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Abstract

Transfer learning has become an increasingly
popular technique in machine learning as a way
to leverage a pretrained model trained for re-
lated tasks. This paradigm has been especially
popular for privacy preserving machine learning,
where the pretrained model is considered public,
and only the data for finetuning is considered
sensitive. However, there are reasons to believe
that the data used for pretraining is still sensi-
tive. In this work we study privacy leakage via
membership-inference attacks, and we propose a
new threat model where the adversary only has
access to the finetuned model and would like to
infer the membership of the pretraining data. To
realize this threat model, we implement a novel
metaclassifier-based attack, TMI. We evaluate
TMI on both vision and natural language tasks
across multiple transfer learning settings, includ-
ing finetuning with differential privacy. Through
our evaluation, we find thatTMI can successfully
infer membership of pretraining examples using
query access to the finetuned model.

1. Introduction

Transfer learning has become an increasingly popular tech-
nique in machine learning as a way to leverage a model
trained for one task to assist with building a model for a
related task. Typically, we begin with a large pretrained
model trained with abundant data and computation, and
use it as a starting point for training a finetuned model to
solve a new task where data and computation is scarce.
This paradigm has been especially popular for privacy in
machine learning (Papernot et al., 2020; Yu et al., 2022; Li
et al., 2022; Bu et al., 2023; He et al., 2022; Ganesh et al.,
2023), because the data for pretraining is often considered
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public and thus the pretrained model provides a good start-
ing point before we even have to touch sensitive data.

Although the data used to pretrain large models is typi-
cally scraped from the Web and publicly accessible, there
are several reasons to believe that this data is still sensi-
tive (Tramèr et al., 2022). For example, even ubiquitous and
thoroughly examined pretraining datasets like ImageNet
have been shown to contain sensitive content (Quach, 2019;
Yang et al., 2022) obtained without consent. Companies,
such as Google, have begun using internal datasets scraped
from the Web (Tuesday & Networks) to train models to
be finetuned and published by smaller organizations, mak-
ing it imperative to understand the privacy risks posted
by models pretrained on these ostensibly public datasets.
Thus, the central question we attempt to understand in this
work is: How much sensitive information does a finetuned
model reveal about the data that was used for pretraining?

We study this question via membership-inference (MI) at-
tacks (Homer et al., 2008; Shokri et al., 2016). A MI attack
allows an adversary with access to the model to determine
whether or not a given data point was included in the
training data. MI attacks have been extensively studied in
several machine learning applications such as computer vi-
sion (Carlini et al., 2022) and contrastive learning (Liu et al.,
2021). The success of MI attacks makes it clear that the pre-
trained model will leak information about the pretraining
data. However, the process of finetuning the model will
obscure information about the orignal model, and there
are no works that study MI attacks that use the finetuned
model to recover pretraining data.

To answer our question, we create a novel, metaclassifier-
based membership-inference attack, Transfer Membership
Inference (TMI) to circumvent the challenges that arise
when trying to adapt prior attacks to asses privacy leak-
age in this new setting where the adversary has query
access only to the finetuned model. The goal of our new
membership-inference adversary is to infer whether or
not specific individuals were included in the pretraining
set of the finetuned machine learning model. This setting
stands in contrast to prior membership-inference attacks,
as it restricts the adversary from directly querying the
model trained on the specific dataset they wish to perform
membership-inference on. State-of-the-art, black-box MI
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attacks rely on a model’s prediction confidence with re-
spect to the ground truth label, but the finetuned model
does not necessarily have the ground truth label in its range.
Thus, our attack leverages how individual samples from
pretraining influence predictions on the downstream task
by observing entire prediction vectors from the finetuned
model. More concretely, TMI constructs a dataset of pre-
diction vectors from queries to finetuned shadowmodels in
order to train a metaclassifier that can infer membership.

We comprehensively evaluate TMI on pretrained CIFAR-
100 (Krizhevsky, 2009) vision models, transferred to CIFAR-
10 (Krizhevsky, 2009) and a coarse-labeled version of
CIFAR-100. We also evaluate an extension of TMI on fine-
tuned version of publicly available large language language
models which are pretrained onWikiText-103 (Merity et al.,
2016) and finetuned on DBpedia (Zhang et al., 2015). We
compare our results to both a simple adaptation of the like-
lihood ratio attack (Carlini et al., 2022) to our setting and a
MI attack that has direct access to the pretrained model.

2. Background and Related Work

We provide the necessary background on machine learning
and related work on MI attacks.

2.1. Background and Notation

2.1.1. Scaling Model Confidences

The classifier models we consider are trained in a super-
vised manner (i.e. on labeled training data) and output
a vector of probabilities, ®𝑦, where each entry 𝑦𝑖 corre-
sponds to the model’s prediction confidence with respect
to label, 𝑖 . This is done by applying the softmax acti-
vation function to the model’s final layer. Given a vec-
tor of logits, ®𝑧 (i.e. the model’s final layer), we define
softmax(®𝑧) : R𝐾 → (0, 1)𝐾

𝑦𝑖 = softmax(®𝑧)𝑖 =
𝑒𝑧𝑖∑𝐾
𝑗=1 𝑒

𝑧 𝑗

where 𝐾 is the number of possible classes.

Prior work (Carlini et al., 2022) has used the logit func-
tion, logit(𝑝) = log( 𝑝

1−𝑝 ), to scale model confidences.
This scaling yields an approximately normally distributed
statistic that can be used to perform a variety of privacy
attacks (Carlini et al., 2022; Chaudhari et al., 2022; Tramèr
et al., 2022). The logit function is obtained by inverting the
sigmoid activation function, 𝜎 (𝑥) = 1

1+𝑒𝑥 , which is a spe-
cific case of softmax being used for binary classification.

Following the lead of prior work, we use 𝜙 to perform our
model confidence scaling. We define model confidence

scaling 𝜙 ( ®𝑦) : R𝐾 → R𝐾 for a prediction vector, ®𝑦, as

𝜙 ( ®𝑦) = (logit(𝑦1), . . . ,logit(𝑦𝐾 ))

2.1.2. Transfer Learning

Feature extraction and updating a model’s pretrained
weights are popular transfer learning techniques used to
improve a pretrained deep learning model’s performance
on a specific task. In the classification setting, feature ex-
traction involves freezing a model’s pretrained weights
and using them to extract relevant features from input data,
which are then fed into a linear layer for classification.
This technique is useful when working with limited data or
when the pretrained model has learned generalizable fea-
tures that are useful for the target task. On the other hand,
finetuning a model by updating its pretrained weights in-
volves taking a pretrained model and training it on a new
dataset, often with a smaller learning rate, to adapt it to
the new task. This kind of finetuning is more suited for
situations where the new task has similar characteristics,
but not a direct correspondence, to the original pretraining
task.

2.2. Related Work

Membership-inference attacks (Homer et al., 2008) aim to
determine whether or not a given individual’s data record
was present in a machine learning model’s training dataset.
Learning whether or not an individual was part of a sensi-
tive dataset can serve as the basis for more powerful extrac-
tion attacks (Carlini et al., 2022). Because of their simplicity
and connection to differential privacy, MI attacks are also
a popular way to audit machine learning models for pri-
vacy leakage (Song & Shmatikov, 2018; ten; Ye et al., 2022).
These attacks have been extensively studied with two types
of adversarial access: black-box query access (Carlini et al.,
2022; Yeom et al., 2018; Shokri et al., 2016; Ye et al., 2022;
Tramèr et al., 2022) and white-box access to the machine
learning model’s parameters (Leino & Fredrikson, 2020).
Despite there being extensive work on black-box attacks
and prior work on MI attacks on pretrained encoders (Liu
et al., 2021), there are few works that explore MI in the
transfer learning setting. The works that do (Hidano et al.,
2020; Zou et al., 2020) have not studied MI attacks on the
pretraining dataset of a finetuned machine learning model.

3. Threat Model

Our problem is to determine how much information a fine-
tuned model reveals about the pretraining data using MI
attacks. In both the standard MI experiment and our newly
defined experiment, there is a machine learning model
trained on some dataset, and a challenge point that is drawn
from the same distribution as the training data. Introducing
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Figure 1. Our New Membership-Inference Threat Model.

a separate finetuning phase with possibly different data
adds an additional layer of indirection, potentially making
MI more challenging by limiting the attacker’s ability to
query the original pretrained model. Formally, our threat
model, visualized in Figure 1, is described by the following
game between a challenger C and an adversary A:

MI Security Game with a Finetuned Target Model

1. The challenger receives a dataset 𝐷𝑃𝑇 comprised of
points sampled i.i.d. from some distribution D𝑃𝑇 , and
a pretrained model 𝑔\ ← T𝑃𝑇 (𝐷𝑃𝑇 ).

2. The challenger draws i.i.d. samples from another dis-
tribution D𝐹𝑇 to create a dataset 𝐷𝐹𝑇 and finetunes
the model on 𝐷𝐹𝑇 using its pretrained weights, \ , to
obtain a new model 𝑓𝛽 ← T𝐹𝑇 (𝐷𝐹𝑇 , 𝑔\ )

3. The challenger randomly selects 𝑏 ∈ {0, 1}. If the
𝑏 = 0, the challenger samples a point (𝑥,𝑦) from D𝑃𝑇
uniformly at random, such that (𝑥,𝑦) ∉ 𝐷𝑃𝑇 . Oth-
erwise, the challenger samples (𝑥,𝑦) from 𝐷𝑃𝑇 uni-
formly at random.

4. The challenger sends the point, (𝑥,𝑦) to the adversary.

5. The adversary, using the challenge point, sampling ac-
cess toD𝑃𝑇 andD𝐹𝑇 , and query access to 𝑓𝛽 , produces
a bit 𝑏.

6. The adversary wins if 𝑏 = 𝑏 and loses otherwise.

In our security game, we assume that the adversary has
query access to the finetuned target model 𝑓𝛽 and knowl-
edge of the pretraining data distribution D𝑃𝑇 . Because
we will be training shadow models (Shokri et al., 2016) to
perform our MI attack, the adversary also requires knowl-
edge of the underlying distribution from which the finetun-
ing dataset is sampled, D𝐹𝑇 , and knowledge of the target
model’s architecture and training algorithm. The knowl-
edge we assume is the same as many other works on MI
(e.g. (Shokri et al., 2016; Carlini et al., 2022)). We also as-
sume that the adversary’s queries to the target model return
numerical confidence scores for each label rather than just
a single label, similar to prior privacy attacks (Shokri et al.,

2016; Yeom et al., 2018; Tramèr et al., 2022; Carlini et al.,
2022).

4. Methodology

In this section, we will propose attacks that follow the
threat model proposed in Section 3. The algorithms for
these attacks can be found in Section B of the appendix.

4.1. Adapting an Existing Attack

As a first attempt to create an effective membership-
inference attack on finetuned machine learning models,
we can consider an adaptation of the likelihood ratio at-
tack (LiRA) proposed by Carlini et al. (Carlini et al., 2022).
In this attack, the adversary observes the target model’s
prediction confidence on a challenge point with respect to
the true label of the challenge point. Because the model’s
confidence with respect to a given label is approximately
normally distributed, Carlini et al. perform a likelihood
ratio test to infer the challenge point’s membership status,
using the shadow models to parameterize the IN and OUT
distributions.

Because we consider an adversary with query access to the
finetuned model, the ground truth label may not be in the
range of our target model. Thus, we cannot perform the
likelihood ratio attack. Instead, we can adapt the attack to
use the label which the target model predicts with the high-
est confidence,𝑦. To increase attack success, we query each
shadow and target model on𝑀 random augmentations of
the challenge point and fit 𝑀-dimensional multivariate
normal distributions to the scaled model confidences we
aggregate to improve attack success.

4.2. Issues with Adapting LiRA

While this adaptation of LiRA is somewhat effective at in-
ferring membership (Figure 3a), it only captures how the
pretraining dataset influences model’s predictions with re-
spect to a single label in the downstream dataset. Because
the purpose of pretraining is to extract and learn general
features that can be used in several downstream tasks, one
would expect that the weights of a pretrained model have
some impact on all of a finetuned model’s prediction confi-
dences.

Furthermore, if we observe the distribution of scaled model
confidences over our shadow models, we see that it is ap-
proximately normal regardless of the choice of label (Figure
2). This may lead one to believe that the correct adapta-
tion of LiRA to our setting would be to fit a multivariate
normal distribution to the entire prediction vectors output
by our shadow models, but this is not the case because the
adversary only receives model confidences. When softmax
is applied, it converts the logit vector ®𝑧 into a probability
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distribution, ®𝑦, over the labels. Thus, the entries of ®𝑦 can
be written as ®𝑦 = (𝑝1, 𝑝2, . . . , 𝑝𝐾 ) ∈ (0, 1)𝐾 where 𝐾 is the
number of classes and each 𝑝𝑖 denotes the model’s confi-
dence on class 𝑖 . Because the entries of ®𝑦 must sum up to 1,
any entry 𝑝𝑖 can be written as 1−∑𝑗≠𝑖 𝑝 𝑗 . This means that
the prediction vector (and our computed logits) actually lie
on a (𝐾 − 1)-dimensional subspace of the 𝐾-dimensional
space where the model’s actual logits lie, and we cannot
fit a 𝐾-dimensional multivariate normal distribution the to
all of our models’ logit scaled prediction vectors without
arbitrarily removing one of the entries in ®𝑦.
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Figure 2. Scaled Model Confidences of Shadow Models at a Ran-
dom Sample of Labels

4.3. Our TMI Attack

Our TransferMembership Inference (TMI) attack (Algo-
rithm 3) starts with the same shadow model training pro-
cedure as Algorithm 2, where the adversary trains shadow
models on datasets sampled from D𝑃𝑇 and finetunes them
on datasets sampled from D𝐹𝑇 . The adversary then queries
the challenge point on these shadow models to construct
a dataset, 𝐷meta, comprised of logits attained from scaling
the prediction vectors as described in Section 2.1.1. To
construct a distinguishing test that circumvents the issues
that arise when attempting to parameterize the distribution
of prediction vectors, the adversary trains a metaclassifier
on 𝐷meta, queries the target model on the challenge point,
and scales the target model’s prediction vector. Lastly, the
adversary queries this observed prediction vector on their
metaclassifier, which outputs a score in the interval [0, 1]
that indicates the predicted membership status of the chal-
lenge point.

In our implementation of TMI for computer vision models,
we train a metaclassifier per challenge point. Because we
use a relatively small number of shadow models (64 IN
and 64 OUT in total), we leverage random augmentations
to construct a larger metaclassifier dataset. Each time we
query the target model or our local shadow models, we
query 𝑀 times with different random augmentations of
the challenge point, including random horizontal flips and

random crops with padding.

Due to computational limitations, we do not pretrain any
shadow models for our attacks in the language domain.
Rather, we use a publicly hosted pretrained model and
finetune it on a downstream task. Without control over
pretraining, we cannot produce a metaclassifier dataset
with prediction vectors from both IN and OUT shadow
models with respect to a single challenge point. As a re-
sult, we use a global metaclassifier, trained on a dataset
containing the prediction vectors of all challenge points,
to produce membership scores.

5. TMI Evaluation

We evaluate the performance of our TMI attack on image
models with three downstream tasks and a finetuned ver-
sion of a public, pretrained language model. We evaluate
the success of our attack as a function of the number of
updated parameters. Additionally, we observe the success
of our attack when differential privacy (Dwork et al., 2006)
is used in the finetuning process.

This section presents the results of our evaluation of TMI
and addresses five primary research questions with respect
to the datasets in our experiments.

5.1. Metrics

To evaluate the performance of TMI, we use a set of metrics
that are commonly used in the literature. Although average
accuracy is a common metric used to evaluate MI attacks, it
is not sufficient by itself to measure the performance of MI
attacks. Thus we also evaluate our attack using the receiver
operating characteristic (ROC) curves on a log-log scale, the
area under the curve (AUC), and we report the TPR at low,
fixed FPR of 0.1% and 1%.

5.2. Experimental Results

In this section, we will discuss the performance of our at-
tack on both vision and language models finetuned on a
variety of tasks with different finetuning streategies. De-
tails for shadow model training and datasets can be found
in Section C.

5.2.1. Finetuning Vision Models

Q1: Can finetuned models leak private informa-
tion about their pretraining datasets via black-box
queries?

Q2: Does updating a model’s pretrained parameters
instead of freezing them prevent privacy leakage?

To answer these research questions, we evaluate the success
of our TMI attack on vision models finetuned on CIFAR-10
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Figure 3. TMI Attack Performance on Finetuned Vision Models

and Coarse CIFAR-100, with and without updating any
of the pretrained parameters, respectively. Our attack’s
success depends on the target model having high utility
on its respective task, so it is important to ensure that we
choose downstream tasks that are similar or relevant to the
pretraining task when using feature extraction to finetune
models. To transfer the pretrained models to Coarse CIFAR-
100, we remove the final classification layer, and replace it
with a randomly initialized classification layer containing
the proper number of classes for the new downstream task.
The remaining weights are kept frozen throughout training.
To finetune on CIFAR-10, we progressively unfreeze our
ResNet models’ weights. In our experiments with vision
models, we designate 1000 samples to be challenge points
and run our attack across 128 target models.

As shown in Table 1, we observe that TMI is able to achieve
a TPR of 5.7% and 16.1% at 0.1% and 1% FPR, respectively,
on the Coarse CIFAR-100 downstream task. Despite being
constrained to only having query access to the finetuned
model, Figure 3a shows that the TPR of TMI is approxi-
mately equal at higher FPR (about 5%) to that of running
LiRA directly on the pretrained model. Our summary statis-
tics, AUC and average accuracy (0.78 and 69%) both remain
within 0.06 of the adversary which has access to the pre-
trained model (0.83 and 75%).

Q1 Answer: Yes, it is possible to infer the membership
status of an individual in a machine learning model’s pre-
training set via query access to the finetuned model.

Furthermore, Figure 3b shows that the AUC and accuracy of
TMI slightly decrease as we finetune an increasing number
of parameters. We also observe a very slight decrease the
TPR at a 1% FPR when the number of finetuned parameters
is increased from 2 layers to 3 layers. TPR decreases more
significantly when comparing to the TPR of TMI onmodels
finetuned with feature extraction. In Table 1, we observe
that updating the model’s parameters induces a decrease
in up to 0.9% at a 0.1% FPR and up to 3.3% at a 1% FPR.

Nonetheless, TMI achieves comparable AUC and average
accuracy metrics to feature extraction when we finetune
the majority of model parameters. We hypothesize that
this slight decrease in our attack’s success may be due to
the "forgetting" of old training points that happens when
updating model parameters (Jagielski et al., 2023).

Q2 Answer: Updating larger subsets of model parameters
decreases the success of ourTMI attack, but we are still able
to infer the membership status of the majority of samples
in the pretraining dataset.

Table 1. TPR at Fixed FPR of TMI and Our Adaptation of LiRA
on Vision Models (Figure 3)

Task TPR @ 0.1% FPR TPR @ 1% FPR

TMI (Coarse CIFAR-100) 5.7% 16.1%
Adapted LiRA (Coarse CIFAR-100) 0.7% 3.1%
Feature Extraction (CIFAR-10) 2.0% 8.0%
Last 2 Layers, 60% (CIFAR-10) 1.1% 5.6%
Last 3 Layers, 90% (CIFAR-10) 1.1% 4.7%
LiRA Directly on Pretrained Model 15.6% 22.9%

5.2.2. Finetuning Pretrained Language Models

Q3: Can the attack be generalized to domains other
than vision?

To answer this research question, we evaluate the success
of our TMI attack in the natural language domain. In par-
ticular, we focus on publicly available pretrained large lan-
guage models (LLMs), or foundation models (Bommasani
et al., 2022), which we finetune on a text classification task.

As an alternative to pretraining our own LLMs, we eval-
uate our attack on a widely used pretrained foundation
model, Transformer-XL (Dai et al., 2019), along with its
corresponding tokenizer, which are hosted by Hugging
Face (hug). We chose this foundation model in particu-
lar because it uses known training, validation, and testing
splits from the WikiText-103 (Merity et al., 2016) dataset,
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Figure 4. TMI Performance on a Publicly Available Transformer-
XL Model Finetuned on DBpedia-14 Topic Classification

providing us with the exact partitions necessary to eval-
uate TMI without having to train our own LLMs. Since
we cannot pretrain our own LLMs and thus cannot use the
shadow model training procedure in Algorithm 1, we are
unable to compareTMI to our adaptation of LiRA. Through
our evaluation of TMI on finetuned foundation models,
we will also answer the following research question:

Q4: Is it feasible to mount our attack on finetuned
models that are based on publicly hosted foundation
models?

The results of our evaluation on LLMs are presented in
Figure 4 and Table 2. As shown in Table 2, TMIis able to
achieve a TPR of 3.4% and 8.8% at 0.1% and 1% FPR, re-
spectively. These results are comparable to our findings on
CIFAR-10 from Table 1 in the vision domain. Surprisingly,
we do not observe a notable difference in our summary
statistics as we increase the number of shadow models
from 16 to 64, with an increase of only 0.652 to 0.673 in
AUC, and 60% to 61.3% in accuracy as shown in Figure 4.
During our evaluation, we find that k-nearest neighbors
(KNN) significantly outperforms a neural network as a
global metaclassifier. We believe this to be the case due to
the additional variance incurred in a (global) metaclassifier
dataset containing prediction vectors from all challenge
points instead of just a single challenge point like our other
metaclassifier datasets.

Q3 Answer: Yes, we are able to generalize TMI to the
natural language domain.

Q4 Answer: Yes, we show that our attack is effec-
tive against a finetuned version of the public, pretrained
Transformer-XL foundation model without the need to
pretrain any additional large language models.

5.2.3. Transfer Learning with Differential Privacy

Q5: Is privacy leakage present even when a model is
finetuned using differential privacy?

Table 2. TPR at Fixed FPR of TMI on Pretrained WikiText-103
Transformer-XL (Figure 4)

Task TPR @ 0.1% FPR TPR @ 1% FPR

16 Shadow Models 1.6% 5.2%
32 Shadow Models 2.0% 5.5%
64 Shadow Models 2.2% 6.0%

We also discuss the performance of our attack on target
models that were finetuned with differential privacy. In
our experiments, we perform feature extraction to finetune
our pretrained CIFAR-100 models on Coarse CIFAR-100.
We train the final classification layer using DP-SGD (Abadi
et al., 2016) with target privacy parameters Y = {0.5, 1} and
𝛿 = 10−5 and clipping norm equal to 5.

Figure 3c shows that the success of our attack only de-
creases slightly (potentially due to decrease in utility) when
differential privacy is used to train the final classification
layer on a downstream task. When we finetune our models
on Coarse CIFAR-100 with privacy parameters Y = 0.5 and
𝛿 = 10−5, TMI has a TPR of 3.3% at a FPR of 0.1% and a TPR
of 10.7% at a FPR 1%, and it maintains 95% of the accuracy
and AUC of our attack on the non-private finetuned model.

Q5 Answer: Finetuning a pretrained model using DP-SGD
provides a privacy guarantee only for the downstream
dataset, and thus has little to no impact on privacy for
the pretraining set.

Table 3. TPR at Fixed FPR of TMI when Target Models are Fine-
tuned on Coarse CIFAR-100 with DP-SGD (Figure 3c)

Privacy Parameters TPR @ 0.1% FPR TPR @ 1% FPR

(Y = ∞) 5.7% 16.1%
(Y = 1.0, 𝛿 = 10−5) 3.2% 10.6%
(Y = 0.5, 𝛿 = 10−5) 3.3% 10.7%

6. Conclusion

We study the critical issue of privacy leakage in the trans-
fer learning setting by proposing a novel threat model
and introducing TMI, a metaclassifier-based membership-
inference attack. In particular, we explore how finetuned
models can leak the membership status of individuals in
the pretraining dataset without an adversary having direct
access to the pretrained model. Instead, we rely on queries
to the finetuned model to extract private information about
the pretraining dataset. Through our evaluation of TMI,
we demonstrate privacy leakage in a variety of transfer
learning settings, including finetuning with differential pri-
vacy. We demonstrate the effectiveness of our attack across
models in both the vision and natural language domains,
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highlighting the susceptibility of finetuned models to leak-
ing private information about their pretraining datasets.
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A. Additional Background

A.1. Differential Privacy

Differential Privacy (Dwork et al., 2006) is a mathematical definition of privacy that bounds the influence that any single
individual in the training data has on the output of the model. Specifically, an algorithm satisfies differential privacy if
for any two datasets that differ on one individual’s training data, the probability of seeing any set of potential models is
roughly the same regardless of which dataset was used in training.

Definition A.1. A randomized algorithmM mapping datasets to models satisfies (Y, 𝛿)-differential privacy if for every
pair of datasets 𝑋 and 𝑋 ′ differing on at most one training example and every set of outputs 𝐸,

Pr[M(𝑋 ) ∈ 𝐸] ≤ 𝑒Y Pr[M(𝑋 ′) ∈ 𝐸] + 𝛿

B. Algorithms

Algorithm 1 train_shadow_models(𝑥, 𝑏)
Our shadow model training procedure considers both the pretraining and finetuning phases to mimic the behavior of the
target model on a challenge point.
Require: Query access to both D𝑃𝑇 and D𝐹𝑇 and a fixed dataset size 𝑆 = 1

2 |D𝑃𝑇 |
1: models← {}
2: datasets← {}
3: for 𝑁 times do
4: Draw 𝑆 i.i.d. samples from D𝑃𝑇 to construct �̃�𝑃𝑇
5: datasets← datasets ∪ {�̃�𝑃𝑇 }
6: 𝑔← T (�̃�𝑃𝑇 )
7: Sample �̃�𝐹𝑇 i.i.d. using query access to D𝐹𝑇
8: 𝑓 ← T (𝑔, �̃�𝐹𝑇 ) {Finetune 𝑔 on �̃�𝐹𝑇 }
9: models← models ∪ {𝑓 }
10: end for
11: return models, datasets
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Algorithm 2 Adapted LiRA
We adapt the MI attack shown in (Carlini et al., 2022) by using the label which the target model predicted most confidently
instead of the ground truth label.
Require: A finetuned target model 𝑓𝛽 , a challenge point 𝑥 ← D𝑃𝑇 , and models and datasets (i.e. the output of

train_shadow_models() )
1: predsin ← {}, predsout ← {}
2: ®𝑣obs ← 𝑓𝛽 (𝑥) {Query the target model on 𝑥 }
3: confobs ← logit(max𝑖 ®𝑣obs,𝑖 ) {Store max confidence score}
4: 𝑦 ← argmax𝑖 ®𝑣obs,𝑖 {Store most confident predicted label}
5: 𝑖 ← 1 {Index for saved shadow models and datasets}
6: for 𝑁 times do
7: if 𝑥 ∈ datasets𝑖 then
8: 𝑓in ← models𝑖
9: confin ← logit(𝑓in (𝑥)�̂�) {Query 𝑓in on 𝑥 }
10: predsin ← predsin ∪ {confin} {Aggregate confidences}
11: else if 𝑥 ∉ datasets𝑖 then
12: 𝑓out ← models𝑖
13: confout ← logit(𝑓out (𝑥)�̂�)
14: predsout ← predsout ∪ {confout}
15: end if
16: end for
17: `in ← mean(predsin), `out ← mean(predsout)
18: 𝜎2in ← var(predsin), 𝜎2out ← var(predsout)

19: return
𝑝 (confobs |N (`in, 𝜎2in))
𝑝 (confobs |N (`out, 𝜎2out))

Algorithm 3 TMI Metaclassifier Attack
We pretrain shadow models with and without the challenge point and finetune them using query access to D𝐹𝑇 to estimate
the target model’s prediction behavior. Using the prediction vectors of our shadow models on the challenge point, we
generate a dataset to train a metaclassifier to determine the challenge point’s membership status.
Require: A finetuned target model 𝑓𝛽 , a challenge point 𝑥 ← D𝑃𝑇 , and models and datasets (i.e. the output of

train_shadow_models() )
1: predsin ← {}, predsout ← {}
2: 𝑖 ← 1
3: for 𝑁 times do
4: if 𝑥 ∈ datasets𝑖 then
5: 𝑓in ← models𝑖
6: ®𝑣in ← 𝜙 (𝑓in (𝑥)) {Query IN model on x}
7: predsin ← predsin ∪ {(®𝑣in, 1)} {Store and label the prediction vector}
8: else if 𝑥 ∉ datasets𝑖 then
9: 𝑓out ← models𝑖
10: ®𝑣out ← 𝜙 (𝑓out (𝑥))
11: predsout ← predsout ∪ {(®𝑣out, 0)}
12: end if
13: 𝑖 ← 𝑖 + 1
14: end for
15: 𝐷meta = predsin ∪ predsout {Construct the metaclassifier dataset}
16: M ← T (𝐷meta) {Train a binary metaclassifier}
17: ®𝑣obs = 𝜙 (𝑓𝛽 (𝑥)) {Query the target model on 𝑥 }
18: OutputM(®𝑣obs)
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C. Datasets and Models

In this section we will discuss the datasets used in our evaluation of TMI. We will also discuss our choices of pretraining
and downstream tasks used in our evaluation.

C.1. Datasets

• CIFAR-100: The CIFAR-100 (Krizhevsky, 2009) dataset is a subset of the Tiny Images dataset (Tin), provided by the
Canadian Institute for Advanced Research. It is comprised of 60,000 32x32 color images from 100 classes, where each
class contains 600 images (500 for training and 100 for testing). CIFAR-100 is used as our pretraining task because it
is a challenging dataset with a wide variety of classes, which allows our models to learn very general features and
patterns that can be applied to several downstream tasks.

• Coarse CIFAR-100: The classes in CIFAR-100 can be divided into 20 superclasses. Each image in the dataset has a
"fine" label to indicate its class and a "coarse" label to indicate its superclass. We construct this coarse dataset using
the superclass labels and use it as our downstream task with the highest similarity to the pretraining task. In our
experimentation, we ensure that this downstream task does not contain any of the pretraining samples from the
standard CIFAR-100 dataset.

• CIFAR-10: In a similar fashion to CIFAR-100, the CIFAR-10 (Krizhevsky, 2009) is comprised of is comprised of 60,000
32x32 color images that come from the Tiny Images dataset. This dataset contains 10 classes, each containing 6000
points (5000 for training and 1000 for testing) which are mutually exclusive to those seen in CIFAR-100. In our
evaluation, this downstream task is the second most similar to CIFAR-100 because they are both derived from the
same distribution of web-scraped images, but do not overlap at all in their classes. Although the classes do not
overlap, the features learned from pretraining on CIFAR-100 may be useful in performing this task.

• WikiText-103: WikiText-103 (Merity et al., 2016) is a large-scale language dataset that is widely used for benchmarking
language models. It contains over 100 million tokens and is derived from a several Wikipedia articles and contains
a vast amount of textual data. The language models we consider in this paper have been pretrained on the train
partition of WikiText-103 and are hosted on Hugging Face.

• DBpedia: The DBpedia ontology (or topic) classification dataset (Zhang et al., 2015) is composed of 630,000 samples
with 14 non-overlapping classes from DBpedia, which is a project aiming to extract structured content from the
information on Wikipedia. For each of the 14 topics, there are 40,000 training samples and 5000 testing samples.
In our experiments with language models, we finetune a subset of the model’s weights on random subsets of this
dataset.

C.2. Models

For all of our vision tasks, we use the ResNet-34 (He et al., 2015) architecture. This architecture has been widely used
in various computer vision applications due to its superior performance and efficiency. ResNet-34 is a convolutional
neural network architecture that uses residual blocks, allowing it to effectively handle the complex features of images and
perform well on large-scale datasets.

For our language task, we use the Transformer-XL (Dai et al., 2019) model architecture. In particular, we use the pretrained
Transformer-XL model from Hugging Face, which is trained on WikiText-103 (Merity et al., 2016), as our initialization for
the downstream task. We finetune our pretrained language model architectures on the DBpedia ontology classification
dataset.

C.2.1. Vision Shadow Model Training

Here, we describe the shadow model training procedure for our vision tasks, which comprise the majority of our
experiments. The details for how we train shadow models for our language task can be found in Section 5.2.2.

Our shadow model training procedure for vision models is split into two phases: pretraining and finetuning. In the first
phase, we train 129 randomly initialized ResNet-34 models on random subsets of CIFAR-100, each containing half of the
dataset (25k points). The other 25k samples are held out for evaluation. We train each of the ResNet-34 models for 100
epochs (to 75-80% top-5 accuracy) using SGD with weight decay (_ = 10−5) and cosine annealing (Loshchilov & Hutter,
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2017b) as our learning rate scheduler. When training and querying any of our shadow models, we use standard data
augmentations, such as random crops and horizontal flips.

In the second phase, we finetune our shadow models on randomly sampled subsets of our downstream task datasets.
Before we finetune each shadow model, we swap the classification layer out with a randomly initialized one that has the
proper dimension for the downstream task. We then freeze a subset of the model’s pretrained weights. When we use
feature extraction to finetune our pretrained models, we freeze all weights except for those in the final classification layer.
The weights that aren’t frozen are trained using the same process as pretraining, but for only 20 epochs.

When pretraining our shadow models, we designate a randomly selected set of 1000 points to be the challenge points for
our TMI attack. Because each shadow model is trained on half of the dataset, all of the points (including the challenge
points) will be IN and OUT for approximately half of the shadow models. In our experiments, we select one shadow model
to be the target model and run our attack using the remaining 128 shadow models. Each time we run our attack, we select
the a different shadow model to be the target model, yielding a total of 128 trials.

C.2.2. Language Shadow Model Training

We finetune Transformer-XL on DBpedia (Zhang et al., 2015), modifying the pretrained tokenizer to use a max length of
450, including both truncation and padding. Using a training set of 10,000 randomly sampled datapoints from DBpedia,
we finetune the last third of the parameters in our Tranformer-XL models for 1 epoch. We use the AdamW (Loshchilov &
Hutter, 2017a) optimizer with a learning rate of 10−5 and weight decay with _ = 10−5. With these hyperparameters, we
are able to achieve a test accuracy of 97% on the 14 classes of DBpedia.

To prepare our membership-inference evaluation dataset, the WikiText-103 is partitioned into contiguous blocks, separated
each by Wikipedia subsections. We then perform the same tokenization process as we do in finetuning before collecting
their prediction vectors. Because we do not pretrain our own LLMs, we adapt TMI to train a single, global metaclassifier
over the prediction vectors of all challenge points rather than train a metaclassifier per challenge point. In total, we use 2650
challenge points, which corresponds to a metaclassifier dataset with size |𝐷meta | = 2560 ∗ (number of shadow models).

D. Discussion

Our Contributions. We summarize our main contributions to the study of membership-inference attacks as follows:

• We investigate privacy leakage in the transfer learning setting, where machine learning models are finetuned on
downstream tasks with and without differential privacy.

• We introduce a new threat model, where the adversary only has query access to the finetuned target model.

• We propose a novel membership-inference attack, TMI, that leverages all of the information available to the black-box
adversary to infer the membership status of individuals in the pretraining set of a finetuned machine learning model.

• We evaluate our attack on models trained on both vision and natural language tasks across multiple fine-tuning
strategies. We show that there is privacy leakage even in cases where the target model was finetuned with differential
privacy, and we show that our attack is effective on finetuned foundation models.

Other Privacy Attacks on Finetuned Models. We introduce the first threat model that uses query access to a finetuned
model to mount a privacy attack on pretraining data. It remains an open question as to whether other privacy attacks, such
as property inference, attribute inference, and training data extraction attacks can also see success in this transfer learning
setting. Given that MI attacks are used as practical tools to measure or audit the privacy of machine learning models (Song
& Shmatikov, 2018; ten; Ye et al., 2022), future work should consider efficiency and simplicity when designing new privacy
attacks in the transfer learning setting.

Considerations for Private Machine Learning. Our evaluation shows that the pretraining dataset of machine learning
models finetuned with differential privacy are still susceptible to privacy leakage. This supports the argument made in
(Tramèr et al., 2022) that "privacy-preserving" models derived from large, pretrained models don’t necessarily provide the
privacy guarantees that consumers of services backed by these finetuned models would expect. Prior works that utilize
public data to improve the utility of differentially private machine learning models have made strides towards making
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differential privacy practical for several deep learning tasks (Papernot et al., 2020; Yu et al., 2022; Li et al., 2022; Bu et al.,
2023; He et al., 2022; Ganesh et al., 2023; Golatkar et al., 2022), but they do not address privacy risks external to model
training itself.

Using TMI as a measurement of privacy leakage in this setting, we reinforce the fact that maintaining privacy depends
on taking a holistic approach to the way that training data is handled. As stated in (Tramèr et al., 2022), privacy is not
binary (i.e. not all data is either strictly "private" or "public") and privacy in machine learning is not only dependent on the
model’s training procedure. To grapple with privacy risk in this increasingly popular transfer learning setting, researchers
and practitioners should explore new ways to sanitize sensitive information from training datasets of machine learning
models, create ways to collect potentially sensitive Web data with informed consent from individuals, and work towards
end-to-end privacy-preserving machine learning with high utility and privacy guarantees.


