
Balancing Utility and Scalability in Metric Differential Privacy

Jacob Imola1 Shiva Prasad Kasiviswanathan2 Stephen White2 Abhinav Aggarwal2 Nathanael Teissier2

1 UC San Diego, La Jolla, CA,
2 Amazon, USA

Abstract

Metric differential privacy (mDP) is a modification
of differential privacy that is more suitable when
records can be represented in a general metric
space, such as text data represented as word embed-
dings or geographical coordinates on a map. We
consider the task of releasing elements of the met-
ric space under metric differential privacy where
utility is measured as the distance of the released
element to the original element. Linear program-
ming (LP) can be used to construct a mechanism
that achieves the optimal utility for a particular
mDP constraint. However, these LPs suffer from a
polynomial explosion of variables and constraints
that render them impractical for solving real-world
problems. An important question is how to design
rigorous mDP mechanisms that balance the utility-
scalability tradeoff.
Our main contribution is a new method for reduc-
ing the LP size used to generate mDP mechanisms
by constraining the search space such that certain
input and output pairs have transition probabili-
ties derived from the exponential mechanism. Our
method produces mDP mechanisms whose LPs
are smaller that all prior work in this area. We also
provide a lower bound on the best possible mech-
anism utility. Our experiments on real-world met-
ric spaces highlight the superior utility-scalability
tradeoff of our mechanism.

1 INTRODUCTION

Privacy has emerged as a topic of strategic consequence
across all computational fields. Differential privacy (DP), a
mathematical formulation of privacy proposed by Dwork
et al. [2006], provides provable protection guarantees
against adversaries with arbitrary side information and com-
putational power. See the book by Dwork and Roth [2013]
for a primer on differential privacy and a survey of different

techniques proposed in the literature.

More recently, researchers have noted that differential pri-
vacy does not take the underlying metric space of the data
domain into account. Differential privacy provides the same
level of protection to all perturbations of a single user’s
data which makes it inflexible when these perturbations are
not all the same. For example, if the data consists of loca-
tions on earth, there is a large difference between discerning
whether a user is in a 1 or a 100-mile radius. In many sce-
narios, the former type of privacy breach is more significant
because a user’s location is more accurately determined.
This has led to the development of metric DP (mDP) which
provides different protections depending on an underlying
metric space, and has been adopted in applications involv-
ing releasing sensitive geolocation data [Andrés et al., 2013,
Bordenabe et al., 2014] and textual data [Fernandes et al.,
2019, Feyisetan et al., 2019, 2020, Xu et al., 2020, Feyisetan
and Kasiviswanathan, 2021].

Mechanism utility for mDP is less well-understood than
that of general DP, as the metric strongly influences the
permitted behavior of the mechanism. While it is possible
to design an optimal mechanism under mDP, it is also a
computationally challenging task that requires solving a
linear program (LP) with O(n2) variables and O(n3) con-
straints [Bordenabe et al., 2014], where n is the size of the
metric space (i.e., cardinality of the set). In fact, most mDP
mechanisms [Feyisetan et al., 2020, 2019, Xu et al., 2020]
do not provide any rigorous guarantees on the utility. Our
key contributions are as follows:

(a) We present a general framework for designing mDP
mechanisms which have a better tradeoff between mech-
anism utility and the size of the LP used to compute
the mechanism (Section 3). This framework is based
on adding new constraints to LP that certain transition
probabilities are equal to those arising from a weighted
version of the exponential mechanism.1 We instantiate

1Exponential mechanism [McSherry and Talwar, 2007] is a

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<jimola@eng.ucsd.edu>?Subject=Your UAI 2022 paper

this framework, using new constraints based on r nearest
neighbors of each point, to produce an LP which has just
O(nr) variables and O(n2r) constraints. In practice, r
can be set as a small constant. Therefore, our new mech-
anism substantially increases the size of the metric space
on which mDP mechanisms can be practically applied.

(b) We prove a lower bound on the word-level loss within
the underlying metric space (Section 4). This provides
the first non-trivial loss lower bound on any mDP mech-
anism, including the optimal one. This lower bound is
valuable, especially in situations when the LP for the
optimal mechanism is infeasible to solve, as it bounds
the utility of any mDP mechanism. Our code is available
online Imola [2022].

(c) We perform extensive experiments comparing the utility
and privacy of our proposed mechanism and existing
mechanisms in text and geolocation applications (Sec-
tion 5). These experiments indicate that our proposed
mechanism performs more closely to the optimal mech-
anism than others tested and can result in a utility im-
provement of about 25% compared to the non-optimal
mechanisms. In terms of scalability, our results indicate
that our proposed mechanism can scale to metric spaces
four times larger than the optimal mechanism.

Related Work in Metric DP. Metric DP originated in the
context of location privacy where given a dataset of ge-
olocation coordinates (longitude and latitude) on a plane,
the notion of adjacency could be better captured using the
Euclidean distance between the coordinates [Andrés et al.,
2013, Chatzikokolakis et al., 2013]. Metric DP mechanisms
have been investigated for various choices of metrics, includ-
ing Euclidean, Manhattan, and Chebyshev metrics, among
others [Chatzikokolakis et al., 2013, Andrés et al., 2013,
Chatzikokolakis et al., 2015, Fernandes et al., 2019, Feyise-
tan et al., 2019, 2020]. Unlike our focus here, none of these
results compare the loss of their proposed mechanisms to
the optimal loss.

The most directly related work to ours is that of Borden-
abe et al. [2014]. This paper proposes finding the optimal
mDP mechanism using linear programming. They propose
a method based on spanner graphs to reduce the size of the
LP (outlined in full version). A δ-spanner graph is a set of
edges between points in a metric space such that the distance
between two points in the graph approximates the metric
up to a multiplicative factor δ. Bordenabe et al. [2014] use
a 3-spanner, for which a construction using just O(n1.5)
edges exists, to reduce the number of constraints in the LP
from O(n3) to O(n2.5).

Related Work in Privately Releasing Text Embeddings.
Vector representations of words, sentences, and documents
have all become basic building blocks in NLP pipelines and

popular approach for deferentially private selection.

algorithms. Hence, it is natural to consider privacy mech-
anisms that target these representations in the underlying
metric space [Fernandes et al., 2019, Feyisetan et al., 2019,
Xu et al., 2020, Feyisetan et al., 2020]. The most relevant
result to our setting is the mechanism of Feyisetan et al.
[2020] (referred to as Madlib). In Section 5, we compare
our mechanism to Madlib as a baseline.2

2 TECHNICAL PRELIMINARIES

Throughout this paper, we consider data that comes from a
finite metric space (W, dW) whereW is the set of values the
data may take. For example, in the text release usecase,W
consists of a vocabulary set, and in the geo-locations usecase,
W consists of a set of locations. The metric dW :W×W →
R captures dissimilarity between elements in the set. In NLP
applications, it is very common to represent words via a
high-dimensional text embedding φ : W → W ′ ⊆ Rd. 3

Then we can define the distance between the words as the
distance between the embedded words: i.e., for all w1, w2 ∈
W , we define dW(w1, w2) = dW′(φ(w1), φ(w2)).

2.1 PRIVACY ON METRIC SPACES

Informally, a mechanismM satisfies metric DP4 if its be-
havior is nearly the same on inputs that are close together in
the metric space. This is formalized by the following notion
of ε-dW privacy.

Definition 1 (Metric DP (mDP)). Given a finite setW , a
metric dW :W ×W → R, and a privacy parameter ε > 0,
a mechanismM :W →W satisfies ε-dW privacy if for all
w1, w2, w ∈ W:

Pr [M(w1) = w] ≤ exp (εdW(w1, w2))Pr [M(w2) = w] .

The above definition is closely related to the definition
of local DP [Kasiviswanathan et al., 2011] in that we
apply M to each element of some database D ∈ Wm

independently. The difference of mDP over local DP is
that, because of the dW term (which is absent in the lo-
cal DP formulation), mDP mechanism guarantees indistin-
guishability for those w1, w2 ∈ W based on the distance
dW(φ(w1), φ(w2)) between them. Similar to traditional dif-
ferential privacy, mDP is preserved under post-processing

2While our mDP mechanism is applicable to any metric space,
our experiments are over word embeddings and geolocations in
the Euclidean space. Therefore, we do not directly compare with
[Fernandes et al., 2019, Feyisetan et al., 2019, Xu et al., 2020]
which work with embeddings in non-Euclidean spaces.

3Our results do not depend on the choice of the embedding.
4Metric DP is sometimes referred to as Lipschitz pri-

vacy [Koufogiannis et al., 2016], motivated by the fact that the
privacy guarantee can be viewed as a Lipschitz condition on the
mechanism, | ln(Pr [M(w1) = w]) − ln(Pr [M(w2) = w])| ≤
εdW(w1, w2).

and composition of mechanisms [Koufogiannis et al., 2016].
In metric spaces, a natural definition of mechanism loss
on an element w ∈ W is the expected distance between w
and M(w): L(M, w) = EM [dW(w,M(w))]. Here, the
expectation is over the random bits in M. We define the
loss ofM to be the worst-case loss ofM on any particular
element w ∈ W:

L(M) = max
w∈W

L(M, w) (1)

Notice that L(M) is non-negative due to dW being a metric.
Considering the loss as a worst-case instead of an average
has the advantage that there cannot exist “adversarial” el-
ements w ∈ W such that L(M, w) is much higher than
L(M). Similar loss functions have been studied in other
DP settings such as in [Hardt and Talwar, 2010].

Optimal Mechanism with LP. It is easy to see that the
constraints of mDP are linear. For a mechanismM, we can
consider its stochastic matrix5 M given by M = {Muv :
u, v ∈ W} with Muv = Pr[M(u) = v]. Then,M satis-
fies mDP if and only if M is stochastic and satisfies the
following constraints

Muw ≤Mvw · exp (dW(u, v)ε) ∀u, v, w ∈ W (2)

Since the constraints are linear, mDP constrainsM to be in a
polytope. We will overload notation and write L(M,w) and
L(M) as the losses of the mechanism given by transition
matrix M . These losses are given by:

L(M) = max
u∈W

L(M,w)

= max
u∈W

∑
v∈W

dW(u, v)Muv. (3)

Over the variables Muv, L(M) is a maximum of linear
functions. The optimal mechanism is given by the stochas-
tic matrix M that minimizes L(M) subject to the privacy
constraints (2). Using standard techniques in linear pro-
gramming, we can compute the best mechanism with the
following LP over the variables M,k:

POPTMECH(ε) = minimize k subject to
L(M,w) ≤ k, ∀w ∈ W
M stochastic
M satisfies (2)

This LP problem hasO(n2) variables andO(n3) constraints,
where n = |W|. Therefore, even with the state-of-the-art
LP approaches, which all require Ω(N2) time, where N is
the number of variables [Jiang et al., 2021], scalability is
problematic (here N = n2). This is the central motivation
for our work.

5A stochastic matrix is a square matrix whose rows are proba-
bility vectors.

3 BALANCING UTILITY-SCALABILITY

Given the scalability issues in solving POPTMECH(ε), a natu-
ral idea is to reduce the LP size. In this section, we present
a new method to reduce the size of the LP in POPTMECH

while still maintaining the mDP guarantee (Definition 1).
Our method is based on adding exponential mechanism
(EXPMECH) [McSherry and Talwar, 2007] equality con-
straints to the LP. Before we do this, we make use of an
observation that the EXPMECH is provably not optimal in
mDP which may be of independent interest. Thus, the con-
straints we add come from a “weighted” version of the
EXPMECH. All missing proofs are collected in the full ver-
sion.

3.1 IMPROVING THE EXPMECH IN MDP

Informally, the exponential mechanism [McSherry and Tal-
war, 2007] is a method for deferentially private selection
from a discrete set of candidate outputs. Due to its flexibility
the EXPMECH has become a popular tool for designing DP
mechanisms. Furthermore, the EXPMECH is known to be
optimal in DP for many choices of utility function [Hardt
and Talwar, 2010, Aldà and Simon, 2017].

However, in the mDP setting, the exponential mechanism
can be fooled by outlier elements. Informally, the dense
areas of the metric space can act as a “black hole” where
the EXPMECH will output elements in the dense area with
high probability, even for the outlier elements. This drives
up the loss for the outlier elements.

For a metric spaceW = {w1, . . . , wn} and metric dW , the
EXPMECH has the following transition probability

Pr [EXPMECH(wi) = wj] =
e−εdW(wi,wj)/2∑n
k=1 e

−εdW(wi,wk)/2
.

To illustrate on a concrete example, consider the metric
space whereW = {w1, . . . , wn} and where dW satisfies (1)
dW(w1, wi) = 1 for i ≥ 2, and (2) dW(wi, wj) < δ when
i, j ≥ 2, where δ is a small constant. For each j ≥ 2, the
EXPMECH satisfies Pr[EXPMECH(w1) = wj] = e−ε

1+ne−ε ,

and thus Pr[EXPMECH(w1) 6= w1] = ne−ε

1+ne−ε . As n grows,
the probability of this occurring approaches 1, and the loss
does as well. The elements wi for i ≥ 2 are acting as a
“black hole”.

This can be fixed by assigning weights to the outputs of
the exponential mechanism. For positive weights Y =
(Y1, . . . , Yn) ∈ (R+)n, consider the weighted exponential
mechanism given by

Pr [EXPMECHY(wi) = wj] =
Yje
−εdW(wi,wj)/2∑n

k=1 Yke
−εdW(wi,wk)/2

.

This mechanism can be shown to satisfy ε-dW privacy.

Proposition 1. For any metric space and any Y ∈ (R+)n,
the mechanism EXPMECHY satisfies ε-dW privacy.

In our example, to avoid the problem encountered by the reg-
ular EXPMECH, we can weight w1 higher than w2, . . . , wn.
For example, there exists a weighting Y such that the fol-
lowing loss is possible:

Lemma 1. With W = {w1, . . . , wn} and dW defined as
above, when Y = (1, 1/(n− 1), 1/(n− 1), . . .), we have
that

L(EXPMECHY) ≤
1

n−1 + e−ε/2

1 + e−ε/2
L(EXPMECH).

When ε ≥ 2 log n, we have L(EXPMECHY) ≤ 2/(n −
1)L(EXPMECH).

This establishes that the EXPMECH is provably not optimal
on our example metric space. However, one problem with
the more general EXPMECHY is that it is not clear how to
set Y to optimize the loss other than the rule of thumb that
dense elements should be weighted less. In the next section,
we leave it to the LP solver to optimize these weights.

3.2 BALANCING LP LOSS AND SCALABILITY

To reduce the number of LP constraints required to find the
optimal mechanism, our key idea is to add equality con-
straints in such a way that many of the original constraints
in POPTMECH are trivially satisfied. This results in poten-
tially a much smaller LP; however, optimality is no longer
guaranteed. The balance between optimality and LP size is
decided by the number of equality constraints. In fact, we
will develop a general framework for balancing this tradeoff,
which we call ConstOPTMech (Algorithm 1).

Specifically, to obtain the LP describing ConstOPTMech,
we start with POPTMECH(ε) and add non-negative variables
{Yw : w ∈ W}. Then, for certain variablesMuv , we add ad-
ditional “weighted exponential mechanism-like” constraints:
Muv = Yve

−εdW(u,v). We leave the weights Yv to be opti-
mized by the LP solver.

We allow deviations from the additional constraints in the
form of a replacement function I(v) :W → 2W that returns
the elements u ∈ W for which the weighted exponential
mechanism should not be used to set Muv. To encode this,
we add the following constraints:

Muv = Yve
−εdW(u,v) ∀u, v ∈ W;u /∈ I(v) (4)

The replacement function I(v) indicates where we do not
want to use the exponential mechanism, and there are many
candidates. We will later consider the following instantiation
of the replacement function, based on r-nearest neighbors
for a new parameter r:

INN,r(v) = {u ∈ W|v is an r-nearest neighbor of u.}.
(5)

Intuitively, INN,r(v) returns the elements u such that v is
one of the r nearest neighbors of u. We employ this function
INN,r because the exponential mechanism already assigns
exponentially-low probabilities of returning the farthest ele-
ments from a given element, and we conjecture there is not
much improvement to be made for such scenarios.

Adding the constraints (4) to POPTMECH(ε) will satisfy the
privacy constraints (2), but it may be impossible for M to
be stochastic. One can see this in the extreme example by
setting I(v) = ∅; then (4) holds for all u, v ∈ W , and non-
negative assignment to Yv that makesM stochastic need not
exist. To fix this, we relax the constraint that M be stochas-
tic, and only insist that its rows sum to values more than
1. We add a penalization term involving a hyperparameter
λ > 0 to the loss of each element to penalize the extent
to which the rows sum to more than 1. As such, our loss
function now takes the following form:

L̃(M,w) =
∑
u∈W

MwudW(u,w) + λ
∑
u∈W

Mwu (6)

With the modified loss function and relaxed stochasticity
requirement, we obtain the LP giving ConstOPTMech.

PCONSTOPTMECH(ε) = minimize k subject to

L̃(M,w) ≤ k ∀w ∈ W

Muv ≥ 0,
∑
v∈W

Muv ≥ 1 ∀u, v ∈ W

M satisfies (2) and (4)
Yv ≥ 0 ∀v ∈ W

Notice that this LP is always feasible because one valid
solution is Muv = Yve

−εdW(u,v) for all u, v—since there
are no restrictions on the Yv variables, we can set them high
enough so that

∑
v∈WMuv ≥ 1.

The benefit of the equality constraints (4) is that we can
drop a large number of the constraints in (2), as they
are trivially satisfied. This allows us to find a solution to
PCONSTOPTMECH(ε) much faster than POPTMECH(ε).

Theorem 1. PCONSTOPTMECH is feasible, and it is possible to
solve it using a linear program with n+ 1 +

∑
v∈W |I(v)|

variables and 2n+
∑
v∈W 2|I(v)|2 + 3|I(v)| constraints.

The number of non-zero coefficients in the LP is at most
2n2 +

∑
v∈W 2|I(v)|2 + 5|I(v)|.

Our choice to drop the stochasticity requirement of M gave
us feasibility of PCONSTOPTMECH, but the solution M is no
longer a mechanism because it is not stochastic. We ob-
tain ConstOPTMech by simply normalizing the rows of
M , forming a final stochastic matrix H . Any choice of the
hyperparameter λ gives rise to a valid H , and due to the
normalization, the dependence of H on λ is non-linear. In

Algorithm 1: Mechanism ConstOPTMech
Data: UniverseW , metric dW , budget ε, replacement

function I(v), hyperparameter λ ∈ R+.
Result: Transition matrix H .
M, loss← Solve(PConstOPTMech(ε2)) with λ;
for u, v ∈ W do

Huv ← Muv∑
w∈W Muw

;
return H

practice, one can run ConstOPTMech for a set of values λ,
and deploy the solution with the best loss.

Mechanism CONSTOPTMECH uses half of the privacy bud-
get for solving PCONSTOPTMECH(ε2) because normalization
may increase the privacy guarantee by a factor of 2. We
are able to show the following privacy guarantee on CON-
STOPTMECH. The proof is a generalization of Proposi-
tion 1.

Theorem 2. For any setW , metric dW , and budget ε, re-
placement function I(v) :W → 2W , and hyperparameter
λ, Mechanism CONSTOPTMECH satisfies ε-dW privacy.

Setting the Replacement Function. The primary replace-
ment function we consider is INN,r(v) (5), where r is a
hyperparameter dictating the number of nearest neighbors
in (5). A smaller value of r results in fewer LP constraints,
while trading off optimality, as many of the transition proba-
bilities will be fixed to the weighted exponential mechanism.

Specifically, in Theorem 1 when the replacement func-
tion I(v) = INN,r(v), then the number of variables in
PCONSTOPTMECH is at most nr + n + 1, the number of con-
straints is at most n2r + 3nr + 2n, and the number of
non-zero elements is at most 2n2 + 5nr + 2n2r (see full
version).

As a special case, when we use I(v) = INN,n−1, we add
no equality constraints, and (4) becomes equivalent to (2).
The LP size of PCONSTOPTMECH is then O(n3), the same as
that of POPTMECH. When r is a constant much less than n,
then the number of variables is O(nr) and the number of
constraints is O(n2r), each term saving a factor of n. We
note that O(n2r) is a worst-case bound that is not always
tight. If one assumes that there is no v ∈ W such that at least
10r other elements ofW count v as an r-nearest neighbor,
then

∑
v∈W |I(v)|2 + |I(v)| ≤

∑
v∈W 110r2 ≤ O(nr2).

In Table 1, we compare the number of variables, constraints,
and non-zero coefficients arising in PCONSTOPTMECH as com-
pared to those in the optimal mechanism (POPTMECH) and
the LP based of spanner graphs [Bordenabe et al., 2014]
(referred to as PSPANNERMECH, see full version). We see that
PCONSTOPTMECH improves on all three of these quantities
compared to the other two LPs when r � n. We note that
these are worst-case upper bounds, and in practice the LP
complexity measures may smaller. We perform detailed
empirical analysis of the mechanisms in Section 5.

4 LOWER BOUNDS

In this section, we propose an easy to compute lower bound
for mechanism loss. Our lower bound builds on the intuition
that for an element w ∈ W , if there are many elements
that are far, but not too far, from w, then mDP forces the
distributionM(w) to place significant mass on the elements
which are farther away. This gives a lower bound on the loss
ofM. To make this intuition formal, we define a packing of
W to be a set of elements which are at least a certain distance
from each other. In the following, let B(x, r) denote the
elements y ∈ W such that dW(x, y) ≤ r.

Definition 2. LetW be a set. A finite set S ⊆ W is called
a (c, r,Q)-packing w.r.t. metric dW if the following hold:
|S| = c; for all x, x′ ∈ S, B(x, r) ∩ B(x′, r) = ∅, i.e.
the balls around the elements in S of radius r are disjoint;
and for all x, x′ ∈ S, dW(x, x′) ≤ Q, i.e. the maximum
distance between any two elements in S is at most Q.

The lower bound we derive holds for any (c, r,Q)-packing
of the metric spaceW . The catch is that if a packing with
a small r or c is used, the bound will not be strong. Our
lower bound involves the quantity N(w, S) that depends on
a w ∈ W and a (c, r,Q)-packing S. N(w, S) is given by:

N(w, S) =
∑
s∈S

exp(−dW(w, s)ε),

We also have the lower bound N(w, S) ≥ 1 + (c −
1) exp(−Qε) which follows because S is a (c, r,Q)-
packing. Notice that N(w, S) ≥ 1 (because w ∈ S and
dW(w,w) = 0), and N(w, S) grows linearly with the num-
ber of elements in S and grows exponentially when the
elements in S are closer to w or when ε decreases. This rep-
resents the increasing amount of mass that must be placed
on these elements according to mDP. Our lower bound will
grow stronger with increasing N(w, S). The lower bound
is as follows (proof in full version).

Theorem 3. Consider an arbitrary setW and metric dW :
W ×W → R. Then, for any ε > 0, any mechanism M
satisfying ε-dW privacy and any (c, r,Q)-packing S ofW ,
it holds that

L(M) ≥ max
w∈W

r

(
1− 1

N(w, S)

)
. (7)

It follows that

L(M) ≥ r
(

1− 1

1 + (c− 1) exp(−Qε)

)
. (8)

Both (7) and (8) have a simple interpretation. The r term
represents the minimum loss that must be incurred when a
mechanism returns an element that is in a different ball than
the starting ball in the packing. The r term is multiplied by

Variables # Constraints # Non-Zeroes
Optimal LP: POPTMECH O(n2) O(n3) O(n3)
Spanner-based LP: PSPANNERMECH [Bordenabe et al., 2014] O(n2) O(n2.5) O(n2.5)
Our Method: PCONSTOPTMECH with function INN,r O(nr) O(n2r) O(n2r)

Table 1: Comparison of the number of variables and constraints for the various LP-based methods achieving mDP. Note that
PCONSTOPTMECH improves on existing methods when r � n.

P = 1− 1
N(w,S) , which can be interpreted as a probability

since it is between 0 and 1 (since N(w, S) ≥ 1). As we
show in the theorem proof, P is a lower bound on the prob-
ability that the mechanism returns an element in a different
ball from w and thus incurs the error r. P increases with
N(w, S), which depends on the packing in the ways we
identified above. P is small only when N(w, S) approaches
1, and using the bound N(w, S) ≥ 1 + (c− 1) exp(−Qε),
we see the central term controlling its closeness to 1 is
(c − 1) exp(−Qε). Here the parameter Q crucially comes
into play because if the elements in the packing are too far
apart, then mDP is a weak privacy guarantee, N(w, S) will
approach 1, and the lower bound will weaken.

An important special case of our theorem occurs when
we take S to be the two farthest elements w1

max, w
2
max ∈

W . In this case, S is a (2, r
∗

2 , r
∗)-packing where r∗ =

dW(w1
max, w

2
max). Our lower bound then reads L(M) ≥

r∗

2

(
exp(−r∗ε)

1+exp(−r∗ε)

)
.

5 EXPERIMENTAL RESULTS

We investigate through experiments how the loss of our pro-
posed mechanism, ConstOPTMech, compares to other state-
of-the-art mDP mechanisms.6 We also include comparisons
to our loss lower bound (derived in Section 4). Furthermore,
we perform studies to compare ConstOPTMech to Span-
nerMech, as it is the most directly related work. To do this,
we experimentally evaluate the complexity of solving the
LPs used to compute both mechanisms. We conclude with
a standalone ablation study on the hyperparameters r, λ in
ConstOPTMech to understand how they affect its loss and
LP size in practice.

We focus on text embeddings and geolocation metric spaces
because, as noted in Section 1, mDP mechanisms have pri-
marily been used for privately releasing text and location
data. We reiterate that our code is available online Imola
[2022].

5.1 EXPERIMENTAL SETUP

Our experiments consist of running two types of experi-
ments for sample metric spaces in both application domains.

6In this section, we use ConstOPTMech to denote Algorithm 1
invoked with replacement function INN,r .

The first experiment evaluates privacy vs. loss on a fixed
metric space. The second evaluates scalability as the size of
the metric space grows.

We measure utility (loss) of a mechanism based on (1).
Since this loss is agnostic to any downstream modeling task
performed on these private releases, we do not focus on any
specific downstream task.

Text Release Application: For the text release application,
the goal is to release words from a vocabulary privately,
subject to mDP defined by a word metric. We letW consist
of the set of English words, and we consider the word metric
given by dW(u, v) = d(φ(u), φ(v)), where φ : W → Rd
is an embedding function and d is the Euclidean distance.
We used both the FastText [Bojanowski et al., 2017] and the
GloVe embedding [Pennington et al., 2014] for our embed-
ding φ. Here, the loss function L(M) corresponds to how
well mechanism M preserves semantic meaning of words
with respect to the word metric. While other loss functions
may be considered depending on the downstream task, this
is beyond the scope of this work.

The metric spaces for this application consist of sampled
vocabulariesW ′ ⊆ W . Instead of selectingW ′ at random,
which would produce a set of completely unrelated words,
we used a clustered approach to produce a more realistic
vocabulary. Initially, W ′ consists of one random English
word. To sample another word, we add a random word to
W ′ with 50% chance. Otherwise we select a random word
w ∈ W ′ and add one of w’s 50 closest English words
according to dW . We repeat this process untilW ′ has the
desired size.

Geolocation Release Application: In the geolocation appli-
cation, the goal is to release user location data, discretized
into predetermined rectangular bins, respecting mDP and
preserving the location as well as possible. The metric space
consists of a setW of rectangular bins, and the metric dW
is the Euclidean distance between bin centers.

To generate the rectangular bins, we use the method of Bor-
denabe et al. [2014] who sample from the most popular
regions in Beijing. Specifically, we start with the Geo-
life [Zheng et al., 2010] dataset, which consists of 17621
location traces in Beijing. We divide Beijing into rectan-
gular bins of 0.005◦ (about 0.6 km) in width and height.
For each trace, we consider its top 30 regions, and we form
a histogram of top regions across all traces. To sample a

metric space of size n, we take the n most popular regions
in the histogram.

Performance Benchmarks: We use the following bench-
marks to measure mechanism privacy, loss, and scalability.

Privacy: In practice it is usually acceptable to use (ε, δ)-DP
for some small δ. We adopt (ε, δ)-mDP for our experiments,
as we do not want to penalize an algorithm for having some
small probability of two elements u, v being distinguished.
We say M satisfies (ε, δ)-mDP if for any u, v ∈ W and
S ⊆ W , we have

Pr[M(u) ∈ S] ≤ eεdW(u,v) Pr[M(v) ∈ S] + δ. (9)

For a fixed δ, we let εtight be the smallest ε such that M
satisfies (ε, δ)-MDP:

εtight(M) = inf
ε≥0

M satisfies (ε, δ)-mDP (10)

In our experiments, we set δ = 0.001.

Loss: For practical considerations, we use a more robust
measurement of loss in our experiments, where it may not
be problematic if the mechanism performs poorly on a small
fraction of elements. Instead of using the maximum loss
over all elements L(M) (1), we use the qth-quantile over
the set {L(M,w) : w ∈ W}:

Lq(M) = quantileq({L(M,w) : w ∈ W}) (11)

This loss estimate allows mechanisms to perform poorly on
a small subset of the metric space, which in practice may be
outlier or noisy data. In all experiments, we use q = 95%
so that mechanisms are evaluated based on their losses on
the best 95% of elements.

LP Scalability: To measure scalability of our mechanisms,
we measured the time and number of nonzero coefficients
(NNZ) used in the LPs. We use the number of nonzero coef-
ficients over the number of variables or constraints since LP
solvers tend to be optimized toward solving sparse LPs. We
also consider computation time to be an important measure,
as it captures complexity beyond the NNZ. For mechanisms
that do not require linear programs, the computational re-
quirements are trivial and we do not test them.

Specific Details for Each Mechanism: We tested five mech-
anisms: a) Our proposed ConstOPTMech, b) OPTMech
(based on solving POPTMECH), c) SpannerMech [Bordenabe
et al., 2014], d) Madlib mechanism [Feyisetan et al., 2020],
and e) EXPMECH [McSherry and Talwar, 2007]. Madlib,
EXPMECH, and OPTMech have no further parameters other
than ε. For SpannerMech, we implement the algorithm as it
is described in Bordenabe et al. [2014].

Mechanism ConstOPTMech takes λ and I(v) as parameters
(see Algorithm 1). We optimize over λ with possible values
in {0.001, 0.1, 1.0}. For the replacement function I(v), we

use INN,r(v) (5). We try both r = 5 and r = 10, and we
will designate these values in our results.

Evaluating Lower Bound: For each metric space, we com-
puted our lower bound according to Theorem 3. This theo-
rem produces a lower bound for any (c, r,Q) packing ofW
and any ε. However, it is infeasible to try out every possible
(c, r,Q), packing. Instead, we generated candidate (c, r,Q)-
packings using a k-center algorithm, using values of k that
varied from 1 to the size of the metric space. For each value
of ε that we tested, we used the strongest lower bound given
by one of our generated (c, r,Q)-packings.

Experimental Outline: The first experiments we conducted
are utility experiments. We test which mechanisms are better
at minimizing loss, subject to privacy constraints. To do this,
we plot Lq versus εtight for a metric space consisting of 50
and 200 elements in both the text and geolocation release
applications. We also plot the lower bound. For ConstOPT-
Mech, we use r = 10. We do not run OPTMech for metric
spaces of size 200, as the number of constraints would be
2003 which is too large. We do not include comparisons
to Madlib for the Geolife dataset, as it is designed for text
embeddings.

Next, we conduct scalability experiments on the mecha-
nisms that involve solving LPs. We do this by fixing a pri-
vacy constraint εtight and, for each mechanism, testing the
NNZ and time taken as the size of the metric space grows.
We increased the number of samples in the metric space
starting at 50 and increasing in increments of 50 until we
reached 400 elements or the time spent solving the LP ex-
ceeded 1800 seconds. We fix εtight = 2.0 for text release
with the FastText embedding, at 1.0 for text release with the
GloVe embedding, and at 0.3 for geolocation release. 7

5.2 RESULTS

We discuss the experimental results for text release using the
FastText embedding. The results for the GloVe embedding
and the geolocation application are similar, and they appear
in the full version.

Utility Experiments: Plots appear in Figure 1. In all tests,
ConstOPTMech has lower loss than all other non-optimal
mechanisms at all values of ε. This includes high privacy
regimes, where the loss is near the loss of returning a uni-

7In particular, the values of ε need not be the same across the
metric spaces, as an mDP guarantee depends on both ε and the
underlying metric space. Instead, we prioritize setting ε so that
it is competitive with previous work while permitting low loss.
Feyisetan et al. [2019] perform text release using the FastText and
Glove embeddings with ε ∈ [5, 11], and Bordenabe et al. [2014]
perform geolocation release using Geolife with ε ∈ [0.2, 2.0], and
thus our values of ε are actually on the low end compared with
previous work. Additionally, we will see in the utility experiments
that our values of ε permit losses that are low with respect to the
random baseline.

Figure 1: Loss of Madlib (EuclidMech), EXPMECH, ConstOPTMech, SpannerMech, and OPTMech versus εtight on 50
and 200-size metric spaces generated from FastText, along with the lower bound. The horizontal line indicates the loss of
returning a uniform random element.

Text (FastText) 50 elements 150 elements 300 elements 400 elements
ConstOPTMech (10) 1.89 sec, 3.23e4 nnz 24.91 sec, 1.47e5 nnz 163.75 sec, 3.79e5 nnz 234.63 sec, 5.71e5 nnz
ConstOPTMech (5) 0.47 sec, 1.21e4 nnz 12.85 sec, 6.60e4 nnz 65.56 sec, 2.19e5 nnz 141.90 sec, 3.70e5 nnz
SpannerMech 1.25 sec, 2.12e4 nnz 62.16 sec, 2.56e5 nnz 1001.82 sec, 1.19e6 nnz > 1800 sec, — nnz
OPTMech 8.85 sec, 2.50e5 nnz > 1800 sec, — nnz

Table 2: Computation times and memory requirements for computing ConstOPTMech when r = 10, 5; SpannerMech; and
OPTMech, for varying vocabulary sizes in the text release application using the FastText embedding. Each mechanism
satisfies εtight = 2.0.

formly random element, and low privacy regimes, where the
loss approaches zero. The most pronounced improvement
in loss occurs in middle ranges of ε (about [1.0, 3.5]) where
ConstOPTMech offers an improvement of about 15-30%
over all other non-optimal mechanisms. For example, when
ε = 2 on the 200-size vocabulary, ConstOPTMech offers a
loss of 1.5, while the next-best mechanism, the EXPMECH,
offers a loss of 1.8. This represents a 17% reduction, and
a 44% reduction in the loss of returning a random word.
This provides justification for setting ε = 2.0 for the scala-
bility experiments using FastText. The middle ranges of ε
where ConstOPTMech is superior are the values with the
most practical importance, since at these ranges, the losses
are far from the random baseline yet are still nonzero—the
mechanisms are offering both utility and privacy.

On the sampled metric spaces of size 50, ConstOPTMech
attains only slightly worse loss than OPTMech, the optimal
mechanism. As ε grows past 1.5, their losses become virtu-
ally the same. Because we are using r = 10, this means just
50× 10 = 500 entries out of the 2500 entries in the transi-
tion matrix are not fixed. This suggests that the 10 nearest
neighbors to an element play the largest role in minimizing
the element’s loss.

In all scenarios tested, there is a large gap between the lower
bound and the losses of the mechanisms, even the optimal

mechanism. Hence, it is uncertain how close ConstOPT-
Mech is to OPTMech on the metric spaces of size 200.

Scalability Experiments: We were able to run ConstOPT-
Mech until 400 elements, whereas OPTMech timed out
at 100 elements and SpannerMech timed out at 350 ele-
ments. Table 2 shows some of the time and NNZ data for
the mechanisms. These results indicate that computing Con-
stOPTMech is faster than computing SpannerMech. This
is particularly evident for the metric spaces with size 150
(resp. 300), where ConstOPTMech with r = 10 uses at
most 40% (resp. 16%) as much time as SpannerMech, and
ConstOPTMech with r = 5 uses at most 20% (resp. 6.5%)
as much time. These faster times come despite running Con-
stOPTMech for three values of λ, which requires solving
three LPs. In other words, the actual time to solve one LP
used in ConstOPTMech is one third as high as the reported
times.

In terms of NNZ, ConstOPTMech with r = 10 uses at
most 57% (resp. 32%) as much time as SpannerMech, and
ConstOPTMech with r = 5 uses at most 37% (resp 18%)
as many non-zero coefficients on the metric spaces with size
150, 300. Note that one of the reasons why these savings
are less than that observed for the time improvements is
because ConstOPTMech uses LPs which are simpler than
the LPs used by SpannerMech, which for example have

Figure 2: Loss of EXPMECH, ConstOPTMech (with r =
5, 10), and SpannerMech versus size of metric space for text
release using the FastText embedding. Here, εtight is fixed
at 2.0.

more variables (O(n2) variables versus O(nr)).

All the previous mechanisms have improved performance
over OPTMech, which uses moderate time and NNZ on
metric spaces with 50 elements and does not scale to 100
elements and beyond.

In Figure 2, we show our plots of loss versus the size of the
metric space when εtight is fixed. The plot generally indi-
cates that ConstOPTMech has lower loss than SpannerMech
in addition to using a more scalable LP. At metric space sizes
below 200, ConstOPTMech with r = 10 has approximately
a 22% reduction in loss compared to SpannerMech, though
this reduces to about 10% for metric space sizes greater than
200. ConstOPTMech with r = 5 outperforms SpannerMech
by a margins on smaller metric spaces, though around 250
elements, ConstOPTMech with r = 5 begins performing
much worse than when r = 10, and worse than even Span-
nerMech. However, using r = 5 with 250 elements means a
very small fraction of nearest neighbors are not constrained.
On large metric spaces, more nearest neighbors must be
used to maintain low loss.

5.3 ABLATION STUDY

Finally, we conduct an ablation study on the hyperparame-
ters r, λ of ConstOPTMech, to see how they affect Lq and
the LP scalability. To do this, we fixed the metric space to be
a 200-word vocabulary using the FastText embedding, set
εtight = 2.0, and computed ConstOPTMech with a fixed r
and varying λ while recording Lq , the number of constraints
in the LP, and the time spent computing ConstOPTMech.
We then repeated the same with a fixed λ and varying r.

The results of the ablation study appear in Table 3. When
r is fixed at 5 and λ varies, the table indicates variation
of about 6% in the losses achieved for the different values

λ Lq No. of constraints Time (sec)
0.100 1.64 107100 6.99
1.000 1.60 107100 6.70
10.000 1.56 107100 7.07
50.000 1.54 107100 7.87
250.000 1.54 107100 7.59
r Lq No. of constraints Time (sec)
1 2.04 81000 4.65
3 2.04 88472 5.98
5 1.54 107100 7.21
7 1.50 141404 7.90
9 1.49 186920 9.51

Table 3: Results of ablation study on hyperparameters r, λ.
Here, the metric space is fixed to be a 200-word vocabulary
with the FastText embedding, and εtight = 2.0. In the first
table, r = 5, and in the second table, λ = 50.

of λ, with the best choice of λ being 50. As mentioned in
Section 3, Lq has a non-linear dependence on λ, and this
behavior is demonstrated in the table. There is little effect
of λ on the LP scalability.

When λ is fixed at 50 and r increases, Lq decreases by
about 25% from its initial value of 1 to its final value of 9.
However, this comes at the cost of an increased number of
constraints in the LP, by about 2.3×, and a corresponding
jump in the time required to solve the LP, by 2.1×. This
demonstrates the better loss but increased LP complexity
that comes with increasing r.

6 CONCLUSION

We tackle the problem of designing scalable metric differ-
ential privacy mechanisms that achieve near optimal utility.
Our new mechanism combines the optimal LP-based mech-
anism and the exponential mechanism to achieve a better
utility-scalability tradeoff than existing mechanisms. We
also provide a simple to compute lower bound that improves
our understanding of the optimal utility. Our experiments
show that our mechanism is computationally tractable on
larger metric spaces while also almost matching the utility
of the optimal LP-based mechanism. While our mechanism
operates on any metric space, an interesting question is
whether the geometry of the metric space can be leveraged
to improve either utility or scalability.

References

Francesco Aldà and Hans Ulrich Simon. On the
Optimality of the Exponential Mechanism. In
Shlomi Dolev and Sachin Lodha, editors, Cyber Se-
curity Cryptography and Machine Learning, volume
10332, pages 68–85. Springer International Publish-
ing, Cham, 2017. ISBN 978-3-319-60079-6 978-
3-319-60080-2. doi: 10.1007/978-3-319-60080-2 5.

URL http://link.springer.com/10.1007/
978-3-319-60080-2_5. Series Title: Lecture Notes
in Computer Science.

Miguel E Andrés, Nicolás E Bordenabe, Konstantinos
Chatzikokolakis, and Catuscia Palamidessi. Geo-
indistinguishability: Differential privacy for location-
based systems. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 901–914, 2013.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. Enriching word vectors with subword
information. TACL, 5, 2017.

Nicolás E. Bordenabe, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. Optimal Geo-Indistinguishable
Mechanisms for Location Privacy. Proceedings of the
2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 251–262, November 2014.
doi: 10.1145/2660267.2660345. URL http://arxiv.
org/abs/1402.5029. arXiv: 1402.5029.

Konstantinos Chatzikokolakis, Miguel E Andrés,
Nicolás Emilio Bordenabe, and Catuscia Palamidessi.
Broadening the scope of differential privacy using
metrics. In PETS, 2013.

Konstantinos Chatzikokolakis, Catuscia Palamidessi, and
Marco Stronati. Constructing elastic distinguishability
metrics for location privacy. PETS, 2015.

Cynthia Dwork and Aaron Roth. The algorithmic foun-
dations of differential privacy. Theoretical Computer
Science, 9(3-4), 2013.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data
analysis. In TCC, pages 265–284. Springer, 2006.

Natasha Fernandes, Mark Dras, and Annabelle McIver. Gen-
eralised differential privacy for text document processing.
Principles of Security and Trust, 2019.

Oluwaseyi Feyisetan and Shiva Kasiviswanathan. Private
release of text embedding vectors. In Proceedings of
the First Workshop on Trustworthy Natural Language
Processing, pages 15–27, 2021.

Oluwaseyi Feyisetan, Tom Diethe, and Thomas Drake.
Leveraging hierarchical representations for preserving
privacy and utility in text. In IEEE ICDM, 2019.

Oluwaseyi Feyisetan, Borja Balle, Thomas Drake, and Tom
Diethe. Privacy-and utility-preserving textual analysis
via calibrated multivariate perturbations. In Proceedings
of the 13th International Conference on Web Search and
Data Mining, pages 178–186, 2020.

Moritz Hardt and Kunal Talwar. On the geometry of differen-
tial privacy. In Proceedings of the forty-second ACM sym-
posium on Theory of computing, pages 705–714, 2010.

Jacob Imola. Dptextgeometry. https://bitbucket.
org/jjimola/dptextgeometry/, 2022.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie
Zhang. A faster algorithm for solving general lps. In Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 823–832, 2021.

Shiva Kasiviswanathan, Homin Lee, Kobbi Nissim, Sofya
Raskhodnikova, and Adam Smith. What can we learn
privately? SIAM Journal on Computing, 40(3), 2011.

Fragkiskos Koufogiannis, Shuo Han, and George J Pappas.
Gradual release of sensitive data under differential pri-
vacy. Journal of Privacy and Confidentiality, 7(2), 2016.

Frank McSherry and Kunal Talwar. Mechanism design via
differential privacy. In FOCS, volume 7, pages 94–103,
2007.

Jeffrey Pennington, Richard Socher, and Christopher Man-
ning. Glove: Global vectors for word representation. In
EMNLP, pages 1532–1543, 2014.

Zekun Xu, Abhinav Aggarwal, Oluwaseyi Feyisetan, and
Nathanael Teissier. A differentially private text pertur-
bation method using regularized mahalanobis metric. In
Proceedings of the Second Workshop on Privacy in NLP
at EMNLP 2020, pages 7–17, 2020.

Yu Zheng, Xing Xie, and Wei-Ying Ma. Geolife: A collab-
orative social networking service among user, location
and trajectory. IEEE Data(base) Engineering Bulletin,
June 2010. URL https://www.microsoft.
com/en-us/research/publication/
geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/.

http://link.springer.com/10.1007/978-3-319-60080-2_5
http://link.springer.com/10.1007/978-3-319-60080-2_5
http://arxiv.org/abs/1402.5029
http://arxiv.org/abs/1402.5029
https://bitbucket.org/jjimola/dptextgeometry/
https://bitbucket.org/jjimola/dptextgeometry/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/

	Introduction
	Technical Preliminaries
	Privacy on Metric Spaces

	Balancing Utility-Scalability
	Improving the ExpMech in mDP
	Balancing LP Loss and Scalability

	Lower Bounds
	Experimental Results
	Experimental Setup
	Results
	Ablation Study

	Conclusion

