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Abstract

Increasing demand for Large Language Models (LLMs) querying services imposes
substantial deployment and computation costs. LLM routing offers a cost-efficient
solution by directing queries to the optimal LLM based on model and query
features. However, existing works focus on offline scenarios and struggle to
adapt to online settings with high query volume and constrained token budgets.
In this work, we introduce PORT, the first training-free algorithm designed for
online routing scenarios. Our algorithm leverages approximate nearest neighbor
search to efficiently estimate query features and performs a one-time optimization
over a small set of initial queries to learn a routing strategy that guides future
routing. We provide theoretical guarantees demonstrating that our algorithm
achieves a competitive ratio of 1 — o(1) under natural assumptions, which is
further validated by extensive experiments across 3 benchmark datasets and 8
baselines, showing an average improvement of 3.55x in overall performance,
1.85x in cost efficiency, and nearly 4.25x in throughput. Our code is available at
https://github.com/fzwark/PORT.

1 Introduction

The ability of Large Language Models (LLMs) to effectively interpret diverse domain knowledge has
rapidly transformed the landscape of automated information processing [[13} 25| 55]]. However, the
growing volume of user queries imposes substantial deployment costs on LLM-serving providers [10]].
For instance, OpenAl reportedly handles up to 12k user queries per second at peak load [40l], while
its first Azure supercomputer hosted only around 10k GPUs [32]], pushing it to rush in more resources
to prevent cost spikes [49]]. As a result, improving the overall quality of query serving, particularly
under limited token budget constraints, has become a critical priority for LLM-serving systems.

One straightforward approach is to route queries with different features to different LLMs while
balancing cost and performance [28,[19,134]. This idea is based on the observation that different LLMs
excel in different domains and have varying cost [34], perfectly aligning with the goal of cost-efficient
serving. Existing works typically rely on the model-based predictors [34} 41] or computationally
complex calculations (e.g., KNN, similarity-weighted ranking) [34} [19] to predict the optimal LLM
to route queries to. While effective in offline scenarios, these methods face significant limitations
in practical online routing. They are computationally demanding and introduce additional latency,
making them impractical for high-volume, low-latency online environments [34} [19]. They do
not easily generalize to dynamic LLM deployments, where any configuration change incurs costly
retraining overhead [41} [11,47]]. They are also fundamentally limited in achieving effective online
routing under constrained token budgets, as they operate under offline assumptions without accounting
for the sequential and uncertain nature of real-world query arrivals [3538].

Our work instead proposes PORT, the first theoretically grounded online algorithm tailored for high-
volume query routing under limited token budget constraints. For each query, we employ Approximate
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Nearest Neighbor Search (ANNS) [21,[29] to efficiently estimate its features (performance and cost)
for each deployed LLM using a historical dataset. The routing problem (see Appendix [A] for the
formal setup) can be naturally formalized as Mixed-Integer Linear Programming (MILP) that aims to
maximize overall performance under token budget constraints. However, solving the global MILP is
infeasible in online settings where queries do not arrive simultaneously.

To achieve efficient and near-optimal routing in the realistic sequential setting, we leverage a key ob-
servation by looking at the dual problem: At optimality, the dual objective can be fully parameterized
by a single dual variable, which directly yields the optimal routing rule. This further motivates us to
treat this dual variable as a set of learnable weights over LLMs, with the parameterized dual objective
serving as the optimization target. Instead of solving the infeasible global dual problem, we adapt it
to a partial optimization over a small set of initial observed queries to estimate these weights, which
are then applied to guide the routing decisions for subsequent queries. To improve the generalizability
of learned weights to future queries, we adopt a random routing strategy for the observed queries and
introduce a control parameter into the MILP objective that preserves the optimal solution structure
while mitigating performance deviation on unseen queries.

Regarding efficiency, PORT only performs a one-time optimization over a small sample set (i.e.,
observed queries, typically ~ 250), making it significantly more efficient than existing methods and
well-suited for online routing scenarios. In terms of effectiveness, our theoretical analysis guarantees
that the proposed algorithm achieves a competitive ratio of 1 — o(1) under mild assumptions. This is
further supported by extensive experiments, where our method outperforms all 8 baseline methods
across diverse routing settings and three benchmark datasets, achieving an average improvement of
3.55x in performance, 1.85x in cost efficiency, and nearly 4.25 x in throughput.

To summarize, our main contributions are: (1) We propose the first training-free online routing
algorithm for LLM serving under token budgets. (2) It estimates query features via ANNS, ensuring
computational scalability. (3) Operating directly on historical data, it incurs negligible overhead
and scales across dynamic deployments. (4) It requires only a one-time lightweight optimization,
demonstrating high efficiency. (5) We provide theoretical guarantees with a competitive ratio of
1 — o(1) under mild assumptions. (6) Extensive experiments validate these guarantees and show
strong robustness and adaptability.

Problem Definition. Consider an LLM-serving system with M models, each assigned a to-
ken budget B; (total B). Given a set of incoming queries (), our goal is to design an online
routing strategy x(-) that maximizes response quality under these budget constraints. The of-
fline version of this problem can be naturally formulated as the following MILP (Objective [T,
where d;; is the performance score of the response from LLM ¢
to query j, and g;; its token cost. Directly solving Objective[Tlin ™% > D dumy

online settings faces key challenges: (i) Unknown ground-truth jeQieiM]

d;; and g;; without querying LLMs; (ii) Queries arrive sequen- st Y gijwy < By foralli,
tially rather than simultaneously in practice. (iii) Computational J (D)
scalability, high query volume demands routing decisions with Z 2y < 1 forall j,

low latency, making solving large MILPs or heavy predictions
infeasible; (iv) Deployment scalability, varying LLLM deploy-
ment configurations require adaptive lightweight algorithms.

7

Tij € {0, 1}

Motivated by these challenges, we study the following online routing algorithmic problem:
Given a larger set of queries (@ arriving in a random sequential order, and a predefined token budget
constraint, can we design an online routing algorithm that still achieves a near-optimal cumulative

performance? Formally, we aim to ensure ngi > 1 —o(1), where we define Cog := >, >, dijdy;
op

denotes the total performance of the algorithm with routing results &;;, and Cop; := j > i dij a:;‘j

denotes the offline MILP optimum with the optimal solution z7;.

2 Methodology

2.1 Efficient Performance and Cost Estimation

Our solution to estimate d and g is to leverage a historical dataset D = {j,a;,d;, g; };-L:l, where
aj; € RM represents the response vector generated by the M LLM:s for query j, and dj,g; € RM



denotes the corresponding performance scores and costs. For any incoming query j € (), we retrieve
nearest neighbors 2; C D via ANNS (e.g., HNSW [29]) and compute the estlmated performance

score dlj and cost g;; for LLM ¢ as follows: dj = |R i quR iqs Gij = |R i quR Jiq- One key

advantage of widely used ANNS algorithms is their graph-based indexing, which reduces search
complexity to about O(log | D|) in practice, far more efficient than exact KNN (O(|D|)) [19].

2.2 Online Routing from Observed Queries

With the approximate features (fij and §g;;, we propose an online routing algorithm in Algorithm

Approximate LP with Control Parameter. We first approximate the MILP with estimated features

d;; and g;; and add a control parameter o > 0 that only scales the objective in Equation H This
parameter aids generalization, as discussed in Appendix [C]
max Z Z (},dAiinJ max Z Z (},dAijI,;j
JEQ i€ [M] JEQ ie[M]
s.t. Zg”x”<B Vi, s.t. Zg”x”<B Vi, min Z 7‘31+ZBJ
@ 3) ie[M] JEQ

me <1, vj, me <1, vj, st. B > adi; — §ijvi, Vi, 4,
vi >0, Bj >0, Vi, j

(C))

x5 € {0,1}, Vi, j x5 € [0,1], Vi, j

Dual LP under Relaxation. We relax Equation . by allowing x;; to take fractional values in [0, 1].
This yields the relaxed approximate LP in Equation (3) with its dual given in Equation ().

Routing via Learned v*. By complementary slack- Algorithm 1 PORT: Routing with Learned »*

ness, if x is the optimal solution to Equation (3) 1: P «+ eQ (First e-frac. of queries)
and (v, () is optimal solution to its dual, then 2: forj € P do
zi; > 0 & B; = max (ad;; — §iji). This 3 Randomly pickw; € {0} U [M]
? . 1 .. A ;
implies that, at optimality, the dual objective can g: ﬁsgmiteodtlﬂe?d 95> V1 € [M]
be expressed as a function parameterized by ~v: . R]oute j to w;-th LLM
F(y)=>,vBi+ Zj max (adij — §ijvi) (B). Ide-  7: Compute v* + arg min., F(v, P)
ally, queries should be routed to the ¢ maximizing g t}‘;r? g; ];0
adi;j — Gi;7:, but computing the global optimal v of- 1. Ecimate dij and §ij,V i € [M]
fline is infeasible. We therefore adapt this idea to the . 5 A ey
. . . . 11:  Compute ads; — Gijyi, Vi € [M]
online setting: we learn an estimated set of weights o 5 S
12:  Route j to i = arg max; (adi; — §i;Vi )

~* from the first P = ¢|Q| queries by minimizing
F(v,P) = €32, 7iBi + 3 ;cpmax (adi; — 7:i;) (6). For each j € P, we compute d;; and g,

to solve for v*. As P is very small (¢ < 1), queries are randomly routed to enhance generalization
without hurting performance. Let the remaining queries be Y = @ \ P. In the second stage, the
learned weights v* are used to route each incoming query j € Y, where each query is directly

assigned to the LLM that maximizes the score (aczij — Y5 Gij)-

Theoretical Guarantees. Our main theorem shows the proposed algorithm, PORT, achieves a
competitive ratio close to 1 against the offline optimum C,,; under natural assumptions (see Ap-

pendix [E.T)), with proof in Appendix [E.6]

Theorem 1 (Informal; see Theorem [2|for formal version). For any given query set Q with random

arrival order, Algorithm I satisfies & Catg > 1 —o(1) assuming 2=~ Covt g sufficiently large, where Sy 44
opt

is the maximum performance score obtamed for any query.

3 Evaluation

Benchmarks & Baselines & Metrics. We use 3 different benchmarks in our experiments: Router-
Bench [19], SPROUT [41], and Open LLM Leaderboard v2 [[12]. We compare 8 different routing
algorithms, classified into two categories: model-based methods and training-free methods, which
are discussed in detail in Appendix Appendix [D] Three key metrics are used: (1) Performance, the



Table 1: The main results on RouterBench, SPROUT, and Open LLM Leaderboard v2. Here, Perf
represents the Performance, PPC represents Performance per Cost, Tput represents Throughput, and

RP denotes Relative Performance compared with offline approximate optimum (C'opt).

RouterBench SPROUT Open LLM Leaderboard v2

Perf Cost PPC  Tput RP Perf Cost PPC  Tput RP Perf Cost PPC Tput RP
Random 1384.25 0.427 324325 3276 43.10% 2827.6 0.72 3927.29 4742 47.61% 953.0 0.741 1284.37 2877 49.89%
Greedy-Perf  1012.1 0.27 3742.379 1687 31.52% 764.9 0.406 1881.742 1083 12.88% 553.0 0.499 1107.91 1189 28.95%
Greedy-Cost  1626.25 0.46 3534.46 4061 50.64% 3934.7 0.849 4630.41 6789 66.25% 1051.0 0.766 1371.30 3164 55.02%
KNN-Perf 1005.1 0.27 3720.58 1677 31.3% 769.6 0.407 1888.46 1084 12.96% 556.0 0.498 1114.29 1194 29.11%
KNN-Cost  1592.05 0.46 3454.04 4027 49.58% 3905.1 0.85 4593.37 6709 65.75% 991.0 0.766 1293.07 3172 51.88%
BatchSplit ~ 1838.05 0.458 4005.93 3903 57.24% 3975.5 0.83 4784.49 6221 66.94% 1059.0 0.76 1392.07 3099 55.44%
Roberta-Perf  154.5 0.077 2019.00 190 4.81% 4589 0.283 1621.64 536 7.73% 153.0 0.207 738.21 283 8.01%
Roberta-Cost ~ 481.4 0.129 3738.88 1292 14.99% 3996.2 0.848 4709.22 6765 67.29% 1044.0 0.766 1362.53 3173 54.66%
PORT (Ours) 2718.6 0.447 6075.58 5195 84.66% 4513.05 0.815 5536.74 7475 75.99% 1465.0 0.711 2060.3 3692 76.7%

Offline Oracle (Algorithm Upper Bounds Reference)

Approx
Optimum(Copt)
Optimum (C\p¢) 6376.9 0.46 13865.62 6436 198.57% 11934.4 0.848 14060.34 12336 200.94% 4688.0 0.763 6143.64 4688 245.44%

Algorithm

3211.35 0.46 6975.16 6225 100% 5938.99 0.85 6986.45 8781 100% 1910.0 0.765 2493.66 4319 100%
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Figure 1: Results on RouterBench with test query volume varying from 4000 to 9000.

total performance score achieved across all queries; (2) Performance per Cost, performance-to-cost
ratio, reflecting cost efficiency; (3) Throughput, the total number of queries processed.
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Figure 2: Results on Open LLM Leaderboard v2 when varying LLM deployment configurations.

Main Results. Table[I|reports results on three benchmarks with o = 0.0001 and € = 0.025. PORT
outperforms all 8 baselines, averaging 3.55x better performance, 1.85x higher cost efficiency, and
4.25x greater throughput. Against the strongest baseline (BatchSplit), it achieves 33% higher
performance, 38 % better cost efficiency, and 24 % higher throughput. It further attains 76-85% of
the offline approximate oracle’s performance, consistent with our theoretical guarantees.

Computational & Deployments Scalability. We evaluate the scalability of PORT under two settings:
varying query volumes (4k—12k) and varying LLM deployments (2—16 models). As shown in
Figures[I]and 2] our method consistently outperforms all baselines across benchmarks and metrics,
maintaining the highest performance, cost efficiency, and throughput under both heavy traffic and
diverse deployments. Notably, the performance gap widens with load (up to 50% over BatchSplit),
underscoring strong robustness and adaptability. More Experiments can be found in Appendix [D}

4 Limitations & Conclusion

Limitations. Our algorithm currently targets performance and cost — the two most studied factors [34}
19,141]] — without explicitly modeling other factors. Additional factors may be incorporated by adding
constraints to the MILP, whose dual variables naturally extend to new learnable routing weights.

Conclusion. We propose the first efficient, training-free online routing algorithm for high-volume,
budget-constrained LLLM serving. It leverages ANNS for feature estimation and executes a one-time
optimization on a small query set to learn generalizable routing weights. We prove a competitive
ratio of 1 — o(1) and demonstrate consistent gains across 3 benchmarks and 8 baselines.
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A Background and Formal Problem Setup

LLM Routing. Existing LLM routing research primarily falls into two paradigms. The first focuses
on improving response quality while managing cost, typically through ensembling outputs from
different LLMs [22] 146]] or using cascading strategies that query LLMs sequentially based on their
capabilities [3 [1,153) 24]]. For instance, LLM-Blender [22] proposes an ensembling framework that
combines outputs from multiple open-source LLMs and selects the optimal response. [46]using
outputs Wang et al. [46] propose to fuse outputs of expert models that capture complementary aspects
of the data distribution, to generate the final answer. Frugal-GPT [3] adopts a sequential querying
strategy, invoking LL.Ms in order of increasing capability until a satisfactory response is obtained.
AutoMix [1] first uses a smaller model to self-verify the quality of the response, based on which
it dynamically selects a suitably sized model for handling the query. Although these approaches
can improve performance, they incur high latency and computational cost due to multiple model
invocations per query.

The second paradigm leverages historical or auxiliary datasets to estimate the performance and cost
of each query and select the optimal LLM accordingly [34, 41} [19} 10, 28, 23| 139} 43| [11} [16} i47]].
In this line of work, several approaches train model-based predictors using these labeled historical
datasets. For example, RouterLLM [34] trains a BERT-base or causal LLM on the historical data
annotated with human preferences to enhance routing accuracy. CARROT [41] trains Roberta-base
models to estimate both performance and cost for each query, enabling selection of the optimal LLM
under any user-defined trade-off between quality and cost. HybridLLM [10] adopts the synthetic
preference labels from the MixInstruct dataset [22] based on BARTScore [52], and trains a single
BERT-based router for query routing. Zooter [28] distills reward signals from training queries and
applies tag-based label enhancement to train a routing function that facilitates the expert selection.
TensorOpera [43] introduces a soft label-based strategy based on the BERT similarity scores to train
the BERT-based predictor for query routing. GraphRouter [[11]] constructs a heterogeneous graph
to capture the contextual relationship between the query requirements and the LLM capabilities for
informed routing decisions. While these training-based approaches are effective for certain LLM
deployment settings, they introduce nontrivial training overhead. Furthermore, adapting them to
varying LLM deployment configurations typically requires retraining, which makes them unsuitable
for resource-constrained online routing with diverse LLM deployment configurations.

Some methods avoid training by using approaches such as KNN [[19] or similarity-weighted (SW)
ranking [34] to estimate the performance and cost based on the historical data. While these approaches
avoid model training overhead, they still incur substantial computational overhead and latency, as
they rely on brute-force comparisons against the entire historical dataset to retrieve similar examples
or compute similarity scores without any optimization. Specifically, they operate with a high search
complexity of O(NN), where N is the size of the dataset. As a result, these methods are difficult to
scale and impractical for high-volume, budget-constrained online routing scenarios.

Recent efforts [38, 133} 135]] have explored formulating LLM routing as MILP. For instance, Sakota
et al. [38] introduce two MILP-based strategies, targeting performance-oriented and cost-oriented,
respectively. However, these methods face significant challenges in high-volume online routing
settings, where queries arrive sequentially, rather than simultaneously, making the offline optimal
infeasible to compute.

We complement these works by introducing the first training-free and efficient online routing method
with provable performance guarantees, tailored for high-volume, budget-constrained, and dynamic
LLM-serving environments.

Problem Definition. Consider an LLM-serving system deployed with M types of LLMs. Each LLM
type, indexed by ¢ € [M] = {1,..., M}, is allocated a running token budget B; (i.e., representing
the limited token budgets available per time unit), with a total budget equaling B. Typically, the split
of the budget is predetermined before the operation of the system. During each time unit, the system
receives a set of queries from various end users, denoted by (). The goal is to design an online routing
strategy x(-) that assigns incoming queries in () to the available LLMs in a way that maximizes the
overall quality of responses, under the budget constraints.

The offline version of this problem can be naturally formulated as the following MILP (Objective|7),



max Z Z dijzij

JEQie[M]

S.t. Zgijxij < B, forall i,
j (N

inj <1 forall 7,
z;; € {0,1}

where d;; denotes the performance score of the response from LLM i to query j, and g;; represents
the token budget consumption for LLM ¢ processing query j (representing the cost). Specifically, g;;
can be further decomposed as f7 - len(j) + f© - len(a;;), where f{ € RM and f° € RM represent
fixed costs per token during the prefill and decoding stages for LLM i, respectively.

However, solving Objective |/| (or a natural relaxation) directly in practical online settings poses
several non-trivial challenges: (i) Inaccessible ground-truth performance and cost: For any query
7, the true performance score d;; and cost g;; are unavailable without accessing the actual LLMs. (i)
Sequential query arrival under uncertainty: In practice, queries arrive sequentially rather than
simultaneously and must be routed without knowledge of future queries. (iii) Computational scala-
bility: High query volume demands routing decisions with low latency and minimal computational
overhead. However, methods that rely on solving large-scale MILP or executing computationally
intensive model predictors for each incoming query may violate these constraints. (iv) Deployment
scalability: LLM deployment configurations, such as M or the underlying LLMs, may vary across
different environments. Thus, the algorithm must be adaptive to these variations while minimizing
adaptation overhead.

Motivated by these challenges, we study the following online routing algorithmic problem:
Given a larger set of queries ) arriving in a random sequential order, and a predefined token budget
constraint, can we design an online routing algorithm that still achieves a near-optimal cumulative

performance? Formally, we aim to ensure S21¢ > 1 — o(1), where we define Cog := 3, >, diji:ij

Copt -
denotes the total performance of the algorithm with routing results &;;, and Cop; := > j > ; dij xz‘j
denotes the offline MILP optimum with the optimal solution z7;.

B Methodology

To tackle the challenges, our algorithm estimates the performance scores and costs efficiently using a
historical dataset (Section[B.T)), and learns a routing strategy from a small subset of observed queries
(of size €|@]) to guide future query routing (Section B.2).

B.1 Efficient Performance and Cost Estimation

Our solution to estimate d and g is to leverage a historical dataset D with a specialized data structure
that supports efficient similarity-based retrieval. Specifically, let D = {3, a;,d;, g; }?:1, where

aj € RM represents the response vector generated by the M LLMs for query 5, and dj,g; € RM
denotes the corresponding performance scores and costs.

For any incoming query j € ), we apply a classic ANNS method over D in the embedding space,
such as DiskANN [21] and HWSN [29], to select the most similar data points for estimation.

This yields a set of approximate nearest neighbors for j, denoted by R; C D. The estimated
performance score d;; and cost g;; for LLM i are then computed as the mean over these neighbors:
5o 1 A1

dij = 1Ry Xger, diar Jii = TR;] 2oger, Yia-

One significant advantage of using ANNS compared with other training-based approaches is the ease
of updating the historical dataset D to adopt various deployment configurations without requiring

1 . .. . .
For simplicity, we use the notation 3 ; to denote } ;5 and >, to denote 3, (. unless stated otherwise.
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model retraining. This is particularly advantageous for LLM-serving providers, as it incurs almost
no additional deployment overhead. Online systems can naturally collect and record diverse user
queries, which can be directly used to maintain and expand the dataset D. Although collecting
ground-truth performance scores and costs typically requires human or automated evaluation, many
providers already integrate such mechanisms (e.g., quality feedback from users) in their systems [4].
Furthermore, widely used ANNS algorithms in practice, such as HWS use a graph-based indexing
structure, making it substantially more efficient in search complexity (typical O(log |D|) in practice)
compared to traditional instance-based methods like exact K-Nearest Neighbor (KNN, O(|D|)) [19],
achieving significant speedup in search time.

B.2 Online Routing from Observed Queries

With the approximate features d; ; and g;;, we propose an online routing algorithm in Algorithm

Approximate LP with Control Parameter. The first step is to approximate the original MILP using
the estimated features dij and g;;. In addition, we introduce a control parameter o > 0 into the
objective, leading to the formulation in Equation (8). The inclusion of a does not affect the optimal
solution structure — it simply scales the objective value. In fact, « acts as a control parameter to
ensure generalizability, which is discussed in Appendix

max Z Z G’(L‘jmij max Z Z aazijxij
JEQ ic[M] JEQ i€[M]

min Z ’YiBi + Z ﬁj
]

S.t. Zgijl?ij < Bi, VZ, S.t. Zgij.’bij < Bi, V’l, ie[M JEQ
J ®) g O st By > adi; — iy, Vi g,
> i <1,V D wiy <1, V5, % >0, B;>0,Vij
i i (10)
Tij € {071}7 VZ7.] Tij € [0 1}7 V’Lm]

Dual LP under Relaxation. Let s,,,, denote the max performance score across all queries, and let
Copt be the offline approximate optimum obtained by solving Equation (8) with e removed. When the

ratio C’Opt /Smaz (0 Copt/Smaz) is sufficiently large as || grows, which commonly holds in practice,
particularly in high-volume settings, the optimal value to the relaxed LP closely approximates that of
the original MILP. E]This is formalized in Lemma [3|and {4| with further discussion in Based on
this observation, we apply LP relaxation to Equation (@, allowing x;; to take fractional values in
[0, 1]. This yields the relaxed approximate LP in Equation @]) with its dual given in Equation .

Routing via Learned v*. By complementary slackness, if  is the optimal solution to Equation ®D
and (v, /) is optimal solution to its dual, then z;; > 0 < §; = max (ad;; — §;;7;). This
implies that, at optimality, the dual objective can be expressed as a funétion parameterized by ~:
F(y)=3%27Bi+ Zj max (adij = Gijvi) (11).

Therefore, ideally, given the offline optimal solution ~, each query j should be routed to the LLM ¢
that maximizes (adi i — §i;7:). While it is infeasible to compute such a global offline solution in an
online setting, this formalization motivates us to treat v as a set of routing weights applied across all
LLMs to assist the routing process. Building on this insight, we adapt this idea to the online setting:
we learn an estimated set of weights v* from the first P = €|Q| queries. The procedure in Algorithm
reflects this idea exactly where its first stage is to learn an optimal v* that minimizes dual objective

F(v, P) over the observed queries: (v, P) = €3, viB; + > p max (adij — vigij) (12).

For each query j € P, the estimated features d;; and g;; for all models will be calculated and recorded
to solve for v*. Since this stage requires only a small fraction of the total queries (¢ < 1), random
routing is adopted, which may leave some queries in the waiting queue (lines 3, 5-6 in Algorithm|[T) to
improve the generalizability without degrading overall performance. This approach aligns precisely
with the core idea of PAC learning [[7, 8], where uniform and unbiased routing ensures the learned
weights v* generalize to the subsequent routing stage. We formalize this in Lemma[dand[6] Let the

We note that many other choices are interchangeable here, e.g. see https://ann-benchmarks . com
3In our experiments, the optimality gap between the relaxed LP and the MILP is only 0.016% on SPROUT
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remaining queries be Y = @ \ P. In the second stage, the learned weights v* are used to route each
1ncom1ng query j € Y. Specifically, each query is directly assigned to the LLM that maximizes the
score (ozdl] Vi ¥g;5) (line 12 in Algorlthm . If the selected LLM has exhausted its budget, the
query is placed in a queue to await execution.

Compared to existing methods [34} 41, [19], which often involve repeated heavy computations, our
algorithm is significantly more efficient. It performs optimization only once over a small subset of
queries, making it scalable for deployment in high-volume settings.

C Theoretical Guarantees

In the following main theorem, we show that our algorithm achieves a competitive ratio close to 1
compared to the offline opt C,,;, under natural assumptions (see Appendixg IE.1| for discussion).

Theorem 2. For any given query set () with random arrival order, Algorzthmlsatlsﬁes Zalg

C pt
1 — O(e + 0) assuming - Copt. > Q((XM L%%(lﬂft‘;;bl/e) ), where Syqq is the maximum performance score

obtained for any query, and ® is an e-net defined over all possible routing strategies ().

To establish this theorem, we introduce the following necessary but mild assumption (see Ap-
pendix [E.T| for a detailed discussion) and auxiliary lemmas. The key intuition behind approximating
features of one query j using a different query j is that the error between their feature values remains
bounded, as long as their embedding representations are close. We formalize this as follows:

Assumption 1. For any query j, j', there exists a value ) > 0 such that if ||[EMB(j) —EMB(j")||2 < 77,
then ¥ i € [M], it holds that (1 — O(9))d;j < dij < (14 O(6))dij» and (1 — O(6))gij» < gij <
(14 O(9))gijs, where EMB(-) represents the embeddingfunctiOn of an embedding model.

This approximation strategy naturally introduces estimation errors. Thus, it is necessary to quantify

the discrepancy between the offline optimum C,,,; and the offline approximate optimum C,,;. We
assume that for any query j € @, there exists a corresponding feasible set I2; for estimation. This
yields the following Lemma 3] (proof in Appendix [E.2).

Lemma 3. Suppose that Vj € Q, and ¥j' € R;, we have ||[EMB(j) — EMB(j')||2 < 0, and
that Assumpttonholds Then, the offline approximate optimum Copt satisfies ’%pcnm‘ < O(9).

Algorithm[I] yields the a set of routing results &, from which we define the estimated cumulative
performance score as Cegt := Y y > acfiji"ij. The results & are determined by the learned weights
~* and the budget limitation, and can be represented by x(v*). Accordingly, C.,; can be expressed
as Cest = y_,min{E;, > ; aczijxij(v*)}, where FE; represents the maximum feasible contribu-

tion under the budget B;, defined as: E; := Zf acfijxij (v*) with £ = argmax Zf Giji; (7)),
k

s.t. Zf Gij%i;(7*) < B;. We further define the per-LLM estimated performance score Ceg ; :=

min{ F;, Z osz” x;;(v*)}. Analyzing C.y; thus provides a way to evaluate the routing decisions
x(vy*). Unfortunately, directly assessing C,; is challenging as it has a complex step function with
discontinuities. To facilitate analysis, we introduce a relaxed version C' := =22 ad; i (Y5)s
which removes the step function _present in Cest. We further define per-model relaxed estimated
performance score C; Z ad” x;5(v*), and its counterpart over the observed query set P as
Ci(P) = djep adijxij( *). Note that for any j € P, we define z;;(v*) = 1 if the index w;
randomly selected in the first stage of the algorithm equals ¢; otherwise, z;;(v*) = 0.

Definition 1 (¢-Net [8]). Given a parameter ¢ > 0 and routing rule x(v), a set ® C [0,1]™ is an
e-net if, for any v € [0, 1]M, there exists 7/ € ® such that V 4, 5, |zi;(7) — 2i; ()] < €

By removing the discontinuous step function, the analysis becomes tractable. A key requirement
for ensuring the performance of the algorithm is the generalizability of estimated routing weights
~* on the remaining queries Y. To show this, we first prove that the performance disparity between
C(P) and its expected value €C, i.e., |C(P) — eC|, is bounded. Since directly bounding this gap
over all possible values of v* is infeasible due to the infinite parameter space, we use an e-net [51} 18]
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® (formally defined in Definition [I]) to reduce to a discrete covering set of routing rules, over which
we apply a union bound. We then extend the analysis to arbitrary v* values by rounding to ®. The
cumulative error over P is bounded in Lemma ] (proof in Appendix [E.3)):

Lemma 4. Let ® be an e-net and assume that SC"’” > Q(QM log(M@l/E)). IfVi, |CA‘Z(P) —eé’,;| <z,

ma 63(1+6)
then Y, z; < O(21/ (1 + 0)Copi C /).

The following Lemma demonstrates the generalizability of v* on remaining queries Y (proof in
Appendix [E.4). This Lemma highlights the role of the control parameter « in our algorithm: it serves
as a bridge to connect the cost and performance.

Lemma 5. If Vi, it holds that | 3¢ p Gijxij(v*) — €32 9ij@ij (V)| < O(2:), then there exists a
control parameter o > 0, such that Vi, (1) |C;(P) — eCy| < z;, and (2) |Ci(P) — €E;| < O(z).

This connection further translates the cost constraint (B) to a performance guarantee, which estab-
lishes the generalizability of v* to the remaining queries Y, as formalized in Lemma [6]

Lemma 6. Let ® be an e-net. If Scf:’: > QoM gg(gjfgue) ), then Cest(Y) > (1 — O(€))Cest.

Combining the results above, we can prove our main Theorem [2] (proof in Appendix [E.6).

D Evaluation

D.1 Experimental Setup

Table 2: Benchmark details for RouterBench, SPROUT, and Open LLM Leaderboard v2 in our
experiments.

(a) RouterBench (b) SPROUT (c) Open LLM Leaderboard v2
Dataset Size Dataset Size Dataset Size
MMLU [17] 14042 MATH Lvl 1-5 [18] 9884 MMLU-PRO [48] 12032
Hellaswag [54] 10042 MMLU-PRO [48]] 11786 MUSR [42] 756
GSMSK [6] 7450 GPQA [36] 541 MATH Lvl 1-5 [18] 1324
ARC Challenge [5] 1470 MUSR [42]] 748 GPQA [36] 1192
Winogrande [37] 1267 RAGBench [14] 1827 BBH [44] 5761
MBPP [2]] 427 Openhermes 2.5 [45] 19455 Total 21065
MT-Bench [56] 80 Total 44241 - -
Chinese 785 - - - -
Consensus Summary 362 - - - -
Bias Detection 285 - - - -
Test Match 3 - - - -
Accounting Audit 30 - - - -
Abstract2title 254 - - - -
Total 36497 - - - -

Benchmarks. We evaluate our method on three benchmarks: RouterBench (zero-shot version) [19]],
SPROUT [41], and Open LLM Leaderboard v2 [12]. All three benchmarks are constructed from
multiple dataset sources. Table 2] summarizes the query types in each benchmark, while Table 3]
details the LLMs used and their corresponding token costs.

For RouterBench, we identify 13 different data sources in a total of 36497 samples — 6 more than
those reported in the original paper — spanning a diverse range of query domains. This benchmark
includes 11 different LLMs. Since it does not provide a predefined train/test split, we randomly
sample 10000 queries as the test query set and treat the remaining queries as historical data. Note that
we do not report per-token costs for models in RouterBench, as [[19] does not provide this information.
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Table 3: Model lists and token costs ($/1M tokens) for RouterBench(left), SPROUT (middle), and
Open LLM Leaderboard v2 (right).

(a) RouterBench (b) SPROUT (c) Open LLM Leaderboard v2
Models Models Input Cost  Output Cost Models Cost
WizardLM-13B-V1.2 claude-3-5-sonnet-v1 3.00 15.00 Mixtral-8x7B-DPO 0.6
claude-instant-v1 titan-text-premier-v1 0.50 1.50 Yi-34B-Chat 0.8
claude-v1 openai-gpt-40 2.50 10.00 QwQ-32B-Preview 1.2
claude-v2 openai-gpt-4o-mini 0.15 0.60 Qwen2-72B-Instruct 0.9
gpt-3.5-turbo-1106 granite-3-2b-instruct 0.10 0.10 Qwen2.5-7B-Instruct 0.3
gpt-4-1106-preview granite-3-8b-instruct 0.20 0.20 Qwen2.5-72B-Instruct 1.2
code-llama-instruct-34b Ilama-3-1-70b-instruct 0.90 0.90 WizardLM-2-8x22B 1.2
1lama-2-70b-chat Ilama-3-1-8b-instruct 0.20 0.20 deepseek-1lm-67b-chat 0.9
mistral-7b-chat llama-3-2-1b-instruct 0.06 0.06 gemma-2-27b-it 0.8
mixtral-8x7b-chat 1lama-3-2-3b-instruct 0.06 0.06 gemma-2-9b-it 0.3
Yi-34B-Chat 1lama-3-3-70b-instruct 0.90 0.90 gemma-2b-it 0.1
- mixtral-8x7b-instruct 0.60 0.60 Llama-2-13b 0.3
- 1lama-3-405b-instruct 3.50 3.50 Meta-Llama-3.1-70B 0.9
- - - - Mistral-7B-Instruct-v0. 1 0.2
- - - - Mistral-7B-Instruct-v0.2 0.2
- - - - Mistral-7B-Instruct-v0.3 0.2

Mixtral-8x7B-Instruct-v0.1 0.6
Llama-3.1-Nemotron-70B 0.9

Instead, the benchmark includes precomputed costs for each query across all 11 LLMs, which we
directly use in our experiments.

For SPROUT, it consists of queries from 6 different datasets, covering different query domains, such
as math and RAG. It contains a total of 44241 samples across 13 LLMs. We use the provided training
set as the historical dataset, and combine the validation and test sets to construct the test query set.

For Open LLM Leaderboard v2, we follow the same setup and data processing as [41]], resulting in
21065 samples. The processed benchmark includes 5 different datasets, with each evaluating different
aspects of LLM capabilities. This benchmark uses 18 different LLMs, and we randomly sample
10000 queries as the test set and use the remainder as the historical data. Since most evaluations in
Open LLM Leaderboard v2 are likelihood-based, the cost is essentially determined by the length of
the input. Following [41]], we report the cost per input token in Table [3]and compute the total cost of
each query based on input token counts.

In the main setting, the queries are embedded using bge-base-en-v1.5 [50]. For the diversity con-
sideration, we additionally evaluate with two different embedding models: SFR-Embedding-2_R [31]]
and gte-Qwen2-1.5B-instruct [26].

Baselines. We compare 8 different routing algorithms, categorized into two categories: model-based
methods and training-free methods.

For Model-based methods, we follow the training approach in [41] and train two separate Roberta-
based models [27] to predict the performance and cost of each query. The performance prediction
model is classification-based, aiming to select the optimal LLM with the highest expected perfor-
mance, while the cost prediction model is regression-based and estimates the expected cost of an
incoming query. This results in 2 different baselines:

* Roberta-perf-routing, routes each query to the model with the highest predicted perfor-
mance;

* Roberta-cost-routing, routes each query to the model with the greatest available budget.
Training-free methods include 6 baselines:

* Random routing, randomly selects a model for each query;

* Greedy-perf-routing, uses ANNS to select the model with the highest predicted perfor-
mance;
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Table 4: Average cost and performance of models in RouterBench on historical data.

Model Cost Perf Perf/Cost (Perf/Cost)’-®
WizardLM-13B-V1.2 7.27¢-05 0.432 5944 77.10
claude-instant-v1 2.32e-04 0.598 2581 50.80
claude-v1 2.14e-03  0.631 295 17.18
claude-v2 241e-03  0.636 264 16.24
gpt-3.5-turbo-1106 242¢-04  0.617 2546 50.45
gpt-4-1106-preview 3.28¢e-03 0.781 238 15.43
code-llama-instruct-34b  1.71e—-04  0.203 1182 34.38
llama-2-70b-chat 2.02e-04  0.328 1627 40.34
mistral-7b-chat 4.56e-05 0.308 6768 82.27
mixtral-8x7b-chat 1.34e-04  0.550 4098 64.01
Yi-34B-Chat 1.85e-04  0.648 3503 59.19

* Greedy-cost-routing, uses ANNS to select the model with the most available budget;
* KNN-perf-routing [19], uses KNN to select the model with the highest performance;
* KNN-cost-routing [19]], uses KNN to select the model with the most available budget;

» BatchSplit routing, groups incoming queries into small batches and solves the linear
programming (LP) per batch to determine routing.

Note that in the online setting, the true remaining budget of each model is not directly observable
during the routing process, as it depends on the actual cost incurred after the query response is
generated. Therefore, all cost-based methods and BatchSplit rely on predicted costs, which are
obtained from predictive models, ANNS, or KNN, to estimate the remaining available budget and
make routing decisions.

We adopt HWSN [29] as the main ANNS algorithm and set the number of candidate neighbors
(|R;|) to 5 for both ANNS and KNN. To assess the robustness of our algorithm under varying
candidate set sizes, we further vary this number to 3, 7, and 10. However, many alternative methods,
such as DiskANN [21]], are interchangeable here, as listed in https://ann-benchmarks. com. For
BatchSplit, we use a mini-batch size of 256 to balance LP computation cost with the low-latency
requirements of the practical online routing.

Metrics. In our experiments, we consider three key evaluation metrics: (1) Performance, the overall
performance score achieved by processing all test queries under the given budget constraints; (2)
Performance per Cost, the ratio of total performance to the corresponding cost, reflecting overall
cost efficiency; (3) Throughput, the total number of queries successfully processed, indicating the
processing capacity. We evaluate Throughput as a key metric because our goal is to design an effective
online routing algorithm for high-volume settings with limited token budgets. In these scenarios, the
available budget may not suffice to serve all incoming queries within a given time unit. Therefore,
Throughput reflects how efficiently an algorithm utilizes the available budget to maximize the number
of queries successfully served during that current time unit.

Budget. Our algorithm aims to improve routing performance under limited budgets in high-volume
settings. To simulate this high-volume, budget-constrained setting, we define the total budget based
on the minimal cost required for a single model to process all test queries in the benchmark. In the
main setting, the budget is set to this minimal value. To evaluate the robustness of our algorithms, we
scale the budget by a factor ranging from 0.25 to 2.

We consider multiple strategies for splitting the total budget across models. In the main setting, we
adopt a cost-efficiency-based split strategy. As shown in Table d] [5] and[6] we report the average
performance score, cost, and cost efficiency (Perf/Cost) of each model on the historical data across
3 benchmarks. We observe a substantial disparity in cost efficiency across models. For instance,
for SPROUT, the most efficient model achieves a cost efficiency of 9722, while the least efficient
only reaches 108, nearly a 100x difference. Directly allocating the budget based on cost efficiency
is thus highly imbalanced, as it can result in nearly all resources being allocated to a single model.
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Table 5: Average cost and performance of models in SPROUT on historical data.

Model Cost  Perf Perf/Cost (Perf/Cost)”®
claude-3-5-sonnet-v1 7.65e-03  0.827 108 10.39
titan-text-premier-v1 5.64e-04  0.579 1027 32.04
openai-gpt-40 4.92e-03 0.846 172 13.11
openai-gpt-4o-mini 3.40e-04  0.808 2378 48.76
granite-3-2b-instruct 8.54e-05 0.553 6473 80.46
granite-3-8b-instruct 1.50e-04  0.659 4403 66.36
llama-3-1-70b-instruct ~ 7.17e-04  0.810 1130 33.62
llama-3-1-8b-instruct ~ 2.43e-04  0.690 2838 53.27
llama-3-2-1b-instruct ~ 6.67e—-05  0.460 6904 83.09
Ilama-3-2-3b-instruct 6.47¢e-05 0.629 9722 98.60
llama-3-3-70b-instruct ~ 5.52e-04  0.804 1457 38.17
llama-3-405b-instruct ~ 2.01e-03  0.776 385 19.63
mixtral-8x7b-instruct 3.74e-04 0.616 1648 40.59

Table 6: Average cost and performance of models in Open LLM Leaderboard v2 on historical data.

Model Cost Perf  Perf/Cost (Perf/Cost)"®
Yi-34B-Chat 6.57e-04  0.428 652 25.53
Mixtral-8x7B-DPO 4.78e-04  0.401 839 28.97
QwQ-32B-Preview 8.90e-04  0.552 621 2491
Qwen2-72B-Instruct 6.67e-04  0.562 842 29.02
Qwen2.5-72B-Instruct 8.90e-04 0.561 630 25.10
Qwen?2.5-7B-Instruct 2.22e-04  0.420 1887 43.44
WizardLM-2-8x22B 9.85e-04  0.491 499 22.34
deepseek-1lm-67b-chat 7.05e-04 0.413 586 24.21
gemma-2-27b-it 6.13e-04  0.462 753 27.43
gemma-2-9b-it 2.30e-04 0.419 1826 42.72
gemma-2b-it 7.66e-05 0.191 2489 49.89
Llama-2-13b 2.47e-04 0.227 919 30.31
Meta-Llama-3.1-70B 6.44e-04  0.548 852 29.18
Mistral-7B-Instruct-v0.1 1.43e-04 0.258 1806 42.50
Mistral-7B-Instruct-v0.2 1.64e-04  0.311 1894 43.52
Mistral-7B-Instruct-v0.3 1.64e-04  0.336 2044 45.21
Mixtral-8x7B-Instruct-v0.1 4.92e-04 0.379 770 27.74
nvidia/Llama-3.1-Nemotron-70B ~ 7.39e-04  0.506 686 26.19

Therefore, we adopt a smoothed version that allocates the budget proportionally to the square root of

each model’s cost efficiency on the historical data, i.e., according to (g‘é‘;? )05

In our robustness evaluations, we explore several alternative budget splitting strategies, including
uniform split, random split, extreme split, cost-based split, and performance-based split. In the
cost-based split, the budget is allocated inversely proportional to the average cost. However, due to
the extreme cost imbalance across models (as also observed in the cost-efficiency-based split), we also
adopt a smoothed variant that splits the budget proportional to (& ;ST )0-5. In the performance-based
split, the budget is directly assigned in proportion to the average performance scores of the models. In
the random split, the total budget is randomly allocated across LLMs, and the experiment is repeated
100 times to account for variability. In the extreme split, 80% of the budget is assigned to the h least
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Figure 3: Results with test query volume varying from 4000 to 9000 (12000). Rows correspond to
different datasets: RouterBench (top), SPROUT (middle), and Open LLM Leaderboard v2 (bottom).
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Figure 4: Results under 100 random query orders. (Left to right): the first three subfigures show
results on RouterBench, the next three on SPROUT, and the last three on Open LLM Leaderboard v2.

cost-efficient models, and the remaining 20% is uniformly distributed among the others, where h
ranges from 1 to 5.

Optimization Implementation. We implement all optimization codes using the CVXPY [9] package.
For the one-time optimization step in our algorithm, we use the L-BFGS-B solver [S7]]. For BatchSplit,
which involves solving a linear program for each batch, we adopt the HIGHS solver [20].

Devices. All experiments are conducted on a machine equipped with 16 CPUs and 32GB of memory.
For training the Roberta models used in the model-based baselines, we use two NVIDIA H200 GPUs.

D.2 Main Results.

Table |1| presents the main results under the 3 benchmarks, using o = 0.0001 and ¢ = 0.025 for
our algorithm, with the maximum available test queries, and historical data in the evaluation. Our
algorithm consistently outperforms all 8 baselines in performance, cost efficiency, and throughput.
On average, it exceeds all baselines by 3.55x in performance, 1.85X in cost efficiency, and nearly
4.25x in throughput. Even against the strongest baseline, BatchSplit, our algorithm still achieves
with 33% higher performance, 38% better cost efficiency, and 24 % higher throughput across all
benchmarks. We further compare our method to the offline approximate oracle (C’Opt), and find that it
achieves 75.99% to 84.66 % of the approximate oracle’s performance. These results align closely
with our theoretical guarantees, further validating the effectiveness of our algorithm.

D.3 Robustness

Query Volume. We vary the number of test queries from 4000 to 12000, serving as different traffic
volumes. Figure [3]clearly shows that our method consistently outperforms all baselines across all
benchmarks and metrics. It scales gracefully, maintaining the highest performance, cost efficiency,
and throughput as the query volume increases from low to extremely high loads. Notably, across all
three benchmarks, the performance gap between our method and the strongest baseline (BatchSplit)
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Figure 6: Results when varying the configurations of deployed LLMs. Rows correspond to different
datasets: RouterBench (top), SPROUT (middle), and Open LLM Leaderboard v2 (bottom).

widens with increasing load, reaching about 50% higher performance on RouterBench at maximum
volume. These results highlight the strong robustness of our approach under varying query volumes.

Query Arrival Order. We evaluate the robustness of our algorithm under varying query arrival
orders. Specifically, we consider two settings: (1) a randomized setting, where test queries are
independently shuffled 100 times to reflect realistic, unpredictable online environments; and (2) a
worst-case setting, where queries are sorted in descending order of their maximum cost across all
models. This adversarial order simulates scenarios in which expensive queries arrive early and are
more likely to exhaust the budget. Figure |4 shows that our algorithm consistently outperforms all
baselines across metrics and benchmarks under random permutations. Even under the worst-case
order (Figure 3, our method maintains the advantage, achieving the best performance across all
metrics on SPROUT and Open LLM Leaderboard v2, and outperforming all baselines in terms of
performance and cost-efficiency on RouterBench. These results demonstrate the robustness of our
algorithm towards varying query orders.

Scalability to LLM Deployments. One of the key advantages of our algorithm is its scalability
to varying configurations of LLM deployments. To evaluate the robustness of our algorithm, we
vary the configurations of deployed LLMs on each benchmark. For RouterBench, which includes 11
distinct LLMs in total, we vary the deployed LLMs from 2 to 8. For SPROUT, which has 13 different
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Figure 7: Results under different budget splitting strategies. Each group of 9 subfigures corresponds
to one strategy: (a) cost-based split (subfigures 1-9), (b) performance-based split (10-18), (c) uniform
split (19-27), and (d) random split (28-36). Within each group, the first three subfigures correspond
to RouterBench, the next three to SPROUT, and the last three to Open LLM Leaderboard v2.

—e— Random Greedy Perf ~—+— Greedy Cost —v— KNN_Perf KNN_Cost Batchsplit Roberta_Perf Roberta_Cost ~ —— Ours
@
, 1000 8 2000 2000
< g 3 1500
§ 750 o = | 2
£ — | ¢ |3 1000
£ 300 — | w00{ e 2
5 ——— g - — =
250 © 500
o
&
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
h Least Cost-Effective LLMs with 80% Budget h Least Cost-Effective LLMs with 80% Budget h Least Cost-Effective LLMs with 80% Budget

Figure 8: Results on RouterBench under the extreme budget split.

LLMs, we vary the deployed LLMs from 2 to 10. For Open LLM Leaderboard v2, which includes
18 distinct models, we vary the number of deployed LLMs from 2 to 16. In all settings where the
number of deployed LLMs is fewer than the maximum, we randomly sample the deployed LL.Ms
and repeat the experiment 10 times to ensure diversity and coverage of possible configurations. Note
that in this experiment, we compare only against training-free methods, as retraining models used in
model-based methods for each of the numerous settings would incur significant computational and
deployment overhead. As shown in Figure[6] our algorithm consistently achieves strong performance
across all deployment configurations, where the cost-efficiency gap over other baselines steadily
increases. These results demonstrate the robustness and adaptability of our method to diverse and
dynamic LLM serving environments.

Budget Split. One key factor affecting the performance of routing algorithms is the choice of budget
split strategy. We extend the default cost-efficiency-based split to five alternative strategies. As shown
in Figure (7] our algorithm consistently outperforms all baselines across all benchmarks and metrics
under four different split strategies: cost-based, performance-based, uniform, and random. Even
under the extreme split setting (Figure[9), where a large portion of the budget is concentrated on a
few low-efficiency models, our method maintains leading performance. Notably, when 80% of the
budget is allocated to a single model (h = 1), our algorithm achieves nearly 2% the performance
of the strongest baseline (BatchSplit) on the RouterBench. On Open LLM Leaderboard v2, it also
demonstrates approximately 2x higher cost efficiency than all baselines. These results underscore the
strong robustness and adaptability of our algorithm against a wide range of complex and imbalanced
budget allocation schemes.

Total Budget. To evaluate the performance of our algorithms in different budget settings, we scale the
total budget B from 0.25 to 2 the cost of the cheapest model. Results shown in Figure[T0]demonstrate
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Figure 9: Results under the extreme budget split. Rows correspond to different datasets: RouterBench
(top), SPROUT (middle), and Open LLM Leaderboard v2 (bottom).

that our algorithm achieves competitive or superior performance compared to all baselines across
benchmarks and metrics. Notably, even under the extremely constrained budget, it maintains a clear
advantage. For instance, at B = 0.25, it achieves nearly 2 x the performance and cost efficiency of
the strongest baseline (BatchSplit) on the Open LLM Leaderboard v2. These results underscore the
robustness of our method and its adaptability to different resource availability scenarios.

D.4 Historical Data Size & ANNS/KNN Candidates

Historical Data Size. To evaluate the robustness of our algorithm with respect to the size of historical
data, we vary the number of historical data points used in ANNS and KNN from 5000 to 25000. For
RouterBench, whose maximum available historical data is 26497, we randomly sample the subset of
data points from 5000 to 25000. For RouterBench, which contains up to 26497 historical records,
we randomly sample subsets within this range. For SPROUT, with a maximum of 30968 records,
we similarly sample subsets from 5000 to 25000. For Open LLM Leaderboard v2, which has 11065
historical records, we sample subsets ranging from 5000 to 10000. Note that in this experiment,
training-based methods are trained on the full historical dataset to provide a strong baseline for
comparison. As shown in Figure[TT] the results clearly show that varying the amount of historical
data used in ANNS and KNN has minimal impact on performance, with our algorithm consistently
and significantly outperforming all baselines across all settings. This demonstrates the robustness
and efficiency of our algorithm: even with as few as 5000 historical records, it remains effective for
routing.

Number of ANNS/KNN Candidates. To investigate the impact of the number of search candidates
of ANNS and KNN on routing performance, we vary the candidate pool size from the default 5 to 3, 7,
and 10. As shown in Figure[T2] the results show that performance is marginally affected, with a slight
improvement as the candidate pool size increases. Notably, our algorithm consistently maintains
a leading position across all settings. Even with as few as 3 search candidates, it outperforms all
baselines across benchmarks, demonstrating its stability and robustness to the choice of candidate
pool size.
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Figure 10: Results when varying total budget B from 0.25 to 2x the cost of the cheapest model. Rows
correspond to different datasets: RouterBench (top), SPROUT (middle), and Open LLM Leaderboard
v2 (bottom).

D.5 Ablation Study

Impact of embedding models. The choice of embedding model is also important for estimating
the performance score and cost of incoming queries. To evaluate the adaptivity of our algorithm to
different embedding models used in ANNS, we conduct experiments with two larger embedding mod-
els: SFR-Embedding-2_R [31] and gte-Qwen2-1.5B-instruct [260]. As shown in Figure@, our
algorithm consistently outperforms all baselines across all benchmarks, demonstrating its robustness
to the choice of embedding model.

Impact of o and e. We evaluate the sensitivity of our method to the parameters « and ¢, as shown in
Figure@ For «v, we observe a consistent decline in performance as it increases, with the best result
achieved at v = 0.0001. This trend aligns with Lemma|[5] which shows that a larger o amplifies the
gap between the performance of our algorithm on the observed subset P, C(P), and its expected
value eC'. This increased discrepancy results in greater deviation in performance on future queries,
ultimately leading to a reduction in overall performance on the full query set Q. For the parameter
€, we observe that increasing its value initially improves performance, reaching a peak at around
€ = 0.025, after which further increases lead to a decline. This aligns with the intuition that € controls
the number of samples used in the learning stage: too few samples lead to underfitting, while too
many may lead to overfitting to the observed data.

E Theoretical Proofs

E.1 Discussion on OQur Theoretical Assumptions

We introduce several mild assumptions in our theoretical analysis and provide justifications for each
below.

Random arrival order. We assume that the queries arrive in a random order, i.e., they can be
picked adversarially, but their order is randomly permuted. Note that this is a weaker requirement
than assuming the queries are sampled i.i.d. from an unknown distribution. This is because if
the queries are sampled i.i.d., then they also satisfy the random order requirement, and thus our
assumption is weaker. Furthermore, the random order model is also a popular assumption in many
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Figure 11: Results when varying the number of historical data points. Rows correspond to different
datasets: RouterBench (top), SPROUT (middle), and Open LLM Leaderboard v2 (bottom).

other online algorithms [30} [8]], since it typically allows one to go beyond worst-case hardness and
obtain meaningful theoretical guarantees. In practice, we perform robustness studies by changing the
query order and observe that our algorithm still outperforms baselines; see Appendix

e3(1+6
is naturally ahgned with high-volume practical settings. This is because Copt dep(end; on the total
number of queries |Q|, whereas our lower bound assumption scales as a function of M, the number
of LLMs. Typically, M can be thought of as a constant while |Q)|, the total number of queries, should
grow over time. Indeed, in all of our benchmarks, we observed that for every query j, the optimal
solution z7; (that is, the performance score achieved by the optimal solution on query j) satisfies
> ic[M] di; :v;?‘j >0.462 consistently on Open LLM Leaderboard v2, 0.639 on RouterBench, and 0.887

on SPROUT, meaning that in practice, C,; scales as (Q) (linear in )). On the other hand, for
constant € and « (e.g. we use o = 0.0001, e = 0.025 in our main setting), our required lower bound
is a polynomial of M (more specifically, it is close to a quadratic since ® may depend exponentially
in M but it is inside a logarithm). However, we think of M as a constant. For example, M < 18 in
all of our experiments. Even if M is large, it is reasonable to assume that it is orders of magnitude
smaller than |Q| (in our experiments, () is on the order of thousands to tens of thousands, and in
real-world systems, it can be much larger).

“C,pt is enough large” is practial. In Theorem L we assume that - Lopt > Q(M) which

sufficiently large, the original MILP can be closely appr0x1mated by its fractlonal LP relaxauog with
only a negligible optimality gap. We validate this in our main experiments over three benchmarks
with the observed optimality gaps being: (i) 0.016% on SPROUT, (ii) 0.086% on RouterBench, and
(iii) 0.3% on Open LLM Leaderboard v2.

Lastly, we remark that similar reasonable lower-bound assumptions have been made in prior work on
the online matching problem [[15} 18} 30], where it is commonly assumed that bids for the items are
small compared to the total budget.

“Estimating query features via similarity” is natural. The core intuition behind most previous
literature on predictive LLM routing [[19} 134,147,141} 43]], which trains a model-based predictor on
auxiliary datasets to estimate performance and cost of future queries, aligns with Assumption [T}
Specifically, these approaches assume that similar queries share similar routing-relevant features. If
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Figure 12: Results when varying the number of search candidates. Rows correspond to different
datasets: RouterBench (top), SPROUT (middle), and Open LLM Leaderboard v2 (bottom).
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Figure 13: Results using different embedding models. Each group of 9 subfigures corresponds to
one embedding: (a) gte-Qwen2-1.5B-instruct (subfigures 1-9), (b) SFR-Embedding-2_R (subfigures
10-18). Within each group, the first three subfigures correspond to RouterBench, the next three to
SPROUT, and the last three to Open LLM Leaderboard v2.

no such relationship exists, then historical data would be uninformative, and it would be impossible
to leverage historical data for effective future routing. In this case, no meaningful inference can be
made without directly querying the LLMs, and routing decisions degenerate to random selection.

One may argue that useful routing information can still be obtained by querying only a subset
of LLMs. This idea is echoed in works that adopt cascading strategies, where LLMs are queried
sequentially based on their observed capabilities on historical data [, 3]. However, these approaches
also fundamentally rely on a related assumption: LLMs that perform well on historical data or
benchmarks are likely to perform well on future queries. Furthermore, these methods introduce
significant latency and computational overhead, as they may consume substantial token budgets
before reaching the optimal LLM. This makes them impractical for high-volume online routing
scenarios with tight token budgets and low-latency requirements.
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Figure 14: Results when varying o and €. Rows correspond to different datasets: RouterBench (top),
SPROUT (middle), and Open LLM Leaderboard v2 (bottom).

If no useful routing information can be inferred from historical data, no matter whether it is related to
model capability or query features, then the system would need to query all LLMs to make informed
routing decisions. This is because in the worst case, under an adversary query targeting the LLM
query order in the system, all LLMs may present extremely low performance, except the last LLM. In
this situation, no strategy can be adopted to improve overall routing performance without assessing
all LLMs. Therefore, it is important and natural to establish our assumption or use a related notion,
e.g., Assumption ] that links historical information with future queries to obtain meaningful routing
information and improve routing performance.

E.2 Proof of Lemma[3
Lemma 2. Suppose that Vj € Q, and ¥j' € R;, we have ||EMB(j) — EMB(j')||2 < 0, and

opt

that Assumption|l|holds. Then, the offline approximate optimum C’Opt satisfies ’w‘ < O(9).

Proof. Let x; denote the optimal solution to Cyp¢, and x5 the optimal solution to C’Upt.
Case 1: C,p > C’Opt. We have
Copt — Copt S S dijaai; — 32, 0, dijai
Copt > 20 dij T
35 0i(diy — dij)wri
2o i dijTi
> Zl(uTlﬂ quR]. dik — dij)T14j
25 20 dijTi
Zj ZZ dijr1i4
> 20 dij T

IN
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where the second inequality follows from the fact that i > cfijxlij <> ; > cZiszij when z9;;
is the optimal solution to C’opt, and the fourth inequality follows Assumption

Case 2: C,p < C’opt. We have
S S dijaai; — 325 0, dijai
Z i Zl dijxlij
Z Z ( Z] x27,j
Z j Z dl]xllj
E Z (\R I quR dik dij)xzij

Z] Zz dljxllj
Zj ZZ dijCEuj

C(opt - Copt
Copt

IN

<10(9)

<0(9)

where the second inequality uses the fact that Z Yo dijraij < Z >, dijx1i; when xy;; is the
optimal solution to Cy,, and the fourth mequahty follows Assumptlon I and the final inequality

followsz i dijraij < Z > dijTi.
E.3 Proof of Lemmal

Lemma 3. Let ®© be an e-net and assume that

Copt > Q(onlog(M|<I>|/e)).
Smaz e3(1+9)

C’z(P) — eCA’l| < z;, then

Zz <0 (8 (1+ 5)copté/a)

Proof. Inspired by the techniques used in [8, 30, [15], we first prove that, under the given setting, the
partial performance score can be accurately estimated with high probability. Specifically, for each
1 € [M] and v € &, we evaluate the following probability

Pr(|Ci(P) — eCy| > z).

Observe that, for any j € P, the variance satisfies VAR[aciijxij (Y1 < I%IHCH |2, which implies
Yjep VAR[och,»jxij (v*)1 < €||C;||2. By applying Bernstein’s inequality, we obtain

Pr<|éi<P>ea|>zi)g2€Xp< T >

ellCill3 + 3 asman

We aim to find such z; that this probability is below a given tolerance 7. Set RHS as 7 and solve for
zi, we obtain

2log 2atspman + \/(glog 2 ASmax + 8elog %||C’Z||2 2 9 2 Ao
Zi = 9 710g aSmam + 2610g7”C1H2
T

Without affecting the analysis, we define z; = % log %asmaw + 1/2¢log %||C’Z ||3 for simplicity.

w
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), and use SC"”t > Q(O‘Mloggé(ljfgm/e)) we have

2 2 2 .
J— Z - - 112
Ei zi = EZ SlogTasmam+ EZ \/2610g7_||C1||2
1 2 .
< O(Mlog —asmaz) + E \/ 2€log —Cismaz
T - T

2 A
< O(E3Copt(1 +9))+ \/2M€ log =Csmax
T

< O(ECopi (14 8)) + O(€2/(1 +6))\/ Copi C/

§0<8 u+®amém)

Set 7 =¢/(

This completes the proof. O

E.4 Proof of Lemmalf3

Lemma 4. If Vi, it holds that | ) ;c p Gijij (V") — €32, Gijxij(v*)| < O(2i), then there exists a
control parameter o > 0, such that Vi, (1) |Ci(P) — €Ci| < z;, and (2) |Ci(P) — €E;| < O(z).

Proof. Define Mi = ZjEP ciijxij(fy*) — 62]‘ dijxij(v*) and Hi = ZjEP a?ijxij(y*) —
er d;jz;j(y*). Then, we aim to ensure the following two conditions hold: (1) a|M;| < z;,

If M; = 0, condition (1) holds trivially for any a > 0; similarly, if H; = 0, condition (2) also holds
for any o > 0.

Now consider the case where M; # 0, then it requires that o < Al M K and when H; # 0, we need to
have o < 2 Let I be the set of indice i for which H; # 0 or M; # 0. For each i € I, we have

[Hi -
ETE ) O(z) )
Vi, = J T it M; 20 Vi = d T if H; #£0
’ 00 if M; =0 ’ 00 ifH; =0

Let V; := min{V; 1, V; 2}, and set
o= inf{V;)
1€

Since V; > 0 for all ¢ € I, it follows that oo > 0. Therefore, we find a control parameter o > 0 such
that both conditions (1) and (2) are satisfied. O]

E.5 Proof of Lemmald

Lemma 5. Let ® be an e-net. If .~ Cort. > (oM 1%g((11\f(\;)1>|/e)) then Cogt (V) > (1 — O(€))Clst.

Proof. We first prove that V 1, it holds that max{é’i, Fi(v*)} — Cesti < O(z’) where

F;(v") == Bi + Z =% Gij )z (V)

From Equation (11}, it follows immediately that ), F;(v*) = F(y*).
Case 1: v > 0. In this case,

max{é’i, Fi(v")} = Cest,i = maX{C'i7 Ci + v (B Z Gijzi;(v"))} — min{ E;, C; }
which follows Cest ; = min{E;, CA’z} We consider two sub-cases separately:
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Sub-case 1.1: . §i;z;(v*) < Bi.
Then,

max{Cy, Fi(v")} = Cesti =% (Bi — Y §ijwi; (7)) < Bi = > digwis (")
i i

Due to complementary slackness conditions over observed queries P, we have jep GijTi; (V) =
eB;. Thus, it follows that

1> Gigwi (V) = €gijrii (v = €| Bi — gijri; (v)| < O(2)
JEP
O(zi)

€

= max{C}, Fi(v*)} — Cest.i <

Sub-case 1.2: Zj Gij%i; (V) > B;.
‘We obtain,
max{C;, F;(7*)} = Cesti = Ci — E;

From Lemma 3] it can be expanded and bounded as:

1 .
i*Ez‘:*E dijrij(v") — ely) <
C 6(jeoz i (V") — €E;)
O(z)

€

= max{éi, FZ(’Y*)} - Cest,i <

Case 2: v/ = 0. Then,
maX{C'i, FZ(’)/*)} — Cest,i = 07, — min{C’i, Ez}

When ; 9ijTij (v*) < Bj, this difference C; — min{CA’i7 E;} = 0. Thus, we only consider the
situation gijzi;5(7v*) > B;, leading to

R R R . O(z
max{Cj, F;(v")} — Cest,i = C; —min{C;, E;} < C; — E; < (2:)
€
which follows Lemma[3]
Lower Bound on C.,;(Y). From Lemma[d]and Lemma5] we have,
Cest,i(Y) = mll’l{él — OZ(P), Ei — Z OédAijxij (’y*)}
jEP
> min{(1 — €)C; — 2, (1 — €)E; — O(2)}
2 (1 - 6)Cvest,i - O(zz)
O(zi)

where second inequality follows that |C;(Y) — (1 — €)Cy| < 2 and |C; — E;| < .

€

Summing over all i, we get Cegt(Y) > (1 — €)Cest — Y, O(2;). Due to the fact that ), z; <
@) (62 (1+ 5)Copté/a>, we finally obtain

Cost(Y) > (1 — €)Cogy — O <e2 (1+ 5)co,,té/a)
= Cot(Y) > (1 — O(€))Clest

This completes the proof. O
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E.6 Proof of Theorem 2|

Theorem 1. For any given query set QQ with random arrival order, Algorlthmlsattsﬁes C‘”g >

1 — O(e + 0) assuming Cope > (oM leogg((lj\fgl/e) ), where Sz is the maximum performance score
obtained for any query, and @ is an e-net defined over all possible routing strategies x(7y).

Proof. Casey* € ®. According to Lemma[d]and[6] we have a union bound over ®. This union bound

implies that with probability greater than 1 — €, >, z; < O(e?y/(1 + 8)C,p:C) holds. Therefore,
we have that

max{C, F(y*)} — Cesr < %Z zi = max{C, F(v*)} — Coet <O (e (1+ 5)copté/a>

« When (1 + 6)Copt > C/a, we have max{C, F(7*)} — Cesr < O(e(1 + 6)Copr).

By weak dualtiy, we have Ceyy < aClpy < F(7*). Also, we have %ﬁi €[1-0(),1+
0O(9)] (from Lemma [3). Therefore, we obtain that (1 — O(6))Copr — Cest < O(e(1 +
0)Copt) = Cest/ae > (1 — O(e+0))Copt.

« When (1 4 6)C,pr < C/a, by the same weak dualtiy, we have C' — a(1 4 O(0))Copr <
O(eC' /), which further implies that C' < a11+o J) Copt. Therefore, we have a(1 +

(e)/a
(S)Copt — Cest < O(GC) = Cest/Oé > (1 — 0(6 + 6))Copt.

We can define Coy = >, min{T;, >, dijwi;(v*)}, where T; := Z; dijzii(y*) with t =
argmax 35 9w (Vs st 3% giwis(v7) < B

Furthermore, we have Cest/a = >, min{E; /o, >, aﬂjx”('y*)} where E;/a = Zf cfijxij(’y*)
with k = argmax Zf gijxij (’Y*), s.t. Zj Qijxij (’y*) < B;.

Let ¢ be the largest ¢ such that Z 9i%i;(7*) < B;. According to Assumption for each ¢ € [M],
we have

tr t
5))Zgij$z’j(’7*) < Zgz‘sz‘jﬁ* (1+0(s Zgzﬂ?w
J J
Therefore, we have

ZWU ) < Bi/(1-0(6)) = (1+0(5))B; (13)

Let k] be the largest k such that ZJ Gijzij(v*) < B;. Without loss of generalizability, assume
t¥ > k. Then, there exists a set of tail queries, A;, which makes Equation (13) exceed B; by at most
O(8)B;. Then, we define excess performance contributed by these tail queries as | jea, dijTij (7).
Because the query order is random, we consider the expected excess performance

A . 0(9)B;
B[ dijwi;(v*)] = 5. “Ei/a = O0(0)E;/a

JEA;

and the variance satisfies VAR[ ;. 4. dijzij(v*)] < O(6)||E;i/a||3. Using Bernstein’s inequality,
we have

r T () — al > e ox e?/2
P (|j§idw 1](7 )—O)E;/a| > e;) <2 p( OGIE: /a”z msmam)
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Follow Lemma , set RHS as ¢/(M|®]), use SC"‘” > QoM L%%(lj\fgl/e)) and union bound for all ~*
and ¢, then with probability greater than 1 —

Zez <0 <\/63 1+ 5)0(5)00,@/@2)

where we denote £ = ). E;.

Based on this, we have

—ZEi/a

t k;
< szij%(v*) —szijwij(v )

IN

ki
(1+0(5 ZZde” )=o) diriy
i

IN

J) ZEi/a + (14 0(9)) Z Zdijl"z‘j(W )

JEA;, i

IN

(8) Z E;i/a+ (14 0()(O)E/a + Z e;)

(0(5) 4O (\/63(1 +8)0( m/E)) ZE Ja
g(0(5)+o(\/63(1+5)0(5)/(1— (€+0)a ))ZE/@
< (0(5) +0 (63/2 5/a)) ZE Ja

where the penultimate inequality follows E/a > Cegt/ac > (1 — O(e + 6))Copy.

Finally, it leads to [Cqig — Cest/a| < (0(5) + 0 (63/2\/5/04)) Cest/a. Because Cest/av >
(1 — O(e+ 6))Copt, we obtain that ‘”9 - > 1—=0(e+9).

IN

Case v* ¢ ®. As @ is a e-net, there exists an 4 such that V 4, j, |2;;(7*) — ;(7")| < €. Therefore,
we obtain

Ci(v*, P) = eCi(v")] < |Ci(7/, P) = eCi(7)] + |Ci(y, P) = Ci(y", P)| + [eCi(7) — eCi(7*)]
< 2+ eCi(v, P) + Gy
<z +0(e C( )

Similarly, for each ¢, we have
1> dijzii () = OO Ei(y*) Jal < | Y dijai () — O()Ei(y') /ol
JEA; JEA;
+ | Z dijii(v) — Z dijai;(7*)
JEA; JEA;
+[0)Ei(v) /e — O(0) Ei(v") )l
<eite )y dijri(v) + cO@)Ei(v") [

JEA;
< e;+O(edE; (") /)

where, with slight abuse of notation, we use F;(~*) to denote the value computed under v* and
E;(") under +'.
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By summing over all ¢, and following Lemma 4] as well as the proof in case v* € ®, we obtain
Cost/a = (1= O(e + 6))Coptr and [Cuty — Cest/a] < (0(8) + O (¥/2/5]a) ) Conr /.

Therefore, Algorithmsatisﬁes that %Z >1—0(e+9). O
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