left hand side above is a weighted sum, which is an upper bound on the smallest term of the sum.
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Regarding the right hand side, we can simplify it using the fact that 0 <

(
1− 1

α′κs

1−
√
β

)
, and therefore:

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

≥ 1.

Therefore, we obtain:

E min
t∈{1,..,T}

R(wt)−R(w̄) ≤
4α′κsω

T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
2η

+ Zµ2

= 4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2.

Which can be simplified into the expression below, using the definition of ŵT :

ER(ŵT )−R(w̄) ≤ 4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2. (46)

To simplify the above result, we recall the assumptions made earlier on: we have chosen τ = 16κsεF
(α−1) , and G = 4

νs
.

Therefore, to sum up, we have:

Z = εµ

(
G

2
+

1

C

)
+

εabs
C

= εµ

(
2

νs
+

1

C

)
+

εabs
C

.

ω = 1− 1

4α′κs
= 1− 1

8ακs

ζ =
4ηεF ∥∇R(w̄)∥2

C

The last inequality implies: ζ
τ =

4ηεF ∥∇R(w̄)∥2
C

16κsLs′
εF
C

= η∥∇R(w̄)∥2

4κsLs′
.

Corollary F.8. Additionally, the number of calls to the function R (#IZO), and the number of hard thresholding operations
(#HT) such that the upper bound in Theorem 4.3 above is smaller than ε + Zµ, with ε > 0 are respectively: #HT =

O(κs log(
1
ε )) and #IZO = O

(
εFκ3

sLs

ε

)
. Note that if s2 = d, we have εF = O(s) = O(k), and therefore we obtain a

query complexity that is dimension independent.

Proof of Corollary F.8. Let ε ∈ R∗
+. Let us find T to ensure that ER(ŵT )−R(w̄) ≤ ε+ Zµ2 This will be enforced if:

4α2Ls′κsω
T

(
∥w̄ −w0∥2 +

4

3

η∥∇R(w̄)∥2
4κsLs′

)
≤ ε

⇐⇒ T log(ω) ≤ log

 ε

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)


⇐⇒ T ≥ 1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 .
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Therefore, let us take:

T :=

 1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 . (47)

We can now derive the #IZO and #HT. First, we have one hard-thresholding operation at each iteration, therefore #HT= T .
Using the fact that 1

log( 1
ω )

= 1
− log(ω) = 1

− log(1− 1
8ακs

)
≤ 1

1
8ακs

= 8ακs (since by property of the logarithm, for all

x ∈ (−∞,−1) : log(1− x) ≤ −x ), and the fact that α = C
Ls′

is independent of κs, we obtain that #HT = O(κs log
(
1
ε

)
).

We now turn to computing the #IZO. At each iteration t we have qt function evaluations, therefore:

#IFO =

T−1∑
t=0

qt

≤
T−1∑
t=0

( τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω − 1

≤ T +
τ

1
ω − 1

(
1

ω

)T

= T +
τ

1
ω − 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε


+

τ
1
ω − 1

exp

log

(
1

ω

) 1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+ 1


= 1 +

1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+
τ
ω

1
ω − 1

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

= 1 +
1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+
τ

1− ω

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

= 1 +
1

log( 1
ω )

log

4α2Ls′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

+ τ
32α3Ls′κ

2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

,

where (a) follows from equation 47.

And we recall that τ := 16κsεF
(α−1) , which implies that:

τ
32α3Ls′κ

2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

2γκsLs′

)
ε

= O
(
εF
ε

(
κ3
sLs′ +

κs

νs

))
.

Therefore, overall, the # IZO complexity is in O
(
εF
ε κ3

sLs′
)
.
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F.4.3. PROOF OF THEOREM 4.8

Using the results above, we can now proceed to the proof of Theorem 4.8.

Proof of Theorem 4.8. Let us denote for simplicity: C1 := εF
qt

, C2 := εabs

qt
, and C3 := εµµ

2. Moreover, let us denote
F := supp(wt) ∪ supp(wt−1) ∪ supp(w̄), where supp denotes the support of a vector, i.e. the set of coordinates of its
non-zero components. Note that therefore we have |F | ≤ 2k+ k̄ ≤ 3k. In addition [u]F denotes the thresholding of u to the
support F , that is, the vector u with its components that are not in F set to 0. Since R is Ls′-RSS’, with s′ = max(s2, s),
R is also s-RSS’ and s2-RSS’, with Lipschitz constant Ls′ .

Denote vt = Hk(wt−1 − η∇R(wt−1)) for any t ∈ N. The fact that R is (Ls′ , s
′)-RSS’, therefore also (Ls′ , s)-RSS’,

implies from the remark in Assumption 4.5 that it is also (Ls′ , s)-RSS, therefore:

R(wt)

≤R(wt−1) + ⟨∇R(wt−1),wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2

=R(wt−1) + ⟨gt−1,wt −wt−1⟩+
Ls

2
∥wt −wt−1∥2 + ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥wt − (wt−1 − ηgt−1)∥2 − η2∥gt−1∥2 − ∥wt −wt−1∥2

]
+

Ls

2
∥wt −wt−1∥2

+ ⟨∇R(wt−1)− gt−1,wt −wt−1⟩

=R(wt−1) +
1

2η
∥wt − (wt−1 − ηgt−1)∥2 −

η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2

+ ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩
(a)

≤R(wt−1) +
1

2η

[
∥w̄ − (wt−1 − ηgt−1)∥2 − ∥wt − w̄∥2 +

√
β∥vt − w̄∥2

]
− η

2
∥gt−1∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 + η2∥gt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

− η

2
∥gt−1∥2 +

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

=R(wt−1) +
1

2η

[
∥w̄ −wt−1∥2 − 2⟨ηgt−1,wt−1 − w̄⟩

]
− 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

+

[
Ls − 1

η

2

]
∥wt −wt−1∥2 + ⟨[∇R(wt−1)− gt−1]F ,wt −wt−1⟩

(b)
=R(wt−1) +

1

2η
∥w̄ −wt−1∥2 − ⟨gt−1,wt−1 − w̄⟩ − 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2

+

[
Ls − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F ∥2

=R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩+ ⟨∇R(wt−1)− gt−1,wt−1 − w̄⟩

− − 1

2η
∥wt − w̄∥2 +

√
β

2η
∥vt − w̄∥2 +

[
Ls′ − 1

η + C

2

]
∥wt −wt−1∥2 +

1

2C
∥[∇R(wt−1)− gt−1]F ∥2,

where (a) follows from Lemma 3.2 and (b) follows from the inequality ⟨a, b⟩ ≤ C
2 a

2 + 1
2C b2, for any (a, b) ∈ (Rd)2 with

C > 0 an arbitrary strictly positive constant.
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Let us now assume that η := 1
Ls′+C : therefore the term

[
Ls′− 1

η+C

2

]
∥wt−wt−1∥2 above is 0. We now take the conditional

expectation (conditioned on wt−1, which is the random variable which realizations are wt−1), on both sides, and from
Lemma F.3 we obtain the inequality below (we slightly abuse notations and denote E[·|wt−1 = wt−1] by E[·|wt−1]):

E[R(wt)|wt−1]

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+ ⟨[∇R(wt−1)− E [gt−1|wt−1]]F ,wt−1 − w̄⟩

+ E
[

1

2C
∥[∇R(wt−1)− gt−1]F ∥2|wt−1

]
(a)

≤R(wt−1) +
1

2η
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2 +

1

2G
∥wt−1 − w̄∥2 + 1

2C
E
[
∥∇R(wt−1)− gt−1∥2|wt−1

]
=R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2

+
1

2C
E
[
∥[∇R(wt−1)− gt−1]F ∥2|wt−1

]
(b)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2

+
1

2C

(
2∥[∇R(wt−1)− E[gt−1|wt−1]]F ∥2 + 2∥[gt−1 − E[gt−1|wt−1]]F ∥2

)
(34)+(36)

≤ R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C3 + 2C1∥∇R(wt−1)∥2 + 2C2µ

2
)

(c)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C1

(
2∥∇R(wt−1)−∇R(w̄)∥2 + 2∥∇R(w̄)∥2

)
+ 2C2µ

2 + 2C3

)
(d)

≤R(wt−1) +

[
1

2η
+

1

2G

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3

+
1

2C

(
2C1

(
2L2

s′∥wt−1 − w̄∥2 + 2∥∇R(w̄)∥2
)
+ 2C2µ

2 + 2C3

)
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=R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 − ⟨∇R(wt−1),wt−1 − w̄⟩

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(e)

≤R(wt−1) +

[
1

2η
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2 +

[
R(w̄)−R(wt−1)−

νs
2
∥wt−1 − w̄∥2

]
− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
=R(w̄) +

[
1
η − νs

2
+

1

2G
+

2C1L
2
s′

C

]
∥w̄ −wt−1∥2

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(f)

≤R(w̄) +

[
1
η − νs

2
+

1

2G
+

2εFL
2
s′

τC

]
∥w̄ −wt−1∥2

− 1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+

G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

)
(48)

Where (a) follows from the inequality ⟨a, b⟩ ≤ G
2 a

2 + 1
2Gb2, for any (a, b) ∈ (Rd)2 with G > 0 an arbitrary strictly positive

constant, (b) and (c) follow from the inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 for any (a, b) ∈ (Rd)2, (d) follows from the fact
that R is (Ls′ , s

′)-RSS’ (Assumption 4.5 with sparsity level s′), therefore it is also (Ls′ , s)-RSS’, (e) follows from the RSC
condition, and for (f), we recall that C1 = εF

qt
, and we define qt =

⌈
τ
ωt

⌉
, for some ω > 1 and τ > 0 that will be chosen later

in the proof.

Recall that we have chosen η := 1
Ls′+C . Let us define α := C

Ls′
+1. Then C = (α− 1)Ls′ , and η = 1

αLs′
. Also recall that

κs =
Ls′
νs

.

We will now choose the constant G and C, in order to simplify the inequality above, such that it matches as much as possible
the structure of the previous proofs:

We will seek to rewrite:[ 1
η−νs

2 + 1
2G +

2
εF
τ L2

s′
C

] (
= 1

2η

[
1 + 1

GαLs′
+

4L2
s′

εF
τ

(α−1)αL2
s′
− 1

ακs

])
, into :

1
2η

[
1− 1

α′κs

]
for some α′ > 0 (we will seek α′ ∝ α, with a dimensionless proportionality constant for simplicity).

Therefore, let us choose G := 4
νs

, which implies:

1

GαLs′
=

1

4ακs
. (49)

And let us choose τ := 16κsεF
(α−1) , which implies:

4L2
s′

εF
τ

(α− 1)αL2
s′

=
1

4ακs
. (50)

Therefore, using equations 49 and 50, we obtain:

[
1
η − νs

2
+

1

2G
+

2 εF
τ L2

s′

C

]
=

1

2η

[
1 +

1

GαLs′
+

4L2
s′

εF
τ

(α− 1)αL2
s′
− 1

ακs

]
=

1

2η

[
1 +

1

4ακs
+

1

4ακs
− 1

ακs

]
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=
1

2η

[
1− 1

2ακs

]
=

1

2η

[
1− 1

α′κs

]
,

where for simplicity we denote α′ = 2α.

We can therefore simplify (48) into:

E[R(wt)|wt−1]−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
∥w̄ −wt−1∥2 −

1

2η
E
[
∥wt − w̄∥2|wt−1

]
+

√
β

2η
E
[
∥vt − w̄∥2|wt−1

]
+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
.

We now take the expectation over wt−1 of the above inequality (i.e. we take Ewt−1
[·]): using the law of total expectation

(E[·] = Ewt−1 [E[·|wt−1]]) we obtain:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 −

1

2η
E
[
∥wt − w̄∥2

]
(51)

+

√
β

2η
E
[
∥vt − w̄∥2

]
(52)

+2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))]
. (53)

Let us call A := 2η
(
G
2 C3 +

1
C

(
2C1∥∇R(w̄)∥2 + C2µ

2 + C3

))
for simplicity.

This gives:

ER(wt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 −

1

2η
E∥wt − w̄∥2 +

√
β

2η
E∥vt − w̄∥2 +A

]
. (54)

Additionally, in view of equation 40 applied at vt instead of wt, (since vt here corresponds to the wt from Section F.2.2, i.e.
vt is the hard-thresholding of an iterate after a gradient step), we know that:

ER(vt)−R(w̄) ≤ 1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 +A

]
.

We now take a convex combination similarly as in the case without additional constraint (section E.2), for some ρ ∈ (0, 1).

E(1− ρ)R(wt) + ρR(vt)

≤R(w̄) +
1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

+
(
(1− ρ)

√
β − (1−

√
β)ρ
)
E∥vt − w̄∥2 +A

]
=R(w̄) +

1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥vt − w̄∥2 +A

]
(b)

≤R(w̄) +
1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1− ρ)E∥wt − w̄∥2

−
(
ρ−

√
β
)
E∥wt − w̄∥2 +A

]
=R(w̄) +

1

2η

[(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 +A

]
.
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where in (b), we have assumed that
√
β ≤ ρ (later we will verify that our choice of k ensures such a condition), and have

used the fact that projection onto a convex set is non-expansive (which implies that ∥vt − w̄∥2 ≥ ∥wt − w̄∥2).

Similarly as in (Liu & Foygel Barber, 2020), we now take a weighted sum over t = 1, ..., T , to obtain:

T∑
t=1

2η

(
1− 1

α′κs

1−√β

)T−t

E[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2 +A

]

=

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t [(
1− 1

α′κs

)
E∥w̄ −wt−1∥2 − (1−

√
β)E∥wt − w̄∥2

]

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

=(1−
√
β)

T∑
t=1

(1− 1
α′κs

1−√β

)T−t+1

E∥w̄ −wt−1∥2 −
(
1− 1

α′κs

1−√β

)T−t

E∥wt − w̄∥2


+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

(a)
=(1−

√
β)

(1− 1
α′κs

1−√β

)T

∥w̄ −w0∥2 − E∥wT − w̄∥2
+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤(1−
√
β)

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

A

≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

A

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2C1∥∇R(w̄)∥2

+C2µ
2 + C3

))
=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t

2η

(
G

2
C3 +

1

C

(
2
εF
qt
∥∇R(w̄)∥2

+
εabsµ

2

qt
+ C3

))

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2 + εabsµ

2

C

)

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηC3

(
G

2
+

1

C

)

=

(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2

C

)

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
Cqt

)
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≤
(
1− 1

α′κs

1−√β

)T

∥w̄ −w0∥2 +
T∑

t=1

(
1− 1

α′κs

1−√β

)T−t
2η

qt

(
2εF ∥∇R(w̄)∥2

C

)

+

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηµ2

(
εµ

(
G

2
+

1

C

)
+

εabs
C

)
, (55)

where (a) follows from simplifying the telescopic sum. Let us denote for simplicity ζ := 2η(2εF ∥∇R(w̄)∥2)
C = 4ηεF ∥∇R(w̄)∥2

C

and Z := εµ
(
G
2 + 1

C

)
+ εabs

C .

We now choose k and st as follows: we choose k ≥ 4α′2

ρ κ2
sk̄, which implies that:

√
β ≤ 1

2α′

ρ κs

=⇒
√
β ≤ 1

2α′

ρ κs − 1

=⇒ 1−
√
β ≥ 1− 1

2α′

ρ κs − 1
=

2α′

ρ κs − 2

2α′

ρ κs − 1
=

1− 1
α′
ρ κs

1− 1

2α′
ρ κs

=⇒

1− 1
α′
ρ κs

1−√β

 ≤ 1− 1

2α′

ρ κs

. (56)

We recall that we previously defined qt =
⌈

τ
ωt

⌉
, with τ = 16κs

εF
(α−1) . We now set the value of ω, to ω := 1− 1

α′
ρ κs

.

Let us call ν := 1− 1

2α′
ρ κs

. Note that we have:

ν ≤ ω. (57)

And that we have the inequality below:

ν

ω
=

1− 1

2α′
ρ κs

1− 1

4α′
ρ κs

=
4α′

ρ κs − 2

4α′

ρ κs − 1
= 1− 1

4α′

ρ κs − 1
≤ 1− 1

4α′

ρ κs

= ω. (58)

This allows us to simplify equation 55 into:

E
T∑

t=1

2η

(
1− 1

α′κs

1−√β

)T−t

[(1− ρ)R(wt) + ρR(vt)−R(w̄)]

≤ νT ∥w̄ −w0∥2 +
T∑

t=1

νT−tωt−1 +
ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= νT ∥w̄ −w0∥2 +
ωT

ω

T∑
t=1

( ν
ω

)T−t

+
ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= νT ∥w̄ −w0∥2 +
ωT

ω

1−
(
ν
ω

)T
1−

(
ν
ω

) +
ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

≤ νT ∥w̄ −w0∥2 +
ωT

ω

1

1−
(
ν
ω

) + ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2
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(a)

≤ νT ∥w̄ −w0∥2 +
ωT

ω

1

1− ω
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(b)

≤ νT ∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(c)

≤ ωT ∥w̄ −w0∥2 +
4

3
ωT 1

1− ω
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

(d)

≤ ωT

1− ω
∥w̄ −w0∥2 +

4

3
ωT 1

1− ω
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

=
ωT

1− ω

(
∥w̄ −w0∥2 +

4

3

)
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2

= 4
α′

ρ
κsω

T

(
∥w̄ −w0∥2 +

4

3

)
+

ζ

τ

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

2ηZµ2,

where in the left hand side we have used the linearity of expectation, and where (a) uses equation 58, (b) uses the fact
that 1

ω = 1
1− 1

4α′
ρ

κs

≤ 1
1− 1

4

= 4
3 (since κs ≥ 1 and α′ ≥ 1 (indeed, we have α′ = 2α = 2( C

Ls′
+ 1) with C > 0), so

consequently α′

ρ ≥ 1), (c) uses equation 57, and (d) uses the fact that ω < 1 so 1 < 1
1−ω .

Let us now normalize the above inequality:

E

∑T
t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t

[(1− ρ)R(wt) + ρR(vt)]

∑T
t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t
≤ R(w̄) +

4α′

ρ κsω
T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
∑T

t=1 2η

(
1− 1

α′κs

1−
√
β

)T−t
+ Zµ2.

The left hand side above is a weighted sum, which is an upper bound on the smallest term of the sum.

Regarding the right hand side, we can simplify it using the fact that 0 <

(
1− 1

α′κs

1−
√
β

)
, and therefore:

T∑
t=1

(
1− 1

α′κs

1−√β

)T−t

≥ 1.

Therefore, we obtain:

E min
t∈{1,..,T}

[(1− ρ)R(wt) + ρR(vt)−R(w̄)] ≤
4α′

ρ κsω
T
(
∥w̄ −w0∥2 + 4

3
ζ
τ

)
2η

+ Zµ2

= 4
α2

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2,

which can be simplified into the expression below, using the definition of ŵT :

E[min
t∈[T ]

(1− ρ)R(wt) + ρR(vt)−R(w̄)] ≤ 4
α2

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

ζ

τ

)
+ Zµ2. (59)

To simplify the above result, we recall the assumptions made earlier on: we have chosen
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τ = 16κsεF
(α−1) , and G = 4

νs
.

Therefore, to sum up, we have:

Z = εµ

(
G

2
+

1

C

)
+

εabs
C

= εµ

(
2

νs
+

1

C

)
+

εabs
C

ω = 1− 1

4α′

ρ κs

= 1− 1

8α
ρκs

ζ =
4ηεF ∥∇R(w̄)∥2

C

The last inequality implies: ζ
τ =

4ηεF ∥∇R(w̄)∥2
C

16κsLs′
εF
C

= η∥∇R(w̄)∥2

4κsLs′
.

Let us denote by εT the right-hand side term from equation 59:

εT = 4
α2

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

η∥∇R(w̄)∥2
4κsLs′

)
+ Zµ2.

We now proceed similarly as in the proof of Theorem 4.3 above. Recall that we have assumed in the Assumptions of
Theorem 4.8, without loss of generality, that R is non-negative, which implies that R (vt) ≥ 0. Plugging this in equation 59
implies that:

E min
t∈[T ]

R (wt) ≤
1

1− ρ
R(w̄) +

εT
1− ρ

+
Z

(1− ρ)
µ2 ≤ (1 + 2ρ)R(w̄) +

εT
1− ρ

+
Z

1− ρ
µ2. (60)

Plugging the change of variable ε′T = εT
1−ρ into equation 60 above, and redefining Z into Z := 1

1−ρ

(
εµ

(
2
νs

+ 1
C

)
+ εabs

C

)
,

we obtain that:
E min

t∈[T ]
R (wt) ≤ (1 + 2ρ)R(w̄) + ε′T + Zµ2.

Further, consider an ideal case where w̄ is a global minimizer of R over B0(k) := {w : ∥w∥0 ≤ k}. Then R (vt) ≥ R(w̄)
is always true for all t ≥ 1. It follows that the bound in equation 59 yields:

E min
t∈[T ]

{(1− ρ)R (wt) + ρR(w̄)} ≤ E min
t∈[T ]

{(1− ρ)R (wt) + ρR (vt)} ≤ R(w̄) + εT ,

which implies: Emint∈[T ] R (wt) ≤ R(w̄) + εT
1−ρ . In this case, we can simply set ρ = 0.5, and define ε′T = εT

1−ρ = 2εT
similarly as above. The proof is completed.

F.5. Proof of Corollary 4.9

Proof of Corollary 4.9. Let ε ∈ R∗
+. Let us find T to ensure that Emint∈{1,..,T}(1−ρ)R(wt)+ρR(vt)−R(w̄) ≤ ε+Zµ2

This will be enforced if:

4α2 1

ρ
Ls′κsω

T

(
∥w̄ −w0∥2 +

4

3

η∥∇R(w̄)∥2
4κsLs′

)
≤ ε

⇐⇒ T log(ω) ≤ log

 ε

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)


⇐⇒ T ≥ 1

log( 1
ω )

log

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 .
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Therefore, let us take:

T :=

 1

log( 1
ω )

log

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

 . (61)

We can now derive the #IZO and #HT. First, we have one hard-thresholding operation at each iteration, therefore #HT= T .
Using the fact that 1

log( 1
ω )

= 1
− log(ω) = 1

− log(1− 1

8α 1
ρ
κs

)
≤ 1

1

8α 1
ρ
κs

= 8α 1
ρκs (since by property of the logarithm, for all

x ∈ (−∞,−1) : log(1− x) ≤ −x ), and the fact that α = C
Ls′

is independent of κs, we obtain that #HT = O(κs log
(
1
ε

)
).

We now turn to computing the #IZO. At each iteration t we have qt function evaluations, therefore:

#IZO =

T−1∑
t=0

qt

≤
T−1∑
t=0

( τ

ωt
+ 1
)

= T + τ

(
1
ω

)T − 1
1
ω − 1

≤ T +
τ

1
ω − 1

(
1

ω

)T

= T +
τ

1
ω − 1

exp

(
T log

(
1

ω

))
(a)

≤ 1 +
1

log( 1
ω )

log

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε


+

τ
1
ω − 1

exp

log

(
1

ω

) 1

log( 1
ω )

log

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε


+1])

= 1 +
1

log( 1
ω )

log

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε


+

τ
ω

1
ω − 1

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

= 1 +
1

log( 1
ω )

log

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε


+

τ

1− ω

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

= 1 +
1

log( 1
ω )

log

4α2 1
ρLs′κs

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε


+ τ

32α3 1
ρ2Ls′κ

2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

4κsLs′

)
ε

,

where (a) follows from equation 61.
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And we recall that τ = 16κs
εF

(α−1) , which implies that:

τ
32α3 1

ρ2Ls′κ
2
s

(
∥w̄ −w0∥2 + 4

3
η∥∇R(w̄)∥2

2γκsLs′

)
ε

= O
(
εF
ε

(
κ3
sLs′ +

κs

νs

))
.

Therefore, overall, the IZO (query complexity) is in O
(
εF
ε κ3

sLs′
)
. The proof is completed.

G. Differences Between Two-Step Projection and Euclidean Projection
In this section, we describe the differences between the two-step projection and the Euclidean projection onto the mixed
constraints Γ ∩ B0(k). One can encounter several possible cases:

• Case (i): the two-step projection (2SP) and the Euclidean projection onto Γ∩B0(k) are identical (see e.g. Remark 3.1):
in that case, the contribution of our paper are on the theoretical side: Theorems 3.7, 4.3, and 4.8 give global convergence
guarantee which therefore in this case apply to the usual (non-convex) projected gradient descent algorithm with
Euclidean projection.

• Case (ii): the 2SP and the Euclidean projection onto the mixed constraints are different: this case can be declined into
several sub-cases as described below:

– Case (a): the Euclidean projection onto the mixed constraint Γ ∩ B0(k) is unknown: in that case, the 2SP can
allow to fill such gap, since the 2SP only requires the knowledge of the projection onto Γ, which is often known
and easy to do.

– Case (b): the Euclidean projection onto the mixed constraint Γ ∩ B0(k) is known, but computationally expensive:
in that case, the 2SP can provide a simpler and faster alternative to the Euclidean projection, while still enjoying
some convergence guarantees as shown in this paper.

– Case (c): the Euclidean projection onto the mixed constraint Γ ∩ B0(k) is known and is efficient enough (e.g.
when Γ belongs to the set of positive symmetric sets such as in (Lu, 2015)). In such cases, it is unclear whether
the 2SP can improve upon Euclidean projection since, at the iteration level, using the Euclidean projection is
optimal (indeed, a (Euclidean) projected gradient descent step minimizes a quadratic upper bound on the objective
value under constraints (derived from the smoothness of R)), and the 2SP is therefore suboptimal in that sense (at
the iteration level).

H. Experiments
In this section, we provide some experiments to validate experimentally our theoretical results. Our experiments take 2h30 to
run in total on a MacBook Pro with a 2.6GHz 6-core Intel Core i7 and 16GB of memory. Before describing our experiments,
we provide a short discussion about the settings and algorithms that we will illustrate. For constraints Γ for which the
Euclidean projection onto B0(k) ∩ Γ has a closed form equal to the 2SP, our algorithm is identical to a vanilla non-convex
projected gradient descent baseline (see Remark 3.1). In such case, our contribution in this paper is on the theoretical side,
by providing some global guarantees on the optimization, instead of the local guarantees from existing work (cf. Table 1).
Additionally, there are case in which there exists a closed form for projection onto Γ ∩ B0(k), different from the 2SP (e.g.
when Γ = Rd

+, cf. (Lu, 2015)). Although our framework allows us to get approximate global convergence results when
using the 2SP, still, at the iteration level, a gradient step followed by Euclidean projection (not 2SP) is optimal, since it
minimizes a constrained quadratic upper bound on R. Therefore, we may not expect much improvement of the 2SP over the
Euclidean projection in such case, except on the computational side. With this in mind, we provide below the outline of our
experiments:

• In Section H.1, we illustrate on a synthetic example the trade-off between sparsity and optimality that is introduced by
the extra constraint Γ, and that is balanced by the parameter ρ.

• In Section H.2, we consider a portfolio index tracking problem where the goal is to illustrate a real-life application of
our methods.
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• In section H.3, we consider a multi-class logistic regression on a real life dataset, to illustrate in more details in
particular the stochastic and the zeroth-order versions of our method.

For reproducibility, our code is available at https://github.com/wdevazelhes/2SP_icml2025.

H.1. Synthetic Experiments: Illustrating the Sparsity/Optimality Trade-Off

In the section below, we provide a synthetic experiment to illustrate our Theorem 3.7, i.e. the trade-off between sparsity and
optimality that is introduced by the extra constraint Γ, and that is balanced by ρ ∈ (0, 0.5]. We consider the synthetic linear
regression example from (Axiotis & Sviridenko, 2022) (Section E), with the risk below:

R(w) :=
1

n
∥Xw − y∥22 ,

and where X is diagonal with:

Xii =


1 if i ∈ I1√
κ if i ∈ I2

1 if i ∈ I3 ,

where I1 = [s], I2 = [s+ 1, s(κ+ 1)], I3 = [s(κ+ 1) + 1, s(κ2 + κ+ 1)] for some s ≥ 1 and κ ≥ 1 (we choose s = 50
and κ = 2, which results in having d = 350), n denotes the number of rows of X , and y is defined as

yi =


κ
√
1− 4δ if i ∈ I1√

κ
√
1− 2δ if i ∈ I2

1 if i ∈ I3

for some small δ > 0 used for tie-breaking (we set it to 1e − 4). We chose such an example as it is used by (Axiotis &
Sviridenko, 2022) to prove a lower bound on the fundamental trade-off between sparsity and optimality proper to IHT: they
use it to show that the relaxation of the sparsity k, of the order k = Ω(κ2k̄) (see also Table 1) is in fact unavoidable for
IHT-type algorithms.

Case without Extra Constraints. First, we illustrate our Theorem 3.4 which considers vanilla IHT, without extra
constraints. In Figure 2, on the one hand, we plot in blue, for every k ∈ [d], the value of R(ŵk) where ŵk is the result of
running vanilla IHT with sparsity k up to convergence. Then, on the other hand, we go through every value of k̄ ∈ [d], and
for each of them, we plot a point (K(k̄), R(w̄k̄)), where K(k̄) denotes the value of k required in our Theorem 3.4, i.e.:
K(k̄) := 4κ2k̄, and w̄k̄ := minw∈Rd:∥w∥0≤k̄ R(w). Therefore, each of such point R(w̄k̄) constitutes an upper bound on
the value of R(ŵK(k̄)), as we can indeed observe on Figure 2.

Figure 2. Illustration of Theorem 3.4 (i.e. Γ = Rd).
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Case with Extra Constraints. We now illustrate the influence of the extra constraint Γ on the problem. We consider for
Γ an ℓ∞ norm constraint of radius λ > 0, that is: Γ = {w ∈ Rd : ∀i ∈ [d], |wi| ≤ λ}. In this new setting, we also go
through every value of k̄ ∈ [d], but this time, each of those values actually defines a curve parameterized by ρ, according to
our Theorem 3.7: for each k̄ we plot the parametric curve (K(k̄, ρ), (1 + 2ρ)R(w̄k̄)), where, similarly as above, K(k̄, ρ)

denotes the required value of k according to Theorem 3.7 (i.e., K(k̄, ρ) = 4(1−ρ)2k̄κ2

ρ2 ), and w̄k̄ := minw∈Rd:∥w∥0≤k̄ R(w),
and where ρ ranges in (0, 0.5]. We present the results for several values of λ in Figure 7 below. Note that a priori, the curves
are allowed to cross, i.e. for a given k on the x-axis, one could have a point from a curve of small k̄ (i.e. lighter shade of red)
which could potentially also belong to a curve of larger k̄ (let us denote it k̄′) (darker shade of red), which would necessarily
have a larger ρ (let us denote it ρ′), but for which the overall (1 + 2ρ′)R(w̄k̄′) could be equal to (1 + 2ρ)R(w̄k̄) (since the
problem will be less constrained with k̄′ than with k). However, interestingly, this is not the case here due to the simplicity
of the structure of the example. We can also observe that similarly as in the case where Γ = Rd, the bound is a bit tighter in
the small k regime (i.e. when k ∈ [50, 100]).

Figure 3. λ = 0.1 Figure 4. λ = 0.5

Figure 5. λ = 1 Figure 6. λ = 2

Figure 7. Illustration of Theorem 3.4 (with Γ an ℓ∞ ball of radius λ).
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H.2. Real Data Experiment: Portfolio Index Tracking

We now consider the following index tracking problem, originally presented in (Takeda et al., 2013), and used as well in (Lu,
2015; Beck & Hallak, 2016). It is also similar to the portfolio optimization problem presented in (Kyrillidis et al., 2013).
We seek to reproduce the performance of an index fund (such as S&P500), by investing only in a few key k assets, in order
to limit transaction costs. The general problem can be formulated as a linear regression problem:

min
w∈B0(k)∩Γ

∥Aw − y∥2 (62)

where w represents the amount invested in each asset. For each i ∈ [n] denoting a timestep , the i-th row of A denotes the
returns of the d stocks at timestep i, and yi the return of the index fund. In our scenario, we seek to limit to a value D > 0 the
amount of transactions in each of c activity sector (group) of the portfolio (e.g. Industrials, Healthcare, etc.), denoted as Gi

for i ∈ [c]. We ensure such constraint through an ℓ1 norm constraint on each group: Γ = {w ∈ Rd : ∀i ∈ [c], ∥wGi
∥1 ≤ D},

where wGi
is the restriction of w to group Gi (i.e. for j ∈ [d], wGi j = wj if j ∈ Gi and 0 otherwise). In our case, y

denotes the daily returns of a given portfolio index (e.g. S&P500) for a given time period (e.g. a given year), and A the
returns of the corresponding d assets (over c sectors) of the index during such period.

Baselines. Up to our knowledge, there is no efficient closed form for the Euclidean projection onto B0(k) ∩ Γ (although
such projection could be done by enumerating all sparse supports sets and computing the restricted projection onto those
sets, such method would have exponential complexity), but the two-step projection can easily be done by projecting onto
the ℓ1 ball for each sector independently. We compare our algorithm (FG-HT-2SP) to two naive baselines: (a) the first
one. called "PGD(Γ) + finalΠB0

", consists in only ensuring the constraints in Γ, followed at the end of training by a
simple hard-thresholding step to keep the k largest components of w in absolute value, and (b) the second one, called
"PGD(B0) + finalΠΓ", consists in running vanilla IHT, followed at the end of training by a simple projection onto Γ to keep
w in Γ ∩ B0. We learn the weights of the portfolio on 80% of the considered period, and evaluate the out of sample (test set)
performance on the remaining 20% (shaded area in the figure).

Datasets. We compare our algorithms on three portfolio indices datasets:

• S&P500: We take k = 15 and D = 50. y denotes the daily returns from January 1, 2021, to December 31, 2022, and
A denotes the returns of the corresponding d = 497 assets (over c = 11 sectors). We plot our results in Figure 8.

• HSI: We take k = 15 and D = 1000. y denotes the daily returns from January 1, 2021, to December 31, 2022, and A
denotes the returns of the corresponding d = 72 assets (over c = 4 sectors). We plot our results in Figure 9.

• CSI300: We take k = 15 and D = 100. y denotes the daily returns from March 1, 2021 (due to missing values in early
2021), to December 31, 2022, and A denotes the returns of the corresponding d = 291 assets (over c = 10 sectors).
We plot our results in Figure 10.

The data for those three indices is scrapped from the web using the beautifulsoup1 library to gather information about
the index, and the yfinance2 library to scrap the returns of such stocks during the considered time period. We provide in
Table 2 below the respective dimensions of the train-sets used for the experiments (which constitutes, as we recall, 80% of
the total dataset).

INDEX n d
S&P500 402 497
CSI300 353 291
HSI 394 72

Table 2. Number of samples (n) and dimension (d) of the training sets for the index tracking experiment

1https://pypi.org/project/beautifulsoup4/
2https://github.com/ranaroussi/yfinance
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Results. As we can observe on Figure 11, overall, the true index (blue curve) is more successfully tracked by our method
(FG-HT-2SP, green curve), on the train-set of S&P500 and CSI300 and on the test-set of HSI and CSI300. Additionally, we
have observed that for S&P500, our algorithm solution non-zero weights spans 9 of the 11 sectors for the S&P500 index, 7
sectors out of 10 for the CSI300 index, and 3 of the 4 sectors the one for the HSI index. Therefore, such portfolios are well
diversified, as successfully enforced by our constraint.

Figure 8. S&P500 Figure 9. HSI

Figure 10. CSI300

Figure 11. Index tracking with sector constraints for various indices

On the Verification of Assumptions 2.1 to 2.3: Note that such index tracking experiments verify Assumptions 2.1, 2.2
and 2.3:

• Assumption 2.1 is verified since the cost function is quadratic, with a design matrix of size n > d (except in the case
of S&P500). As can be expected with such matrices in general, the Hessian H = 2A⊤A is positive-definite (we have
indeed verified in our code that it is). Therefore the RSC constant is bounded below by λmin where λmin is the smallest
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eigenvalue of 2A⊤A. Note that for S&P500, strong convexity is not verified since d > n: however, since we take
k = 15, with high probability (i.e. unless we can find s = 2k = 30 columns of A that are exactly linearly dependent),
RSC should be verified.

• Assumption 2.2 and Assumption 4.5 are both verified since the cost function is quadratic, therefore the (strong) RSS
constant is bounded above by 2∥A∥2s, where ∥ · ∥s denotes the spectral norm.

• Definition 2.3 is verified since projection onto Γ can be done group-wise, and for each group the projection is onto
an ℓ1 ball, which is a convex symmetric set (which is support-preserving from Remark 2.4), therefore, overall, Γ is
support-preserving).

H.3. Real Data Experiment: Multiclass Logistic Regression

We now consider the multiclass logistic regression problem with class group-wise ℓ2 norm constraint as follows. We

have Ri(w) =
∑c

j=1

[
λ
c ∥wj∥22 − 1 {yi = j} log exp(x⊤

i wj)∑c
l=1 exp(x⊤

i wl)

]
, where yi is the target output of xi, c is the number of

classes, and wj is the weight vector specific to class j. In addition to the sparsity constraint B0(k), we enforce the following
additional constraint Γ = {w ∈ Rd : ∀j ∈ [c] : ∥wj∥2 ≤ D}, for some constant D ∈ R+, where d = p × c, with p the
number of features of the samples xi. More precisely, in such multiclass logistic regression, we seek to ensure an extra
regularization not only on the whole global weight vector w (with the used squared ℓ2 penalty), but also on each weight
vector related to each class (through Γ), in order to prevent a potential class-wise overfitting.

Up to our knowledge, there is no known closed form for the Euclidean projection onto such Γ ∩ B0(k). However, the
two-step projection (2SP) can be done easily: once the first projection is done (projection onto B0(k), i.e. hard-thresholding)
and the sparse support S is identified as per Section 3.1, the projection onto Γ restricted to S can be easily done since Γ is
class-wise decomposable, and therefore it suffices to project, for each j ∈ [c], each wj onto the ℓ2 ball of radius D.

We have the smoothness constant L as below (see (Böhning, 1992) for a derivation):

L = σmax

(
1

2n

(
Ic×c −

1

c
1c1

⊤
c

)
⊗X⊤X + 2λId×d

)
(63)

Where ⊗ denotes the Kronecker product, σmax the largest singular value of a matrix, Im×m the identity matrix of size
m×m for some m, and 1c the vector [1, 1, .., 1]⊤ ∈ Rc .

We consider the dna dataset from the LibSVM dataset repository (Chang & Lin, 2011), and we choose D = 0.5, λ = 10.
For the stochastic case we take B = 1e5, and for the stochastic and ZO case we take α = 2. Note that in the stochastic case,
if the growing batch-size required by Theorem 4.3 becomes larger than n, we keep it fixed to n (i.e. in such case we take
the whole dataset at each step). In the zeroth-order case, we take µ = 1e− 6. We set set all other hyperparameters as per
Theorems 3.7, 4.3 and 4.8. In Figures 15, 19, 23 and 27, we plot the number of calls to a gradient ∇Ri (IFO: iterative first
order oracle), and number of hard-thresholding operations (NHT), for various values of k and D (for the zeroth-order case,
we plot the IZO (number of calls to the function R) instead of the IFO). We can observe that HSG-HT-2SP allows a smaller
IFO than FG-HT-2SP in early iterations, since it does not need to compute a full gradient at each iteration.

In addition, to illustrate the theoretical improvement of our results on zeroth-order, even in the case where there is no
additional constraint, we compare in Figures 30, 33 and 36 our algorithm HZO-HT with ZOHT (de Vazelhes et al., 2022),
choosing for both algorithm an initial number of random direction as prescribed by our Theorem 4.8, and choosing, for
the learning rate, in our case the one prescribed by Theorem 4.8, and for ZOHT, the one prescribed by Theorem 1 from
(de Vazelhes et al., 2022) (and in both cases we fix s = 3k as per Theorem 4.8): we can see that, in addition to being able to
obtain a convergence in risk without system error, contrary to ZOHT (cf. Table 1), our Theorem 4.8 also prescribes a better
(larger) learning rate (i.e. less conservative), leading to faster convergence.
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Figure 12. #IFO Figure 13. #IZO Figure 14. #NHT

Figure 15. Multiclass Logistic Regression with 2SP, k = 50, D = 0.5

Figure 16. #IFO Figure 17. #IZO Figure 18. #NHT

Figure 19. Multiclass Logistic Regression with 2SP, k = 150, D = 0.5

Figure 20. #IFO Figure 21. #IZO Figure 22. #NHT

Figure 23. Multiclass Logistic Regression with 2SP, k = 50, D = 0.01
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Figure 24. #IFO Figure 25. #IZO Figure 26. #NHT

Figure 27. Multiclass Logistic Regression with 2SP, k = 150, D = 0.01

Figure 28. #IZO Figure 29. #NHT

Figure 30. Multiclass Logistic Regression: HZO-HT vs. ZOHT, k = 50

On the Verification of Assumptions 2.1 to 2.3: Note that such logistic regression experiments verify Assumptions 2.1,
2.2, 4.5 and 2.3:

• Assumption 2.1 is verified thanks to the added squared ℓ2 regularization, which makes the problem strongly convex
and hence also restricted strongly convex.

• Assumption 2.2 and Assumption 4.5 are both verified since the problem is smooth with a constant L as described
above in equation 63, and therefore such constant is also a valid (strong) restricted-smoothness constant.

• Definition 2.3 is verified since, since, similarly as in the index tracking experiments from Section H.2, projection onto
Γ can be done group-wise, and for each group the projection is onto an ℓ1 ball, which is a convex sign-free set (which
is support-preserving from Remark 2.4), therefore, overall, Γ is support-preserving.
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Figure 31. #IZO Figure 32. #NHT

Figure 33. Multiclass Logistic Regression: HZO-HT vs. ZOHT, k = 100

Figure 34. #IZO Figure 35. #NHT

Figure 36. Multiclass Logistic Regression: HZO-HT vs. ZOHT, k = 150
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