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ABSTRACT

Large language models (LLMs) have transformed natural language processing.
While their scale challenges fine-tuning downstream tasks, prompt engineering
offers a scalable, cost-effective solution to optimize their performance. Black-box
prompt learning is crucial for leveraging the generative abilities of LLMs, espe-
cially in the Language-Model-as-a-Service scenario, where parameters and gradi-
ents are inaccessible. LLMs generate output exclusively in the form of encoded to-
kens processed through their backbone network. Existing black-box prompt learn-
ing methods rely on outputs corresponding to a predefined label vocabulary—a
small subset of the token vocabulary of LLMs—to optimize prompts. However,
in real-world applications, some datasets lack specific label vocabulary, and even
manually assigned labels may perform inconsistently across different LLMs. To
address these challenges, in this paper, we propose a novel label-vocabulary-free
black-box discrete prompt learning method. Our approach employs an alternating
optimization strategy to simultaneously learn discrete prompt tokens and a learn-
able matrix that directly maps the outputs of LLMs corresponding to the token
vocabulary to categories. We provide theoretical convergence guarantees for our
method under standard assumptions, ensuring its reliability. Experiments show
that our method effectively learns prompts and outperforms existing baselines on
datasets without label vocabulary.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language processing (NLP) with their
remarkable performance across various tasks, including text classification, machine translation, and
dialogue (Touvron et al., 2023; Bubeck et al., 2023; [Brown et al.l [2020). For a given task, the
user provides natural text input, which is tokenized according to a predefined token vocabulary
for processing by a pre-trained LLM. The model then computes the most probable tokens from
the vocabulary and decodes them back into human-readable text as output. A prompt, typically
a sentence appended before or after a query input, can enhance the output quality of LLMs by
guiding the model towards task-specific behavior without requiring additional training (Gao et al.,
2021). This technique leverages the inherent knowledge embedded within pre-trained models to
elicit desired responses and provides a cost-effective alternative to directly training or fine-tuning
LLMs, making model adaptation both effective and efficient (Liu et al., | 2023a; |Chang et al., 2024).

Currently, companies developing LLMs typically offer only online application programming inter-
faces (APIs) for user interaction to safeguard their core technologies, a setup known as Language-
Model-as-a-Service (LMaaS). In this context, users lack direct access to the model’s parameters and
gradients, resulting in an inevitable black-box scenario (Sun et al.| 2022b). Within such a scenario,
prompts become the only variables available for optimization (Diao et al., [2023). Consequently,
optimizing prompts relies solely on probability evaluations from the LLM’s API, necessitating the
use of derivative-free methods.

Building upon these insights, several black-box prompt learning methodologies have emerged,
demonstrating strong performance in text classification tasks. Continuous prompt learning ap-
proaches, such as BBT (Sun et all [2022b)), optimize continuous prompts that are prepended to
the input text through derivative-free optimization within a low-dimensional embedding subspace.
Furthermore, SSPT (Zhang et al.,|2024) enhances this framework by employing subspace learning
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and selection strategies to identify optimal low-dimensional subspaces within the BBT approach.
However, continuous prompt learning exhibits limited applicability across diverse tasks. For in-
stance, it cannot be directly applied to API prediction tasks that require discrete inputs. In contrast,
discrete prompt learning methods, exemplified by BDPL (Diao et al., 2023)), conceptualize prompt
learning as a discrete token selection problem. In BDPL, prompt tokens are sampled from a cate-
gorical distribution and optimized using a policy gradient algorithm. Specifically, BDPL generates
prompts based on their associated parameters, concatenates the tokenized prompt vectors with the
tokenized sentence vectors, and feeds them into a LLM. The LLM’s API then provides probability
estimates for a predefined label vocabulary, which constitutes a small subset of the LLM’s overall
token vocabulary. These probability estimates are subsequently combined with one-hot label vectors
to compute the objective function, which is then optimized using black-box optimization techniques.

While existing black-box discrete prompt learning are effective in scenarios with predefined label
vocabularies, they face significant challenges when applied to real-world contexts where the label
vocabulary is not predefined or may not align well with the LLM’s token vocabulary. For instance,
shopping websites generate data with rating preferences based on user-provided star ratings, such as
those in the Amazon Books dataset (McAuley et al.| 2015). These ratings are numerical values that
do not directly correspond to the appropriate tokens within an LLM’s vocabulary. As a result, it is
not possible to directly obtain probability estimates for task categories from the LLM. Furthermore,
when label words are missing, it is also cuambersome and difficult to use manual annotation to render
existing black-box prompt learning methods effective across various downstream tasks. Therefore,
a key problem remains underexplored: how to optimize discrete prompts in black-box scenarios
with missing label vocabulary.

In this paper, we propose a novel label-vocabulary-free black-box discrete prompt learning method
(LEAP) to address the problem. Specifically, we introduce a trainable matrix M that serves as a
learnable mapping mechanism, directly associating the LLM’s output tokens with the desired task
categories. This matrix effectively bridges the gap between the LLM’s token vocabulary and the
task-specific numerical value labels, allowing for flexible and adaptive prompt learning. Simultane-
ously, we employ an unbiased variance-reduced policy gradient approach to optimize the discrete
prompt tokens. By leveraging policy gradient, we can iteratively refine the prompts based on the
outputs from the LLM, ensuring that the prompts evolve in a direction that enhances task perfor-
mance. A notable feature of our method is its end-to-end alternating optimization framework, which
jointly learns the mapping matrix M and the prompt parameters. This alternative optimization strat-
egy ensures that both components evolve in harmony, leading to more coherent and effective prompt
learning.

To the best of our knowledge, no previous studies have discussed how to learn prompts in the con-
text of missing label vocabulary within the LMaaS scenario. We highlight the contributions and
advantages of our work as follows:

* We introduce LEAP, a label-vocabulary-free black-box discrete prompt learning method that
employs an innovative end-to-end alternating optimization framework. This framework jointly
learns prompts and an output mapping matrix for LLMs, allowing both components to evolve
in harmony and enhancing LLMs’ adaptability in scenarios where label vocabulary is missing.

* We provide a rigorous convergence analysis of our optimization framework, demonstrating that
LEAP achieves a convergence complexity O (}4) under standard assumptions. Our theoretical
analysis highlights that the variance occurring during the alternating process is controlled by the
prompt’s sampling times and mini-batch size, thereby guaranteeing the efficacy of our approach
in label-free prompt learning.

* We conduct an extensive evaluation of our approach across multiple LLMs to ensure its gen-
eralizability. The experimental results show that our method outperforms baseline methods,
highlighting its effectiveness in scenarios where label vocabulary is missing.

2 RELATED WORK

2.1 PROMPT LEARNING

Prompt learning has recently gained prominence as a powerful paradigm in natural language pro-
cessing, leveraging pre-trained language models to tackle a wide range of downstream tasks with
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minimal task-specific training data. Early work in this field centered on prompt engineering, where
manually crafted prompts were employed to guide language models toward producing desired be-
haviors (Petroni et al.l 2019; |Schick & Schiitzel 2021). These handcrafted prompts, while effective,
often necessitated considerable expertise and domain knowledge. To mitigate this limitation, re-
searchers developed prompt tuning techniques that automate the optimization of prompts by learn-
ing optimal representations. Notable works in this area, such as P-tuning (Liu et al.,|2023b), Prefix-
tuning (L1 & Liang, |2021), P-tuning V2 (Liu et al.| 2021)), and Prompt-tuning (Lester et al.,|2021),
focus on learning continuous embeddings of soft prompts with tunable parameters.

2.2 BLACK-BOX PROMPT LEARNING

Despite the success of prompt tuning in white-box settings, where model parameters and gradients
are accessible, there has been increasing interest in black-box prompt learning. This approach is
particularly pertinent in scenarios where language models are offered as services via APIs, restrict-
ing user access to the model’s internal mechanisms. In these black-box environments, the primary
challenge lies in optimizing prompts based solely on the model’s outputs, without the capability to
directly modify or fine-tune the model’s parameters.

Several significant works have been proposed to tackle this challenge, which can be primarily cat-
egorized into two paradigms: continuous prompt learning and discrete prompt learning. BBT (Sun
et al.,|2022b) and BBTv2 (Sun et al., [2022a) utilize Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) to optimize continuous prompt embeddings within a low-dimensional embedding
subspace. SSPT (Zhang et al.l |2024)) incorporates subspace learning and selection techniques to
identify the optimal low-dimensional subspace within BBT. However, the learned continuous prompt
embeddings are less interpretable compared to discrete prompts and cannot be directly applied to
prediction APIs that only accept discrete inputs. This limitation significantly restricts their practical
usability in many real-world applications.

In contrast, black-box discrete prompt tuning emphasizes the optimization of human-readable and
interpretable prompts, which are directly applicable in scenarios where only discrete text inputs are
accepted, such as prediction APIs. Discrete prompts offer the dual advantages of interpretability and
deployability in real-world applications without necessitating additional processing steps. Building
on this foundation, RLPrompt (Deng et al., 2022) employs reinforcement learning to optimize dis-
crete prompts in black-box settings. By framing the prompt optimization process as a reinforcement
learning problem, RLPrompt iteratively refines prompts based on feedback derived from the model’s
outputs. GAP3 (Zhao et al., [2023)) is a genetic algorithm that evolves discrete prompts from empty
templates by leveraging predictive probabilities from large pre-trained language models, thereby
eliminating the need for manual prompts or API injections. Additionally, BDPL (Diao et al., [2023)
utilizes the policy gradient method to optimize the categorical distribution of prompt vocabularies.

3 METHODOLOGY

In this section, we first introduce the proposed alternating optimization framework from an overall
perspective and explain how it facilitates black-box discrete prompt learning without relying on
a label vocabulary. Next, the unbiased variance-reduced policy gradient descent for optimizing
discrete prompt tokens and the proximal gradient descent for optimizing the mapping matrix M are
given in detail, respectively. Finally, we provide a detailed description of the algorithmic pipeline.

3.1 OVERALL FRAMEWORK

Notations. Let D = {(s1, 1), (S2,%2), .- -, (Sk,yx )} denote the training dataset with cardinality
K. Foreach k € {1,2,..., K}, s; represents an input training example (e.g., a piece of text),
and y € {1,...,C} denotes its corresponding label, where C' is the number of categories. We
define Tok(-) as a tokenizer that converts input text into a token vector, and let z;, = Tok(sy)
denote the k-th token vector. The label yj is represented as a one-hot encoded vector y;. Let
D £ {dy,ds,...,dx} denote the set of tuples composed of token vectors and their corresponding
one-hot labels, where dj, = (x, yi) represents an individual sample. M = (mg.)pxc signifies
the mapping matrix.
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Black-box Discrete Prompt Learning. Discrete black-box prompt learning aims to learn a discrete
textual prompt consisting of n tokens, denoted by ® = ¢1...¢;...0,, = V [j1] ...V [Ji] ...V [jn], Where
V= [y])j\[:1 represents the vocabulary list for the prompt, and ¢; = V [j,] is the i-th token in D,
corresponding to the j-th token in V. We assume that each prompt index j; follows an independent
categorical distribution, i.e., j; ~ Cat(p;), where the random variable j; is sampled according to
the probability distribution p; = [p; 1, pi2, ..., pi,n] over the N token indices. Here, p; € C and
C = {p:|pll; =1,0 2 p < 1}. Given the independence of each p;, the joint probability of the
entire discrete prompt is given by P(®) = [\, p; j,-

Missing Label Vocabulary Problem. Although black-box discrete prompt learning can effec-
tively optimize prompt without requiring an in-depth understanding of the internal mechanisms of
LLMs, existing black-box prompt learning approaches rely on outputs aligned with a predefined
label vocabulary to optimize prompts. However, in practical applications, certain datasets may lack
specific label vocabulary, and even manually assigned labels can demonstrate inconsistent perfor-
mance across various LL.Ms. Therefore, our objective is to perform discrete, label-free prompt
optimization within black-box scenarios. Specifically, we employ a mapping matrix M that di-
rectly maps the outputs of LLMs corresponding to their token vocabulary to predefined categories.
Additionally, incorporating ¢, -regularization into the mapping matrix enhances sparsity, thereby en-
abling more efficient selection of the most relevant features within M. We define the loss function:
L(®, M; D) £ L (Softmax (G(®, X)) - M,Y'). The objective function can be expressed as:

min F(®, M; D) = Eq [L(®, M; D)) + r(M). (1)
where G represents the LLM model, £ denotes the loss function, and 7(M) = X - ||M||; denotes
the ¢1-regularization applied to M.

Alternating Optimization. We propose a Label-vocabulary-free Black-box Discrete Prompt Learn-
ing (LEAP), an end-to-end alternating optimization framework specifically designed for prompt
learning. Initially, we conceptualize the prompt learning process as a discrete token selection prob-
lem, where appropriate prompt tokens are sampled based on the classification distribution. This
approach allows for the optimization of prompt tokens independently from the parameters and gra-
dients of the pre-trained model. To enhance stability, we employ a unbiased variance-reduced policy
gradient estimator to optimize the categorical distribution of prompt ®, thereby mitigating the in-
stability caused by the high variance inherent in prompt sampling. Subsequently, we optimize the
mapping matrix M by incorporating ¢;-regularization terms that promote feature sparsification and
reduce redundant information. Our alternating optimization framework alleviates the complexity
associated with jointly optimizing ® and M, enabling the focused optimization of each parameter
individually and thereby improving the overall performance of the model.

3.2 UNBIASED VARIANCE-REDUCED POLICY GRADIENT DESCENT

Gumbel-Softmax reparameterization. We re-parameterize the categorical distribution Cat(P) of
the prompt with the Gumbel-Softmax (&) function (Jang et al.,[2016):

exp (lOg(aiﬁ)"l‘gi,j’)

Z;V=1 exp (log(ai,;a)Jrgi,p )

where P = (pij), . n € R"*N is the sampling probability matrix for ®, «; ; > 0 is learn-

able parameters and o € R™*Y, 7 > 0 is the temperature parameter, g; ; is sampled from the
Gumbel(0, 1). The reparameterization of the categorical distribution uses the Gumbel-Softmax
technique to mitigate bias (Lemma [3) that is typically associated with the direct optimization of
probability distributions in (Diao et al.,|2023)).

pij = S0y ;) = (2)

Policy Gradient Estimator. Leveraging Gumbel-Softmax reparameterization and policy gradient
estimator, to optimize loss with the forward propagation, E¢ [£(®, M ; D)| can be expressed as:

n

Eopus(e) [L(@,M;D)] = Y - > |L(®M;D)-[[P@)]|- (3)

$1~S(ar) dn~S(an) i=1
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Figure 1: Our proposed framework for label-vocabulary-free black-box discrete prompt learning.
We first concatenate the prompts ¢ with each input token x in the mini-batch to create the query
input for the LLM. The prompts are sampled from the prompt vocabulary according to a categorical
distribution, with the probabilities of this distribution derived from the Gumbel-Softmax operation
applied to the parameter o«. Subsequently, we obtain the probabilities output from the LLM API.
Finally, we utilize a sparsified matrix M to directly map the LLM’s outputs to the corresponding
categories. Update Mechanism: Update o (yellow gear)-unbiased variance-reduced gradient de-
scent is employed to update cx, using the mapping matrix M from the recent update. Update M
(blue gear)-proximal gradient descent is applied to update M, where the prompts are sampled based
on the categorical distributions generated from the current update of cx.

Since the optimization variable is «, we can redefine the objective function @) as follows:
m}\r/}F(a,M,D) éE<I>~$(oz) [‘C<(P7MaD)] +T(M) “4)
o,
Then, we can estimate the gradient of o; as follows:
Vo, F(a,M;D) = VMEQNS(Q)[E(@, M;D)]
n
= > Y |L@®M;D)-Va, [[P(e)
p1~S(a1) pn~S(an) i=1

= > - Y (L@ M;D)-Va,P(e)]

p1~S(e1)  pn~S(an)

= > Y [L(® M;D) Va,log(P(¢:))  P(:)]

¢1~S(a1) ¢nNS(an)
=Eoos(a)[L(P, M;D) - Vg, log P(¢:)]. 4)

Considering ¢; = V[j;], we can give explicitly V o,log P(¢;) as follow:

TP G g
Va,, logP(¢i) = Va, ; logp;j, = {_mljj] PR (6)

Unbiased Mini-batch Stochastic Variance-Reduced Policy Gradient Estimator. Let B be the
mini-batch sampled from ¥ and B is the batch size, then the mini-batch stochastic variance-reduced
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policy gradient is computed:
Ia

1
Lavg = 7 2 L@, M3 B) ()
I
A 1 =
Vo fa(o M) = ———= > (L(®", M, B) ~ Lavy) - Vo, l0g P(¢1), (8)
@ r=1

where {@T}fil are sampled independently from V through categorical distribution Cat(S(cx)).
Consequently, when the learning rate is set to 7, the update of o; can be formulated as follows:

Q41 = Ot — Na - @a,;fB(ata Mt)ai =1,.,n. 9

3.3 PROXIMAL GRADIENT DESCENT FOR THE MAPPING MATRIX

First, we independently sample {@S}ﬁfl from V using the categorical distribution Cat(S(cx)), and
compute the gradient of Eg.s(a) [£(®, M; D)] with respect to M as follows:

Ing
~ 1
s=1

We subsequently apply ¢;-regularization to induce sparsity in M. Specifically, we note (M) is
convex and sufficiently simple to ensure the existence of its proximal mapping:

_ - 1 2
prox, . ..[M] argmﬁn{Qm\/IHAMH +1"(A)}. (11)

Consequently, when the learning rate is set to 7z, for each iteration ¢ = 0,...,7" — 1, we employ
proximal gradient descent to update M::

My € prox,, ., {Mt —nar - Vi fa(oug, Mt)} . (12)

3.4 ALGORITHMIC PIPELINE OF LEAP

By alternately updating o and M, the proposed algorithm is presented in Algorithm[T]and a single
update round is illustrated in Figure[I] The training process for each iteration is as follows. First,

a mini-batch B and a set of prompts {<I>T}£°:‘1 are obtained by sampling from D and Cat(S(«)), re-
spectively. The corresponding losses are then computed, and ¢ is updated using unbiased variance-
reduced policy gradient descent. Next, the updated o is employed to generate a new set of prompt

samples {@‘“}ifl, after which M is updated via proximal gradient descent. This process completes
the updates of both o and M.

4 CONVERGENCE ANALYSIS

4.1 ASSUMPTION

Assumption 1 (Bounded variance of stochastic gradients). The stochastic gradients is unbiased and
we assume the variance of stochastic gradients for o; and M is bounded:

2
E(apyn)eD ||V fr(@, M) = Eg, y)ep [Va, fi(a, M)]||, < 0; (13)

2
E(apyn)ep ||Varfilo, M) = B, yoen [Varfilo, M|, < oig. (14)

Assumption 2 (Lower Boundedness for objective function). Given an initial point (oo, M),
(aty, M) denotes the global minimum of F (o, M; D), there exists /\ < 0o such that

F(ag, My; D) — Faw, M,; D) < A. (15)
Assumption 3 (Bounded Loss). We clip loss function with a constant G:
|£(®,M;D)| < U. (16)
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Algorithm 1: Label-vocabulary-free Black-box Discrete Prompt Learning (LEAP)

Input: Training dataset D;
Learning rates 1o, and npz;
Sampling times I, and Ips.
Output: The learned parameters cvr and M.
Initial parameters oy and M,
fort=0,1,..., 7T —1do
B + split D into mini-batch of size B
// Update «
forr=1,2,...,15do
L Get {L(D], M; Bt)}£i1 by sampling {®} i"__‘l from V through Cat(S (o))
for:=1,2,...,ndo
Lavg = i 27]‘;1 L(P7, My; By)
vaifl?(ata M;) = ﬁ ZiO:H (,C((If, M;y; By) — 'Cavg) Ve, log S(oy)
Q41 = Qi1 — Na - Va, (e, M)
// Update M
fors=1,2,..., I do
L Get {L(Pf, 1, My; Bt)}ifl by sampling {®;, }ifl from V through Cat(S(c11))

Vi fa(ousr, My) = V(72 S0 £(95,,, M, By))
My € prox,, ., [Mt — 0 - Varfa(ous, Mt)}

Assumptions [T and [2| constitute the foundational premises for addressing non-convex optimization
problems using stochastic gradient descent, as demonstrated in prior studies (Ghadimi & Lan, 2013;
Hazan & Kale, 2014} |Xu et al., 2019; |L1u et al., 2020). AssumptionE]ensures that the loss function
remains bounded by regulating the loss during the estimation of the I, -th and Ip-th samples when
updating o and M. This boundedness is essential for facilitating rigorous theoretical analysis. It
is important to recognize that loss functions, such as the cross-entropy function, can potentially
become unbounded. In practical applications, these loss values are typically clipped to maintain
boundedness.

4.2 CONVERGENCE ANALYSIS OF LEAP

Theorem 1 (Convergence of LEAP). Suppose Assumption [I| 2| and 3| hold, for iteration t =
0,..T —1 seta;; > > 0and |mgq.| > & > 0, 7 > 0 is the temperature parameter,

fo(a, M) is smooth for o with smooth constant Lo, = %(gjl) and lipschitz smooth for M

1 2

with smooth constant is Lpr = & Oa and 0%, are the variance of the stochastic gradient for o

and M, G2, = 8%;? and 63, = é% are the variance of prompt sampling for o and M. We define

Nmin = MIN{Ne, Nrg} and Nimas = max {na, Nar}, and run Algorithmmwith 0<na < 7.

0<77M<ﬁandq,,:”’"”

< 00, then the following inequality holds:

Nmin

1 T-1

7 2 (IVasplan M| + llg (cuwer, M) 3)
t=0

< 2A 2”%&:21 4%&%\/1 n 2nqnor(21 + 4%‘7%\/1

where V o, fp (o, My) is the full gradient for o, and gp (oe+1, My) is the gradient mapping of full
gradient for M (24).

Remark 1. We clip the lower bounds for a; ; and mg . respectively: 1) The clipping for v ; is
because the Gumbel-Softmax function has the term log (c; ;) (2), which naturally requires ; ; > 0,
which is necessary for both the experimental setup and theoretical analysis. 2) The clipping for mg, .

a7)
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is essentially guaranteeing that the lower bound of Zle [Gk.d - Md,c+] is not 0 in 1i of Lemma
and of Lemma El when ZdD:1 (gkyd . md7c*) = 0, the cross-entropy loss function
L(®,M;dy) = —yy, - [log(G. - M)]—r = —log {Zle (Gk,a - md7c*)} appears to be infinity, and
hence we bound the lower bound of |mg ¢|.

Corollary 1 (Convergence complexity of LEAP). Suppose Assumption [I| andF hold, and run

Algorithmﬂwith Na = L%(O < <l),nm= ch/[ (0 < ¢1 <1), Nmin = min L%, LCL Ay =
2 3 2 F2 - ~2
max{i—;, % < o0, B = anna"‘:;mq"UM, Ia _ \/Sneqnaa, IM — 16q:20M and T = mfﬁe% then
the output of Algorithm [I| satisfies:
=
2 2
=3 (IVafolan Ml + llgp (s, M) < ¢ (18)
t=0

Thus, the total oracle complexity for LEAP is O (E%)

Proof skeleton: For the LEAP algorithm: We begin by establishing the Lipschitz smoothness
(Lemma (1] and [2)) of the objective function with respect to the parameters o and M, based on
the clipped loss function (Assumption [3). This Lipschitz smoothness is a crucial prerequisite for
analyzing the nonconvex optimization problem. Subsequently, we examine two sources of stochas-
ticity in the alternating optimization process: the stochasticity introduced by mini-batch sampling
(Assumption [T)) and the randomness inherent in prompt sampling (Lemmas [3]and d). Building on
these foundational assumptions and lemmas, we then prove the convergence of the LEAP algorithm
(Theorem |T)) and analyze its convergence complexity (Corollary[T). The proof of Lemmas 1-4 are
in the Appendix The proof of Theorem [I]and Corollary [T]are in the Appendix

5 EXPERIMENTS

5.1 EXPERIMENT SETUPS

Datasets. To evaluate the performance of our method, we conduct experiments using eight datasets:
BOOK (McAuley et al.l 2015), CoLA (Warstadt et al., |2019), ELEC (McAuley et al.| |2015),
QNLI (Wang et al.l [2019), RTE (Dagan et al.,|2005), SNLI (Bowman et al., 2015), SST-2 (Socher
et al.L|2013)), and AG (Zhang et al.,2015). These datasets cover a variety of standard language under-
standing tasks. Detailed descriptions of these datasets are given in the Appendix[A.6] We follow the
experimental settings in (Diao et al.|[2023) to simulate realistic few-shot learning scenarios. Specif-
ically, we randomly sample ¢ examples from each class in the original training data to construct the
training set and use a separate set of ¢ examples for the development set. The original development
set is designated as the test set. Accuracy is employed as the evaluation metric across all datasets.

Baselines. We consider the following black-box prompt learning methods as our baselines:

* Manual Prompt (Manual): directly conducts zero-shot evaluations on pre-trained, fixed
LLMs without engaging in any additional learning or fine-tuning processes.

* GAP3: leverages additional LLMs to generate prompts from an empty template and employs
a genetic algorithm to select the most effective prompts (Zhao et al., [2023).

* BBT: projects the original space onto a subspace via a random matrix, after which the prompt
is optimized within this reduced-dimensional space (Sun et al., 2022b)).

* SSPT: extends the BBT optimization paradigm by incorporating subspace learning and selec-
tion techniques to identify the optimal ultra-low-dimensional subspace, thereby replacing the
previously utilized random subspace (Zhang et al., 2024)).

* BDPL: frames the prompt learning problem as a distributed optimization task and optimizes it
using policy gradient methods (Diao et al.| [2023).

Implementation Details. We implement our code E] using Python 3.9 and PyTorch 2.4, conducting
experiments primarily on a computing cluster with NVIDIA A40 GPUs. Detailed information re-

!The vocabulary V is constructed following Diao et al.{(2023)
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garding the hyperparameters and templates used in the experiments can be found in the Appendix
Our code is available at the following URL: https://anonymous.4open.science/t/LEAP.

5.2 MAIN RESULTS

We use RoBERTa-large [Liu et al.| (2019), GPT2-XL Radford et al.| (2019), and Llama3 |Al@Meta
(2024) as our primary backbone black-box LLMs. These models comprise approximately 355 mil-
lion, 1.5 billion, and 8 billion parameters, respectively. The weights of the pre-trained models are
obtained from Hugging Face. To assess the effectiveness of our proposed approach, we compare
it against baseline methods under prompt length configurations of 20 and 50 tokens. Since the
baselines cannot effectively compute the objective function where the label words are missing, we
employ the interaction LLM to generate usable label words for them. Specifically, we first divide the
training set by category and then input each category in batches into the LLM. Finally, we count the
occurrences of the most probable tokens in the model’s token vocabulary outputs for each category
and select the token with the highest count as the label word for the corresponding category’s data.
The text classification accuracy results of LEAP and baselines are reported in Table [T} Table 3] Each
result is based on three Monte Carlo experiments. It can be seen that our approach shows a clear
advantage compared to all the prompt learning baselines. For example, on the SST-2 dataset, LEAP
achieves an accuracy of 78.40% for the RoBERTa-large model using a 20-length prompt, which is
notably higher than the second-best method, BBT, at 61.28%. In the setting of the prompt length is
50, LEAP maintains its superiority. We include an intuitive display of the prompt words learned by
our method in Table[d] More results are given in Appendix

Table 1: Comparison results of the four baseline methods and our method (LEAP) on RoBERTa-
large in the percentage of average text classification accuracy =+ standard deviation.
Length Method | BOOK CoLA ELEC QNLI RTE SNLI SST-2 AG
- Manual 94474167 50914316 71.67427.01 50.2740.00 47174560 36.0010.00 53.521839 35.4146.10
GAP3 190831096 55.67219.05 416325519 49585016 48.6215 60 32.9050.08 49161155 25124055
BBT (94404182 53.184346 71.1342858 50.1041.00 53.4343.75 37.0240.50 61.28415.38 36.7546.43
20 SSPT (94.3311.88 45.32412.35 68.56430.97 48.2640.12 51.5045.40 34.43410.99 58.56416.53 37.7145.01
BDPL 94.231225 55.484110.12 72.15422.50 48.64+158 49.104433 34.9410.13 59.94113.56 37.47+6.06
LEAP 9523187 56.3419514 9297070 51141087 54.27139s 37.1611 84 784011153 55.01.9 12
GAP3 90.8310.96 55.67+19.65 41.63135.19 49.5610.16 46.571451 32.9010.08 49.164153 25.1240.55
BBT [94.3042.27 53.404417 65.10127.51 50.4210.51 52.3542.01 37.73+1.85 64.18111.34 37.7545.34
50 SSPT (94.3049.36 43.944055 69.00431.320 49.664070 49.7044.64 35.434073 52.1049.89 37.6544.73
BDPL 94.434524 55.194860 70.32407.62 49.4241 78 51.384291 33.904998 60.82417.07 37.9943.71
LEAP 95431197 56.34.195 14 93.53.050 50.791029 52.831362 37.8311.17 84.82.531 56.20.5 9

Table 2: Comparison results of the four baseline methods and our method (LEAP) on GPT2-XL in
the percentage of average text classification accuracy =+ standard deviation.
Length Method| BOOK CoLA ELEC QNLI RTE SNLI SST-2 AG
- Manual 53~27i10.71 53~60i11,88 63.29i0.00 49‘47i1.85 49‘82i0.00 33‘78i1.12 55-62i3.64 25-39i0,38
GAP3 [38.55+17.63 43.599421.78 61.311053 50.1810.62 47.29+0.00 33.95+0.77 52.651285 25.0940.25
BBT [38.43146.31 55.67421.07 13.4340.63 50.184062 47.2940.00 33.124023 51.6149070 25.014001
20 SSPT |40.13444.83 956.38415.71 18.8810.23 50.1840.62 47.2840.00 33.0740.23 48.474573 26.2549.69
BDPL [35.53418.47 49.6011361 36.56424.99 49.8710.45 45.8541.44 33.031068 54.894332 25.211¢.79
LEAP (42.93.6.12 57.56190.04 71.6111959 50.2119.00 54.7542.92 35.241062 56.00L11 95 61.007 01
GAP3 [38.55+17.63 43.599401.78 61.3140.53 50.1810.62 47.2940.00 33.9510.77 52.651285 25.0940.25
BBT 39.07145.76 56.2212129 13.39+030 50.1810.62 47.29+0.00 33.13+0.23 50.5411.78 24.9810.08
BDPL 31.17411.08 57.11419901 32.72190.07 49.9241 08 46.691266 33.541038 51.95109s8 25.4110.80

5.3 ABLATION STUDY

In our method, we utilize two core techniques—#¢;-norm and Gumbel-Softmax—to optimize the
prompts and the M matrix. To further demonstrate the effectiveness of these mechanisms, we
conduct an ablation study. The experimental results are presented in Figure 2] It is evident that both
¢1-norm and Gumbel-Softmax positively influence our approach.
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Table 3: Comparison results of the four baseline methods and our method (LEAP) on Llama3 in the
percentage of average text classification accuracy =+ standard deviation.
Length Method| BOOK CoLA ELEC QNLI RTE SNLI
- Manual 49~30i33.26 47~75j:16.34 73~94j:16.54 49.953:0‘00 53-67i0.83 33~73j:1.72
GAP3 [60.21431.02 50.11416.50 75.57+18.84 90.5440.00 47.29+0.00 32.87+0.00
BBT [28.40+16.32 48.961+16.40 67.62134.00 50.241035 47.7712.18 33.9211.39
20 SSPT [26.93115.59 52.09+17.30 64.18+40.99 50.5410.00 47-29+0.00 33.51+0.55
BDPL (33.131528 56.154653 62.20417.93 50.5810.46 52.35492.37 33.7640.33
LEAP [61.60.192¢ 60.9111599 76.641075 50.78.1257 53.071166 35.894+1.43
GAP3 [60.21431.02 50.11+16.50 75.57+18.84 50.54+0.00 47.29+0.00 32.87+0.00
BBT W{2.60129.68 53.08+1588 69.561549 48481229 47.531324 33.9241.39
50 SSPT [34.90123.73 52.92+16.95 70.52430.64 50.5410.01 47.29+0.00 33.5110.55
BDPL {40.40+11.36 52.16+564 74.83+1361 50.5110.69 51.50+2.12 33.99+0.80
LEAP [75.60- 10 59 573010 99 806051411 50694 15 51624057 34.284, 6s

SST-2
48.2045.36
491244 52
49.2441 584
49.0442 45
48.17+5.08
53.86.13.28
49.1244 52
49.580.43
51114247
48.4314.44
52331563

AG
28.0242 68
25.2848.15
27.77 12,00
25.6411 52
30.5942 93
69.935.76
25.2845.15
28.00+1 .82
26.7641.46
30.0544.07
61915 4;

Table 4: Example prompts of our method on SST-2. X denotes the samples that are incorrectly
predicted, while v'denotes those that are correctly predicted after applying the learned prompts.

Model Prompt+Sentence Prediction
The turkey would’ve been a far better title. X
RoBERTa only new been an enough a action more us enough and good movies by v
what he up to a own The cold turkey would’ve been a far better title.
GPT2-XL " makes on we enough this Jittle your just the from he your out he are are Y
or be he their The turkey would’ve been a far better title.
Llama3 " but make made that by own no great as one humor time will most for - v

about their are your who The turkey would’ve been a far better title.

RoBERTa-large (Length: 20) GPT2-XL (Length: 20)

Llama3 (Length: 20)
60 60
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5 3
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S
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QNLI SNLI
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Ours w/o £1-norm w/o Gumbel-Softmax B w/o £1-norm & Gumbel-Softmax

Figure 2: Ablations of the using components, ¢1-norm and Gumbel-Softmax, on RoOBERTa-Large,
GPT2-XL, and Llama3 with the prompt lengths of 20 (top) and 50 (bottom), respectively.

6 CONCLUSION

In this paper, we propose LEAP, a novel solution to the critical challenge of black-box prompt
learning within the context of LMaaS, particularly in scenarios where label vocabulary is missing.
Our method employs an alternating optimization framework to jointly learn discrete prompt tokens
and a mapping matrix that converts the full token vocabulary outputs of LLMs into task-specific
categories. Notably, LEAP is the first work to effectively learn discrete prompts without relying
on a predefined label vocabulary. Theoretical analysis confirms the convergence of our proposed
algorithm under standard assumptions, ensuring its reliability. Extensive evaluations across various
LLMs demonstrate the superior performance of our approach.

10
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A APPENDIX

A.1 NOTATIONS

[I-1ly
[I-1l
2 {bimpitiy
E

{er}2,
Epoyim
]E(fckvyk)ED
Eg
Efornsye,

{2°~S()} M
D={X,Y}
X = {wk}le
Y = {yk}f:1
Ty,

Yk

B = {iﬂk7yk}kB:1
n

D= ¢1...0s..00n,
®i

N

V=[], V[, .. V[N])
P = (p1;...pi; --Pn)
pi = (pi,h -Pi,js ~--pi,N)

o= (aij), N

N

M = (md)c)DXC

Ing

Uhys

Symbols

Row vector
Column vector
Transpose operation
£1-norm

{5-norm

Abbreviation for >, -3,

Abbreviation for E 4. ¢ (@)} e,

Abbreviation for ]E{<1>s~5(a)}£1:\/11

Expectation for the k-th sample in D

Expectation for the mini-batch

Expectation for prompt sampling when updating ¢

Expectation for prompt sampling when updating M

Variables

Training dataset

Input sentences in D

One-hot encoded vectors in D

k-th input tokens vector

k-th one-hot encoded vector

Mini-batch

Prompt length

Discrete prompt

1-th prompt token

Vocabulary size

Prompt vocabulary

Prompt probability matrix

Prompt probability vector for the i-th token
Learnable parameter in Gumbel-Softmax
Temperature parameter in Gumbel-Softmax
Sampling times of prompt when updating o
Learning rate when updating o

Length of LLM’s vocabulary

Number of categories

Mapping matrix

Sampling times of prompt when updating M
Learning rate when updating M
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Cat(+)

b~ S(a)
Softmax(-)
S()

G- )

ﬁ( , )
L(®, M;dy)
fo(a, M)
f(o, M)
frx(a, M)

V(- )
g(-)
95 ()
g (- )

Functions

Categorical distribution

Abbreviation for & ~ Cat(S(a))

Softmax function

Gumbel-Softmax function

LLM model

Cross entropy loss function

Abbreviation for L (G(®,dy) - M, yy)

Abbreviation for 2w wp)eD Eans(a) [L(G(P, k) - M, yy)]
Abbreviation for % Z(mk,yk)eB Epns(a) [£(G(P, k) - M, yr)]
Abbreviation for Egs(a) [£ (G(P, xk) - M, yp)]

Gradients

Full gradient for o;

Stochastic gradient for o;

Mini-batch stochastic gradient for ¢;

Variance-reduced policy gradient for o;

Full gradient for M

Stochastic gradient for M

Mini-batch stochastic gradient for M

Gradient with prompt sampling for M

Gradient mapping with prompt sampling for M

Gradient mapping of mini-batch stochastic gradient for M

Gradient mapping of full gradient for M

A.2 THE DERIVATIVE PROCESS FOR GUMBEL-SOFTMAX FUNCTION

810gpi,j,-
80@-,]-

0

dai

= 9 log | ex

log(oz,,,h. )+gi,ji
T

log

log(ai7ji) + Gijs

T

Jtoi))) 0 (m (z <u>>>) |

According to the derivation rule of the Softmax function,

when j = 7;:

when j # j;:

p=1
(19)
opi.j, 1 1 1—p;j,
TJ = —Diji - = Ji (20)
Qi5; TG, 5, TG, 5, TQ4,j;
pij, i
g _ _Pig @1
3051;4 TOG 5
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A.3 GRADIENT MAPPING FUNCTIONS FOR M

We define the gradient mapping functions as follows (J Reddi et al.} 2016, Eq. (5)):

- 1 -
s (i1, M) = - (M = pros,,,, [ Mo =t Vafs (e, M) ) @22
1
g8 (etr1, M) = - (M, — prox,,,,. [My —nar - Vi fa (0w g1, My))) (23)
1
9p (@i y1, My) = P (M, — prox,, .. [My — ing - Vi fp (g1, My))) . (24)
Consequently, when the learning rate is set to nps, the update of M can be reformulated as follows:
M1 = M; — g - G5 (g1, M) (25)

Additionally, we adopt the gradient mapping gp (¢, M) as the convergence criterion for M in this
study (Consistent with (L1 & Li,[2018}; |Ghadimi & Lan, 2013)).

A.4 ASSUMPTIONS AND LEMMAS

Assumption 1 (Bounded variance of stochastic gradients). The stochastic gradients is unbiased and
we assume the variance of stochastic gradients for o; and M is bounded:

2
E(ack,yk)eD Hvalfk(avM) - E(a:k,yk)e’D [va,fk(avM)]Hz < Ui; (26)

2

E(apyn)en ||Varfile, M) — B, yoep [V fila, M)]||, < oir. (27)

Assumption 2 (Lower Boundedness for objective function). Given an initial point (o, M),
(ovi, M) denotes the global minimum of F (o, M; D), there exists A < oo such that

F(ow, My; D) — F(a,, M,; D) < A. (28)

Assumption 3 (Bounded Loss). We perform a clipping operation with a constant G for loss func-
tion:

|£(®, M;D)| < U. (29)

Assumptions [T and 2| constitute the foundational premises for addressing non-convex optimization
problems using stochastic gradient descent, as demonstrated in prior studies (Ghadimi & Lan,[2013;
Hazan & Kalel 2014; Xu et al., [2019; [Liu et al., [2020). AssumptionE]ensures that the loss function
remains bounded by regulating the loss during the estimation of the I,,-th and Ips-th samples when
updating o and M. This boundedness is essential for facilitating rigorous theoretical analysis. It
is important to recognize that loss functions, such as the cross-entropy function, can potentially
become unbounded. In practical applications, these loss values are typically clipped to maintain
boundedness.

The following Lemma [1] and [2| show that the fp (o, M) is lipschitz smooth for o and M, the
LemmaandEl] show that the unbiasedness and bounded variance of prompt sampling of fp (o, M)
for ¢ and M. These lemmas are important for convergence analysis of LEAP.

Lemma 1 (Lipschitz smoothness for o). Leto; j; > 3> 0fori=1,...,nandj=1,...N,7>0
is the temperature parameter, the full loss function fp(o, M) is lipschitz smooth for o with smooth

constant Lo, = %(gjl)
Proof. We can compute the Hessian of the full loss function for o, Vi',7" € 1,--- ,n and

j/hj/l € 13 7N:
1)if ¢’ #i"”, we process ¢; and ¢;:

02

8%',3‘/3041-”7]»,,
- Y (T (cwoann) ZHaPO)
{¢ ~ p}’n b1 ~Pir Dyt ~Pyr ai',j’ ai”,j“
i i S i—1
1 75 i/,i//

fD(Oé, M)
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_ Z ,C((I),M;D) . 2[ (¢z ) (d)i”)] . H P(¢z)

aal' ]/ aaz// 7

{¢i ~pi}i, i=1
i #4,1 i
We compute the second order partial derivative of 9% [P (¢ )P (¢ir)]:
ot DDAt jand = 1
& [P(60)P(6)] 1£ﬂf~(fﬁﬁﬁ;),ﬁj':jﬁmdf'¢jﬁ
Oty Oatrye | Bt LB it and 7 =
(LB e and 5

Then, based on o; ; > 8 > 0 and Assumptlon the second-order partial derivative of fp(c, M)
can be bounded:
s

3041/ JIaOélH Sr [fD(a7M)]‘

- 02 [P(dir)P(dir)]
< L(®,M;D)|- i) | -
< > ic(@,M:D)- J]  Plon) ‘ T ——
{¢i ~piti, i=1
i # i/7i// Z # i/,i//
1 U
<U- 7232~ r2G2
2)If i/ = 4", we process ¢y :
0? o [P
e S ,M)| = L(®, M;D i
80@/7]-/8042»/7]»” [fD(a )] Z ( ) 6067/ ]’80{7/ p H P d)
{¢i ~pi}i, i=1
i i
Similar to the analysis in case i’ # "/, we can get:
0 [P(¢i)] (r+1) 7+1
< 1-p}- <
’8%',3‘/8%‘/4" < max{p. 7} 232 T 12327
and the second-order partial derivative of fp(c, M) can be bounded as following:
0? (r+1)U
_— M| < ———7—.
o Ustenn] < T

Finally, we define the H(«) as the Hessian matrix of fp(a, M) for «, based on the relationship
between || H(a)||, and || H (o) || 7

||H<a>||2an<a>Fs%(n—lw?(fﬁz) e (ot ) <

According to Lemma 1.2.2 in (Nesterov et al., 2018), fp(a, M) is lipschitz smooth for @ with

smooth constant Lo, = %ﬁgﬂ), -
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Lemma 2 (Smoothness for M). We perform a cropping operation on M = (mgq.) o and
Imacl > & >0ford =1,...,Dand c = 1,...,C, then fp(a, M) is lipschitz smooth for M

with smooth constant is Lys = g%

Proof. The objective function:

Epos() [£(2,M;D)] = > - > (ﬁ@,M;m-HP(@))-

$1~S(a1) dn~S(an)

And because we use the cross-entropy function:

1
L(@M;D)=— 3 {—yk - [log(Softmax (G(®, z1,)) - M)]T} . (30)
(zk,yx)ED
We can compute the Hessian of the objective function for M, Vd',d” € 1,---,D and ¢, "’ €
1,---,C
82

— Eaosia L (D, M;D
amd/7c/8md//’c// @ S(a)[ ( )]

= E E 0 n
<amd’.c’ amd” o E ({I), M’ ) H ( Z))
1~S(an) $n~S(an) ’ ) i=1

> (—yk - [log(Softmax (G(®, xx)) ~M)}T) n
amdf)c@mdu’cu ’ 71;[1 P(¢z)

1
-y ey (g T
$1~S(ar) Pn~S(an) (zr,yx)ED
We note that y,, = (Yx,1, Yk,2, ---, Yk,c) i a one-hot vector, and we abbreviate LLM model’s output

Softmax (G(®, zx)) as Gk, Gk = (Gk.1,0Gk.2, ---, Gk, p) is @ normalized vector by Softmax function,
then we compute the Hessian matrix of the cross-entropy loss function with respect to M :

(ZdD=1 gk,d'md,c’)h
0, if #c".

82<fyk~[log(Softmax((](@,mk))~M)]T) {vgg T

amd’ ’c/ 8md” ’c//

Then, we can get:
82

T 2 7 L(®,M;D
amd’,c’amd/xcu ® S(a)[ ( )]

n

1 Yk, Ok.dr - Ok,a
B S Sl 5 S R | T
p1~S(e1)  ppn~S(an) k=1 (Zdzl gk,d'md,c’) i=1

_ 1 Yo' - Ok,d * Gh,dr
K D 20
k=1 (Zdzl G, - md,c/)

Without loss of generality, because yy, is a one-hot vector, we assume that:

1 lf C = C*-
o ’ 31
Yk, {0’ if ¢ ?é c*. 31)
So, we can get:
0? 1 Gra - Gran
I g Bevse) [£(2, M D)] =+ G 7 2
&' OMgr ¢ k=1 (Zd:l gkvd.md#*)
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Then, with H (M) denoting the Hessian matrix of fp(c, M) for M, we can obtain an upper bound
for || H(M)]| p:

2

DD o Gra -G
k' Gkdr
IHODI= 1> > | % - ;
d'=1d"=1 k=1 (Zle Gr.d - md,c*)

2

,\
IN=
—_

> i i Gr,ar - Oka

2
k=1d'=1d"=1 (Zle Gr.d - mdﬁc*)

1 Zd 1 (G, ) Zf}:l (gk,d”)Q
1
k=1 (Edzl Ghd - md,c*>2

@ |1 (2521 gk,d’) . (25, e dn)

- K
k=1 (ZdDzl Gr.d- md,c*)
(3) 1 1 4 1
K 4 = e (32)

H

(Zd 1Gk,d -Ma c*)4
Note:

2
z 2
<23 e el

* (2) and (3) is because Gy, is a normalized vector by Softmax function.

* (1) use inequality: szzzl a,

* disuse mgc| >Eford=1,...,Dandc=1,...,C.

Further, based on the relationship between || H (M)||, and ||H(M)|| g

[, < OO < 5.

According to Lemma 1.2.2 in (Nesterov et al., [2018)), fp(c, M) is lipschitz smooth for M with

smooth constant Ly; = 5% O

Lemma 3 (Unbiasedness and bounded variance of prompt sampling for ). Let o; j > B > 0 for
- 2

i=1,.,nand j = 1,...N, T > 0 is the temperature parameter, and 52, = 83/3]2\7, then the

variance-reduced policy gradient of cv; is unbiased and its variance is bounded by 52 :
E{qyws(a)}igl {@aifk(avM) = Vaifk(aaM); (33)

5’2
I2'

afela, M) = Vo, fi(a, M)H < (34)

Eorasa)yie,

Proof. First we proof the variance-reduced policy gradient for ¢; is unbiased, according to the
independence of each sampling for ®",r =1,..., I4:

B arasanie, |Vafile M)]

1, 1,
1 = T . 1 = . T
=Earye, []a_l ; (ﬁ (@7, M di) = 7 ;15 (®7, M; dk)> Va, logm@)]
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I I
1 =N ¥ 1 1 =
=E o a CL(®", M;dy) — — ®Y, M:d o | r
e |12 | T Do 2 L O | Ve log P(6])
- R
I YF#ET

T
1 (=3
= Bar [£(27, M;dy) - Va, log P(6])
> =1

I I
1 & 1 o
~=> || 7 X EwL(®, M:idy)|EeVa,logP(4])
r=1 y = 1
y#ET ]
Io Ia
1 1 § )
=V, fr(a, M) — I T 1 Z Eg [£ (DY, M;dy)] | Egr [V, log P(¢]))
r=1 = 1
yET |
(35)
Then, for the second item of (33):
| da ) I
|| oo X Ee 6@ Midy)] | -Eor [Va, log P(6])
r=1 y = 1
VFET |
1) 1 & 1 . ¥ .
= TZ 7. -1 > Eer [L(®7,Midi)] |- Y [Va,P(4])]
X =1 [e = ) oTp:
L yET ]
( ) 1 Ioz 1 Ia
2N Y Ee L@ Mid)] | Va, | D P
% r=1 “ v=1 o7 ~pi
L yET |
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1 I
B 1 & 1 o
A o7 2 Ea (L@ Midy)] | Va, ()
r=1
v=1
L yET |
=0. 6

Note:

* (1) is because the sampling process with respect to ®" is discrete.

* (2) is because the number of prompt token 7 is not infinite and the S function is derivable
with respect to «;.

* (3) uses the normalisation property of S function.

We substitute into to obtain:
E{@rNs(a)}T{«il {@aifk(av M):| = vOtifk?(a7 M)

Then, we proof the bounded variance of variance-reduced policy gradient for o;:

2
E{qus(a)}{gl Va, fr(a, M) — vOLif]f(a7M)H2
1 & 1 Lo
=Egrye, |72 77 2 [£(2 Midy) — L(27, M:dy)] Va, log P(6]) ~ Va, fi(er, M)
r=1 y= 1
Y#ET
2
O 1 & 1 &
= D Bor|lo——0 D [L(27, Midy) — £(®7, M;dy)] Va, log P(6]) — Va, fr(a, M)
o «@
1 y= 1
y#T )
2
) 1 Lo Lo
< WZI&V Z [L(®", M;dy) — L (97, M;dy)] Ve, log P(¢;)
a\tx r=
1 y= 1
Y#ET )
2
34U & Lo @) AU2N (5) 8U2N
< N Eer 1 N < < .
= T2(In—1)2 ; ¢ Valog PO < 7 —7y55 < pog
- —
VFET )
Note:
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* (1) is because the independence of each sampling for ®, and:

I
Blanie, 7 3o L@ Midy) ~ £(87,Midy) Ve, log P(0])
vy=1
y#ET
1 Lo
=i Y. Epgeyra [C(97, Midy) — £(97, M:dy) Va, log P(¢])]
vy=1
YFET
= Ve, frlc, M). (37)

* (2) uses inequality E ||a — EaHg <E ||aH§
* (3) uses Assumption[3]
e dusesal ;>3 > Oand@:

] —

2
1—pf . v N
Va,logP(¢;) < 4| N - max f il — P f <\ =
T, T B
e (5)is because when [ > 2:
1 2
S
In(Io —1) — I2
Finally, let 62, = 85(;];’ , and proof is completed. O

Lemma 4 (Unbiasedness and bounded variance of prompt sampling for M). We perform a cropping
operation on M = (ma.)p, o and |mac| > & ford = 1,...,D and c = 1,...,C, 7 > 0 is the
temperature parameter, and 3, = A then the gradient with prompt sampling of M is unbiased

§
and its variance is bounded by :
E (g s(apynt | VM Si(e, M)] = Vg fie, M); (38)
~ 2 5.]2\/[
E sy || Va0 (et M) = Ve fi(en M| < T (39)

Proof. First we proof the gradient with prompt sampling for M is unbiased:

B sty | Vil M)

Ing
1 S
S (f Erwewiana)

—~

Int
1 .
:) m E Egs [VM£ ((I)éyM;dk)]
s=1

Ing
2) 1
@) - ; VarEe: [ (9%, M;dy)]

- VMfk(avM)
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where (1) use the independence of each sampling for ®°, s = 1, ..., Ins; (2) is because Eg can be
expanded as the sum of the products of a finite number of probabilities and random variables (3) and
L (®, M;dy) is differentiable with respect to M.

Then, we proof the bounded variance of the gradient with prompt sampling for M:

~ 2
Elpinsay™ HVMfk(a»M) - vak(avM)H2

{o°
Int 2
1 s . .
=E 4o} nr E;VML‘(@ , M;dy,) — VarEgs(a) [£ (P, M;dy)] 2
1 X i
8y s M- .
= Egyine E; (VL (L(®°, M;dy)) — Epsia) [V L (D, M;dy)]] 2
Ing
1
@ ITZE@S VL (9%, M;dy) — Epos(a) [Varl (®, M;dy)]||5 -
M =1

where (1) is because E¢ can be expanded as the sum of the products of a finite number of probabil-
ities and random variables and £ (P, M; dy) is differentiable with respect to M ; (2) is because
the sampling of @ is independent.

We note that y;, = (Yk,1,Yk,2 ---» Yk,c) 18 @ one-hot vector, and we abbreviate LLM model’s output

Softmax (G(®, xx)) as Gk, Gk = (Gk,1, Gk 2, ---, Gk, p) is a normalized vector by Softmax function,
since the £ function is the cross entropy function, we calculate its derivative for M as follows:

~y. - [log(Softmax ((@, ;.)) - M)] " ) vewr - Gow
- ZdDzl Gk,a-mae ) C.

VLl (o, M;dy) = (

Bmd/ !

whered =1,..Dandc =1,...,C.
Then, we can get the upper bound of the ¢2-norm for Vs L (G(®, xx) - M, yy,) as following:

2
Yo' * Ok
T D
>i=1 kd - Mae ) by o
Without loss of generality, because y;, is a one-hot vector, we assume that:

1, if c=c"

y’“cz{o, if ¢t

IV arL (@, M dy)|2 =

2

Then:
IVarL (®, M;dy)|[5

‘( gk‘d’ >
Zd 1gkd Md,c* ] py1
1

- / (2)
d —1Gk,a <i

(D210 marr). €

where (1) is because 0 < G ¢ < 1;(2)isuse |mg.c| > & >0ford=1,...,Dandc=1,...,C, Gy
is a normalized vector by Softmax function.

2

2

NG

(40)

Finally:
2
IE:{<I>S~S(oc)} (Ot,M) _E{qgst(a)}IM [VMfk(a M):| H2
9 &
<p > Eo [[VarL (9%, M dy)|5 + 12 ZE@ Egse) [Varl (@, M; )]
s=1 s=1

2 It 2 Inm

< = M
"R e TR e

4
CIE
Finally, let 532, = g%, and proof is completed. O
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A.5 CONVERGENCE OF LEAP

Theorem 1 (Convergence of LEAP). Suppose Assumption [I| 2| and B| hold, for iteration t =

0,...T—1 seta; ; > B> 0and|mg.| > & > 0, 7 > 0is the temperature parameter, fp(o, M) is

smooth for o with smooth constant Lo, = %(gjl) and lipschitz smooth for M with smooth con-

stantis Lpg = 5% 02, and o3 are the variance of the stochastic gradient for c and M, 52, = 8522\7
and 5%, = g% are the variance of prompt sampling for o and M. We define 1y, = min {ne,, nas
and Nymar = Max{ne,nnr}, and run Algorithm E with 0 < 1q < Ll ,0 < v < ﬁ and

qn = Imez < oo, then the LEAP's full gradient satisfies the following inequality:

Nmin

Z (IIVafolew, M + lgp (s, M3

t=0

< 2\ L 2nq, 62 4,03, L 2nq, 02, + 44,054 @1
Proof. According to the lipschitz smoothness of o in Lemma T}

L
fo(ewir, My) — fp(aw, My) < (Vafp(aw, My), o1 — ou) + 706 lovsr — el (42)

According to the lipschitz smoothness of M in Lemma [}

L
fo(ewir, M) — fo(aesr, My) < (Varfp(ewrr, My), My — My) + TM | M1 — M5

(43)
Adding {@2)) and @3) gives:
folaeyr, Mii1) — fo(ow, My)
Lo
< (Vafplay, My), a1 — o) + - o — el
Ly 2
+ (Vi fo(appr, My), My — M) + N [ M1 — M5
= La 2
< (Va, fo(oy, My), o 141 — oug) + 5 llovi i1 — aielly
i=1
a)
L 2
+(Vamfo(appr, My), My — M) + N | M1 — M5 . (44)

b)

For a), we let 7o, < L , substitute o ;41 = Qi t — Mo - Ve . [(a, M), take expectations E and
IE{@,N S(a}le, ON both sides, and abbreviate E{qy S(ay}le, 33 ]E{‘V}i‘il:

Lo
EBE (gryra {(mep(at, M), aipi1 — i) + 5 i tt1 — O‘Lt”;}

N La7¢21 o
= EBE{qw}fgl |:<Va1f’D(atv Mt)7 —Na - vou,fB(ata Mt)> + 2] HvaifB(ata Mt)

2
i
eh) L

2
(Ve fo(0t, M), ~11ec- Vi foler, M) + “2 2 B

) 2
‘va,;fB(at,Mt) 9

I
{®7},24

—~
—

Lan? . 2
2 i Ve, folee, M) 3+ =5 ||E6E 4010, Ve, sl M)
Lamg

+ EgE

2
I
{or}2, ’

‘@aifb’(atv Mt) - EBE{¢I~}£¢;1@aifB(ata Mt) 9
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(3

) Lon?
< 1 [V fo(e, Mi)[l5 + =5 | Vo, fo e, My)ll3

Ve fa(an, M) = gy Va, filar, M)

2

2
+ LatlaBsE gy e, )
+ Lat2E g1 Bs ||Bgeyra, Va, fo(ar, Mi) — BgE g1 Va, falar, M)

@ ( Lan
2

2

2
2 2 &?x 2 O'i
— Na HvaifD(atth)Hz"‘LanaEB E +La77a]E{¢r}£gl B
Lanz02
B

~2
g
[e]
+

L 2
- ( o/la —%) |V fo (s, M) +

Lan?,
2 a

I
Lo

— 2 ||V, foan, M) + (45)

* (1) use the unbiasedness of stochastic gradient and policy gradient for o in Assumption [1]
and Lemma

+ ) use the equality: E la — E [a] | = E ]2 B [o]|.
* (3) use the inequality: ||a + b]|5 < 2||al3 + 2]/b]/5.

* (4) use the bounded variance of stochastic gradients and gradient with prompt sampling for
M in Assumption [T|and Lemma 3]

s (5)use ng < i
For b), we substitute M; 1 = My — nprgs (o1, My) and let nas < ﬁ:

L
(Vamfo(opgr, My), My — M) + TM M1 — Mt“;

Ly

=N (Vamfo(airr, My), g5 (cuq1, My)) + 195 (ceer1, M)

L 2
= —nnm (Vamfo(ewyr, My), gp (1, My)) + M;M 195 (Cers1, M)

+nnr (Vi fo(ewyr, My), gp (eey1, My) — G (i1, My))

1) Lyma,
< —nat llgp (eerr, M5 + (M) — r(Misr) + 1\/1277M 195 (cusr, My) |3

+ v <vaD(at+17 M,) — Varfa(ouwsr, My), gp (cug1, My) — G5 (e, Mt)>
+ v <@Mf8(at+17 M) — gs (a1, M), gp (01, My) — g (0tpgs Mt)>

+ 01 (G5 (@1, My) , gp (euey1, M) — g5 (g1, My))

(2) 9 LMW%\/I
< = |lgp (eurr, My)||5 + (M) — r(Miya) +

~ 2
95 (evty1, My)ll5

~ 2
+ 1M HVMfD(aHh M;) — Vi fe(ag, Mt)H2

+ v <@Mf6(0tt+1, M) — g5 (g1, My) , gp (a1, My) — g (041, Mt)>

+ 1 (95 (i1, My) , gp (1, M) — Gs (@ey1, My))

(3 2

L -
< —na1 llgp (eerr, My)|5 + (M) — r(Misr) + M;?M 195 (cusr, My) |3

~ 2
+ Nm HVMfD(at+laMt) — Vi fe(ag1, My) ’

2
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+ 0 (98 (1, M), 9p (i1, M) — g5 (agq1, My))
LMT]%VI
2

. 2
+ M HVMfD(aH-l, M) — Vi fe(ouia, Mt)H2 + % llgp (cts1, Mt)||§

4 -
D ot llgp (usr, M2+ r(My) — r(Myy1) + 135 (cers1, M)

M |~ M -
-5 95 (at+17Mt)||§ -5 llgp (ext1, My) — g5 (at+11Mt)”§

L3 _
=~ llgp (ausr, M3 + r(My) = r(Miga) + ( ot - ’734) 1G5 (exeer, ML)

2
Ul ~ 2
, T 9 llgp (ctsy1, My) — g (01, My)|5

+ Nm HvaD(at+17 M,) — Vi f(ewsr, My)

(5)
<~ llgp (s, M) 3 + (M) = (M)

L 2 N
+ < M477M - 772/1) <||9D (at+17Mt)H§ —2|lgp (atgq1, My) — g5 (at+1aMt)H§>

2
M i 2
L~y llop (egn, M) = Gis (eir, M)

+ Nm Hva’D(at+17 M;) — Vi f(osr, My)

L3 3
= ( 1\/1477M _ T) lgp (at+1,Mt)||g + (M) — (M, 1)

Ly _ . 2
- M277M lgp (g1, My) — G5 (eerr, My)||5 + e HVMfD(at+1, M) — Vs fe(og, Mt)H2

(6) N
< —%\/1 llgp (at+1aMt)||§ + (M) — (M) +nm HVMfD(at-i-h M) — Vs fe(ougt, Mt)”

2

2

(M - 2
< D llgp (v, M) + (M) = r(Mir) + 20a | Vaa fp(@sr, Mi) = Vaa fo(@vsn, M)

2

+ 2001 [V (e, My) = Vaa fi(en, M) (46)

Note:
¢ (1) use Lemma 1 in (Ghadimi & Lan, [2013)).
¢ (2) is because:
<VMfD(at+17Mt) — Vafa(ous, My), g (a1, My) — g (cueia, Mt)>

< H<vaD(at+17 M) — Vs fs(ouwst, My), gp (ouy1, My) — G (Oét+1,Mt)>H2

< HvaD(at+17Mt) — Vi fo(ouyt, My) . llgp (ctrs1, My) — G5 (opq1, My)||y

2
. 47)
2

< HVMfD(OétH,Mt) — Vi fe(ousr, My)

The second inequality use: ||ab||, < ||al|, - [|b]|5; The third inequality uses Proposition 1
in (Ghadimi & Lanl, 2013)).

¢ (3) is because:
<@Mf5(at+1, M) — gs (o1, My) , gp (i1, M) — 5 (it Mt)>

1 ~ - -
= <77MvaB(at+17 M) — s (o1, My) ,nnegp (o, ive M) — e s (041, Mt)>

v
1 _
= <Mt+1 - [Mt —nmVm (e, My)| , M1 — [My — nmgp (at+1a77MMt)]>
M
<0. (48)
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The second equality in (48) use the definitions (22)), (24) and (23)); the inequality in (48)
use Bourbaki-Cheney-Goldstein inequality (Holmes, |1973} Eq. (1.5)) and the definitions:

M1 = prox,,,, {Mt — eV fa(@ug, Mt)} ;
M; — nnmgp (owrr, e My) = prox,, . [My — nag - Vg fp (cug1, My)] .

—a?—b?

IO _ (a+d 2
* (4) use equality: ab = %

* (5) use inequality: a® > W and nas < ﬁ

s (6)use nng < 7
« (7) use inequality: |ja + b3 < 2||allZ + 2||b]/3.

Then we take expectations Ez and IE{ bensS(a)}M ON both sides of ( . and abbreviate

e ns(onying 85 Bigoyim:

L
EE goyim [WMfD(OétHa M), My — M) + TM [ Miy1 — Mt||§}

< =D lgp (@sr, M) 5 + (M) = r(Miya)
~ 2
+20MEBE . 1 HvaD(atJrh M;) — Vi fo(owyr, My) )

. 5 2
T 20ME gy B HVMfD(atﬂ, M) — Vm (o, Mt)H

(1) 52, o2
<~ llgp (s, My)|3 + (M) = r(Mis) + 20mE5 | 7| 4+ 0B gy iag | 7L
I M {®}.% | B
MmOy | 21MONy
. 49

Tnr +—5 (49)
where (1) use use the bounded variance of stochastic gradients and gradient with prompt sampling
for M in Assumption [I]and Lemma 4]
We take expectations Eg, E (Br}le and E (@) for , then substitute , into and
both sides accumulate with respecttot = 0, 1, o ,T — 1 and divide by 7"
T—1
Z EBE{q) ryla E{q)s M [fp(oyr, Myy1) — fp(ow, My)]
t=0

T—-1 n

1 Lo,
T Z ZEBE{@}IOL {(V oo, My), o A+l T O t> + = ||Olz t+1 — O t||2]

= =L lgp (@usr, My)[l5 + r(My) = (M) +

1

IN

t=0 i=1
T—1
1 LM
+ T EB]E{¢5}IM (Vmfo(opsr, My), My — My) + —— || My — Mt||2
=0 o=t
T—1 n
1 " Lafaba | Lalaoa
<133 [ (Ve ol My + e Lot
t=0 i=1 a
1< »n MM, 2o
M M M
T [—2 9D (Cers1, My) |5 + r(My) — r(Mysr) + 7 M 4 B M}
Py M
T—1
O 7ol o | nLanads | nLanaos
S \% M,
2 T 2 IVafp(ou, My)ll; + i + 5
T_q T—1 9 2
v 1 2o 1 2nMOng | 2NMOyg
_ M2 M, - M,) — (M, :
S 3 lop s MOIE + 1 3 M) (M) 208 2

(50)
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where (1) is because o = (a1, -+ , @, - - Q).
Then we organize the inequality (50):

T-1

1
IVafolan Mi)l5 + 255 2 ™ o (0en, M)
2
=0 =0
T—1 .

1 nLan262  2nao2 nLan2 02 + 2npro2
< = F M., X)-F M. - X a%a M o o M
ST z:; [F(o, My; X) (a1, Myyq; X)) + 2 Tnt + B

F(ow, Moy; X) — Flar, Mr; X)  nLanZ6%  2nmca;  nLanZo? + 2nmoig
= + 2ellala +

T Ve Ing B

(é) F(ap, My; X) — F(o, M,; X) N nLan2,62, N 20N G Ay N nLan02 + 200103,
= T 2 T B
@D nLanada, N 2M Gy N nLang0e +21m0iy
=T 2 Int B

where (1) because the objective function is non-convex, thus F(a., M,; X) < F(ar, Mr; X);
(2) use Assumption 2]
We let Nmin = min {7704; 77M}, Nmax = Max {nan 77M} and qn = % < oo:

T-1

1

7> (IVafolaw, MOI3 + llgn (as1, M)
t=0

2\ N 2nLaNaqno?, N 4q,6%, N 2nLaNaqno2 + 44,05,

<
= Tmin 12 Ing B
(é) 2N N 2ng,02% 4,03, N 2nq,02 + 4q,0%;
where (1) use 7o, < 7. O

C1 C2 —
Lo L [T =

Corollary 1 (Convergence complexity of LEAP). Suppose Assumption andf] hold, and run

Algorithmﬂwith Nea = C—l(O <o <l),nm= (0 < ¢ < 1), Dmin = min

8 16 \/8n 52 16,~2
max { e @l <o B = 8rmoa + 407 , Iy q” Iy = BWIM qpd T = 82 then

c2? ¢y ’ €2 Nmin€?’

the output of Algorithm |I| satlsﬁes.

T-1
1
=3 (IVasp(an MOI3 + llgp (cus, Mi)3) < €2 (51)

t=0

Thus, the total oracle complexity for LEAP is O (6%)

Proof. To ensure an e-solution:

T-1
=3 (IVarolee, MOJE + llgp (o, M) < e
t=0
Then, we let:
28 e 2nq, 62 _ e 4g,6%, _ e 2nq, 02, + 4q,0%; _ e
Thmin 4 2 4’ Ing 4’ B 4

Finally, solving the above system of equations gives:

8ng,oZ + 16¢,0%, \/8n¢, 2, 16¢,53, 8A
b= ) Io = ——, Ing = — T =

2 2"
€ € € Nmin€
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A.6 DATASETS

ELEC & BOOK: The Amazon-Electronics (ELEC) and Amazon-Books (BOOK) dataset
are collections of user reviews extracted from the electronics category on the Amazon plat-
form, widely used in research on natural language processing and recommendation sys-
tems (McAuley et al.,2015). This dataset includes a large volume of user reviews on electronic
products, encompassing review texts, ratings (typically ranging from 1 to 5 stars), product in-
formation, and users’ purchase histories.

CoLA: The Corpus of Linguistic Acceptability (CoLA), introduced by (Warstadt et al.|[2019),
consists of 8,500 training examples drawn from books and journal articles on linguistic theory.
The task involves determining whether a given sentence is linguistically acceptable.

QNLI: The Question Natural Language Inference (QNLI) task comprises 108,000 training
examples derived from the Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al.|
2018). The objective of the task is to determine whether a given sentence contains the answer
to a corresponding question.

RTE: The Recognizing Textual Entailment (RTE) task (Dagan et al.l 2005) includes 2,500
training examples sourced from various textual entailment challenges. The task involves deter-
mining whether a given premise sentence entails a corresponding hypothesis sentence.

SNLI: The Stanford Natural Language Inference (SNLI) dataset is a widely used benchmark in
the field of natural language processing, specifically designed for the task of Natural Language
Inference (NLI). Created by (Bowman et al., 2015)), the dataset comprises 570,000 manually
annotated sentence pairs and aims to evaluate models’ abilities to understand and reason about
the logical relationships between sentences.

SST-2: The Stanford Sentiment Treebank (SST) (Socher et al., 2013)) contains 67,000 training
examples of movie reviews with human-provided annotations. The task aims to determine
whether a given sentence expresses a positive or negative sentiment.

AG: The AG’s news (AG) dataset is a widely used benchmark for text classification tasks in nat-
ural language processing. It consists of news articles collected from over 2,000 news sources,
divided into four distinct categories: World, Sports, Business, and Science/Technology (Zhang
et al.| |2015). The dataset includes 120,000 training examples and 7,600 test examples, with
each example being a short news article headline and description.

Table 5: Summary statistics of the experimental datasets. # Class, # Train, # Dev, and # Test denote
the number of classes, training set, development set, and test set, respectively.

Dataset | #Class # Train #Dev #Test Domain
BOOK 2 55.6k 79k  26.0k Amazon
CoLA 2 8.6k 1.0k 1.0k Books, Articles
ELEC 2 10.8k 1.5k 3.1k Amazon
QNLI 2 104.7k 5.5k 5.5k  Wikipedia
RTE 2 2.5k 277 3.0k  News, Wikipedia
3
2
4

SNLI 550.2k 10k 10k Novels, Reports
SST-2 67.3k 872 1821  Movie Review
AG 120.0k - 7.6k  News, Reports
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A.7 EXPERIMENTAL DETAILS

Hyperparameters. The main hyperparameters of our algorithm is given in Table [6]

Table 6: Main hyperparameters used in our algorithm.

Hyperparameter | RoBERTa-large GPT2-XL  Llama3
query limit 4000 2000 1000
train batch size 32 16 8
eval batch size 32 4 4
¢ 16
N 100
n {50, 20}
Io 20
Nex le-2
Ing 20
M le-3

Manual Templates. The templates used for our approach and baselines are given in Table

Table 7: Input templates used in ROBERTa-large, GPT2-XL, and Llama3. (Sentence) denotes the

sentences in the dataset. [MASK] denotes the mask token of ROBERTa-large.

Dataset RoBERTa-large GPT2-XL / Llama3
BOOK (Sentencey ). It was [MASK]. (Sentencey ). It was
CoLA (Sentence; ). correct? [MASK]. (Sentence; ). correct?
ELEC (Sentencey ). It was [MASK]. (Sentencey ). It was
QNLI  (Sentence;) entailment? [MASK], (Sentence;). (Sentence;) entailment? (Sentences).
RTE  (Sentence;) entailment? [MASK], (Sentences). (Sentence;) entailment? (Sentences).
SNLI  (Sentence;) entailment? [MASK], (Sentence;). (Sentence;) entailment? (Sentences).
SST-2 (Sentence, ). It was [MASK]. (Sentencey ). It was
AG

(Sentence; ). It was [MASK].
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A.8 ADDITIONAL EXPERIMENTAL RESULTS

Example prompts. Some learned prompts of our method on the RoOBERTa-large model are provided
in Table[8]

Table 8: Example prompts of our method on the RoBERTa-large model. x denotes the samples
that are incorrectly predicted, while v'denotes those that are correctly predicted after applying the
learned prompts.

Dataset Prompt+Sentence Prediction
I don’t want to tell the story, and ruin the purpose of this book. This was an %
AWESOME book.

BOOK -~~~ 7~~~ —~ ST T T T o T TS TS T T T o s T
way been get if have on for well read the is life well as his in really because
all read I don’t want to tell the story, and ruin the purpose of this book. v
This was an AWESOME book.

The more you would want, the less you would eat. correct? X

CoLA  The He was from out believe much It your Tom’t Bill believe go as it like v
he Who go The more you would want, the less you would eat. correct?
I was very pleased with this product. It worked beautifully.Unfortunately it %
could not be used with newer PDA’s.

ELEC little It all more you you me very get really much all’ve more from It head-
phones much than your I was very pleased with this product. It worked v
beautifully.Unfortunately it could not be used with newer PDA’s.
What happened to his lab? His lab was torn down in 1904, and its contents %
were sold two years later to satisfy a debt.

QNLI  to Where under A into more which they year made being also called with
had part has being population A What happened to his lab?His lab was torn v
down in 1904, and its contents were sold two years later to satisfy a debt.
Pibul Songgram was the pro-Japanese military dictator of Thailand during %
World War 2.

RTE could ” In some two be last found they they last has 2 being with includ-
ingThe from but out Pibul Songgram was the pro-Japanese military dictator v
of Thailand during World War 2.
How many feature structures categories can label the first daughter? X
shirt People as a her out as is Three his sits and ball that has jumping in

SNLI walking black The How many feature structures categories can label the v
first daughter?
The turkey would’ve been a far better title. X

SST-2  only new been an enough a action more us enough and good movies by v
what he up to a own The turkey would’ve been a far better title.
it’s hampered by a lifetime-channel kind of plot and a lead actress who is %
out of her depth.

AG only new been an enough a action more us enough and good movies by

what he up to through own it’s hampered by a lifetime-channel kind of plot v

and a lead actress who is out of her depth.
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