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Abstract

Deep reinforcement learning (DRL) is becoming an increasingly common technique
to train agents to accomplish autonomous driving tasks (Kiran et al., 2021). How-
ever, DRL models, trained end-to-end, lack internal reasoning and planning for com-
plex states and large action spaces (Dasgupta et al., 2023). Large language models
(LLMs) could provide reasoning for autonomous vehicle systems and have demon-
strate high-level reasoning across various tasks such as text generation (Wei et al.,
2023), visual question and answer (VQA) (Liu et al., 2023a), and image generation
(Huang et al., 2022). We investigate how to integrate cognitive reasoning from LLMs
into autonomous vehicles that are trained with DRL. In this paper, we adapt the
Planner-Actor-Reporter framework for autonomous driving tasks in Highway-Env
and CARLA (Dasgupta et al., 2023; Leurent, 2018; Dosovitskiy et al., 2017). The
work from Dasgupta et al. (2023) introduce the Planner-Actor-Reporter frame-
work and apply it in gridworld reinforcement learning environments. We extend
on their research by applying their framework to two autonomous driving environ-
ments, leveraging LLaVA as a visual reporter, and demonstrating common-sense
driving reasoning using GPT-3.5-Turbo as the planner (Liu et al., 2023a). This
paper opens new possibilities for safe, reliable, and interpretable decision making
for autonomous vehicles by leveraging LLMs.

1 Introduction

LLMs have become widespread across many domains such as medicine (Thirunavukarasu et al.,
2023), education (Moore et al., 2023), and autonomous driving (Fu et al., 2023). Their ability to
demonstrate high-level reasoning in text generation (Brown et al., 2020) can be a promising tool
to leverage in robotics, where an agent accomplishes tasks in an environment. For example, the
work in Huang et al. (2022) demonstrates a pre-trained LLM as a planner giving a sequence of
instructions to a robotic arm for table-top tasks. Frameworks presented in the research of Dasgupta
et al. (2023) and Huang et al. (2022) employ a grounded-closed feedback loop between a LLM and
a pre-trained agent. Since these methods use a pre-trained reinforcement learning (RL) agent, the
agent was trained to maximize rewards. However, in tasks such as autonomous driving, the safety
of the passenger should be the first priority in addition to cumulative rewards. Often times agents
will learn "short-cuts" or non-human-like behavior that exploit the environment to maximize reward.
Such "short-cuts" may not reflect actual human behavior, where an optimizal action is not necessarily
the safest in driving.

The work from Dasgupta et al. (2023), propose a Planner-Actor-Reporter paradigm for their
LLM and actor feedback system. Their work features a Planner, which serves as the pre-trained
LLM, providing logical reasoning to breakdown statements into finer subtasks for an Actor; they,
use Chinchilla’s 7 Billion and 70 Billion parameter architectures (Hoffmann et al., 2022). The Actor
is a DRL agent that carries out actions in a grid-world environment. The agent takes in images
as its input and returns actions. Lastly, a Reporter translates the Actor’s action and state space
into the Planner’s modality. In work shown in Dasgupta et al. (2023), they showcase a hard-coded
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Figure 1: Planner-Actor-Reporter framework adapted to autonomous driving.

reporter to translate the actor’s state and action space into the Planner’s text space Dasgupta
et al. (2023). However, this framework is limited to gridworld environments.

DRL has also shown success across a wide variety of domains such as Atari video games (Mnih et al.,
2015), autonomous driving (Wang et al., 2022), and robotics (Schulman et al., 2015). However,
many DRL implementations are brittle, sensitive to hyper-parameter changes, and require well-
defined environments, making them challenging to generalize. Logical thinking patterns that LLMs
exhibit have drawn researchers to incorporate them in embodied tasks, where an agent has motion
capabilities in an environment; current work seeks to build feedback systems that tie in robotics
elements with LLMs (Huang et al., 2022; Dasgupta et al., 2023). Currently, two aforementioned
approaches applied their methods in simulated robotic arm or gridworld tasks. We look to expand
emobdied reasoning and DRL to autonomous driving.

Current end-to-end approaches for autonomous driving tasks are efficient and can handle multi-
modal inputs by utilizing a deep neural network (Kiran et al., 2021). However, the main challenges
with end-to-end learning in autonomous driving include a lack of interpretability, generalizability,
and multi-task learning (Chen et al., 2023). Thus, we propose a hybrid end-to-end and modular
pipeline to add cognitive reasoning on top of end-to-end DRL decision-making by adapting the
Planner-Actor-Reporter framework. In this framework, an end-to-end DRL model serves as the
Actor, making granular motor control; the Reporter is either a hard-coded summarizer or VQA
model - in this case LLaVA; the Planner is ChatGPT-3.5-Turbo who’s role is to issue high-level
commands to the actor. We apply the Planner-Actor-Reporter framework on a suite of driving
tasks such as lane following and obstacle avoidance.

With this framework adaption, we present the following three contributions:
1. Demonstrate ChatGPT’s commonsense reasoning capabilities within Highway-Environment.

2. Provide a pipeline to collect data and fine-tune LLaVA to generate driving reports of a
driving scene for both Highway-Environment and CARLA.

3. Adapt the Planner-Actor-Reporter framework in CARLA.
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Figure 2: DRL end-to-end pipeline for CARLA

2 Methods

The methods section is divided into three parts: Actor, Planner, and Reporter. Figure 1 illus-
trates the entire framework adapted to autonomous driving tasks. The entire pipeline begins with
a pre-trained DRL actor on some driving task. The Reporter gets initial state information from
the actor. Here, the Reporter transforms the state space into text. This is the generated reporter,
which is sent to the Planner to interpret. Finally, using OpenADl’s API Liu et al. (2023b), we
configure ChatGPT-3.5-Turbo to reason in the context of a human driver.

2.1 Actor

The Actor component of this framework adaptation serves two purposes: (i) give fine-control com-
mands to the ego vehicle; and (ii) send images and actions to the reporter. For both driving
environments, we train the agents using state-of-the-art DRL algorithms in an end-to-end manner.
We demonstrate this framework in Highway-Env (Leurent, 2018) and CARLA (Dosovitskiy et al.,
2017).

Highway-Env is an autonomous vehicle simulator that facilitates on-the-road decision-making sce-
narios; it is a 2D environment that provides kinematic and spatial data for each actor in the en-
vironment. Thus, the state space is a vector of physics-focused information. The action space is
either continuous or discrete driving commands. Highway-Env has an accessible install process and
requires few dependencies, which made it an ideal environment where we could measure ChatGPT-
3.5’s reasoning abilities. Given the simpler state and action space, we train DQN (Mnih et al., 2015)
and A2C (Mnih et al., 2016).

Furthermore, we apply our method to CARLA, an autonomous vehicle simulator (Dosovitskiy et al.,
2017). In addition to driving decision-making scenarios, CARLA is a 3D-rendered environment, so
it provides a wide selection of sensors, modalities, and weather conditions Dosovitskiy et al. (2017).
We implement a simple reinforcement learning environment where a car has two tasks: (i) follow a
car lane; and (ii) avoid a direct obstacle. We use Town01 as our default training map. We also follow
an environment implementation for multi-agent reinforcement learning but demonstrate single-agent
learning (Palanisamy, 2019).

We train two DRL algorithms in the CARLA simulation environment in an end-to-end manner
with Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Soft-Actor-Critic (SAC)
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(Haarnoja et al., 2018). The observation space comprises a 2-frame stacked grayscale image from
an RGB! front-facing camera, represented as a three-dimensional tensor of size (2,160, 168), which
is concatenated with the throttle value, steering value , and the previous steering value. The action
space consists of continuous throttle and steering commands, with each ranging from [-1, 1]. For
both algorithms, the neural network architecture utilizes a three-layer convolutional neural network
(CNN) as the backbone. The layers contain 500, 300, and 100 units, respectively, designed to process
the input data and output the control commands.

Figure 2 illustrates our DRL model for CARLA. The figure showcases a sample observation that is
being passed into the CNN. Afterward, the flattened CNN is concatenated with a 1-single dimension
scalar of the ego vehicle’s throttle, steering, and previous steering command. Frame stacking and
adding the previous steering serve two purposes: (i) mitigate catastrophic forgetting and (ii) reduce
jittering in steering maneuvers.

2.2 Planner

The planner is designed to take in prompts from the user and the environment inference from the
reporter and produce an appropriate action for the actor, which is the reinforcement learning agent.
We use pre-trained large language models as the planner. In this case, we have used GPT-3.5-turbo
as our planner, utilizing the OpenAI’s API. We have modeled the API output to only give the
appropriate safe action for our vehicle.

We start by giving the following prompt to the Planner, ‘Your goal is to drive safely and efficiently.
You are directing the ego vehicle in our simulation, selecting actions when prompted. Respond with
the action name only and nothing else” The inference generated by the reporter is then appended
to this prompt during every sequence of tasks and used as the new prompt to get a new instruction
from the Planner. The output from the Planner is the following action that the vehicle must take
to complete a task safely and prevent any hazards. Given the user prompt mentioned above and
appending the reporter inference, the planner can make a decision from the available safe actions
for the ego vehicle.

2.3 Reporter

The modular characteristic of the Planner-Actor-Reporter framework allows for multiple inter-
pretations for the Reporter (Dasgupta et al., 2023). In particular, we implement two types of
Reporters: hard-coded and VQA.

2.3.1 Hard-coded reporter

In Highway-Env, Actor states are represented as numeric or categorical feature vectors. Key feat-
uers we used were (z,y) coodinates, vz (z velocity), and vy (y velocity) (Leurent, 2018). This is
convenient in that we could generate our own reporter by filling in a pre-made script with the state of
the environment. Key information the Actor sent to the Reporter to synthesize feature geometric
information of other vehicles (such as Euclidean distance in relation to the ego vehicle), speed, and
steering angle.

Given that safety should be the utmost priority for all actors in a driving scene, we also use the
geometric information to label driving scenarios as hazardous or not. For example, if a vehicle was
within 5 meters from the ego vehicle, we would have the Reporter flag this scenario of hazardous
so that the Planner can get a realistic description from the point of view of a human driver.

2.3.2 LLaVA

A hard-coded Reporter is ideal in simple and deterministic environments where state information
is easily accessible: enter Highway-Env and Gridworld. This is because it is quick to summarize
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state spaces in a pre-built script. However, realistic environments with oracle-level knowledge of the
state are far and few in between. Thus, we turn to VQA models to further robustify the Planner-
Actor-Reporter framework in a modular fashion. We make the claim that VQA models can exhibit
greater generalizability in summarizing complex, image-based, and partial observations such as those
seen in autonomous vehicle environments.

LLaVA is a multi-model model that combines a vision encoder, namely CLIP, and LLM (LLaMA)
for VQA (Liu et al., 2023a). LLaVA was pre-trained from an ensemble of vision-related datasets
such as COCO, GQA, and TextVQA Liu et al. (2023a). The pre-trained data consists of real-life
everyday objects with varying quality. As such, we took two approaches with LLaVA: fine-tuning
and zero-shot.

Given that CARLA is a 3D-rendered simulator and LLaVA is trained on real-life images, there is
a reality gap. LLaVA’s zero-shot demonstrations were primarily conducted on real-life images Liu
et al. (2023a). This discrepancy in domains motivated us to fine-tune LLaVA on CARLA images.

To collect the custom dataset’s images, we attached an RGB camera, obstacle detector, lane invasion
detector, collision detector, and semantic segmentation camera to an ego vehicle. We simulated
Town10 and generated 50 NPC vehicles and 30 walkers. After which, the ego vehicle is spawned
with autopilot=True; this made our ego vehicle roam around the map adhering to basic driving
rules. At each simulated timestep, we record the RGB camera image, gather object labels from the
semantic segmentation camera, and any immediate obstacles, collisions, or lane invasions. All of this
information then is written to a JSON format to fine-tune LLaVA. This custom dataset comprised
of the images and QA labels, which in this case were labeled objects in the driving scene. We ran
the data-collector for 20,000 simulation ticks, thus garnering 20,000 data samples.

"from": "human",

"value": "<image>What are objects worth noting in the current
scenario?"

Ilfromll : llgptll s

"value": "Road, Sidewalk, Building, Pole, Traffic sign, Car,

Static, Roadline"

Figure 3: This is the caption for the quoted text.

Figure 3 showcases captions for our custom CARLA fine-tune dataset. Unforeseen hazard detection
is an important goal to achieve in safe driving. Therefore, we design the captions to label objects in
CARLA and follow up the conservation by asking about immediate hazards within the ego vehicle’s
proximity. While it is feasible to have LLaVA’s language model also serve as the Planner, we decided
to keep the Planner and Reporter as distinct and separate models to avoid hallucinations induced
by long querying and subjecting the model to multiple contexts (Xu et al., 2024). Hallucinations
can happen in the inference phase by lacking attention-context (Xu et al., 2024).

Figure 4 illustrates the data distribution of our custom CARLA dataset. Each wedge of the pie
denotes the total number of pixels seen for that semantic label. Roadlines, buildings, sidewalks,
cars, and traffic make up the majority of objects seen throughout the dataset. While ‘static’ and
‘other’ are ambiguous, they remain in the dataset since the focus of the Reporter is to summarize
potential hazards from other vehicles.

With our custom dataset, we fine-tune LLaVA. On two GeForce RTX-3090 GPUs, we leveraged
LORA and deepspeed to fine-tune the model with fewer parameters without sacrificing performance.
Hyperparameters include the learning rate = 2 x 1074, epochs = 2, and baseline model set to the
seven billion parameter version of LLaVA (Liu et al., 2023a).
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Figure 4: Data distribution of our custom CARLA dataset for LLaVA fine-tuning.

3 Results

In Highway-Env, we apply our DRL pipeline with the hard-coded Reporter to tackle four differ-
ent tasks. The first task is the standard highway-v0 Highway-Env gym environment, which can
be described as driving on a 4-lane highway with standard traffic conditions. In order to test the
robustness of our framework against long-tail safety cases, we built three other custom environ-
ments, making variations of the highway-v0 environment to simulate cases that current autonomous
vehicles may not be optimized to handle. Such cases include the WrongWay environment, the An-
imalCrossing environment, and the StoppedCar environment. Each of these environments utilizes
the same lane network as highway-v0, however they are modified to produce different vehicle and
object behavior. WrongWay spawns cars driving in the opposite direction of traffic at a configurable
probability, AnimalCrossing spawns objects traveling perpendicular to the flow of traffic at a con-
figurable probability, and StoppedCar spawns vehicles that are moving at 0 velocity, or in other
words, stopped on the highway. We select these three custom environments to create a compre-
hensive testing framework for evaluating the LLM’s capability to reason like a human in driving
scenarios. We test our embodied reasoning model against the DQN and A2C reinforcement learning
algorithms on zero-shot pass-rate for driving tasks. The pass-rate is represented by the percentage
of each agent successfully navigating the environment such that at least one adversarial obstacle or
collision is avoided. As shown in Figure 5, we see superior performance of the embodied reasoning

Zero-Shot Pass Rate % Across Different Environments

B Embodied Reasoning Model [l DoMN [ A2C
highway-v0
WrangWway
AnimalCrossing

StoppedCar

Figure 5: Zero-shot Pass Rate % Across Different Environments.

agent utilizing the hard-coded Reporter to navigate environments. The most notable performance
increases can be seen in the AnimalCrossing and WrongWay environments, with moderate perfor-
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mance increase in the StoppedCar environment compared to the DQN agent and no performance
improvements compared to the DQN and A2C agents in the original highway-v0 environments.

We also implement a similar framework to collect baseline data and test our embodied reasoning
agent. Drive Like a Human utilizes a similar embodied reasoning framework, with differences in
how helper functions are called and separate threat-checking functions for their LLM to call before
selecting an action (Fu et al., 2023). Our embodied reasoning model achieves similar performance to
this baseline, with marginal improvements in the WrongWay custom long-tail environment. Figure 6
shows our approach compared against Drive Like a Human in the adversarial Highway environments.
Over 100 trials, we measure the success rate of each embodied reasoning system in three tasks:

Embodied Reasoning Model and Drive Like a Human

B Embodied Reasoning Model [l Drive Like a Human

highway-v0
WrongWay

StoppedCar

0 25 50 75 10C

Figure 6: Drive Like a Human Baseline
highway-v0, WrongWay, and StoppedCar.

3.1 CARLA

In CARLA, we apply our DRL pipeline to one task: lane follow and collision avoidance. First, we
demonstrate the DRL baselines for PPO and SAC. The maximum reward is 200 units. Figure 7 shows
baseline results for the lane following task. A noteworthy observation is how SAC outperforms PPO.
We speculate that the lack of multiprocessing throughout training and SAC’s sample efficiency lends
were reasons why PPO’s results pale in comparison to SAC. After training the baselines, we chose

PPO and SAC
M PPO M SAC
200

150
100
50
0

Trial 1 Trial 2 Trial 3 Trial 4

Figure 7: Baseline RL performance for lane-following in CARLA.

the best-performing PPO model to serve as the Actor in the collaborative reasoning framework.

When applying the Planner-Actor-Reporter framework with a PPO model, we used a more
challenging environment. This harder environment features an NPC vehicle spawning in front of the
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ego vehicle. We hypothesize that under this scenario, the LLaVA model would determine that the
NPC vehicle is close by. Afterwards, the Planner would suggest the ego vehicle to brake.

We conduct four experiments across 10 trials: lane-follow with zero-shot and fine-tuned LLaVA
and obstacle braking with zero-shot and fine-tuned LLaVA. For each obstacle brake experiment,
we restarted the environment with a different vehicle to measure generalizability in addition to
common-sense reasoning. In lane-follow, we spawned the agent on a pre-defined point for each trial.
Both lane-follow and obstacle braking in CARLA were conducted on TownO1.

LLaVA Model Lane Follow Obstacle Braking
Zero-shot 70% 50%
Fine-tuned 80% 20%

Table 1: Planner-Actor-Reporter CARLA task accuracy.

Table 1 shows the results for our framework applied in CARLA tasks. Specifically, the table exhibits
the accuracy the Planner and Reporter were able to collaborate and determine the correct high-
level command for the Actor. Overall, lane-follow was an easier task for the framework to issue
correct commands. Conversely, obstacle braking caused the framework to perform worse. We spec-
ulate that the lack of motion information from the Reporter’s summarization made it challenging
for the Planner to issue the appropriate high-level command. Furthermore, the obstacle results
from Table 1 could suggest our fine-tuned LLaVA model is overfitting the data. The fine-tuned
model exhibiting lower accuracy obstacle braking as opposed to the zero-shot model supports the
claim that overfitting is present.

4 Discussion and Conclusion

In adapting the Planner-Actor-Reporter framework, we hope to instill discussion on how LLMs
can be safety integrated to autonomous driving. Both fine-tuned and zero-shot approaches with
LLaVA had an above 60% success rate and generated reports that induced the right command from
the planner. However, we see a remarkable decrease in accuracy when braking before an obstacle for
both zero-shot and fine-tuning approaches. We accredit this behavior to the lack of visual motion
information provided by the pair of image inputs.

Future work could involve passing in longer sequences of RGB image frames throughout the task.
Longer sequences could potentially help the LLaVA model determine the movement of objects in a
driving scenario. Another idea to mitigate this shortcoming is to incorporate some attention-based
architecture in the Actor or an asynchronous framework.

Another direction for future work is incorporating more modalities in the VQA Reporter. In our
work, we demonstrate LLaVA, which can take images. However, a more comprehensive survey and
benchmark of other models is warranted. Other multi-modal VQA models that are worth exploring
include LLaMA-Adapter 2 (Zhang et al., 2023), ImageBind (Han et al., 2023) (for point cloud data
which could be useful for LiDAR information), and NuScenesQA (Qian et al., 2024), which is an
autonomous driving and multi-modal specific VQA model.

Lastly, a thorough safety exam with unseen scenarios is warranted. For CARLA, we only examined
lane following and obstacle braking. While we used different vehicles for obstacles, vehicles do not
make up all entities on the road. Further examination with cyclists and pedestrian is called for.

We present an end-to-end and modular hybrid approach that incorporates LLMs as embodied rea-
soners. We hope that this framework can spark discussion, innovation, and safety in combining
generative artificial intelligence with autonomous driving.
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