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Abstract

This paper considers the problem of estimating
unknown intervention targets in causal directed
acyclic graphs from observational and interven-
tional data in the presence of latent variables. The
focus is on linear structural equation models with
soft interventions. The existing approaches to this
problem involve performing extensive conditional
independence tests, and they estimate the unknown
intervention targets alongside learning the struc-
ture of the causal model in its entirety. This joint
learning approach results in algorithms that are not
scalable as graph sizes grow. This paper proposes
an approach that does not necessitate learning the
entire causal model and focuses on learning only
the intervention targets. The key idea of this ap-
proach is leveraging the property that interventions
impose sparse changes in the precision matrix of a
linear model. The proposed framework consists of
a sequence of precision difference estimation steps.
Furthermore, the necessary knowledge to refine
an observational Markov equivalence class (MEC)
to an interventional MEC is inferred. Simulation
results are provided to illustrate the scalability of
the proposed algorithm and compare it with those
of the existing approaches.

1 INTRODUCTION

Enabling modern machine learning systems to reason in-
volves predicting the effect of an intervention and counter-
factual estimation [Pearl, 2009]. Forming such predictions
crucially depends on the knowledge of causal models [Pearl
and Mackenzie, 2018]. One approach to represent causal
knowledge is through a causal Bayesian network, which is
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a directed graphical model specified by a directed acyclic
graph (DAG). The nodes of a DAG represent random vari-
ables, and its directed edges represent the cause-and-effect
relationships among the random variables. Such a model
facilitates factorizing the observed distribution, where each
factor is a conditional distribution of a variable given its
causal parents. These conditionals specify the local causal
mechanisms of the variables. However, based on purely ob-
servational data, a causal DAG is identifiable only up to
an equivalence class of DAGs. Such uncertainty is because
different DAGs can encode different ways of factorizing the
same observed distribution into conditionals. The equiva-
lence class of DAGs that can be identified from the obser-
vational data alone is called the Markov equivalence class
(MEC) [Peters et al., 2017].

To reduce the ambiguity in the MEC obtained from the
observational data, interventional data can be leveraged.
Intervening on a variable refers to modifying the causal
mechanism (the conditional distribution) that connects this
variable and its parents in the true causal DAG while leaving
the other factors unchanged. The combination of observa-
tional and interventional data reduces the number of possible
factorizations that are consistent with both data types. In
this paper, we perform soft interventions. A soft intervention
induces a change in the causal mechanism by replacing it
with a different one without requiring the causal effects on
the target node to be removed. While hard interventions,
e.g., assigning fixed values to intervention targets, can be
performed too, there are applications in which soft interven-
tions are better suited for modeling the experiments. For
instance, soft interventions can effectively model altering
the gene expressions for cellular reprogramming [Zhang
et al., 2021].

In a broad range of applications, when interventional data
is available, the variables whose causal mechanisms have
been changed, called the intervention targets, are unknown.
For instance, there is a recent growing interest in using
causal discovery for fault localization in microservices sys-
tems in cloud-native applications [Bogatinovski et al., 2021,
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Aggarwal et al., 2020]. These systems are built as an in-
terconnected set of loosely coupled services across various
layers [Kim et al., 2013, Mariani et al., 2018]. Such systems
are vulnerable to unwanted changes (e.g., equipment failure
and attacks). During the faulty operation of these systems, it
is imperative to localize the faults quickly. The root causes
of the faulty operations are modeled as interventions to the
system. Hence, the data is collected under (unknown) faults,
rendering fault localization a causal discovery task from
interventional data of unknown intervention targets. Further-
more, a fault in the operation of a node, e.g., a delay, is
closer to soft interventions than to hard interventions since
the causal parents can still affect the operation of the node.
Another example is gene knockout experiments in biology.
In these experiments, a target set of genes is knocked out
in an assay, and gene expressions are collected. These are
known to affect off-target genome sites [Fu et al., 2013].
Sometimes drugs are injected into protein signaling net-
works, and the expression levels are measured. In these
settings, the intervention targets are unknown [Sachs et al.,
2005, Ness et al., 2017].

Identifying unknown intervention targets in fully observed
graphs was recently explored [Varici et al., 2021]. How-
ever, in this study, all variables of a true causal DAG are
typically not observed. This induces confounding between
observed variables due to unobserved or latent variables. A
model with such confounding is called a causally insufficient
model. Recent studies have characterized the interventional
MEC for causally insufficient models and have provided
algorithms for learning their structures. These algorithms
leverage invariance testing and conditional independence
testing by using both interventional and observational data
and accommodate both settings of known and unknown in-
tervention targets [Mooij et al., 2020, Kocaoglu et al., 2019,
Jaber et al., 2020]. In these algorithms, the intervention tar-
gets are usually learned along with the interventional MEC.
In this paper, we focus on the following question: is there
an efficient way to learn only the intervention targets
given interventional and observational data?

Our Contributions: We address the above question in
linear structural equation models (SEMs) under soft inter-
ventions. We first show that the difference in the precision
matrices of the interventional datasets can be used to de-
duce the intervention status of a node. Next, we use the
fact that these precision differences have sparse support to
narrow down our interest to the nodes directly affected by
the interventions. Then, we show how to refine this sparse
set by repeated precision difference estimations to obtain
the intervention targets. In the process, we also infer the
causal knowledge newly induced by the interventions. Fi-
nally, using these elements, we propose a scalable algorithm
to estimate the intervention targets.

There are two studies whose scopes are close to that of

this paper. Jaber et al. [2020] characterize the interventional
MEC for soft interventions and proves that the interven-
tion targets can be identified only up to a superset that they
graphically describe. Noting this result, in this paper, we
focus on estimating this superset, which we call the effective
intervention targets. In a different study, Varici et al. [2021]
address a related problem. However, their method is limited
to only causally sufficient models. We present theoretical re-
sults for causally insufficient models, which are non-trivial
generalizations that combine the precision difference ap-
proach to the problem and the graphical characterization of
the soft interventions on causally insufficient models.

The existing interventional causal discovery algorithms for
insufficient systems jointly learn the causal structure and
the intervention targets. These approaches require perform-
ing a significant number of conditional independence and
invariance tests, a major impediment to these algorithms for
being scalable to large graphs [Jaber et al., 2020]. However,
unlike interventional causal discovery, there exist highly
efficient algorithms for causal discovery with observational
data. One of the byproducts of our results is that our scal-
able algorithm for intervention target discovery can be used
in conjunction with any observational learning algorithm
for insufficient systems to refine the observational MEC
efficiently to an interventional MEC. Finally, we perform
experiments on real and synthetic datasets to illustrate the
scalability of the proposed algorithm.

2 RELATED WORK

At its core, this paper infers causal knowledge from interven-
tional settings through an invariance criterion. The existing
literature on related topics is discussed next.

Interventional causal learning for causally sufficient sys-
tems. There is extensive literature on interventional learn-
ing for causally sufficient models. Among them, Eaton and
Murphy [2007] proposed a dynamic programming approach
to interventional learning. Hauser and Bühlmann [2012] con-
siders the interventional MEC under hard interventions and
provides a score-based algorithm for interventional learn-
ing. Rothenhäusler et al. [2015] learn causal cyclic graphs
using shift interventions. Ghassami et al. [2018] consider
multi-domain data without explicitly formulating the dif-
ferent domains via interventions. Its method estimates the
causal order by generalizing the invariance of parameters to
the independence of the changes in the parameters across
domains. Huang et al. [2020] use the distribution shifts that
can be the results of interventions to determine the causal
directions. Their method works under a pseudo-causal suf-
ficiency condition in which the values of the unobserved
confounders are fixed in each domain. Yang et al. [2018]
characterize interventional MEC under hard and soft inter-
ventions using invariance testing and provides a learning



algorithm when the intervention targets are known. The al-
gorithm of Squires et al. [2020] greedily searches over the
space of permutations to score DAGs when the intervention
targets are unknown. Ke et al. [2019] and Brouillard et al.
[2020] leverage differentiable methods through continuous
optimization to learn the causal structure from interven-
tional data. For linear SEMs and causally sufficient models,
Wang et al. [2018] propose to learn the difference graph,
which is the set of edge weights in the linear SEM that
have been changed across two environments. Ghoshal et al.
[2021] leverage precision difference estimates to address
the same problem under more stringent assumptions. Varici
et al. [2021] use precision difference estimates and achieves
a higher level of scalability through a hierarchical grouping
of the nodes.

Learning from observational data for causally insuffi-
cient systems. The fast causal inference (FCI) algorithm
of Spirtes et al. [2000] is a classic constraint-based method
for learning causally insufficient models from observational
data. Many efficient variants such as the really fast causal
inference (RFCI) algorithm of Colombo et al. [2012] and
the greedy fast causal inference (GFCI) algorithm of Ogar-
rio et al. [2016] have been proposed to improve scalability.
Bernstein et al. [2020] extend the greedy permutation search
to partially ordered sets to include the effects of latent vari-
ables in ordering.

Learning from interventions on causally insufficient sys-
tems. Triantafillou and Tsamardinos [2015] consider mul-
tiple interventions for causally insufficient systems. Their
algorithm applies ideal hard interventions and provides a
solution based on constraint satisfaction and conditional
independence testing. Mooij et al. [2020] propose a joint
causal inference framework to pool interventional datasets
to learn the causal graph. Jaber et al. [2020] characterize the
interventional MEC and propose a variant of FCI to learn
from soft interventional data in causally insufficient systems.
The key shortcoming of these methods is that their runtime
becomes prohibitive for large graphs.

3 PRELIMINARIES

We introduce some concepts and notations pertinent to
causal discovery in causally insufficient systems.

Let D ≜ (W,E) denote a causal graph in which W rep-
resents the set of nodes and E represents the set of edges.
Denote the number of nodes by p ≜ |W|. We associate the
random variable Xi to node i, for i ∈ [p] ≜ {1, . . . , p}, and
accordingly define the random vector X ≜ (X1, . . . , Xp)⊤1.
We consider a linear SEM, according to which

X = B⊤X + ϵ , (1)

1Throughout the paper, we use Xi to represent node i ∈ [p].

where B ∈ Rp×p is the edge weights matrix in which
Bi, j , 0 if and only if Xi → X j ∈ E. The random noise
vector ϵ ∈ Rp×1 has zero mean with covariance matrix
Ω ≜ diag(σ2

1, . . . , σ
2
p). We denote the covariance matrix

of X by Σ, and the precision matrix by Θ, which satisfies
Θ = (I − B)Ω−1(I − B)⊤. For the entries of Θ we have

Θi, j = −
Bi, j

σ2
j

−
B j,i

σ2
i

+
∑

k∈ch(i)∩ch( j)

Bi,kB j,k

σ2
k

, ∀i , j , (2)

Θi,i =
1
σ2

i

+
∑

j∈ch(i)

σ−2
j B2

i, j , ∀i ∈ [p] , (3)

where ch(i) denotes the set of children of node i ∈ [p].
In the causal graphD, we have two sets of nodes: a set of
observed variables denoted by V, and a set of latent variables
denoted by L. Clearly, V ∪ L =W. The observational data,
consequently, is represented by {Xi : i ∈ V}.

From the observational data alone, a DAG with only ob-
served variables can be identified up to its MEC [Verma and
Pearl, 1992]. For causally insufficient systems with latent
variables L, we can only describe the MEC in terms of a
family of graphs called maximal ancestral graphs (MAGs),
which we formally specify later in this section. The MAG
associated with V represents the pairwise ancestral and
confounding relationships among the observed variables
{Xi : i ∈ V} that cannot be made conditionally independent.
Therefore, for the true causal graphD, there exists a unique
MAG. This MAG cannot be identified uniquely. However, it
is possible to recover it up to a family of equivalent MAGs
that contains the true one. Next, we describe how a MAG
is obtained from a DAG and then proceed to describe the
MEC of MAGs and how they are represented.

Mixed Graphs: From a structure learning perspective,
causally insufficient systems are often represented by mixed
graphs. A mixed graph can contain both directed (→) and
bi-directed (↔) edges. In our notations, we use ←◦ to em-
phasize that an edge represents either a directed or a bi-
directed edge. If there is a directed path from node A to
node B, then A is an ancestor of B, and B is a descendant of
A. Bi-directed edges create spouses, that is, A is a spouse of
B if A↔ B is present. A node on a path is a collider if both
of its edges on the path are into the node. A triple ⟨X,Y,Z⟩ is
an unshielded collider if X →◦ Y ←◦Z, and X and Z are not
adjacent. A path ⟨X, . . . ,W,Z,Y⟩ is a discriminating path
for Z if every node between X and Z is a collider on the
path, and is also a parent of Y . An inducing path relative to
L is a path onD such that on this path, every non-endpoint
node X < L is a collider on the path, and every collider is
an ancestor of an endpoint of the path.

Maximal Ancestral Graphs: Consider the causal graph
D = (V ∪ L,E). A unique mixed graph called the MAG
[Richardson and Spirtes, 2002]MD over V has the follow-
ing three properties: (i) in a MAG, there exists an edge
between two nodes if and only if their associated variables



cannot be made conditionally independent (or d-separated)
by conditioning on any subset of observed variables in the
true D; (ii) if there is an edge in the skeleton that repre-
sents the ancestral relationships among the variables in V
in the trueD [Zhang, 2008], then a directed edge is used to
represent this edge; and (iii) if there is an edge in a MAG
that connects two variables that do not have any ancestral
relationship inD, then a bi-directed edge↔ is used to rep-
resent it. We note that the relationships between DAGs and
MAGs are many-to-one, i.e., different DAGs can have the
same MAG. Similar to the DAGs, a MAG can be identified
only up to a family of MAGs that are Markov equivalent.
This Markov equivalence class is represented by a partial
ancestral graph (PAG).

Markov Equivalence: Two MAGs are Markov equivalent if
and only if they have (i) the same adjacencies; (ii) the same
unshielded colliders; and (iii) if a path π is a discriminating
path for Z in both graphs, then Z is a collider on π in one
graph if and only if it is a collider on π in the other graph
as well. A PAG represents the MEC of a MAG that can be
learned from the observational data. The skeletons of all
MAGs in the MEC are identical. Therefore, the PAG has
the same skeleton as all members of the MEC. If an edge is
oriented as→ or↔, this orientation is fixed for that edge
in all MAGs of the MEC. If an edge in a PAG is oriented
as ←◦, this implies that there are at least two MAGs in the
MEC, such that for the first MAG, this edge is oriented as
↔ and for the second MAG, this edge is oriented as←. An
edge with circles on both ends means there are three MAGs
in the MEC with three distinct orientations←,→, and↔.

We denote the MAG corresponding to the DAGD = (V ∪
L,E) by MD. Let pa(A), ch(A), sp(A), an(A), and de(A)
denote the sets of parents, children, spouses, ancestors, and
descendants of a node A. We also create the set ps(A) =
pa(A) ∪ sp(A) to denote the union of parents and spouses
of a node A. We denote these relationships with respect to a
graph, e.g., paD(A). The subscript is dropped if the specified
graph is clear from the context.

4 PROBLEM STATEMENT

Interventions on causal models improve the identifiability
of the underlying causal structure. We consider a soft inter-
vention model, which changes the conditional distributions
of an intervention target node given its true parents (both
observed and unobserved) in the causal DAG D without
completely removing the causal effects of its parents.

Soft Intervention Model. Assume that we have n inter-
ventional settings, and denote the collection of the inter-
vention target sets by I ≜ {I( j) : j ∈ [n]}. In the j-th
setting, the nodes in I( j) ⊂ V are targeted for intervention.
Soft interventions in the linear SEM specified in (1) change
the conditional distributions of variables {Xi : i ∈ I( j)}.

Under these changes (i) the variances of the noise terms
{ϵi : i ∈ I( j)} change, and (ii) the weights connecting the par-
ents of the nodes associated with {Xi : i ∈ I( j)} in the linear
SEM may change. In other words, {Bpa(i),i : i ∈ I( j)}, where
Bpa(i),i ≜ {Bu,i : Xu ∈ pa(Xi)}, may vary freely. We also
note that this formulation can readily work with mean-shift
interventions that change the mean of the noise variables
(see supplementary material Section D.1 for details).

Post-intervention linear SEMs have new parameters. We
denote the linear SEM parameters associated with interven-
tions I( j) by B( j) and Ω( j) ≜ diag

(
(σ( j)

1 )2, . . . , (σ( j)
p )2
)
. Since

the noise variance terms change under soft interventions,
I( j) is described as follows:

I( j) ≜ {i : i ∈ V, σ( j)
i , σi} . (4)

A node can be targeted in multiple interventional settings,
e.g., i ∈ I( j) ∩ I(l). We assume that each target set have dif-
ferent mechanisms such that upon interventions on sets I( j)

and I(l), we have σ( j)
i , σ

(l)
i for all i ∈ I( j)∪ I(l). We note that

this assumption is purely for simplicity in the notation, and
can be dropped by denoting the exact mechanism applied
on a node under each setting.

Identifiability conditions of the causal graphs with unknown
soft interventions and the corresponding graphical charac-
terization are established by Jaber et al. [2020]. Importantly,
causal graphs with the same observed variables but different
latent variables and intervention targets can still belong to
the same MEC. We follow the augmented graph construc-
tion of Kocaoglu et al. [2019] and Jaber et al. [2020] to rep-
resent the MEC’s under interventions graphically. First, we
construct the augmented graph as follows: for each pair of
intervention targets I, J ∈ I, the augmented graph AugI(D)
appends the causal graphD with an auxiliary node and as-
sign directed edges from this node to each node in H = I∪J.
We denote the set of these auxiliary nodes by F , and refer
to the members of F as F-nodes. In the example in Fig. 1,
we have observational setting ∅ and intervention target set
{X}, so there is just one pair of target sets. An F-node is
created corresponding to this pair, and the edge F → X is
drawn since X is the only node in the set ∅ ∪ {X}.

Definition 1 (Augmented Graph) Consider a causal
graph D = (V ∪ L,E) and a set of intervention targets I.
Define the multiset H as H = {I ∪ J : I, J ∈ I}. Given H ,
generate h ≜ |H| nodes F ≜ {Fi : i ∈ [h]} and define the
augmented graph ofD as AugI(D) ≜ (V ∪ L ∪ F ,E ∪ E),
where E ≜ {(Fi,V) : i ∈ [h], V ∈ Hi}.

The study in citetsoftunknown20 shows that the augmented
graph exactly represents the separation statements among
the random variables in interventional settings. Similar to
obtaining a unique MAG from a DAG, a corresponding
maximal ancestral graph for the augmented graph is con-
structed next. In the example in Fig. 1, F → W and Z → W
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Figure 1: An example of a ⟨D,I⟩ with L = {L}, and the
corresponding I-MAG, M = MAG(AugI(D)). Note that
F → X is constructed in AugI(D). F → W edge on M
is due to the inducing path F → X ← L → W. Similarly,
Z → W is due to the inducing path Z → X ← L→ W.

edges are drawn due to the inducing paths existing in the
augmented graph AugI(D).

Definition 2 (I-MAG) Given a causal graph D = (V ∪
L,E) and a set of intervention targets I, we define I-MAG
to represent the maximal ancestral graph constructed over
V from AugI(D), i.e., MAG(AugI(D)), and denote its edges
by EI.

Corresponding to every pair of intervention sets I( j) and
I(l), define the set I jl ≜ I( j) ∪ I(l). Denote the single F-node
associated with I( j) and I(l) by F jl ∈ F , and denote the set
of nodes adjacent to F jl in I-MAG by

K jl ≜ {i : (F jl, i) ∈ EI} . (5)

We remark that, in causally sufficient systems, K jl = I jl.
However, in the presence of latent variables, one cannot
distinguish between the nodes in K jl \ I jl and I jl according
to the I-MAG. Therefore, we will focus on estimating K jl,
which we call the effective intervention targets.

We note that the observational setting can be considered
as an interventional setting with an empty target set. When
there exist more than two interventional settings, there are
multiple F-nodes and intervention targets. Accordingly, we
denote the set of intervention targets by

K ≜
{
K jl : ∀ j, l ∈ [n], j , l

}
. (6)

Problem Statement. We focus on two estimation prob-
lems. In the first problem, we estimate the set of interven-
tion targets K given the data from linear SEMs with la-
tent variables under soft interventions. We denote the esti-
mate of K by K̂ . Our objective is to design the estimator
ϕ :
(
Rm×|V|

)n
→
(
2V
)n

, in which |V| denotes the number of
the observed variables, n denotes the interventional settings,
and m denotes the number of samples in a setting.

In the second problem, based on the estimate K̂ , for any set
K ∈ K̂ , we consider the problem of estimating the parents
and spouses of K in the augmented MAG (I-MAG). For
any K ∈ K̂ , we denote the set of parents and spouses of
the nodes in K by ps(K), and denote its estimate by p̂s(K).

Therefore, our second objective is to design the estimator

ϕps(K) : 2V →
(
2V
)|K|

. These estimates (i.e., K̂ and {p̂s(K) :
K ∈ K̂}) are sufficient to refine the observational PAG to the
MEC of the I-MAG. In the rest of the paper, we denote this
interventional refinement of observational PAG by ψ-PAG.

5 MAIN RESULTS AND ALGORITHM

Overview. In this section, we provide our theoretical
results and our Precision Difference-based Intervention
Target Estimator (PreDITEr) algorithm. With scalability as
the central objective, we focus on estimating only the effec-
tive intervention targets. This is a computationally simpler
task compared to learning the causal structure of a DAG,
and, consequently, facilitates scalability.

The pivotal idea in our algorithm’s design is that soft inter-
ventions result in only sparse changes in the precision matrix
of the linear SEM. Hence, the precision matrix differences
have traces of the identities of the intervention sites. We
analytically establish how to use the precision matrix differ-
ences between a pair of interventional settings to identify
the underlying intervened sites. Upon establishing this prop-
erty, we then devise an algorithm that successively identifies
pairs of intervention settings and estimates the difference be-
tween their associated precision matrices. These successive
estimates are aggregated to identify the intervention targets.
Given the extensive literature on estimating precision matrix
differences, we can adopt any generic precision difference
estimation (PDE) algorithm to generate the estimates that
we need in our algorithm.

Once we estimate the target intervention sites, we also pro-
vide an estimate for the set of parents and spouses of each of
the nodes deemed to be an intervened node. Theoretically,
this information enables the increased identifiability of the
causal structure due to the interventions. We start describing
the details by introducing the precision difference estimation
procedure.

Precision Difference Estimation (PDE). When the dif-
ference between two linear SEMs is sparse, the difference
of their respective precision matrices will also be sparse.
Hence, for the two intervention target sets I( j) and I(l), the
difference between their precision matrices ∆ jl ≜ Θ

( j) − Θ(l)

will be sparse. In this paper, we use the algorithm of Jiang
et al. [2018] to estimate ∆ jl. The algorithm computes sam-
ple covariance matrices Σ̂( j) and Σ̂(l) from the data. Then, it
solves the following convex optimization problem with the
alternating direction method of multipliers (ADMM):

∆̂ jl = argmin
∆ jl

{1
2

Tr(∆⊤jlΣ̂
( j)∆ jlΣ̂

(l))

−Tr(∆ jl(Σ̂( j) − Σ̂(l))) + λ∥∆ jl∥1

}
, (7)



where λ is a tuning parameter. We note that there exist
alternative approaches to PDE [Zhao et al., 2014, Yuan
et al., 2017]. Any method that is guaranteed to converge to
the correct solution can be used as our PDE subroutine in
a modular way. We have chosen the method of Jiang et al.
[2018] due to its significant advantage in computational
complexity compared to the others (O(p3) vs. O(p4)). Next,
we define the marginal SEM over a subset of observed
variables.

Definition 3 (Marginal SEM) Corresponding to a subset
of nodes S ⊆ V, we define (BS , ϵS ) as the marginal SEM that
characterizes the relationship among the random variables
XS ≜ {i : i ∈ S }. Accordingly, the corresponding precision
matrix is denoted by ΘS . The parametrization of a marginal
SEM is given by the following lemma.

Lemma 1 (Ghoshal et al. [2021]) Corresponding to a sub-
set S ⊆W, denote the removed set of nodes by U ≜W \ S
and define Ui ≜ U ∩ an(i), for i ∈ S . For i, j ∈ S , we have

σ2
S ,i = σ

4
i

(
σ2

i − B⊤Ui,i[Θan(i)]−1
Ui,Ui

BUi,i

)−1
, (8)

[BS ] j,i =
σ2

S ,i

σ2
i

(
B j,i − B⊤Ui,i[Θan(i)]−1

Ui,Ui
[Θan(i)]Ui, j

)
. (9)

Before describing the theoretical results, we need the fol-
lowing faithfulness assumption. This assumption rules out
the pathological cases in which the effect of an intervention
is canceled by other changes in the system. Faithfulness
assumptions are generally needed for successful learning.

Assumption 1 (I-faithfulness) For any choice of i, j ∈
S ⊆ V, we have the following properties:

• If σ(1)
i , σ

(2)
i , then σ(1)

S ,i , σ
(2)
S ,i.

• If σ(1)
S ,i , σ(2)

S ,i, then [Θ(1)
S ]i,i , [Θ(2)

S ]i,i. If further
[BS ] j,i , 0 in either model, then [Θ(1)

S ]i, j , [Θ(2)
S ]i, j.

5.1 THEORETICAL RESULTS

For the rest of the discussion, we consider a pair of interven-
tional settings. Without loss of generality, let them be I(1)

and I(2). Denote the difference in their precision matrices by
∆12 = Θ

(1) − Θ(2), and the difference in marginal precision
matrices for set S by ∆12S = Θ

(1)
S − Θ

(2)
S . For simplicity in

the notation, we denote the corresponding F-node F12 by
F, K12 by K, ∆12 by ∆, and ∆12S by ∆S . We also denote
the set of affected nodes among the observed variables by
S ∆ ≜ {i : [∆V]i,i , 0}.

Separation Property for Invariance. For a non-
intervened node i ∈ V \ K, there is no edge between F

and i in I-MAG. Therefore, there exists a set S that sepa-
rates F and i, and the conditional probability distribution of
Xi is invariant given S \{Xi}. Then, the conditional mean and
variance of Xi, and subsequently σS ,i, are invariant. Finally,
applying the result of Wang et al. [2018], [ΘS ]i,i = σ

−2
S ,i is

also invariant. Therefore, the set S that separates F and i
yields [∆S ]i,i = 0 by the definition of ∆S .

Theorem 1 Consider an F ∈ F and an observed node
V ∈ V in the augmented MAG (I-MAG). Then, (F,V) ∈ EI
if and only if ∄ S ⊆ V such that [∆S ]V,V = 0.

Theorem 1 states the existence of a conditioning set S for
any non-intervened node V , that makes the corresponding
diagonal entry of the precision matrix invariant. In the fol-
lowing lemma, we show that the ancestors of V within the
set of affected nodes S ∆ suffice to separate F and V .

Lemma 2 For a node V ∈ S ∆ \ K, consider the set
S = S ∆ ∩ an(V). Diagonal entry corresponding to V in
the precision matrix of the marginal SEM over S is invari-
ant, i.e., [∆S ]V,V = 0.

Lemma 2 implies that we can eliminate all the non-
intervened nodes (i.e., nodes not in the effective intervention
target set K) in S ∆ by computing PDE for each subset of S ∆.
Therefore, we can identify K with 2|S ∆ | number of PDEs.
Now that we have a way to recover K, we show how to
identify the parents and/or spouses of the intervened nodes.
This property will play a critical role in improving the iden-
tifiability of the MAGs under interventions.

Lemma 3 Consider K ∈ K and J ∈ V \ K. If K←◦J in
I-MAG, there does not exist S ⊆ S ∆ containing {K, J} such
that [∆S ]K,J = 0. On the other hand, if K → J, or there is
no edge between them in I-MAG, there exists a set S ⊆ S ∆
containing {K, J} such that [∆S ]K,J = 0.

Lemma 2 and Lemma 3 are sufficient to design our algo-
rithm for learning K .

5.2 LEARNING ALGORITHM

We leverage the results in Lemma 2 and Lemma 3 to learn
the intervention targets K from a tuple of interventional
distributions generated by some unknown pair ⟨D,I⟩. Al-
gorithm 1 presents our main learning algorithm PreDITEr
that uses the results to learn K , and subsequently ps(K) for
K ∈ K . We briefly describe PreDITEr and the rationale
underlying its design.

Algorithm 1 (PreDITEr) takes sample covariance matrices
of interventional data as inputs. Since estimating interven-
tion targets K for each pair of interventional settings is
independent, we investigate each pair individually. For each



Algorithm 1 Precision Difference-based Intervention Target
Estimator (PreDITEr)

1: Input: Observed nodes V, sample covariance matrices
Σ̂(1), . . . , Σ̂(n)

2: Output. Intervention targets K , and ps(K) ∀K ∈ K,
∀K ∈ K

3: K ← ∅, F ← ∅
4: for V ∈ V do ps(V)← ∅ end for
5: for all pairs j, l ∈ [n] do
6: F ← F ∪ {F jl}, K jl ← ∅

7: Estimate ∆ jl ← PDE (Σ̂( j), Σ̂(l))
8: S ∆ ← {V : V ∈ V, [∆ jl]V,V , 0}
9: For all S ⊆ S ∆, estimate ∆ jlS ← PDE (Σ̂( j)

S ,S , Σ̂
(l)
S ,S )

10: for V ∈ V do
11: if ∄ S ⊆ S ∆, such that V ∈ S , and [∆S ]V,V = 0

then
12: K jl ← K jl ∪ {V}
13: end if
14: end for
15: K ← K ∪K jl

16: for all pairs K ∈ K jl, J ∈ S ∆ \K jl do
17: if ∄ S ⊆ S ∆, such that K, J ∈ S , and [∆S ]K,J = 0

then
18: ps(K)← ps(K) ∪ {J}
19: end if
20: end for
21: end for

Precision Difference Estimation (PDE) (Σ̂( j), Σ̂(l))
1: Estimate ∆ jl = (Σ̂( j))−1 − (Σ̂(l))−1 using algorithm of

Jiang et al. [2018].
2: Symmetrize ∆ jl: set ∆ jl = (∆ jl + ∆

⊤
jl)/2.

3: Threshold ∆ jl: set [∆ jl]u,v = 0 if |[∆ jl]u,v| < ε.
4: Return ∆ jl

pair of interventional distributions (or the corresponding
F-node), we first estimate the set of affected nodes S ∆ (lines
7 and 8). Then, we estimate precision difference ∆S for each
subset S of S ∆. If there does not exist a set S for a node
V ∈ S ∆ such that [∆S ]V,V = 0, then by Lemma 2, V is an
intervened node and belongs to K (lines 10-15).

After identifying K, consider a K ∈ K and J ∈ S ∆ \ K. If
there does not exist a set S such that [∆S ]K,J = 0, by Lemma
3, J belongs to ps(K) (lines 16-20).

Algorithm 1 uses PDE as a subroutine. Hence, the quality
of the estimate formed by Algorithm 1 hinges on those of
the precision difference estimates. To assess the accuracy of
Algorithm 1 in estimating the intervention targets irrespec-
tively of the PDE subroutine used, we provide population-
level results. In the following theorem, we establish that
Algorithm 1 has perfect estimation if the underlying PDE
subroutine performs perfectly. This result allows decoupling
the accuracy of Algorithm 1 from that of the PDE subroutine

used. In practice, however, PDE subroutines are imperfect,
which is imposed by having access to only finite samples. To
address the convergence to the correct estimates, we discuss
the sample complexity and convergence guarantees of the
algorithm of Jiang et al. [2018] in supplementary material
Section B.

Theorem 2 When the covariance estimates are perfect and
Assumption 1 holds, Algorithm 1 perfectly estimates the
set of effective intervention targets K under soft interven-
tions with probability 1. Furthermore, Algorithm 1 recovers
non-intervened parents and/or spouses (i.e., ps(K)) of an
intervened node K with probability 1.

5.3 RECOVERING ψ-MARKOV EQUIVALENCE

Next, we show how we can use the intervention target recov-
ery of Algorithm 1 to refine the observational MEC repre-
sented by a PAG to the interventional MEC for soft interven-
tions ψ-PAG. We first review the interventional equivalence
characterization approaches in the existing literature.

The ψ-Markov equivalence property, i.e., the conditions for
two I-MAGs to be Markov equivalent, is characterized by
Jaber et al. [2020, Theorem 1]. For two MAGsM1 andM2
to be ψ-Markov equivalent:

• M1 andM2 must have the same skeleton.

• M1 andM2 must have the same unshielded colliders.

• If a path π is a discriminating path for a node V in both
M1 and M2, then V is a collider on the path in one
graph if and only if it is a collider on the path in the
other.

The following theorem builds on the results of Theorem 2
and Lemma 3 to obtain ψ-PAG.

Theorem 3 (ψ-PAG) Given the PAG for the MAGM, and
the results of Algorithm 1, i.e., the sets K , ps(K) ∀K ∈ K ,
we can obtain ψ-PAG of I-MAG.

6 EMPIRICAL RESULTS

First, we run our PreDITEr algorithm on synthetically gen-
erated data from linear SEMs to recover intervention tar-
gets. Next, we provide comparisons with the state-of-the-art
method. Finally, we apply our method to a biological dataset
to illustrate its applicability to real data. 2

2Codebase for reproducing the simulations are avail-
able at https://https://github.com/bvarici/uai2022-intervention-
estimation-latents
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Figure 2: Average F1 scores at estimating K for |L| =
5, |I| = 5 intervention targets.

6.1 SYNTHETIC DATA

We test the efficiency of PreDITEr for recovering the inter-
vention targets. We generate 100 realizations of Erdős-Rényi
random DAGs with the expected neighborhood size c = 2.
We consider one interventional setting in addition to the
observational one, i.e., I = ⟨∅, I⟩. Therefore, we are estimat-
ing a single target set K. For each model, we set the number
of latent variables to |L| = 5, and the number of intervened
nodes to |I| = 5. The edge weights of the causal model, i.e.,
the entries of B, are sampled independently at random ac-
cording to the uniform distribution on [−1,−0.25]∪[0.25, 1].
The additive Gaussian noise terms have distributionN(0, Ip).
The intervention targets are selected randomly from the ob-
served variables V. For the intervened nodes I ∈ I, upon
intervention, the variance of the noise term ϵI changes to 2.

We run PreDITEr with a varying number of samples on
graphs with varying sizes p. Figure 2 illustrates the target re-
covery performance. Specifically, it shows that our method
recovers the intervention target with high F1 scores. We
emphasize that PreDITEr can easily process large graphs
(e.g., p = 100 nodes), and have less than 1 second average
runtime for the simulations shown in Figure 2. This scal-
ability is due to its computational complexity of O(2|S ∆ |).
Since the size of S ∆ is determined only by the number of
intervened nodes and their parents/spouses, our method is
not directly affected by the graph size p.

6.2 COMPARISON TO THE RELATED WORK

We compare the scalability and accuracy of PreDITEr to
those of two competing methods under various settings: the
ψ-FCI algorithm of Jaber et al. [2020] and the FCI-JCI123
algorithm of Mooij et al. [2020]. We note that both of these
algorithms solve a more general problem than the linear
SEMs we are considering. To the best of our knowledge,
there is no algorithm specifically designed for linear SEMs,
and these are the only two methods that can be applied to

our setting. Therefore, we compare our results to those of
these two methods.

Jaber et al. [2020] do not provide simulations for graphs
that have more than a few nodes since ψ-FCI requires an
exponentially growing number of conditional independence
and invariance tests. Mooij et al. [2020] report experiments
with larger graphs, and we compare our algorithm to their
FCI-JCI123 algorithm. We focus on scalability and provide
additional experiments on small graphs and MEC refinement
results in supplementary material section D.2.

To enable comparisons under soft interventions, we adopt
mechanism changes of Mooij et al. [2020], in which a con-
stant offset is added to the intervention targets (see page
53, Section 5.2 for details). We note that this is different
from our model of soft interventions and results in slight
degrading of the performance of our algorithm, but since
we are using FCI-JCI123 as our benchmark, we adopt its
setting.

We consider two environments and one intervention target
for simplicity of the comparisons. We generate 30 Erdős-
Rényi random DAGs. The probability of an edge being
present in the random graphs is set to 2/p where p is the
number of observed and latent variables. We report the pre-
cision and recall rates of both algorithms along with their
runtimes in Table 1. While both methods have similar per-
formance, there is a significant discrepancy in their runtime.
More importantly, the runtime of FCI-JCI123 becomes pro-
hibitive very quickly, even with graphs with as few as 40
nodes. In contrast, PreDITEr has a significantly lower run-
time even though the considered setting (i.e., mechanism
changes) is not the setting for which it is designed. All
simulations are run on a computer with i7-4960HQ, 16GB
1600MHz RAM.

Table 1: Intervention recovery results and median runtime.

Method p Precision Recall Runtime (s)

PreDITEr 20 1.0 0.83 < 1
FCI-JCI123 20 1.0 1.0 80.9

PreDITEr 30 1.0 0.80 < 1
FCI-JCI123 30 1.0 0.97 318.0

PreDITEr 40 1.0 0.87 < 1
FCI-JCI123 40 0.96 0.96 1301.9

6.3 BIOLOGICAL DATA

We apply the PreDITEr algorithm to a real dataset with
data from observational and multiple interventional settings.
Since PreDITEr estimates the intervention targets and their
corresponding parent-spouse sets for each pair of available
settings, we combine the findings from each pair and yield
a mixed graph estimate of the associated causal structure.
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Figure 3: Recovered causal structure using Algorithm 1.
Blue edges represent the edges that are in the skeleton of
the reference network [Ness et al., 2017].

Protein signaling data. We consider the dataset of Sachs
et al. [2005], which is a standard benchmark in causal infer-
ence literature. The data is obtained from measurements of
the proteins involved in T-4 cell signaling. The protein sig-
naling network consists of 11 nodes. In each interventional
setting, various drugs are injected into the cells to inhibit
or activate different signaling proteins. The target proteins
are considered sites of intervention. Data from observa-
tional and five interventional settings are provided. The true
ground truth network is not exactly known, and the accepted
ground truth has been updated over the years. Notably, it is
represented by a DAG without latent confounders. We use
the recent version of Ness et al. [2017], which consists of
16 edges, and use the preprocessed real data provided by
Squires et al. [2020].

Figure 3 shows the output of our algorithm. For a pair of
nodes, if they are found to be in the parent-spouse sets
of one another, they must be spouses, and we assign a bi-
directed edge. If only one of them lies in the parent-spouse
set of the other node, it must be the parent, and we assign a
directed edge to them. If we do not have either of the above
results, the relationship can be either parent or spouse, and
we denote it by →◦ on the graph. The recovered edges that
are also present in the skeleton of the ground truth DAG are
marked in blue. This result illustrates that even though our
algorithm is designed for linear models, it has the potential
to be applied to real datasets with non-linear models.

7 CONCLUSION

In this paper, we have considered the problem of estimating
intervention targets for causally insufficient systems in lin-
ear structural equation models (SEMs). We have assumed
a soft intervention model that is more realistic than hard
interventions, which eradicate all causal effects on targets.
We have shown the usage of invariance of precision matrix
entries and proposed an algorithm to identify intervention
targets. The algorithm can also be used to refine the obser-

vational MEC to interventional MEC for maximal ancestral
graphs. Since there exist efficient algorithms for the former,
our algorithm provides scalability for the latter as well. We
support our analytical results through simulations and com-
pare them with competing methods. The limitation of our
approach is that it only applies to linear SEMs. However, we
have demonstrated strong performance in real and synthetic
datasets, which shows its applicability to other settings.
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