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Abstract

Despite widespread adoption, multimodal large
language models (MLLMs) suffer performance
degradation when encountering unfamiliar
queries under distribution shifts. Existing meth-
ods to improve MLLM generalization typically
require either more instruction data or larger
advanced model architectures, both of which
incur non-trivial human labor or computational
costs. In this work, we take an alternative
approach to enhance the robustness of MLLMs
under distribution shifts, from a representation
learning perspective. Inspired by information
bottleneck (IB) principle, we derive a variational
lower bound of the IB for MLLMs and devise
a practical implementation, Visual Instruction
Bottleneck Tuning (Vittle). We then provide a
theoretical justification of Vittle by revealing
its connection to an information-theoretic
robustness metric of MLLM. Empirical validation
of three MLLMs on open-ended and closed-form
question answering and object hallucination
detection tasks over 45 datasets, including 30
shift scenarios, demonstrates that Vittle
consistently improves the MLLM’s robustness
under shifts by pursuing the learning of a minimal
sufficient representation.

1. Introduction
In intensive races on the track of frontier-level AI models,
we have observed unprecedented achievements through the
form of a general-purpose chat assistant known as multi-
modal large language models (MLLMs) (xAI, 2025; Ope-
nAI, 2025; Google Cloud, 2025) that combine a visual en-
coder with a large language model. Their universal yet flex-
ible question-answering interface enables MLLMs to easily
permeate our lives from general problem-solving (Liang
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et al., 2024; Yang et al., 2024b) to practical applications (Al-
Saad et al., 2024; Li et al., 2024d; Caffagni et al., 2024; Cui
et al., 2024a). While these models may achieve human-like
or even surpass human-level performance on certain tasks,
a critical gap remains in their robustness—particularly in
handling input variations that humans process effortlessly.

Human intelligence thrives on the ability to distill a large
amount of sensory and cognitive inputs into concise ab-
stract representations, a process akin to conceptual com-
pression (Turner, 2006; Gray & Tall, 2007). By prioritizing
sparse salient features while discarding redundancy, humans
can shape a robust prototypical representation of complex
data instances that captures a proper level of invariance
to low-level superficial features for generalization, yet
maintains sensitivity to high-level abstract features for
discrimination (Miller, 1956; Rosch, 1975; Zhaoping, 2025).
Unfortunately, there are consistent reports implying that the
current MLLMs still lag far behind this desired trade-off
between invariance and sensitivity (Zhang et al., 2024; Han
et al., 2024b; Ye-Bin et al., 2025; Oh et al., 2025a).

Specifically, MLLMs fail to produce relevant responses un-
der query distribution shifts. That is, they are vulnerable
to processing subtly perturbed samples and long-tail sam-
ples (Oh et al., 2025a). This limitation partially stems from
the difficulty of acquiring diverse high-quality multimodal
instruction data at scale. When trained via standard maxi-
mum likelihood estimation on this relatively limited amount
of instruction data, MLLM tends to fit to data-specific pat-
terns and result in a brittle solution (Geirhos et al., 2020;
Ye et al., 2024; Liang et al., 2025). To enhance general-
ization, existing efforts typically fall into two categories
(1) data-centric approaches, which collect more instruction
data (Zhao et al., 2023; Li et al., 2024b; Gu et al., 2024)
and processes input in a finer granularity (Liu et al., 2024c;
Shen et al., 2025), and (2) model-centric approaches, which
scale up the underlying model using more expressive or spe-
cialized backbones (Chen et al., 2024b; Tong et al., 2024a;
Shi et al., 2025; Bai et al., 2025b). However, both data
scaling and model scaling are resource-intensive—requiring
significant annotation or computational cost.

In this work, we propose a new approach from a
representation-centric view to improve the robustness of
MLLMs under distribution shifts. Rather than scaling

1



Visual Instruction Bottleneck Tuning

data or model, we introduce a lightweight, theoretically
grounded module that enhances the internal representations
of MLLMs via the information bottleneck (IB) principle.
While the IB framework has been explored in small-scale or
classification settings (Alemi et al., 2017; Vera et al., 2018;
Wu et al., 2020; Mahabadi et al., 2021; Li et al., 2025), in-
tegrating it to autoregressive multimodal instruction tuning
poses unique challenges due to the complexity of model-
ing mutual information across high-dimensional, sequential,
and heterogeneous modalities. We overcome these barriers
by formulating a novel variational lower bound of the IB ob-
jective specifically tailored to the multimodal and sequential
nature of MLLMs. We further instantiate this formulation
as a modular and scalable implementation—Visual Instruc-
tion Bottleneck Tuning (Vittle), which inserts a simple
bottleneck layer within the LLM backbone. Vittle pur-
sues minimal sufficient representations (Cover, 1999) that
try to preserve response-relevant information only while dis-
carding nonessential residual features. To our knowledge,
this is the first work to investigate the IB framework for end-
to-end instruction tuning of multimodal LLMs, offering a
model-agnostic pathway toward building robust AI systems.

We conduct an extensive evaluation of Vittle across a
wide spectrum of multimodal benchmarks to assess its ro-
bustness and generalization under distribution shift. Our ex-
periments span 30 distribution shifts covering diverse forms
of perturbation (in both vision and language) and long-tail
distributions. Through these evaluations, we demonstrate
that Vittle consistently improves robustness over stan-
dard instruction tuning baselines, without sacrificing perfor-
mance on standard benchmarks and canonical tasks. No-
tably, we find that the bottlenecked representations induced
by Vittle lead to enhanced invariance in the latent space,
aligning semantically similar inputs more closely—even
under input shifts—while reducing overfitting to modality-
specific artifacts. We also show that Vittle is compati-
ble with different MLLMs, offering robustness gains while
maintaining similar inference-time cost. These results un-
derscore the practical benefit and theoretical promise of
information-regularized representation learning for robust
multimodal instruction tuning.

Contributions: (1) We propose a new representation-centric
framework for improving the robustness of MLLMs under
distribution shifts, grounded in the information bottleneck
principle. (2) We explore the IB-based end-to-end learning
objective of an MLLM for the first time by inducing a new
variational lower bound of IB for MLLM and devising a
practical instantiation, Vittle, supported by theoretical
analysis. (3) Through experiments on 30 diverse types of
distribution shifts, we thoroughly validate the robustness of
MLLMs on open-ended/closed-form QA and object halluci-
nation detection tasks and show advantages of compressive
representation induced by pursuing the IB principle.

2. Background, Related Work, and Motivation
Multimodal large language models (MLLMs). Recent
advances in MLLMs integrate a pre-trained language
model with a vision encoder through visual instruction
tuning (Liu et al., 2023; Dai et al., 2023). To be spe-
cific, let X = (Xv, Xt) denote a multimodal input query
consisting of visual and textual input, e.g., an image and
a corresponding instruction or a question given that im-
age, and Y denote a desired response given the input
query. An MLLM fθ with parameter θ is trained to pro-
duce the desired response given an input query with a con-
ditional autoregressive language modeling objective, i.e.,
argminθ EX,Y [

∑M
m=1 log fθ(Ym|Xv, Xt, Y<m)] for a se-

quence of M -length responses, where the visual input Xv

go through a visual encoder and projector modules to be
converted as a sequence of tokens that have the same di-
mension as text embeddings and can be processed by an
LLM backbone1. After being trained, these models process
a wide array of multimodal instructions to solve arbitrary
visual question answering tasks (Lee et al., 2024).

Robustness problem in MLLMs. Despite their impres-
sive performance on standard benchmarks and their growing
deployment in real-world applications (Li et al., 2024d;c;
Raza et al., 2025), MLLMs remain vulnerable to input per-
turbations (Qiu et al., 2024; Cui et al., 2024b; Verma et al.,
2024). For example, MLLMs undergo a systematic perfor-
mance drop (Oh et al., 2025a) when they encounter samples
of superficial perturbations (e.g., varying brightness of im-
age and typo in text) illustrated in Figure 1 (a). As shown
in the bar plot of Figure 1 (b), LLaVA-v1.5-7B model un-
dergoes severe performance degradation on LLaVA-Bench-
COCO (LB-COCO; Liu et al. (2023)) under the perturba-
tions from visual input, textual input, and their joint (V, T,
and J Pert), which poses severe threats given current broad
AI application ecosystems.

We posit that these vulnerabilities arise from the way
MLLMs structure their internal representation space. In
particular, inputs affected by perturbations are often em-
bedded far from their intact (clean) counterparts, reflecting
a distribution shift in the representation space that leads
to poor generalization from an information-theoretic per-
spective (Oh et al., 2025a). The right side of Figure 1 (b)
illustrates this phenomenon: using LLaVA-v1.5, we visual-
ize representations of LB-COCO alongside its challenging
variant, where the image and text inputs are perturbed. In
this setting, semantically equivalent examples are mapped
to distinct and distant regions in the latent space, suggesting
a lack of invariance to superficial input variations, which is
crucial for robustness to distribution shifts.

1For simplicity, we will omit the visual encoder and projector
in our learning objective at following sections.
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Figure 1: Illustration of distribution shifts for an MLLM (a) and performance degeneration and embedding shifts of
the MLLM (b). An MLLM (LLaVA-v1.5-7B) receives arbitrary queries that might be visually and/or textually perturbed
by unexpected noise. These distribution shifts result in performance drops, as shown in the middle bar plot. A visualization
of intermediate layer representations of the MLLM on LLaVA-Bench-COCO and its variants indicates that MLLM fails to
learn a proper level of invariance to generalize multimodal queries in the representation space.

Motivated by this, our work aims to enhance the robustness
of MLLMs by explicitly regularizing their internal represen-
tations, encouraging them to retain task-relevant informa-
tion while discarding input-specific noise—thereby finding
a good balance between invariance to low-level superficial
features and sensitivity to high-level abstract features for
better generalization.

Information bottleneck principle. The information bottle-
neck framework provides a principled approach to measure
the quality of representations that are maximally predictive
of a target variable while compressing redundant informa-
tion from an input variable (Tishby et al., 2000; Tishby &
Zaslavsky, 2015). Numerous works have explored the use
of IB training objective (Alemi et al., 2017), across com-
puter vision (Luo et al., 2019; Federici et al., 2020), natural
language processing (Mahabadi et al., 2021; Li et al., 2025),
graph learning (Wu et al., 2020; Miao et al., 2022), and time-
series modeling (Liu et al., 2024d). These efforts are sup-
ported by theoretical insights suggesting that optimizing for
the IB objective can reduce generalization error (Vera et al.,
2018; Kawaguchi et al., 2023). However, most prior work
focused on classification settings (Mahabadi et al., 2021;
Li et al., 2025) and/or relatively small-scale models (Alemi
et al., 2017; Wang et al., 2021; Mahabadi et al., 2021). Al-
though a recent study explored IB for MLLMs (Bai et al.,
2025a), the authors adopted IB training on a lightweight pro-
jector module while keeping the LLM backbone frozen. In
contrast, our work is the first to investigate the IB framework
for end-to-end training of large-scale autoregressive multi-
modal language models. Beyond shallow adaptations, we
directly modify the internal structure of the LLM to promote
IB-consistent behavior throughout the training process. We
focus specifically on instruction tuning for MLLMs—which
have become increasingly central to modern AI ecosystems
but remain largely unexplored from the perspective of IB-
based learning.

3. Method
3.1. Preliminary: Information Bottleneck As a Learning

Objective

Let X be a multimodal input query (e.g., image-text pair),
Y the desired output, and Z = f(X) an intermediate repre-
sentation extracted by the MLLM encoder f(·). The Infor-
mation Bottleneck principle aims to learn representations
that are maximally informative about the output Y while
being minimally informative about the input X . Formally,
this is expressed as the optimization objective:

max
f

IBf (X,Y ) = I(Z, Y )− βI(Z,X) (1)

where I(·, ·) denotes mutual information and β is the trade-
off coefficient. Minimizing I(Z,X) encourages removing
redundant or input-specific variations, while maximizing
I(Z, Y ) ensures that the representation retains task-relevant
signals necessary to predict the desired output.

In other words, the IB objective promotes representations
that discard non-essential features tied to the input modality,
while preserving those critical for solving the task. This
property is particularly desirable for robust instruction tun-
ing, where diverse multimodal inputs must be mapped to
consistent, meaningful outputs under varied conditions (e.g.,
visual and textual perturbations). Despite its appeal, in-
tegrating the IB objective into MLLM training is highly
non-trivial due to the intractability of mutual informa-
tion estimation and the complexity of autoregressive and
multimodal architectures.

3.2. Variational Inference for Information Bottleneck in
MLLMs

Directly optimizing the IB objective is generally intractable,
as it involves mutual information terms over unknown data
distributions. In this work, we introduce a tractable varia-
tional bound on the IB objective, specifically tailored to the
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autoregressive and multimodal structure of MLLMs. We
outline the key steps below and provide full derivations in
the Appendix C.

We begin with the mutual information term I(Z,X). Given
the sequential nature of MLLMs, we decompose both the
input X = (Xv, Xt) and the latent representation Z =
(Zv, Zt) into visual and textual components. We can then
derive the following upper bound for I(Z,X):

I(Z,X) = Ex,z[log
p(z|x)
p(z)

] ≤ Ex,z[log
p(z|x)
r(z)

]

= Exv,xt,zv,zt [log
p(zt|xv, xt)p(zv|xv)

r(zv)r(zt)
]

= Exv,xt [Ezt|xv,xt [Ezv|xv [log
p(zv|xv)

r(zv)
]]]

+ Exv,xt [Ezv|xv [Ezt|xv,xt [log
p(zt|xv, xt)

r(zt)
]]]

= Exv [DKL(p(zv|xv)||r(zv))]
+ Exv,xt [DKL(p(zt|xv, xt)||r(zt))], (2)

where the first inequality holds given the non-negativity of
Kullback-Leibler divergence (KLD), DKL(r(z)||p(z)), and
p(zv|xv, xt) = p(zv|xv) due to causal attention in MLLM.
We introduce r(z) = r(zv, zt) = r(zv)r(zt) as a factoriz-
able variational approximation of the true prior p(z).

Next, for the output-relevant term I(Z, Y ), we have the
lower bound:

I(Z, Y ) = Ey,z

[
log

p(y|z)
p(y)

]
≥ Ex,y,z [log q(y|z)]− Ey[log p(y)]

≥ Ex,y

[
Ez|x [log q(y|z)]

]
, (3)

where we replace the true posterior p(y|z) with a variational
approximation q(y|z) that will be parameterized by a model
(will be elucidated in Section 3.3).

Finally, combining the lower bound of I(Z, Y ) and the
upper bound of I(Z,X) yields a variational lower bound
for the IB objective as follows,

IB(X,Y ) ≥ Ex,y

[
Ez|x[log q(y|z)]

]
− β (Exv [DKL(p(zv|xv)||r(zv))]
+ Exv,xt [DKL(p(zt|xv, xt)||r(zt))]), (4)

In the next section, we elaborate on how we can implement
this variational lower bound for MLLM instruction tuning
in practice.

3.3. Vittle: A Practical Implementation of Visual
Instruction Bottleneck Tuning

By using Monte Carlo approximation of expectations over
data, Eq. (4) can be expressed as follows,

Lβ =
1

N

N∑
i=1

Ez|xi [log q(y
i|z)]

− β (DKL(p(zv|xi
v)||r(zv)) +DKL(p(zt|xi

v, x
i
t)||r(zt))).

(5)

To compute this empirical estimate of the IB lower bound,
we need to model the posterior distributions, p(zv|xv) and
p(zt|xv, xt), and prior distributions r(zv) and r(zt), of the
MLLM’s inner representation Z. While in principle these
distributions can take arbitrary forms, multivariate Gaussian
distributions have been widely adopted in variational infer-
ence and probabilistic embedding literature (Graves, 2011;
Kingma & Welling, 2014; Blei et al., 2017; Alemi et al.,
2017; Oh et al., 2019; Chun et al., 2021) due to their mathe-
matical tractability and empirical effectiveness. By follow-
ing this common standard, we set the posteriors and priors
as Gaussian with diagonal covariance for d-dimensional
variable, and will elucidate how exactly they are defined
below.

Posterior distributions. As illustrated in Figure 2, we
parameterize the posteriors p(zv|xv) and p(zt|xv, xt) using
simple MLP blocks. Specifically, we introduce two non-
linear projections, gϕv

, gϕt
: Rd → R2d, which map each

d-dimensional token embedding to the posterior Gaussian
parameter vectors µ ∈ Rd and σ2 ∈ Rd+ for the vision and
language modalities, respectively. Given an intermediate
l-th layer representation (zv, zt) = fθl(xv, xt), we define:

p(zv|xv) = N (zv;µv, σ
2
v·I), p(zt|xv, xt) = N (zt;µt, σ

2
t ·I),

where [µv, σ
2
v ] = gϕv

(fθl(xv)) and [µt, σ
2
t ] =

gϕt
(fθl(xv, xt)), with the mean and variance parameters

split along output dimensions of MLP. These MLPs are ap-
plied position-wise in the same manner as Transformer’s
feed-forward layers (Vaswani et al., 2017), producing token-
wise variational posteriors. Now, we can sample from the
posterior distributions of MLLM representation by z̃v ∼
p(zv|xv) and z̃t ∼ p(zt|xv, xt). Then, to strike a balance be-
tween invariance and sensitivity, we interpolate the original
representation z (pre-bottleneck) with its bottlenecked coun-
terpart z̃ as ẑ = (1− α)z + αz̃. These representations are
fed into the remaining layers to compute the predictive dis-
tribution over outputs, i.e., q(y|z) := fθl+(y|ẑv, ẑt). While
direct sampling introduces non-differentiability, we can en-
able the gradient flow using the reparameterization trick
(Kingma & Welling, 2014) to sample z̃ via z̃ = µ+ σ ⊙ ϵ
with ϵ ∼ N (0, I) where µ and σ are the outputs of the
bottleneck MLP module given input x.

Prior distributions. We consider two instantiations of the
prior distribution for both Zv and Zt: (1) a fixed standard
Gaussian N (0, I), which is input-independent and enforces
strong isotropy, and (2) a learnable Gaussian N (µψ, σ

2
ψ ·I),

where µψ and σ2
ψ are two learnable vectors shared across

samples. Each prior affects the formation of representations
differently—the fixed prior imposes stronger regularization
and robustness, while the learnable prior introduces addi-
tional flexibility by allowing the model to adapt to the in-
struction tuning distribution. We name the former Vittle
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Figure 2: Vittle architecture. We insert a learnable bottleneck layer gϕ = {gϕv
, gϕt

} on top of l blocks of LLM
backbone (i.e., LLM-stem fθl ) to estimate posterior distributions of token embeddings. After obtaining a sample per token
{z̃v, z̃t} from posteriors, we interpolate it with a pre-bottlenecked token representation {zv, zt} and pass it through the
remaining LLM blocks (i.e., LLM-head fθl+ ).

(F) and the latter Vittle (L), and validate them altogether
for all the evaluations in Section 4.

Overall objective and implementation. The first term of
Lβ(Eq. (5)) can be easily computed through the standard
cross-entropy, and our Gaussian instantiation of posterior
and priors allows us to derive closed-form expressions of
KLD terms that can be computed from simple arithmetic
between µ and σ2 parameters (See Appendix A.2). We set
β = 0.1

d where d is the hidden dimension of the MLLM, to
normalize the KL regularization terms relative to the size of
the latent dimension. The interpolation coefficient α in ẑ =
(1 − α)z + αz̃ increases progressively following a cosine
schedule up to 0.5. During inference, we consistently use
an averaged representation ẑ = (z + z̃)/2. The target layer
to apply the bottleneck module can differ between visual
and textual tokens, but we set l = 24 for both modalities
among 32 layers in a 7B-size LLM, i.e., top 25% layer, by
default for simplicity (See Appendix B.1 for the ablation
study). Figure 2 depicts the architecture overview.

3.4. Theoretical Justification

The learning objective of Vittle has an attractive the-
oretical interpretation that can support the improvement
in robustness of Vittle. In this section, we first intro-
duce a recently proposed information-theoretic measure of
MLLM’s robustness under distribution shifts, effective mu-
tual information difference (EMID (Oh et al., 2025a)), and
show how Vittle can contribute to improving EMID.

Definition 3.1 (EMID). Let PΘ : X → Y be an MLLM
with parameters Θ that produces an output response YΘ

given an input instruction X . For joint distributions PXY

and QXY , effective mutual information difference of PΘ

over P and Q is defined as below,

EMID(PXY , QXY ;PΘ)

:= [I(PXYΘ)− I(PXY )]− [I(QXYΘ)− I(QXY )]. (6)

where I(·) denotes mutual information that measures the
relevance between input instruction and response. A higher
value of EMID indicates that MLLM PΘ undergoes perfor-
mance degeneration in the distribution Q (test data) com-
pared to P (training data), so we want to achieve a lower
value of it to ensure robustness. We now derive an upper
bound for EMID (See Appendix D for the proof).
Proposition 3.2 (EMID upper bound). Let PΘ be an
MLLM that maps X = {Xv, Xt} to Z = {Zv, Zt}, and
then sequentially maps Z to YΘ. Given joint distributions
PXY = PX ×PY |X and QXY = QX ×QY |X (resp. PZY
and QZY ), by assuming consistent conditionals over Zv|Zt,
Zt|Zv , and Y |X between P and Q, we have an upper bound
for EMID(PXY , QXY ;PΘ) as below,

Ĥ
(
D

1
2
JS(PZv ||QZv ) +D

1
2
JS(PZt ||QZt) +

√
∆X|Z

)
+ |H(PYΘ)−H(PY )|+ |H(QYΘ)−H(QY )|, (7)

where H and D
1
2

JS indicate the entropy and square root of
Jensen-Shannon divergence (JSD), respectively, ∆X|Z :=
Ez∼P [DKL(PX|z||MX|z)] + Ez∼Q[DKL(QX|z||MX|z)]

with a mixture distribution M = P+Q
2 , and Ĥ :=

maxx∈X [H(QY |x) + H(PYΘ
)]. As we consider an opti-

mization problem of Θ, the terms, H(PY ), H(QY ), and
maxH(QY |X), can be ignored from Eq. 7. We can also
ignore

√
∆X|Z term because it cannot directly affect YΘ

given the Markov assumption X → Z → YΘ.
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Implication. Vittle maximizes the variational
lower bound of IB, which consists of (1) minimizing
a standard negative log-likelihood term representing
an expected risk, and (2) minimizing KLD terms to
enforce posterior distributions close to prior distribu-
tions. By pursuing (1), MLLM PΘ seeks a solution
Θ that minimizes the expected risk and reduces its
output entropy H(PYΘ) and H(QYΘ) (Wen et al.,
2024; Yang et al., 2024a; Groot & Valdenegro-Toro,
2024). Besides, it also reduces JSD between rep-
resentation distributions PZ and QZ by promoting
all posterior samples to be laid near the pre-defined
priors. In summary, reduced entropy and JSD terms
induce lower EMID, which means that Vittle
tries to achieve minimal difference between effec-
tive mutual information over training and evaluation
distributions, while adapting to the in-distribution
training set.

We show that Vittle indeed reduces JSD and EMID under
distribution shifts in Table 4, and demonstrate in Section 4.2
that Vittle’s nice theoretical property is translated into
consistent robustness gains under 30 distribution shift sce-
narios while maintaining in-distribution task performance.

4. Experiment
4.1. Setup

Model and implementation detail. We adopt LLaVA-v1.5
(Liu et al., 2024b) as our main baseline MLLM, where we
set CLIP ViT-L/14-336px (Radford et al., 2021) as a vision
encoder, Vicuna-v1.5-7B (Chiang et al., 2023) as an LLM,
and a two-layer MLP as a projector. We follow the standard
two-stage training of LLaVA (Liu et al., 2023), and replicate
stage-1 for image-text alignment with the same configura-
tion and dataset (LLaVA-pretrain-558k) of LLaVA-
v1.5 (Liu et al., 2024b). Then, on the LLaVA-mix-665k,
we apply our Vittle objective. To validate the scalability
and broad applicability, we also consider LLaVA-v1.5-13B
and Prism-7B (Karamcheti et al., 2024). Refer to Appendix
A for details and Appendix B for LLaVA-v1.5-13B and
Prism-7B results, respectively.

Task, metric, and datasets. We evaluate instruction-tuned
MLLMs with three representative tasks: (1) open-ended
question answering, (2) object hallucination detection, and
(3) closed-form question answering. All are formatted as a
question answering (QA) with a single image input, where
we use the average relative preference score measured by
GPT-4o LLM judge (Zheng et al., 2023) with three repeated
runs for open-ended QA, while using exact matching accu-
racy for hallucination detection and closed-form QA. For
open-ended QA tasks, we adopt four datasets: LB-COCO
(Liu et al., 2023) as a clean and typical dataset, and LLaVA-

Bench in-the-wild (LB-Wild), LLaVA-Bench-Wilder (LB-
Wilder), and WildVision-Bench (WV-Bench) as long-tail
datasets. Then, we apply 27 types of image and text per-
turbations on LB-COCO samples2 to yield 28 variants of
perturbed LB-COCO (one of clean and nine of visual, tex-
tual, and joint perturbations, respectively). For object hal-
lucination detection tasks, we adopt POPE (Li et al., 2023)
as a clean and typical dataset. Then, we generate nine vari-
ants of perturbed POPE with visual perturbations. Here,
we consider the LB-COCO and POPE as in-distribution
(ID) datasets because they are generated from MS-COCO
samples that construct majorities of the instruction tuning
set of modern MLLMs, including LLaVA. For closed-form
QA, we adopt four representative datasets: ScienceQA (Lu
et al., 2022), MMMU (Yue et al., 2024), MME (Liang et al.,
2024), and MMStar (Chen et al., 2024a). In summary, we
experiment with 45 datasets (31 of open-ended, 10 of object
hallucination detection, and 4 of closed-form tasks).

4.2. Results

Vittle improves robustness under input perturbations.
We first evaluate Vittle on object hallucination detection
tasks with nine variants of POPE perturbed by visual corrup-
tions in Figure 3. Although MLLMs trained with a standard
objective and Vittle similarly suffer from perturbations,
two instantiations of Vittle consistently outperform the
standard objective. Interestingly, Vittle outperforms the
baseline even in clean POPE (See Appendix B). We specu-
late that Vittle’s information control prevents the reliance
on a partial feature of a single modality (Rahmanzadehgervi
et al., 2024), e.g., textual feature, which is a common source
of hallucination.

Next, we present the validation on the open-ended QA task
with 18 types of input perturbations, which are applied to
visual and textual input independently or simultaneously in
Figure 4. As we can see, Vittle greatly enhances per-
formance in various perturbation datasets highlighted by
green numbers that indicate the relative improvements of
Vittle (F) compared to the baseline. Among the two
variants of Vittle, Vittle (F) showcases better gener-
alization under perturbations than Vittle (L), suggesting
the benefits of a conservative zero-centered isotropic prior
distribution to address a variety of subtle input perturba-
tions. Next, we further explore Vittle’s robustness by
evaluating varying perturbation severity. To be specific, we
generate perturbations on three different degrees that deter-
mine how significantly the image or text would be changed.
In Figure 5, we see that Vittle achieves better perfor-
mance in general, where the margin becomes larger under
severe perturbations. In summary, we observe a consistent

2See Appendix A.3 for a comprehensive summary of all pertur-
bations and their generation processes.
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+1.1% +0.7% +0.7%
+1.0%

+1.6%

+1.2% +1.4% +0.3% +1.2% +1.0%

Figure 3: Object hallucination detection performance on POPE variants. We enumerate the hallucination detection
accuracy of each method on nine versions of perturbed samples, and observe consistent gains by Vittle (highlighted by
green numbers of relative improvement from baseline).

+5.0% +7.3% +4.3% +5.7% +1.5%

+0.7%
+0.8%

+9.0%

-2.8% +3.4%

+0.4%

+1.6% +4.1%

+3.5%
+1.3%

+3.2%

+1.9% +2.3% +5.0%

+2.6%

Figure 4: Open-ended QA performance on LB-COCO variants. We enumerate the relative preference score of responses
from each model on 18 version of perturbed samples, and observe consistent gains by Vittle (especially for the Vittle
(F)) on most of the textual (top), and joint (bottom) perturbations (results on visual perturbations are in Appendix B).

gain by Vittle on the perturbed input setting across two
tasks, which indicates that Vittle enhances the robust-
ness to distribution shifts by pursuing the minimality of data
representation.

Vittle improves generalization to long-tail distributions.
Not only subtle perturbations on input, but long-tail samples
are also commonly encountered in many MLLM applica-
tions. In Table 1, we validate Vittle on three long-tail
QA tasks constructed with real-world user queries. We
see that Vittle also excels in generalizing long-tailed
samples compared to the baseline. Interestingly, Vittle
(L)–learnable prior–exhibits better performance compared
with Vittle (F). We speculate that a learnable prior IB
guides the model to learn a better sensitivity for high-level
abstractions as well as an invariance to low-level noise by
allowing additional flexibility to shape data-driven priors,
yielding superior performance on tasks that require in-depth
understanding of irregular queries.

Table 1: Performance comparison on long-tail open-
ended QA tasks those contain queries that are quite differ-
ent from typical training samples in terms of visual content
and textual semantics.

Method LB-Wild LB-Wilder WV-Bench

Baseline 51.6 156.9 60.0

Vittle (L) 54.6 168.8 60.4
Vittle (F) 52.2 166.1 59.7

Vittle preserves competitive performance on general
benchmarks. Although the main focus of Vittle is
to improve the model’s robustness under distribution shifts,
securing the rich multimodal understanding capability and
knowledge to diverse disciplines is also crucial as an essence
of MLLM. To validate the multimodal understanding with
an advanced level of knowledge, we evaluate each method
on four representative closed-form QA benchmark datasets
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Table 2: Performance comparison on general benchmark
datasets. These four multi-choice QA datasets require a
higher level of multimodal understanding across multiple
domains.

Method SciQA MMMU MME MMStar Avg.

Baseline 64.6 35.6 69.7 33.7 50.9

Vittle (L) 64.7 35.3 70.5 33.7 51.1
Vittle (F) 65.4 34.5 70.1 33.5 50.9

Table 3: Comparison with weight-space compression
methods. We compare Vittle with the LoRA and weight
decay (WD) methods on LB-COCO and its perturbed vari-
ants.

Method Clean V Pert. T Pert. J Pert.

Baseline 77.8 73.4 72.2 62.3

LoRA 73.4 70.4 62.7 39.7
WD 74.1 72.1 73.0 59.5
Vittle (L) 76.7 73.9 73.0 62.7
Vittle (F) 76.1 74.2 74.1 64.4

covering various fields. In Table 2, we observe that Vittle
shows competitive performance with the standard approach,
which implies that Vittle can also be used as a general-
purpose learning objective.

Comparison with alternative learning approaches.
Note that the regularization forced by Vittle works on
the representation space to penalize the amount of informa-
tion encoded in the data representations. One of the natural
alternatives is to regularize the model weight directly. In
Table 3, we compare Vittle with LoRA (Hu et al., 2022)
and the weight decay method (WD) as instantiations of
weight-space regularization, and the results suggest that ex-
plicit regularization on weight-space does not ensure a good

Figure 5: Evaluation under varying perturbation severity.
Vittle achieves better performance, especially on severe
perturbations.

Figure 6: Comparison with other objective functions.
We report the average performance for all perturbations in
POPE and LB-COCO.

balance between adaptability on in-distribution and robust-
ness to distribution shifts. The other line of alternatives is
information maximization during visual instruction tuning
(Wang et al., 2025; Zhou et al., 2025), which is the exact
opposite of Vittle’s design principle. We compare two
recent methods of this, ROSS (Wang et al., 2025) and LIT
(Zhou et al., 2025), with Vittle on LB-COCO and POPE
under perturbations. As shown in Figure 6, although these
approaches are effective in improving object hallucination
detection performances, they fail to achieve competitive
performance on the open-ended QA task (See Appendix
B for more results). This implies the non-trivial challenge
of devising a general learning objective for MLLMs that
can consistently improve robustness across diverse tasks,
where we can see the promise of Vittle towards broadly
applicable robust instruction tuning.

Qualitative analysis. Figure 7 shows responses of clean
queries and their visually or textually perturbed counterparts.
Although the query before and after each perturbation con-
veys the same meaning and intention, LLaVA-v1.5 reveals
volatility in its responses, whereas Vittle shows stable
behavior by providing consistent responses, i.e., generating
exactly the same response in the case of visual perturbation
while keep focusing on the same object in a case of textual
perturbation.

Representation analysis. We next see how Vittle
shapes the representation space and how it affects robust-
ness. In Table 4, we measure the average value of empirical
JSD and EMID discussed in Section 3.4 over 27 perturbed
variants of LB-COCO. Both JSD and EMID are computed
between two distributions, clean and one of its perturbed
versions, and then averaged over 27 clean-perturbed pairs
(See Appendix A.4 for details). As our hypothesis, Vittle
reduces distributional gaps, e.g., achieving smaller JSDs,
between clean and perturbed samples in its representation
space, thereby achieving a smaller EMID value that indi-
cates better robustness. In Figure 8 (top), we further show
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The main focus of the image is a close-up 
of a giraffe's head, with its eyes open and 
looking directly at the camera.

The main focus of the image is a giraffe 
standing in front of a tree.

Q) What is the main 
focus of the image?

The main focus of the image is a close-up 
of a giraffe's head, with its eyes open and 
looking directly at the camera.

The main focus of the image is a 
giraffe's head, with the giraffe looking at 
the camera.

LLaVA-v1.5 Vittle

Q)  What is the man 
doing in the image?

Q)  QNat is the man 
doimN in the image?

The man in the image is sitting at a table, 
talking on his cell phone.

The man in the image is dozing off while 
sitting at a table.

The man in the image is giving a thumbs-
up sign while talking on his cell phone.

The man in the image is sitting at a table, 
talking on his cell phone.

Q) What is the main 
focus of the image?

Visual Perturbation

Textual Perturbation

Figure 7: Case study on LB-COCO under perturbations. Although LLaVA-v1.5 produces a reasonable response for
clean samples, the response and its quality vary under perturbations. Vittle maintains the consistency for the responses.

Table 4: JSD and EMID evaluation on 27 LB-COCO
variants. We measure JSD and EMID between clean and
perturbed LB-COCO in a pair-wise manner, then report the
average value.

Method JSD (↓) EMID (↓)

Baseline 0.068 0.026

Vittle (L) 0.048 0.021
Vittle (F) 0.047 0.025

PCA visualizations (in the same axis scale) for representa-
tions of LLaVA and Vittle on clean and image-text per-
turbed LB-COCO. We see that Vittle embeds the clean
and semantically equivalent perturbed samples more closely.
Moreover, the bottom panel shows that Vittle induces
smaller cosine distances between clean and perturbed pairs
in terms of the histogram and the average value in paren-
theses. These results indicate that our learning objective is
indeed effective in structuring a better representation space
that drives robustness.

Table 5: Runtime comparison.

Method Tr./
it.

(s)

Tr. (
h)

Te.
(s)

Baseline 7.363 11.06 0.1048
Vittle 9.482 13.36 0.1072

Cost analysis. Vittle introduces a lightweight bottleneck
layer inside of LLM that slightly increases the total number
of trainable parameters (by 1.5%). One may thus wonder
how Vittle’s training and inference time is compared
with a bottleneck-free baseline. In Table 5, we show the
wall-clock training (per iter and total), and inference time
per sample. Although Vittle increases the training time
up to 20% compared with baseline, its inference time is
almost identical to the original model, which is a reasonable

Baseline Vittle (F)

Figure 8: PCA and pair-wise cosine distance of represen-
tations between clean and perturbed samples. Results on
the joint perturbation (Zoom Blur with Arabic translation)
show that Vittle induces better invariance.

cost given significant gains in terms of robustness.

5. Conclusion
This work provided the first investigation on the promise
of information bottleneck from the context of MLLM in-
struction tuning to ensure robustness of MLLM under dis-
tribution shifts. We proposed a new theoretically-grounded
visual instruction tuning method, Vittle, that injects a
bottleneck layer inside the LLM to induce posterior samples
of internal representations that encode useful information
to produce valid responses while discarding other residual
information from input queries. With negligible additional
cost, Vittle is easily optimized with a variational lower
bound of IB and shows consistent gains in robustness in 30
types of distribution shifts while also achieving strong per-
formance on standard benchmarks, indicating that Vittle
promotes a good balance between invariance and sensitivity
during representation learning.
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A. Extended Experiment Setup and Implementation Detail
A.1. Model and Training

In this work, we consider LLaVA-v1.5 (Liu et al., 2024b) as our target multimodal large language model (MLLM)
with CLIP ViT-L/14-336px (Radford et al., 2021) and Vicuna-v1.5-7B (Chiang et al., 2023) as visual encoder and
LLM backbone, respectively, and a two-layer MLP as projector (modality connector that maps features of the visual
encoder into the text embedding space). Although all of the results presented in the main body of the paper were
produced with LLaVA-v1.5-7B, we also experimented with LLaVA-v1.5-13B (with Vicua-v1.5-13B as the LLM
backbone) to validate the scalability of our method, and consider Prism-7B (Karamcheti et al., 2024) as an additional
MLLM architecture to validate the broad applicability of Vittle. For fair comparison, all models are trained on
the LLaVA-pretrain-558k and LLaVA-mix-665k datasets, consisting of a mixture of LAION (Schuhmann
et al., 2021), CC (Sharma et al., 2018), SBU (Ordonez et al., 2011) datasets with BLIP captions (Li et al., 2022b)
and a mixture of LLaVA-instruct-158K and academic-task-oriented (V)QA datasets, respectively. Training
configurations such as optimizer, learning rate, and batch size are summarized in Table 6 and Table 7. All training runs
are conducted with eight A100-80GB GPUs with DeepSpeed ZeRO library. The shortest run takes roughly 11 hours,
whereas the longest run takes about 14 hours. Now, we elaborate on the overall workflow of LLaVA and Prism below.

Table 6: Hyperparameter list of Vittle training.
We adopt exactly the same configurations with LLaVA-
v1.5 (Liu et al., 2024b) for Stage 1 and 2.

Config Stage1 Stage2

Global batch size 256 128
Batch size per GPU 32 16
Learning rate 1e-3 2e-5
Learning rate schedule Cosine decay w/ linear warmup
Warmup ratio 0.03
Weight decay 0.0
Epoch 1
Optimizer AdamW
Precision bf16

Table 7: Hyperparameter list of Prism-Vittle train-
ing. We adopt exactly the same configurations with Prism-
DINOSigLIP-Controlled-7B (Karamcheti et al., 2024) sin-
gle stage training.

Config Value

Global batch size 128
Batch size per GPU 16
Learning rate 2e-5
Learning rate schedule cosine decay w/ linear-warmup
Warmup ratio 0.03
Weight decay 0.1
Epoch 1
Optimizer AdamW
Precision bf16

LLaVA is built with a pre-trained visual encoder that takes visual inputs, a pre-trained LLM backbone that takes text
instructions, and a lightweight projector that maps features produced by the visual encoder into the text embedding space of
LLM backbone so that the visually-grounded multimodal instruction input query can be processed by the LLM backbone.
LLaVA undergoes a two-stage training: (1) The first stage takes into account modality alignment, where the projector
is trained on image and corresponding instruction or caption with a conditional language modeling loss implemented by
aggregating cross-entropy losses across response tokens, while the visual encoder and LLM backbone are frozen. (2) The
second stage stands for the instruction tuning, where the projector and LLM backbone are jointly trained on multimodal
instruction samples with the same conditional language modeling loss while the visual encoder is still frozen. This two-stage
training has been considered a standard approach for developing MLLMs and is widely adopted (Chen et al., 2023; Ye et al.,
2023; Tong et al., 2024a).

Prism has a model architecture similar to LLaVA, but provides some valuable insight into the design of the MLLM training
recipe, and we note two remarkable design choices of Prism that distinguish it from LLaVA: (1) incorporating multiple
visual encoders rather than hosting a single visual encoder, and (2) reducing the two-stage alignment-then-instruction tuning
into a single-stage instruction tuning. Note that different self-supervised visual representation learning induces features
that have different strengths, and several works reveal the benefits of ensembling multiple different visual encoders to
leverage complementary advantages (Tong et al., 2024b; Karamcheti et al., 2024; Shi et al., 2025). Prism incorporates
SigLIP (Zhai et al., 2023) and DINOv2 (Oquab et al., 2024) to enjoy both a robust global feature and a fine-grained local
feature. Meanwhile, Karamcheti et al. (Karamcheti et al., 2024) showed that the simplified single-stage training strategy can
be a cost-effective alternative to the standard two-stage training.
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To train these MLLMs, we consider five baseline approaches: (1) the standard full LLM fine-tuning with conditional
language modeling loss, (2) parameter-efficient LoRA (Hu et al., 2022) fine-tuning with the conditional language modeling
loss, (3) conditional language modeling loss with weight decay regularization, (4) reconstructive visual instruction tuning
(ROSS) (Wang et al., 2025), and (5) learning to instruct (LIT) (Zhou et al., 2025). For the LoRA-based training configuration,
we use the same one provided by the official LLaVA-v1.5 repository3, and for the weight decay regularization, we select
the regularization magnitude parameter among {0.1, 0.01, 0.001} based on the POPE evaluation result. We now elucidate
two competitive baseline methods, ROSS and LIT, in the following paragraphs. It is worth noting that these methods are
designed to encode more (visual) information into the representation space, which is opposite to our Vittle’s design
motivation that pursues a minimal sufficient representation for improving robustness to distribution shifts.

Reconstructive visual instruction tuning (ROSS) follows the two-stage training of LLaVA, but tries to reconstruct the
visual inputs from the LLM backbone by adopting a regression or denoising learning objective in addition to language
modeling loss during its second stage. By doing so, ROSS guides the MLLM to learn a much richer visual understanding,
which is usually lacking in modern MLLMs (Tong et al., 2024b; Rahmanzadehgervi et al., 2024). The reconstruction target
can be a raw RGB pixel value or the latent representation from an external visual encoder such as VQGAN (Esser et al.,
2021) or VAE (Kingma & Welling, 2014), and ROSS requires an additional trainable module to reconstruct visual content,
which is discarded during inference. We follow the training recipe from the official code repository4 to replicate ROSS-D-7B
with the same visual encoder and LLM backbone to LLaVA-v1.5. For a fair comparison with LLaVA and Vittle, we train
the ROSS with the same dataset (that of LLaVA-v1.5) for both training stages, while the original ROSS model was trained
on a slightly larger dataset in the second stage.

Learning to Instruct (LIT) also focuses on the visual shortcomings of current MLLM and tries to improve the visual
understanding capability of MLLM by incorporating an additional loss term that incentivizes the encoding of additional
visual information. To be specific, while the cross-entropy loss in LLaVA’s conditional language modeling objective is
aggregated through the response tokens only, LIT introduces an extra cross-entropy loss term, which is aggregated over the
instruction (question) tokens only, thereby enforcing MLLM to learn to predict a proper textual instruction given an image.
As LIT uses the same visual and language backbone model and training dataset as LLaVA-v1.5, we use the pre-trained
checkpoint of LIT from Hugging Face5 for evaluation.

In Figure 6, we observe that while ROSS and LIT are somewhat effective in improving performance on object hallucination
detection tasks with the aid of enhanced visual understanding capability, they significantly underperform Vittle and
even the original LLaVA on the open-ended QA task under distribution shifts. This implies that pursuing more information
encoding during visual instruction tuning may not result in better robustness to distribution shifts, but aiming to learn a
minimal sufficient representation via Vittle can be a promising solution for this (See Table 11 for details).

A.2. Vittle Implementation Details

This section provides additional details on implementing Vittle through Python-style pseudo code in Figure 9 and text
below. Following the standard two-stage LLaVA training recipe, we freeze the visual encoder and LLM backbone during the
first stage and only train the projector module. In the second stage, Vittle inserts a bottleneck layer gϕ, consisting of two
of the two-layer MLPs {gϕv

, gϕt
} for visual and textual modalities, inside the LLM backbone to estimate the distributional

parameters (mean and diagonal covariance) of the posterior Gaussian distributions for each visual and textual token. Each
bottleneck module is constructed with {nn.Linear(d,d), nn.GELU(), nn.Linear(d,2*d)} where d denotes
the hidden dimension of the LLM backbone, and this results in a slightly increased number of model parameters (up to 1.5%
from the baseline). We use these estimated distribution parameters to sample a representation from this posterior via z̃ =
µ+σ⊙ϵ where ϵ ∼ N (0, I). Then, for a given bottleneck layer index l and for the maximum length of visual Mv and textual
input tokens Mt, the bottleneck layer gϕ takes a sequence of token representations z = {zv,1, ..., zv,Mv

, zt,1, ..., zt,Mt
}

produced from the layer l to build information-penalized representations ẑ = {ẑv,1, ..., ẑv,Mv
, z̃t,1, ..., z̃t,Mt

}, where
ẑ = (1− α)z + αgϕ(z). Here, we use an interpolated representation between the original pre-bottleneck representation
z and the post-bottleneck representation gϕ(z) with an interpolation coefficient α that progressively grows from 0 to 0.5
by a cosine schedule during training. We observe that solely using the post-bottleneck representation induces a diverging
language modeling loss at the later steps of training, and speculate that it is hard to generate a valid response with the

3https://github.com/haotian-liu/LLaVA
4https://github.com/Haochen-Wang409/ross
5https://huggingface.co/zhihanzhou/LIT-LLaVA-1.5-Vicuna-7B/tree/main
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information-penalized representation only.

Then, we jointly train the LLM backbone, the projector, and this bottleneck layer together during the second stage of
training with the objective function 5. As we assume a diagonal covariance Gaussian for the prior and posterior distributions,
Kullback–Leibler divergence (KLD) between the prior p and posterior q can be easily expressed as below,

DKL(q, p) =
1

2

d∑
j=1

(
log

σ2
p[j]

σ2
q [j]

− 1 +
(µp[j]− µq[j])

2

σ2
p[j]

+
σ2
q [j]

σ2
p[j]

)
(8)

where µ· and σ· denote d-dimensional distributional parameter vectors and [j] indicates j-th element from the vectors.
Vittle has two important hyperparameters: (1) target layer index l for bottleneck application, and (2) posterior KLD
regularization strength parameter β. After tuning across l ∈ {24, 28, 31} and β ∈ { 0.01

d , 0.05
d , 0.1

d , 0.2
d , 1.0

d } where d denotes
the latent dimension of the LLM backbone, we set l = 24 and β = 0.1/d based on the average performance of POPE and
LB-COCO clean datasets. The interpolation coefficient α can also be tuned, but we found that increasing α beyond 0.5
hinders stable training and observing increased language modeling loss at the later parts of training progress. Figure 12 and
Table 10 present the results of hyperparameter ablation study.

A.3. Downstream Task Benchmark Construction

Open-ended QA task. One of the most representative applications of an MLLM is the generation of free-form responses
given multimodal instruction queries. We consider LLaVA-Bench COCO (LB-COCO; (Liu et al., 2023)) as a typical
in-distribution (ID) open-ended QA dataset, which is constructed from MS-COCO images (Lin et al., 2014) with GPT-
generated text queries that have 90 pairs of image and text. We then generate 27 variants of this LB-COCO by applying nine
types of image perturbations, nine types of text perturbations, and nine types of image-text joint perturbations, to benchmark
MLLMs’ robustness under various distribution shifts (which will be elaborated at the end of this section). Meanwhile, we
also consider three datasets LLaVA-Bench in-the-wild (LB-Wild; (Liu et al., 2023)), LLaVA-Bench Wilder (LB-Wilder;
(Li et al., 2024a)), and WildVision-Bench (WV-Bench; (Lu et al., 2024)) constructed by real-world web users’ image-text
paired queries of 60, 128, and 500 samples, respectively, to validate models’ capability to address long-tailed queries in
practice. This results in 31 different open-ended QA datasets in total: clean and 27 perturbed LB-COCO variants, and three
long-tail datasets.

Object hallucination detection task. Meanwhile, one of the most crucial evaluation aspects of an MLLM is the degree of
hallucination of its output. A representative benchmark for this is the POPE dataset (Li et al., 2023), where the model is
tasked to answer in binary {Yes, No} form given a question about the object’s existence given an image. The POPE dataset
was also created from the MS-COCO source images with 9,000 corresponding questions, and we consider this dataset as
an ID dataset. As we did for the LB-COCO dataset, we generated 9 variants of POPE by applying nine types of visual
perturbations to images. Textual perturbations were not considered here because the text query of this dataset is relatively
short, so perturbing the core object word token can distort the desired semantics of the question. In summary, we conducted
validation on 10 different POPE variants.

Closed-form QA task. There are numerous closed-form QA datasets that assess the internal knowledge of MLLMs from
various perspectives. In this paper, we consider four representative datasets: ScienceQA (Lu et al., 2022), MMMU (Yue
et al., 2024), MME (Liang et al., 2024), and MMStar (Chen et al., 2024a), which are designed to validate multimodal
knowledge and understanding capability across various domains.

Distribution shift simulation. The goal of this study is to improve the robustness of MLLM under distribution shifts. We
mainly focus on subtle perturbations on image and text, which is worth-noting problem given the fact that current MLLMs
undergo systematic performance degradation under perturbations. We consider nine visual perturbations listed in Table 8, nine
textual perturbations listed in Table 9, and nine image-text joint perturbations: {zoom_blur, frost, gaussian_noise}×{arabic,
greek, hindi}. The translations for Arabic, Greek, and Hindi languages from English are conducted by OpenAI GPT-4o
with a prompt: "Please translate a {SOURCE} sentence provided by the user into {TARGET}.", and all the remaining
perturbations are generated MMRobustness source code6. The actual examples of each visual textual perturbation are
presented in Figure 11 and Figure 10.

6https://github.com/Jielin-Qiu/MM_Robustness
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def reparam(mu, logvar):
std = (logvar / 2).exp()
batch_size, seq_len, hidden_dim = mu.shape
z = torch.randn(batch_size, seq_len, hidden_dim)
return mu + std * z

def forward(self, input_embeds, img_seq_len, a, **kwargs):
...
hidden_states = input_embeds
for l_idx, llm_layer in enumerate(self.llm.layers):

layer_outputs = llm_layer(hidden_states, **kwargs)
hidden_states = layer_outputs[0]
if l_idx == self.bottleneck_layer_idx:

# posterior inference
v_params = self.g_v(hidden_states[:,:i_seq_len,:])
t_params = self.g_t(hidden_states[:,i_seq_len:,:])
v_mean = v_params[:,:,:self.h_dim]
v_logvar = v_params[:,:,self.h_dim:]
t_mean = t_params[:,:,:self.h_dim]
t_logvar = t_params[:,:,self.h_dim:]
v_post = reparam(v_mean, v_logvar)
t_post = reparam(t_mean, t_logvar)
z_post = torch.cat((v_post, t_post))
# interpolation between original and bottlenecked
hidden_states = (1-a) * hidden_states + a * z_post

...

Listing 1: Forward pass of Vittle

def normalized_kld(mu, logvar, modality=None):
if modality is None:

# vittle (F) - fixed prior N(0,I)
kl_loss = -0.5 * (1+logvar-mu**2-logvar.exp()).mean()

else:
# vittle (L) - learnable prior
mu_pr, logvar_pr = self.l_prior[modality]
logvar_d = logvar-logvar_pr
scaled_mu_d = (mu-mu_pr).pow(2)/logvar_pr.exp()
var_ratio = logvar.exp()/logvar_pr.exp()
kl_loss = -0.5 * (1+logvar_d-scaled_mu_d-var_ratio).mean()

return kl_loss

def loss(self, logits, labels, v_mean, v_logvar, t_mean, t_logvar):
lm_loss = self.llm.loss_function(logits, labels)
if self.learnable_prior:

flag_v, flag_t = "v", "t"
else:

flag_v, flag_t = None, None
kld_v = self.normalized_kld(v_mean, v_logvar, flag_v)
kld_t = self.normalized_kld(t_mean, t_logvar, flag_t)
return lm_loss + self.beta * (kld_v + kld_t)

Listing 2: Training objective of Vittle

Figure 9: PyTorch-style pseudo code for the forward pass and training objective of Vittle
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Original

Defocus Blur Zoom Blur Contrast

Fog FrostBrightness

Gaussian Noise Shot Noise Speckle Noise

Figure 10: Examples of visual perturbations.

Table 8: List of visual perturbations. We consider nine
visual perturbations from four categories: (1) Blur, (2) Digi-
tal, (3) Weather, and (4) Noise, to validate the robustness of
MLLMs under diverse types of visual perturbations.

Name Category

Defocus Blur Blur
Zoom Blur Blur

Contrast Digital

Brightness Weather
Fog Weather

Frost Weather

Gaussian Noise Noise
Shot Noise Noise

Speckle Noise Noise

Table 9: List of textual perturbations. We consider nine
textual perturbations from three categories: (1) character-
level, (2) word-level, and (3) sentence-level, to validate
the robustness of MLLMs under diverse types of textual
perturbations.

Name Category

Char Typo Character-level Perturbation
Char Delete Character-level Perturbation
Char Insert Character-level Perturbation

Word Swap Word-level Perturbation
Word Delete Word-level Perturbation
Word Insert Word-level Perturbation

Arabic Translation Sentence-level Perturbation
Greek Translation Sentence-level Perturbation
Hindi Translation Sentence-level Perturbation

A.4. Evaluation Details

Open-ended QA task. Compared to multi-choice closed-form QA tasks that have a unique ground-truth answer per
question, open-ended free-form generation-style QA tasks do not provide a single ground-truth answer. We follow the
current standard evaluation paradigm, (M)LLM-as-a-Judge, that uses an external (usually more powerful) MLLM to gauge
the quality of our target MLLM of interest via prompting. To be specific, for a given input query x, reference answer y,
MLLM fθ : X → Y , and the judge model r : X × Y → Z+, relative preference score is defined as, Ex,y[ r(x,fθ(x))r(x,y) ].
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What is the main 
focus of the image?

!haH is the main 
focus of the kmagR?

Wh is the main fos 
of the image?

DWwhat is the um(ain 
focus of the image?

Char Typo Char Delete Char Insert

is the main focus
of image

Word Delete
what exist is the main 
focus of the image

Word Insert
the is the main 
focus of what image

Word Swap

؟ةروصلليسیئرلازیكرتلاوھام

Arabic Greek Hindi
छ"वका मु(यफोकस -या है?

Ποιο είναι το κύριο 
επίκεντρο της εικόνας;

Original

Figure 11: Examples of textual perturbations.

For all of our open-ended QA evaluations, we used the same system prompt template provided by LLaVA authors7, and we
also adopted the MS-COCO annotation8-based GPT-4 response9 and the gpt_answer10 released by LLaVA-NeXT authors
as reference answers for LB-COCO variants and LB-Wilder, respectively. For LB-Wild and WV-Bench, we generated
reference answers with GPT-4o.

Object hallucination detection and closed-form QA task. In contrast to open-ended tasks, all object hallucination
detection and closed-form QA tasks provide a single ground truth answer as a form of discrete labels such as {Yes, No}
and {A, B, C, D, ...}. For the multi-choice QA datasets, MMMU, MMStar, and ScienceQA, we attached a subfix prompt:
"Answer in a character from the given choices directly." at the end of each question for answer formatting, while using
the original question text for YES-or-NO datasets, MME and POPE, without a formatting prompt. We measured the exact
matching accuracy Ex,y[I(θ(x) = y)] for these tasks.

Effective Mutual Information Difference (EMID) and Jensen-Shannon Divergence (JSD). In addition to the evaluation
with traditional metrics, we also consider the EMID and JSD-based evaluation, which was recently proposed as an
information-theoretic approach to measure the robustness of MLLMs (Oh et al., 2025a). To compute the empirical estimates
of MI, which is required for EMID computation, we use the CLUB estimator (Cheng et al., 2020) and reproduce the
training and inference process of (Oh et al., 2025a) by adopting image and text embeddings for the input image and
text from CLIP-ViT-B/32 (Radford et al., 2021) and XLM-RoBERTa-Base (Conneau, 2019) to replace Xv and Xt, and
also the text embeddings of XLM-RoBERTa-Base for responses Y and YΘ. To compute empirical estimates of JSD, we
adopted the representation JSD estimator (Hoyos-Osorio & Sanchez-Giraldo, 2023) on top of the CLIP-ViT-B/32 and
XLM-RoBERTa-Base, too.

Representation analysis. Inspired by a recent work that reveals the importance of intermediate layer representation of the
LLM backbone (Skean et al., 2025), we use the last input token embedding of the 24th layer (out of 32 layers in a 7B LLM
backbone) for all experiments carried out in the representation space (Figure 1 (b) right, Figure 8, Figure 13, and the JSD
computation in Table 4).

B. Additional Results
B.1. Ablation Study

We first investigate two important hyperparameters for Vittle: (1) bottleneck layer index l and (2) KLD regularization
strength β, where we determined those parameter values based on the average performance on the clean POPE and LB-

7https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/rule.json
8https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/caps_boxes_coco2014_

val_80.jsonl
9https://github.com/haotian-liu/LLaVA/blob/main/playground/data/coco2014_val_qa_eval/

qa90_gpt4_answer.jsonl
10https://huggingface.co/datasets/lmms-lab/LLaVA-Bench-Wilder
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COCO, while not observing performance on perturbation datasets for fair model selection. We then further explore the
impact of the interpolation coefficient α, which plays a role in controlling the balance between the original representation
and the bottleneck representation. Note that we could not conduct such an extensive search due to the computational burden
of training 7B 13B scale models, so the hyperparameter values found here may not be optimal, and Vittle can achieve
better results with further hyperparameter tuning.

Figure 12: Ablation study for the bottleneck layer index (left) and KLD regularization magnitude parameter β (right).

For bottleneck target layer ablation (Figure 12 left), we swept across {8, 16, 20, 24, 28, 31} out of 32 layers of the 7B-size
LLM backbone. However, applying the bottleneck on the early layer failed to make the language modeling loss converge,
so we only provided results for 24, 28, and 31 layers. We observed that intermediate layers (L24 and L28) achieve better
results than the penultimate layer (L31), and L24 shows better results on POPE while L28 outperforms L24 on LB-COCO.
In conclusion, applying the bottleneck to too early parts hinders shaping some shallow syntactic features that will be actively
used at later parts of the layers (Hernandez & Andreas, 2021), whereas applying it to too late parts hurts output-specific
alignment or formatting (Song et al., 2025), which guide us to decide intermediate layer, i.e., 24th, as a default choice. This
is in line with a recent finding that the intermediate layer of LLM matters more than the early or later layers by showing
that the quality measurements of the intermediate layer representations have a stronger correlation with performance in
downstream tasks (Skean et al., 2025). Although we can search different layer indices for visual and textual tokens, we
leave this to future work.

For KLD regularization strength parameter ablation (Figure 12 right), we swept across {0.01, 0.05, 0.1, 0.2, 1.0}, and found
that in the POPE dataset, strong regularization results in better performance, whereas it is not the case for LB-COCO. We
choose 0.1/d as our default, which induces balanced clean-data performance on these two tasks.

Table 10: Ablation study for the representation interpolation coefficient α of the bottleneck layer. We observe that
using the bottlenecked representation beyond the half portion of the total hinders the convergence of the language modeling
loss.

Alpha POPE POPE V Shifts Avg. LB-COCO LB-COCO T Shifts Avg.

Baseline 86.98 84.12 77.8 72.3

0.1 87.22 84.20 77.9 73.1
0.25 87.34 84.47 75.6 73.1
0.5 87.71 84.90 76.7 73.0
0.75 Failed to converge
1 Failed to converge

We also explore the effect of the representation interpolation parameter α ∈ [0, 1], which can be interpreted as a gating
mechanism to control the information flow. As α approaches one, the later parts of the LLM backbone (LLM head in our
notation) mainly use the information-penalized representation, while if α becomes smaller, the model strongly relies on the
original representation. In Table 10, we observe that using too large values of α results in diverging language modeling loss,
indicating that using a strongly penalized representation only cannot predict proper response tokens in sequence. Meanwhile,
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Table 11: Comparison with alternative training approaches. We compare Vittle with weight-space regularization
methods, LoRA (Hu et al., 2022) and weight decay (WD), and two recent visual instruction tuning learning objectives,
ROSS (Wang et al., 2025) and LIT (Zhou et al., 2025) on LLaVA-v1.5-7B model. Evaluations are conducted on POPE, its
nine visually perturbed variants (POPE V Pert.), LB-COCO, and its nine {visually/textually/jointly} perturbed variants,
where we mark the best one as bold and the second best one as underlined.

Method POPE POPE V Pert. LB-COCO LB-COCO V Pert. LB-COCO T Pert. LB-COCO J Pert.

Baseline 86.98 84.12 77.8 73.4 72.2 62.3

LoRA 83.33 80.23 73.4 70.4 62.7 39.7
WD 87.22 83.97 74.1 72.1 73.0 59.5
ROSS 87.79 84.67 74.4 72.0 71.3 60.0
LIT 87.38 84.21 77.5 72.1 72.9 58.9

Vittle (L) 87.71 84.91 76.7 73.9 73.0 62.7
Vittle (F) 87.81 84.99 76.1 74.2 74.1 64.4

Table 12: Vittle on LLaVA-v1.5-13B model. We compare Vittle with the standard learning objective on LLaVA-
v1.5-13B model that uses Vicuna-v1.5-13B as an LLM backbone. We set the bottleneck layer index l = 36, interpolation
coefficient α = 0.5, and bottleneck KLD regularization strength β = 0.1

d . Vittle outperforms baseline on perturbed
datasets while showing rivaling performance on the clean dataset.

Method POPE POPE V Pert. LB-COCO LB-COCO V Pert. LB-COCO T Pert. LB-COCO J Pert.

Baseline 87.14 84.02 76.9 73.5 73.8 64.6
Vittle (L) 87.22 84.85 76.6 74.5 74.0 65.4
Vittle (F) 87.32 84.65 76.8 74.2 73.9 65.3

the larger value of α induces better POPE performance, whereas the trend is inconsistent in the LB-COCO data set, which is
consistent with the observations from the previous ablation study in β.

B.2. Full Results of Pair-wise Cosine Distance

We speculate that the performance degradation of MLLMs under perturbations originates from the representation discrepancy
between clean and perturbed samples. That is, in the ideal case, a clean sample and its semantically equivalent perturbed
sample should be closely mapped in the representation space, but current MLLMs did not shape the representation space
in that way (see Figure 1 and Figure 8). In Figure 13, we provide the histograms of representation space pair-wise cosine
distance between clean and perturbed examples in 27 types of perturbations. As we can see, Vittle (F) consistently
mitigates the representation gap by reducing the pair-wise distance over diverse types of perturbations.

B.3. Full Results with LLaVA-v1.5-7B and LLaVA-v1.5-13B

Table 11 summarizes the overall results of our perturbation benchmarks on object hallucination detection (POPE) and
open-ended QA tasks (LB-COCO). We note two findings here: (1) weight-space regularization methods, such as LoRA and
WD failed to achieve reasonable performance; (2) although information maximization-based instruction tuning methods,
such as ROSS and LIT, somewhat improve performance on POPE and its perturbation datasets, they greatly underperform
Vittle, indicating a non-trivial challenge to design a versatile instruction tuning objective that can improve MLLMs on
broad tasks. Meanwhile, we explore whether Vittle can be effective for a much larger model, e.g., a 13B-scale model.
Table 12 shows that Vittle achieves consistent performance gains in object hallucination detection and open-ended QA
tasks under distribution shifts, implying the scalability of our method.
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Figure 13: Pair-wise cosine distance of intermediate representations between clean LB-COCO and 27 versions of
perturbed LB-COCO datasets. Vittle (F) consistently reduces the representation gap between the clean samples and
their semantically equivalent perturbed ones.
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B.4. Applicability to Other MLLMs

We now investigate Vittle’s effectiveness on another recent MLLM, Prism-7B, beyond LLaVA. As noted in Section A.1,
Prism has quite a different design principle than LLaVA with respect to the visual encoder and the training strategy, so it is
suitable for investigating the versatility of Vittle between models. Table 13 shows summarized results on our perturbation
benchmarks11. In object hallucination detection tasks, Vittle outperforms the standard cross-entropy only training
baseline on clean and perturbed datasets. In open-ended QA tasks, Vittle consistently boosts performance in perturbation
scenarios with large margins while maintaining performance on the clean dataset. The results of the perturbation-specific
performance comparison are provided in Figure 14.

Table 13: Vittle on Prism-7B model. We compare Vittle (F) with the standard learning objective under the Prism-7B
model training regime that adopts two visual encoders (DINOv2 and SigLIP) and the single-stage training rather than
two-stage training with a single CLIP visual encoder. Vittle significantly improves perturbation-robustness compared
with a naive learning objective.

Method POPE POPE V Pert. LB-COCO LB-COCO V Pert. LB-COCO T Pert. LB-COCO J Pert.

Baseline 87.54 85.29 79.4 75.3 71.9 53.8
Vittle (F) 88.11 85.52 79.0 76.2 75.4 63.2

11Due to resource constraints, we only explore Vittle (F) one of our prior distribution instantiations.
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Figure 14: Object hallucination detection performance on POPE perturbation datasets (top), and Open-ended QA
performance on LB-COCO perturbation datasets (three below) of Prism-7B. We enumerate the accuracy for the object
hallucination detection task and relative preference score for the open-ended QA task of each method on perturbed datasets,
where we observe consistent performance gains by Vittle.
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C. Derivation of Variational Bound for IB in MLLM
Here we provide a full derivation for the variational lower bound for IB. The derivation skeleton was mainly inspired by
existing works (Achille & Soatto, 2018; Alemi et al., 2017). We begin with the mutual information term I(Z,X). Given the
sequential nature of MLLM, we decompose both the input X = (Xv, Xt) and the latent representation Z = (Zv, Zt) into
visual and textual components. We can then derive the following upper bound for I(Z,X):

I(Z,X) =

∫
p(x, z) log

p(x, z)

p(x)p(z)
dxdz =

∫
p(x, z) log

p(z|x)
p(z)

dxdz

=

∫
p(x, z) log

p(z|x)
r(z)

dxdz −DKL(p(z)||r(z))

≤
∫

p(x, z) log
p(z|x)
r(z)

dxdz

=

∫
p(xv, xt, zv, zt) log

p(zt|xv, xt)p(zv|xv)
r(zv)r(zt)

dxvdxtdzvdzt

=

∫
p(xv, xt)

∫
p(zt|xv, xt)

∫
p(zv|xv) log

p(zv|xv)
r(zv)

dxvdxtdzvdzt

+

∫
p(xv, xt)

∫
p(zv|xv)

∫
p(zt|xv, xt) log

p(zt|xv, xt)
r(zt)

dxvdxtdzvdzt

= Exv
[DKL(p(zv|xv)||r(zv))] + Exv,xt

[DKL(p(zt|xv, xt)||r(zt))], (9)

where the first inequality holds given the non-negativity of DKL[r(z), p(z)] and p(zv|xv, xt) = p(zv|xv) due to causal
attention in MLLM. Here, we introduce r(z) = r(zv, zt) = r(zv)r(zt) as a factorizable variational approximation of the
true prior for the latent representation p(z).

Next, for the output-relevant term I(Z, Y ), we have the lower bound:

I(Z, Y ) =

∫
p(y, z) log

p(y, z)

p(y)p(z)
dydz =

∫
p(y, z) log

p(y|z)
p(y)

dydz

=

∫
p(y, z) log q(y|z)dydz +DKL(p(y|z)||q(y|z))−

∫
p(y) log p(y)dy

≥
∫

p(y, z) log q(y|z)dydz

=

∫
p(x, y, z) log q(y|z)dxdydz =

∫
p(x)p(y|x)p(z|x) log q(y|z)dxdydz,

= Ex,yEz|x [log q(y|z)] . (10)

where p(x, y, z) = p(x)p(z|x)p(y|x) given the Markov chain assumption Y ↔ X ↔ Z, and p(z|x, y) = p(z|x) holds
given that the representation Z can not directly depend on Y , and the entropy term of y, i.e.,

∫
−p(y) log p(y)dy = H(Y ),

is ruled out due to its independence for optimization problem. Here, we replace the intractable p(y|z) with a variational
approximation q(y|z) that will be parameterized by a model.

Finally, combining the lower bound of I(Z, Y ) and the upper bound of I(Z,X) yields a variational lower bound for the IB
objective as follows,

IB(X,Y ) ≥ Ex,y

[
Ez|x[log q(y|z)]

]
− β (Exv [DKL(p(zv|xv)||r(zv))] + Exv,xt [DKL(p(zt|xv, xt)||r(zt))]). (11)
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D. Missing Proof
D.1. Preliminary

We start by providing a definition of Mutual Information (MI) below.

Definition D.1 (Mutual Information (MI)). For a joint distribution PXY over X × Y , the mutual information with respect
to PXY is defined as,

I(PXY ) := Ex,y∼PXY
[log

PXY (x, y)

PX(x)PY (y)
]. (12)

If X is an instruction and Y is a corresponding response, we regard I(PXY ) as a relevance between the instruction and the
response that can be seen as a possible quantification of instruction following capability of MLLMs. Effective MI is defined
based on the MI as follows:

Definition D.2 (Effective Mutual Information (EMI) (Oh et al., 2025a)). Given the joint distribution PXY and MLLM
PΘ parameterized with Θ, the effective mutual information between the input and model response is defined as,

EMI(PXY ;PΘ) := I(PXYΘ
)− I(PXY ), (13)

where PXYΘ denotes the joint distribution between the input X and the output of the model YΘ. Although the vanilla MI
can also be used as a metric to evaluate models’ output response by I(PXYΘ

), the scale of it varies depending on the target
data distribution which is undesired when our interest is to compare performance of model across multiple domains which
can be addressed by EMI. Recall that we are ultimately interested in the performance difference of MLLMs across two
different datasets, and this can be captured by the EMI difference (EMID) as follows:

Definition D.3 (EMID). Let PΘ : X → Y be an MLLM with parameters Θ that produces an output response YΘ given an
input instruction X . For joint distributions PXY and QXY , effective mutual information difference of PΘ over P and Q is
defined as below,

EMID(PXY , QXY ;PΘ) := [I(PXYΘ
)− I(PXY )]− [I(QXYΘ

)− I(QXY )]. (14)

By setting P as an instruction tuning distribution (training data) and Q as an arbitrary test time distribution (evaluation data),
we prefer a model that has a smaller EMID value, which indicates better robustness under distribution shifts between P and
Q. Now, based on the original theorem provided by Oh et al. (Oh et al., 2025a), we are ready to derive a new upper bound
for EMID tailored to our representation-centric visual instruction tuning setup.

D.2. A New Upper Bound for Effective Mutual Information Difference

We first review Lemma 1 of Shui et al. (Shui et al., 2022) and its adapted version, a conditional entropy bound (Oh et al.,
2025a) as follows,

Lemma D.4 (Lemma 1 from Shui et al. (Shui et al., 2022)). Let Z ∈ Z be the real-valued integrable random variable,
and denoting two distributions on a common space Z by P and Q such that Q is absolutely continuous w.r.t. P . If for any
function f and λ ∈ R such that EP [exp(λ(f(z)− EP (f(z))))] < ∞, then we have:

λ(Ez∼Q[f(z)]− Ez∼P [f(z)]) ≤ DKL(Q||P )

+ logEz∼P [exp(λ(f(z)− Ez∼P [f(z)]))]

Lemma D.5 (Conditional entropy bound (Oh et al., 2025a)). Let f(x) := H(QY |x) and Ĥ(QY |x) := maxx∈X H(QY |x),
given the marginal distributions PX and QX , and conditional distributions PY |X and QY |X , according to Lemma D.4, we
have a conditional upper bound:

i) Ex∼P [H(QY |x)]− Ex∼Q[H(QY |x)] ≤ Ĥ(QY |x)
√
2DJS(PX ||QX).

Similarly, given the marginal distribution PX and QX , and an MLLM PΘ, let f(x) := H(PΘ(·|x)) and Ĥ(PΘ) :=
maxx∈X H(PΘ(·|x)), then, according to Lemma D.4, we have another conditional upper bound:

ii) Ex∼Q[H(PΘ(·|x)]− Ex∼P [H(PΘ(·|x))] ≤ Ĥ(PΘ)
√
2DJS(PX ||QX).
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Next, we should also need to formulate the relationship between JSD in the input space and JSD in the representation space,
which is done through Lemma D.6.

Lemma D.6. Let f : X → Z be an encoder that maps an input X to a representation Z, for the input distributions PX and
QX and f -induced representation distribution PZ and QZ , we have an inequality below,√

2DJS(PX ||QX) ≤
√
2DJS(PZ ||QZ) +

√
Ez∼P [DKL(PX|z||MX|z)] + Ez∼Q[DKL(QX|z||MX|z)] (15)

where MX|z :=
PX|z +QX|z

2 .

Proof. We start from the definition of JSD,

DJS(PX ||QX) =
1

2
DKL(PX ||MX) +

1

2
DKL(QX ||MX), MX =

PX +QX

2
.

By applying the chain rule of KLD under a deterministic map X → Z = f(X), we know that,

DKL(PXZ ||MXZ) = DKL(PZ ||MZ) +

∫
PZ(z)DKL(PX|z||MX|z)dz

= DKL(PX ||MX) +
(((((((((((((∫

PX(x)DKL(PZ|x||MZ|x)dx

⇔ DKL(PX ||MX)

Then, we have,

DJS(PX ||QX) = DJS(PZ ||QZ) +
1

2
(Ez∼P [DKL(PX|z||MX|z)] + Ez∼Q[DKL(QX|z||MX|z)]),

which results in ineq. (15) by applying the triangular inequality after multiplying 2 on both sides.

Now we derive a new upper bound for EMID, which is defined over the representation space rather than the previous one
defined over the input space (Oh et al., 2025a) in Proposition D.7.
Proposition D.7 (EMID upper bound). Let PΘ be an MLLM that maps X = {Xv, Xt} to Z = {Zv, Zt}, and then
sequentially maps Z to YΘ. Given joint distributions PXY = PX × PY |X and QXY = QX × QY |X , by assum-
ing consistent conditional distributions over Zv|Zt, Zt|Zv, and Y |X between P and Q, we have an upper bound for
EMID(PXY , QXY ;PΘ) as follow,

Ĥ
(
D

1
2
JS(PZv ||QZv ) +D

1
2
JS(PZt ||QZt) +

√
∆X|Z

)
+ |H(PYΘ)−H(PY )|+ |H(QYΘ)−H(QY )|, (16)

where H and D
1
2

JS indicate the entropy and square root of Jensen-Shannon divergence (JSD), respectively, ∆X|Z :=

Ez∼P [DKL(PX|z||MX|z)] + Ez∼Q[DKL(QX|z||MX|z)] with a mixture distribution M = P+Q
2 , and Ĥ :=

maxx∈X [H(QY |x) +H(PYΘ
)].

Proof. Given the entropy-based definition of the mutual information, I(PXY ) := H(PY )− Ex∼P [H(PY |x)], let PYΘ
=

Ex∼P [PΘ(·|x)] and QYΘ
= Ex∼Q[PΘ(·|x)], then, EMID can be expressed as follows,

EMID(PXY , QXY ;PΘ)

= EMI(PXY ;PΘ)− EMI(QXY ;PΘ)

= (H(PYΘ)− Ex∼P [H(PΘ(·|x))]−H(PY ) +H(PY |X))

− (H(QYΘ)− Ex∼Q[H(PΘ(·|x))]−H(QY ) +H(QY |X))

≤ (H(PY |X)−H(QY |X)) +
(
Ex∼Q[H(PΘ(·|x))]− Ex∼P [H(PΘ(·|x))]

)
+ |H(PYΘ)−H(PY ) +H(QY )−H(QYΘ)|
≤ (H(PY |X)−H(QY |X))

(A)
+

(
Ex∼Q[H(PΘ(·|x))]− Ex∼P [H(PΘ(·|x))]

)
(B)

+ |H(PYΘ
)−H(PY )|+ |H(QY )−H(QYΘ

)|. (17)
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Moreover, we have the following inequality for H(PY |X) proposed by (Oh et al., 2025a),

H(PY |X)−H(QY |X) ≤ 4Ex∼P [D
1
4
JS(PY |x||QY |x)] + Ex∼P [H(QY |x)] + Ex∼Q[H(QY |x)] (18)

By plugging inequalities in Lemma D.5 and ineq. (18) into the ineq. (17) to replace the terms (A) and (B), and given
the consistent conditional distribution assumption for Y |X , i.e., PY |X = QY |X , we have a much simpler upper bound as
follows,

EMID(PXY , QXY ;PΘ) ≤ Ĥ
√
2DJS(PX ||QX) + |H(PYΘ)−H(PY )|+ |H(QY )−H(QYΘ)|,

where Ĥ := maxx∈X [H(QY |x) +H(PYΘ)]. Then, we can further replace the term DJS(PX ||QX) by using Lemma D.6 to
get a bound defined by representation divergence as below,

EMID(PXY , QXY ;PΘ)

≤ Ĥ(
√

2DJS(PZ ||QZ) +
√

Ez∼P [DKL(PX|z||MX|z)] + Ez∼Q[DKL(QX|z||MX|z)])

+ |H(PYΘ)−H(PY )|+ |H(QY )−H(QYΘ)|. (19)

Meanwhile, the chain rule of KLD and the definition of JSD with our consistent conditional distributions for Zv|Zt and
Zt|Zv , one can easily show that,

2DJS(PZvZt ||QZvZt) = DKL(PZvZt ||MZvZt) +DKL(QZvZt ||MZvZt)

= DJS(PZv ||QZv ) +DJS(PZt ||QZt) (20)

Plugging Eq. 20 into ineq. (19) and applying the triangular inequality complete the proof.

E. Extended Literature Review
Compression for generalization. There is a rich history in the machine learning field that connects compression of the
model or its inner representation to generalization (Arora et al., 2018), from the classical learning theory with Occam’s
razor (Littlestone & Warmuth, 1986; Blumer et al., 1987) and Minimal Description Length (Rissanen, 1978; Hinton &
Van Camp, 1993; Grünwald, 2005) to IB principle (Tishby et al., 2000; Tishby & Zaslavsky, 2015), by suggesting models
that provide minimal and simplest representation of data generalize better (Vera et al., 2018; Hinton & Van Camp, 1993;
Kawaguchi et al., 2023; Sefidgaran et al., 2023) analogy to human perception (Miller, 1956; Barlow et al., 1961; Zhaoping,
2025). Recently, Wilson (Wilson, 2025) proposed a new generalization bound for contemporary large-scale models where
the compressibility of a learning algorithm plays a key role in better generalization. According to that discussion, even the
maximally flexible billion-scale model can have a small effective dimensionality (indicating the higher compressibility) by
embracing soft inductive biases (Finzi et al., 2021), such as, a regularization term, to the learning problem. On top of these,
IB-objective of Vittle can be understood as a soft inductive bias to seek a minimal sufficient representation that helps
generalization for the challenging queries.

Robustness of fine-tuned foundation models. Although large-scale pre-trained models have appealing generalization
capability across diverse data instances from different domains, their fine-tuned counterparts usually hurts that strong
generalization capability while being adapting on task-specific in-distribution samples (Kumar et al., 2022; Wortsman et al.,
2022). This undesirable performance compromise between adaptation to in-distribution samples and generalization to
samples from broad domains has spurred the community to work on robust fine-tuning of foundation models (Kumar et al.,
2022; Wortsman et al., 2022; Lee et al., 2023; Goyal et al., 2023; Tian et al., 2023; Oh et al., 2024; Hwang et al., 2024). This
line of work addresses the adaptation-robustness trade-off by (1) introducing a regularization term (Tian et al., 2023; Oh
et al., 2024), (2) tweaking the training procedure (Kumar et al., 2022; Lee et al., 2023), or (3) merging multiple models in
the weight space (Wortsman et al., 2022; Oh et al., 2025b). However, almost all of the existing robust fine-tuning literature
has focused on a discriminative model, such as CLIP (Radford et al., 2021), under classification setups. Although there are
a few works on robust instruction tuning of MLLMs (Liu et al., 2024a; Han et al., 2024a), they do not specifically focus
on improving robustness under diverse types of distribution shifts and propose a data-centric approach, i.e., expanding
instruction tuning datasets in terms of quantity or diversity, that requires external MLLM-based data generation process
and/or careful post-processing from humans. In this work, we take a representation-centric approach that modifies the
learning objective of visual instruction tuning to efficiently enhance the robustness of MLLM under diverse distribution
shifts (27 types in total).
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F. Limitation and Future Work
One of the potential concerns with IB is its reliance on the quality of Y , i.e., a gold response to given instruction, which is
usually generated by another (M)LLM. As disclosed by Yeh et al. (Yeh et al., 2025), the existing datasets for supervised
fine-tuning are quite noisy, and we cannot ensure the advantage of IB on this noisy annotation setup. Moreover, IB alone
does not guarantee the generalization of samples from completely different domains and may require additional domain
information (Du et al., 2020; Li et al., 2022a; Zhang et al., 2023). Investigating the potential of noisy annotation setups and
domain generalization setups can be interesting future research problems. Meanwhile, a well-organized representation space
by IB can be helpful for representation engineering or steering methods (Zou et al., 2023; Liu et al., 2025) that are also
worth exploring for future work.

G. Impact Statement
Multimodal large language models (MLLMs) today have many societal applications. This work tackles the robustness of
MLLMs to distribution shifts between training and test time data. We observed a consistent improvement of our proposal
Vittle in various types of visual and textual shifts, allowing users to trust the model more than before to safely use
AI in a variety of environments. Moreover, although we focused on the robustness perspective in this work, improved
invariance-sensitivity trade-off also benefits the fairness-discriminativeness trade-off, which is another crucial desideratum
towards reliable AI. Meanwhile, even though its robustness to distribution shifts was improved, there are still potential
misuse cases with MLLMs that can affect humanity by producing systematically biased outputs, given the existence of some
adversarial data providers or attackers.
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