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ABSTRACT

Encouraging longer chains of thought is a common design practice for improving
LLM reasoning. However, recent studies show that “thinking more” can backfire.
In response, prior studies have typically employed augmented reasoning strategies
to enhance performance. While these approaches often improve reasoning robust-
ness and yield higher accuracy, they may also generate excessively long chains,
which introduce redundant checks, demand disproportionate reasoning effort, and
ultimately lead to inefficient consumption of cognitive resources. This paper in-
troduces Adaptive Reasoning via Cognitive Allocation (ARCA), a structured rea-
soning framework that adaptively allocates cognitive resources across reasoning
phases based on their reasoning state, thereby mitigating the efficiency–accuracy
trade-off. The core idea of ARCA is to structure the reasoning procedure into
classified phases, while grounding the process and suppressing incoherent drift.
Within each phase, ARCA generates candidate directions and employs a Borda-
Aggregated selector to identify the most promising ones, while steering inference
along phase-aware directions and pruning redundant exploration. Through the
dynamic allocation of cognitive resources, the proposed ARCA framework can
achieve a balance between accuracy and efficiency. Across six reasoning bench-
marks, ARCA consistently outperforms strong baselines, either in terms of en-
hanced accuracy or reduced reasoning cost.

1 INTRODUCTION

“More thinking should mean better answers.” This intuition feels natural to humans and has heavily
influenced the design of large language models (LLMs). The prevailing wisdom suggests that en-
couraging models to generate longer, more detailed chains of thought is a reliable path to stronger
reasoning (Wei et al., 2022; OpenAI, 2025; 2024). While LLMs guided by this principle have
shown remarkable capabilities in complex tasks like question answering (Lewkowycz et al., 2022),
knowledge retrieval (Schmidgall et al., 2025) and decision support systems (Lubos et al., 2025), a
troubling paradox emerges: pushing them to simply “think more” can backfire. Recent studies (Jin
et al., 2025) reveal that excessive reasoning, or “overthinking,” often degrades performance. Ex-
tended chains of reasoning may accumulate errors (Lewkowycz et al., 2022), reduce stability (Wang
et al., 2023), and increase computational demand—leading to substantially higher inference costs
and limiting their practical usability.

To counteract this fragility, a dominant strategy has been to enhance robustness and achieve higher
accuracy by introducing augmented reasoning procedures that supplement the original inference
process. For instance, methods like pairwise comparison (Zhang et al., 2024) and iterative self-
evaluation (Chen et al., 2024b) reduce errors by generating and assessing multiple solution paths, but
this incurs massive computational overhead. Other techniques, such as those relying on pre-defined
skill libraries (Chen et al., 2024a), can impose structural rigidities that limit their adaptability to
novel problems. In essence, these methods achieve robustness at such a high cost in inference
demand and inflexibility that they become impractical for many real-world applications.

On the other side, efficiency-oriented methods aim to reduce inference costs, typically through
streamlined meta-reasoning architectures (Sui et al., 2025b; Patil & Jadon, 2025). However, this ef-
ficiency is achieved by relying on handcrafted contextual frameworks and human-defined heuristics,
thereby specializing the systems for specific tasks. This specialization fundamentally limits their
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problem-solving scope and leads to poor generalizability. Consequently, a generalizable framework
that allows models to adaptively allocate their reasoning effort or we called it cognitive resources
to achieve both accuracy and efficiency remains a critical, underexplored challenge. The central
question therefore becomes: How can LLMs learn to allocate their cognitive resources adaptively
to achieve both accuracy and efficiency simultaneously?

The key insight is that effective reasoning requires selective focus rather than indiscriminate
depth. Humans intuitively follow this principle. Consider a game of Sudoku shown in Figure 1: a
player instantly fills in a number when it is the only possibility in a row—an act of efficient, linear
deduction. However, when confronted with a complex intersection of constraints, the same player
may pencil in multiple candidates in a few cells, exploring their implications before committing.
This represents an on-demand expansion of the reasoning process to ensure the next move is robust.
We posit that endowing LLMs with a similar capability for dynamic cognitive resource allocation is
key to resolving the tension between accuracy and efficiency in reasoning. To achieve this, LLMs
likewise need to learn to allocate their cognitive resources adaptively: engaging in deep reason-
ing when necessary and pruning effort when a path proves unpromising.

1 2 3 4

3 1 2

2

1 4

3 1 2 3 4 1 2

1 4 2 1 4 3LLM Agent Sudoku

Phase n
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Only Choice

……

Think Less
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2
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1 2 3 4

3 4 1 2

3 2
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Figure 1: LLMs operate through multiple phases to solve a task, with certain phases requiring
minimal cognitive resources while others demand in-depth reasoning.

To realize adaptive cognitive resource allocation in LLMs, we propose a structured reasoning frame-
work called Adaptive Reasoning via Cognitive Allocation (ARCA). ARCA guides LLMs in decid-
ing where and how much to think during reasoning by operating through two synergistic stages:
reasoning chain construction and cognitive resource allocation. In the reasoning chain construc-
tion stage, a phase generator decomposes complex tasks into logically ordered phases, specifying
the goal of each step. This structured decomposition prevents fragmented reasoning and ensures
systematic task coverage. To illustrate, let us return to the Sudoku example introduced earlier. The
solving process can be structured into phases such as [Fill cells with unique candidates, Explore
candidate intersections, Validate placements, and others], which serve as clear anchors guiding rea-
soning toward the solution.

Building on this structure, the cognitive resource allocation stage dynamically manages reasoning
effort at two levels. At the macro level, a phase classifier directs LLMs focus to the current phase’s
objectives, ensuring efficient progress. At the micro level, a direction generator explores candidate
reasoning steps, while a proposed Borda-Aggregated selection mechanism guided by LLMs’ pref-
erence feedback to choose the most promising path. ARCA enables the LLM to adaptively allocate
more cognitive resources to critical phases of a task, thereby facilitating precise reasoning while
preserving overall processing efficiency. Crucially, the structured phases from the first stage provide
the precise context needed for the second stage to make informed allocation decisions, ensuring
that cognitive resources are invested exactly where they are most needed. Extensive experiments on
six diverse reasoning tasks demonstrate that ARCA achieves strong performance while maintaining
favorable resource efficiency compared to baseline approaches.

Main contributions of this work are concluded as: 1) The problem of efficient cognitive resource
allocation is formalized, the critical balance between accuracy and efficiency addresses a core chal-
lenge in the reasoning of LLMs; 2) An LLM reasoning framework ARCA is proposed to realize
cognitive resource allocation in LLM reasoning, where a high-level task decomposition guides fine-
grained adaptive exploration to simultaneously improve both reasoning accuracy and efficiency; 3)
Comprehensive experiments on diverse reasoning tasks demonstrate that our method achieves strong
performance while maintaining favorable resource efficiency compared to baseline approaches.
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2 RELATED WORK

Reasoning Methods for Robustness A dominant strategy to enhance reasoning robustness is to
generate and evaluate a multitude of augmented reasoning procedures. This approach moves beyond
a single chain of thought (Wei et al., 2022) by explicitly constructing multiple reasoning trajecto-
ries. For instance, Tree of Thoughts (Yao et al., 2023) frames reasoning as a tree search, allowing
exploration of parallel thought candidates at each step. Graph of Thoughts (Besta et al., 2024)
further generalizes this into a graph structure to capture more complex interdependencies between
thoughts. Methods like Boosting Task-Oriented Reasoning (Chen et al., 2024b) iteratively generate
numerous reasoning steps and use LLM-based error analysis to refine them, while Comparative Tree
of Thought (Zhang et al., 2024) employs pairwise comparison to select optimal paths. CoDT (Wang
et al., 2025) improves the robustness against reference corruption by providing a few exemplars with
structured and defensive reasoning as demonstrations. MME-CoT (Jiang et al., 2025) incorporates
three novel metrics to assess the reasoning quality, robustness, and efficiency. Math-RoB (Yu et al.,
2025b) uses an instruction-based approach to generate diverse datasets resembling training distribu-
tions. CD-CoT (Zhou et al., 2024) enhances LLMs’ denoising-reasoning capabilities by contrasting
noisy rationales with one clean rationale. CoT-GCG (Su, 2024) enhances adversarial attacks on
aligned LLMs by integrating CoT prompts with the greedy coordinate gradient technique.

Efficiency-Oriented Reasoning Methods In direct contrast, another line of research focuses on
streamlining the reasoning process to reduce computational costs. These methods often employ
meta-reasoning architectures or probabilistic approximations to achieve faster inference. For exam-
ple, Meta-Reasoner (Sui et al., 2025b) uses contextual multi-armed bandits to dynamically adjust
reasoning strategies based on state evaluation. ES-CoT (Mao et al., 2025) shortens thought gen-
eration by prompting the LLM to output a step answer at each reasoning step. THINK-Bench (Li
et al., 2025c) introduces a benchmark with novel efficiency metrics, to evaluate the reasoning ef-
ficiency. (Cui et al., 2025) proposes a method that identifies and focuses on generating important
reasoning steps in reasoning by using perplexity to measure their importance, (Sui et al., 2025a)
explores efficient data use, small language model reasoning, and evaluation methods. Soft Chain-
of-Thought (Xu et al., 2025) leverages probabilistic soft chains and prompt tweaks for efficient,
uncertainty-aware reasoning. Similarly, COAT (Shen et al., 2025) uses action-oriented chains for
meta-reasoning without full model tuning.

Feedback-Based Refinement and Evaluation Another influential line of research focuses on iter-
ative self-improvement through feedback mechanisms. In this paradigm, the LLM itself is leveraged
to evaluate and refine its reasoning trajectories in a cyclic manner. For instance, Self-Refine (Madaan
et al., 2023) introduces an algorithm where the LLM generates output, provides self-feedback, and
then refines its output based on that feedback. RCO (Yu et al., 2025a) trains critic models using a
feedback loop where critiques guide the actor model in refining responses. RefCritic (Tang et al.,
2025) trains a critic module with dual rule-based rewards focusing on instance-level correctness
of solution judgments and refinement accuracies of the policy model. (Renze & Guven, 2024) in-
vestigates the effects of self-reflection in large language models on problem-solving performance.
(Potamitis & Arora, 2025) enhances reasoning by allowing the models to retry problem-solving
attempts upon identifying incorrect answers. RFM-RAG (Li et al., 2025a) transforms stateless re-
trieval into stateful continuous knowledge management by constructing a dynamic evidence pool to
generate refined queries using relational triples and evidence. PHP (Zheng et al., 2023) incorporates
the solution from a previous attempt as a hint for the next, creating an iterative improvement loop.

While significant progress has been made within these methods, the fundamental tension between
robustness and efficiency remains largely unaddressed. ARCA addresses this core challenge by em-
powering LLMs to dynamically allocate greater cognitive resources to critical phases of a reasoning
task, achieving an optimal balance between accuracy and efficiency.

3 ADAPTIVE REASONING VIA COGNITIVE ALLOCATION

In this section, we present a comprehensive introduction to the ARCA framework, which achieves
cognitive resource allocation to balance accuracy and efficiency in LLM reasoning. It integrates
two complementary components: reasoning chain construction, which provides structural guidance
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to mitigate fragmented reasoning, and cognitive resource allocation, which enables selective and
adaptive distribution of cognitive effort across phases and reasoning steps. Through the interaction
of these two components, ARCA enables LLMs to concentrate their reasoning effort on the phases
most critical, thus improving accuracy and enhancing efficiency.

Reasoning Chain Construction
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F A 1 B

4 3 Z Y

C 1 D E
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Figure 2: The overall framework of ARCA. It integrates reasoning chain construction and cognitive
resource allocation to balance accuracy and efficiency in LLM reasoning, where reasoning chain
construction structures the task into phases, and cognitive resource allocation allocates cognitive
resources through macro-level phase guidance and micro-level direction selection.

3.1 REASONING CHAIN CONSTRUCTION

We first introduce the Reasoning Chain Construction, a module that leverages the semantic analysis
capability of LLMs to build a high-level blueprint and to define the reasoning phase (allocation
units) that serve as the basis for cognitive resource allocation in ARCA. Traditional chain-of-thought
prompting often produces unstructured, divergent, or incomplete reasoning trajectories (Ji et al.,
2024). Without explicit semantic scaffolding, the model may digress into irrelevant steps or overlook
crucial components of the task. To achieve ARCA’s goal of balancing accuracy and efficiency, it is
essential to first identify the reasoning phases where resources can be meaningfully allocated.

For illustration, consider solving a Sudoku: the task can be decomposed into several reasoning
phases, each serving as an allocation unit. A natural sequence begins with (i)Single-candidate place-
ment, filling cells with only one valid option; followed by (ii) Candidate elimination and inference,
iteratively deducing placements based on row, column, and block constraints; (iii) Conflict detec-
tion and backtracking, revising decisions if contradictions arise; and (iv) Validation and finalization,
ensuring all cells satisfy Sudoku rules.

To realize this decomposition, ARCA introduces the Reasoning Phase Generator (ReasonGen),
which maps a task T into a sequence of logically ordered reasoning phases:

P = {ϕ1, ϕ2, . . . , ϕn} = ReasonGen(T ), (1)

4
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where T is the input task, ϕi is the i-th reasoning phase andP is the generated phase set. ReasonGen
begins by analyzing the task context to identify and delineate each fundamental phase. Each phase
specifies a semantic objective—what needs to be achieved at that step rather than prescribing the
operational details of how to achieve it. For the Sudoku example, this naturally yields phases start-
ing with single-candidate placement, followed by iterative candidate elimination, conflict detection
and backtracking, and concluding with final validation. We provide illustrative examples of the
generated phases in Appendix B.4. This structured decomposition defines the allocation units (rea-
soning phases) required by ARCA and constrains reasoning within explicit semantic boundaries.
By providing a high-level blueprint for cognitive resource allocation, ReasonGen reduces irrelevant
exploration and yields more coherent and efficient inference compared to unstructured CoT.

3.2 COGNITIVE RESOURCE ALLOCATION

Building on the reasoning phases and high-level blueprint defined by Reasoning Chain Construction,
this module performs the allocation of cognitive resources used by ARCA. Allocating resources uni-
formly across all reasoning steps is inefficient and costly; ARCA instead dynamically adjusts cog-
nitive resource allocation according to the current semantic phase and task context. The allocation
process uses two coordinated mechanisms: Macro-Level Phase Identification and Micro-Level
Direction Selection. The former determines which phase the reasoning process is currently in,
while the latter identifies the most promising direction within that phase.

At the Macro-Level, the module prioritizes the current phase, biasing resource allocation toward
operations relevant to it. To identify the current phase, we introduce a phase classifier PhaseClass,
a runtime supervisory unit that dynamically evaluates the solver’s state to assign the reasoning step
to the appropriate phase:

ϕt = PhaseClass(xt,P), (2)
where xt is the reasoning state at step t. The architecture enhances complex reasoning by dynam-
ically identifying the current phase, enabling the LLM to focus on phase-specific objectives. Once
a phase is completed, the module transitions seamlessly to the next, reallocating computational
resources according to new requirements. By concentrating effort on the active phase and minimiz-
ing expenditure on completed or irrelevant directions, the system maintains targeted and efficient
progress across the reasoning chain, thereby preventing resource over-allocation. A key insight
underlying this design is that reasoning phases naturally impose heterogeneous resource demands:
simpler phases require minimal resources and benefit from rapid closure, whereas more demanding
phases call for deeper inference and thus greater resource investment. The architecture capitalizes
on this heterogeneity, allowing adaptive allocation of computational effort so that resources are con-
centrated on ongoing objectives while avoiding over-allocation to irrelevant directions. In doing so,
the system achieves dynamic and efficient resource utilization throughout reasoning.

At the Micro-Level, the module generates and selects reasoning directions that are locally optimal
or highly relevant to the active phase. Cognitive resources or reasoning efforts are dynamically
assigned to the most promising next steps within the phase. To this end, we introduce a reason-
ing direction generator DirectionGen, a real-time strategic module that steers the LLM’s inference
process:

Dt = {d1, d2, . . . , dm} = DirectionGen(ϕt, xt, T ), (3)
where Dt is the set of candidate directions at step t and di is the i-th direction. At each reasoning
step, the generator produces a focused set of actionable directions based on the current phase and
contextual state. These directions provide timely, targeted guidance aligned with the phase’s ob-
jectives. To enable broad exploration, multiple candidate paths are proposed. Selecting the most
promising path among them poses a central challenge, as explicit reward signals are unavailable
and handcrafted reward functions are difficult to design and prone to bias. To address this, we
employ an LLM as an implicit preference oracle to evaluate candidate directions.

Building on these evaluations, we introduce a Borda-aggregated direction selection algo-
rithm (Yan et al., 2022), which consolidates pairwise comparisons into a robust consensus score
and will be described in detail in section 3.3. This approach mitigates noise from individual judg-
ments, reduces reliance on brittle heuristics, and reliably identifies the most promising reasoning
direction. The optimal direction d∗t is then selected according to the aggregated Borda score:

d∗t = argmax
d∈Dt

Borda(d). (4)
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The LLM then generates the next reasoning state xt+1 according to:

xt+1 = LLM(xt, ϕt, d
∗
t ). (5)

By providing such fine-grained tactical guidance, this module effectively bridges phase planning
with real-time reasoning, enabling efficient and rational allocation of cognitive resources throughout
the inference process. In the next subsection, we will make a detailed introduction to the Borda-
aggregated direction selection algorithm.

3.3 BORDA-AGGREGATED DIRECTION SELECTION

In this section, we provide a detailed explanation of how the Borda-aggregated direction selection
algorithm identifies the most preferred direction in Equation 4. To select the optimal reasoning path
via LLM-based preference comparisons, prior work has often adopted the dueling bandit frame-
work (Zhang et al., 2024). In this setting, when comparing two candidate thoughts i and j, candidate
i is chosen with probability q(i, j), while candidate j is selected with the complementary probability
q(j, i) = 1 − q(i, j). Here, q(i, j) ≥ 1

2 whenever i is ranked higher than j. Repeated comparisons
are assumed to be independent.

However, dueling bandit algorithms such as DTS (Wu & Liu, 2016) typically rely on the Copeland
score (Zoghi et al., 2015) to aggregate comparison outcomes. A major limitation of the Copeland
score in LLM-based preference assessment is its sensitivity to minor preference variations (Goel
et al., 2017). This sensitivity arises from its win-counting mechanism, which can amplify stochastic
fluctuations inherent in LLM judgments (Li et al., 2025b). Consequently, achieving stable rankings
often requires extensive comparisons, which is especially challenging in noisy evaluation environ-
ments (Qin et al., 2023). To address this limitation, the Borda score (Rothe, 2019) is adopted as an
alternative. The Borda score for a candidate direction i is defined as:

Borda(i) =
1

|C| − 1

∑
j∈C,j ̸=i

q(i, j),

where C denotes the set of candidates. The Borda score’s win-rate formulation effectively aggregates
pairwise preferences and offers clear practical advantages in LLM evaluation settings. Its scoring
mechanism, which estimates the average probability of victory, is well-suited to the stochastic and
noisy nature of LLM judgments. By averaging outcomes across multiple comparisons, it confers
robustness against minor inconsistencies in individual assessments (Rothe, 2019). Furthermore, the
computational simplicity of maintaining and updating win rates enables highly efficient implemen-
tation in large-scale scenarios, allowing broad candidate coverage without exhaustive evaluations.

We formulate direction selection as a Borda score-based framework (Yan et al., 2022; Clarke et al.,
2021), with an LLM serving as the preference function. Our algorithm begins with a pruning phase
to efficiently eliminate clearly suboptimal directions while retaining the most promising candidates.
During each pruning iteration, approximate Borda scores are computed by comparing each candidate
against a fixed-size random subset of opponents. This sparse comparison strategy ensures broad
coverage without exhaustive evaluations. Candidates with scores below a elimination score are
pruned. We set the elimination score at 0.5, which corresponds to random chance performance,
while any candidate scoring below this level is deemed inferior and removed. This pruning process
is repeated iteratively until the number of remaining candidates falls below a predefined threshold.
The algorithm then proceeds to a final evaluation stage, conducting full round-robin comparisons
among the remaining candidates. This enables accurate, high-confidence estimation of the true
Borda scores, from which the top-scoring candidate is chosen as the final solution. By combining
efficient broad pruning with precise final assessment, this two-stage approach effectively balances
computational efficiency with selection reliability. Details are provided in Appendix C.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate performance and provide an in-
depth analysis of ARCA, comparing it against baseline approaches in terms of cost and accuracy.
Additional results and ablation study are in Appendix B.2 and B.3.
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Table 1: Performance comparison on different datasets

Methods Datasets Average (%)
AQUA (%) BBEH (%) GSM8K (%) Game of 24 (%) AIME (%)

CoT 69.2 9.1 70.9 65.7 51.4 53.3
Self-Refine 75.3 8.9 71.4 73.5 70.3 59.9
SToT 72.2 7.3 69.2 61.3 62.1 54.4
PoT 66.8 12.9 92.4 86.8 65.5 64.9
CToT 85.4 28.2 84.8 76.3 74.1 69.8
BoT 79.3 20.2 93.8 73.1 46.1 62.5
ARCA 86.2 54.5 96.7 91.3 72.7 80.3

Table 2: Average accuracy on Sudoku Puzzles

Method Acc. 3×3 (%) Acc. 4×4 (%) Acc. 5×5 (%)

CoT 90.0 73.3 60.0
Self-Refine 83.3 90.0 50.0
SToT 100.0 80.0 30.0
PoT 90.0 70.0 60.0
CToT 100.0 100.0 76.3
BoT 90.0 90.0 70.0
ARCA 100.0 100.0 90.0

4.1 REASONING TASKS

We evaluate the performance of our proposed method, ARCA, on a suite of six challenging real-
world reasoning tasks. These tasks span a diverse range of domains, including question answering
(AQUA), multi-step arithmetic (BBEH), math word problems (GSM8K), the Game of 24, Sudoku
puzzles, and the AIME competition-level problems.

- AQUA (Wei et al., 2022), the question answering task, which consists of 254 arithmetic reasoning
questions designed to evaluate logical reasoning abilities through diverse mathematical problems.
Each question is associated with five multiple-choice options labeled A through E.

- BBEH (Kazemi et al., 2025) is a recently introduced benchmark aimed at advancing the evaluation
of reasoning in large language models. It replaces each original task in BBH (Suzgun et al., 2022)
with a novel variant that targets comparable reasoning skills while substantially increasing the diffi-
culty.In our experiments, we select the multi-step arithmetic task from BBEH. This task incorporates
new arithmetic operators, some of which are defined in terms of other operators. It also introduces a
compositional operation format.

- GSM8K (Cobbe et al., 2021) is a widely-used benchmark of grade-school math word problems
that require multi-step reasoning to solve. Each problem involves basic arithmetic operations and
logical thinking to arrive at the final answer. The dataset contains high-quality linguistically diverse
questions, making it a standard testbed for evaluating the mathematical reasoning capabilities.

- The Game of 24 (Yao et al., 2023) is a mathematical challenge in which the objective is to combine
four given numbers using basic arithmetic operations to yield a total of 24. For our experiments, we
adopt the same dataset and setup as, which includes 1,362 problems sourced from 4nums.com.

- The Sudoku (Long, 2023) includes 10 puzzles each for 3×3, 4×4, and 5×5 grid sizes. Each puzzle
is partially filled, and the task is to complete the grid without altering the provided numbers. A
solution is considered correct if the completed grid adheres to all standard Sudoku rules.

- AIME (Mathematical Association of America, 2024) is a highly challenging mathematics contest
administered to top-performing participants of the AMC. It serves as a key benchmark for evaluating
the mathematical reasoning and problem-solving capabilities of LLMs.

All experiments were conducted with the Deepseek-V3 model (DeepSeek-AI, 2025). Detailed
configurations and results, including those with other models, are provided in Appendix B.
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Figure 3: Accuracy–cost comparison across reasoning tasks. Each marker denotes a method.
Dashed lines and the text box highlight ARCA, which none surpass in the shaded region, show-
ing ARCA performs best among compared methods.

4.2 BASELINES AND RESULTS

We compare our method with the following baselines: CoT (Wei et al., 2022), Self-Refine (Madaan
et al., 2023), SToT (Yao et al., 2023), PoT (Chen et al., 2023), CToT (Zhang et al., 2024) and
BoT (Chen et al., 2024b). On each dataset, 3 test runs are conducted and the average accuracy as
well as the cost per question are presented. The experimental results are presented in Table. 1 and
Table. 2. These results demonstrate that ARCA outperforms other baselines and achieves significant
advantages, particularly in complex tasks such as the Game of 24, Sudoku puzzles, and BBEH.

In these tasks, the solver requires long-chain reasoning and operates in a high-dimensional solu-
tion space. The heuristic strategies for reasoning in ARCA provide critical guidance at each step,
assisting the solver in accurately steering toward the final answer, reducing deviations, and ulti-
mately leading to more effective and reliable problem-solving. This mechanism proves essential for
navigating the complexity inherent in such challenging domains.

To evaluate the efficiency of cognitive resource allocation, we employ reasoning cost as a key met-
ric, where using fewer reasoning costs indicates more efficient. A comparison of the accuracy and
cost between our method and baseline approaches across different tasks is presented in Fig. 3. Here
we adopt the cost calculation method from CToT (Zhang et al., 2024). The experimental findings
clearly illustrate that ARCA successfully achieves an effective and practical balance between model
accuracy and operational cost-efficiency. This balance is realized through the novel integration
of structured reasoning chain construction and dynamic cognitive resource allocation mechanisms.
Our method demonstrates the capability to autonomously identify and prioritize critical reasoning
phases, thereby allocating computational resources in an adaptive and context-aware manner. This
sophisticated mechanism not only consistently enhances the quality and reliability of solutions but
also maintains coherent focus throughout the reasoning trajectory toward the correct solution. Con-
sequently, ARCA delivers substantially improved overall reasoning performance while simultane-
ously ensuring judicious control over computational expenditure, providing a reliable framework for
complex cognitive tasks.

4.3 ABLATION STUDY

Analysis on the parameters in Borda-aggregated direction selection. To analyze how the the
parameters in the direction selection algorithm affects accuracy and computational cost, we conduct
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experiments on the GSM8K dataset. To ensure comparability, the maximum number of direction
is fixed at 12 across all trials. Experiments are conducted with pruning pool size threshold m =
{4, 6, 8, 12} (where m = 12 corresponds to the non-pruning case) and the number of comparisons
per direction during pruning set to n = {2, 4, 6}. Results in Table. 3 indicate that when using pool
size pruning, configurations with pool size threshold 6 and 8 achieve performance comparable to the
full pool (size 12), while significantly reducing computational expense. Although the value of n has
an impact on performance, experiments show that a medium n is sufficient to achieve rapid pruning
in the early stages. This demonstrates that the proposed selection framework effectively balances
computational efficiency with selection reliability, thus offers a scalable and practical solution for
resource-aware automated reasoning.

Analysis on the Maximum Direction Number. The number of generated directions determines
the breadth of exploration available to the solver at each reasoning step. We evaluate the impact of
this parameter by conducting experiments on the AQUA and Game of 24 datasets, using maximum
direction numbers set to 2, 4, 6, and 10. The results, summarized in Table. 4, indicate that when the
maximum direction number is limited to 2 which resulting in a narrow exploration scope, the per-
formance is noticeably worse compared to configurations allowing broader exploration. In contrast,
when the maximum number of directions is set to 4 or higher, performance stabilizes and remains
consistently high. This suggests that the reasoning chain construction mechanism helps the solver
maintain a clear objective and reduces the need for extensive exploration, thereby achieving more
efficient and reliable problem-solving even with moderate search width.

Table 3: Ablation study on direction selection algorithm parameters on GSM8K. Here n denotes
the number of comparisons and m denotes the size. Acc. is accuracy (%), and Cost is average
computational cost (lower is better).

m = 4 m = 6 m = 8 m = 12

Acc. Cost Acc. Cost Acc. Cost Acc. Cost

n = 2 89.2 0.040 95.2 0.045 94.5 0.053 95.8 0.096
n = 4 92.9 0.058 96.1 0.064 96.4 0.075 95.8 0.096
n = 6 94.1 0.075 96.3 0.080 96.3 0.082 95.8 0.096

Table 4: Ablation study on the number of directions dn. Accuracy (%) is reported on AQUA and
Game of 24, along with the average. Larger dn generally improves performance, with diminishing
gains after dn = 6.

Direction Number dn AQUA (%) Game of 24 Average (%)

dn = 2 79.5 88.5 84.0
dn = 4 85.4 91.3 88.4
dn = 6 86.2 91.3 88.7
dn = 10 85.7 93.1 89.4

5 CONCLUSION

In conclusion, we propose a novel framework ARCA designed to tackle efficient cognitive resource
allocation in LLM reasoning, with a specific focus on balancing accuracy and efficiency. By in-
tegrating decomposition, strategy generation, monitoring, and dynamic selection into a cohesive
system, our approach enhances structural coherence, optimizes reasoning effort, and improves accu-
racy in complex scenarios while keeping additional reasoning cost negligible to preserve efficiency.
Extensive experiments across diverse tasks show that our method delivers strong performance while
maintaining competitive resource efficiency compared to existing baselines. In future work, we will
pursue more reliable reasoning chains and refine our framework for accurate direction generation,
focusing on more complex task environments.

9
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A USE OF LARGE LANGUAGE MODELS (LLMS)

Our study investigates the reasoning capabilities of large language models (LLMs). Accordingly,
all experiments were conducted on LLMs to evaluate and validate our proposed approach. Beyond
experimentation, we employed an LLM as an auxiliary tool during manuscript preparation. Specif-
ically, it was used to refine language for grammar and clarity, and to generate illustrative (non-
experimental) figures based on prompts we provided. All research ideas, methods, experiments,
analyses, and conclusions were developed by the authors.

B EXPERIMENTS AND SETTINGS

B.1 THE DETAILS OF EXPERIMENT

We evaluate the performance of our proposed method, ARCA, on a suite of six challenging real-
world reasoning tasks. These tasks span a diverse range of domains, including question answering
(AQUA), multi-step arithmetic (BBEH), math word problems (GSM8K), the Game of 24, Sudoku
puzzles, and the AIME competition-level problems.

AQUA (Wei et al., 2022), the question answering task, which consists of 254 arithmetic reasoning
questions designed to evaluate logical reasoning abilities through diverse mathematical problems.
Each question is associated with five multiple-choice options labeled A through E. In this experi-
ment, we set the pruning pool size threshold m = 3, the number of comparisons per direction during
pruning phase n = 3, max generated directions to 6, max depth of reasoning to 3.

BBEH (Kazemi et al., 2025) is a recently introduced benchmark aimed at advancing the evaluation
of reasoning in large language models. It replaces each original task in BBH (Suzgun et al., 2022)
with a novel variant that targets comparable reasoning skills while substantially increasing the diffi-
culty.In our experiments, we select the multi-step arithmetic task from BBEH. This task incorporates
new arithmetic operators, some of which are defined in terms of other operators. It also introduces a
compositional operation format. In this experiment, we set the pruning pool size threshold m = 4,
the number of comparisons per direction during pruning phase n = 4, max generated directions to
8, max depth of reasoning to 6.

GSM8K (Cobbe et al., 2021) is a widely-used benchmark of grade-school math word problems
that require multi-step reasoning to solve. Each problem involves basic arithmetic operations and
logical thinking to arrive at the final answer. The dataset contains high-quality linguistically diverse
questions, making it a standard testbed for evaluating the mathematical reasoning capabilities. In
this experiment, we set the pruning pool size threshold m = 3, the number of comparisons per
direction during pruning phase n = 3, max generated directions to 6, max depth of reasoning to 3.

The Game of 24 (Yao et al., 2023) is a mathematical challenge in which the objective is to combine
four given numbers using basic arithmetic operations to yield a total of 24. For our experiments,
we adopt the same dataset and setup as, which includes 1,362 problems sourced from 4nums.com.
In this experiment, we set the pruning pool size threshold m = 3, the number of comparisons per
direction during pruning phase n = 3, max generated directions to 6, max depth of reasoning to 6.

The Sudoku (Long, 2023) includes 10 puzzles each for 3×3, 4×4, and 5×5 grid sizes. Each puzzle
is partially filled, and the task is to complete the grid without altering the provided numbers. A
solution is considered correct if the completed grid adheres to all standard Sudoku rules. In this
experiment, we set the pruning pool size threshold m = 4, the number of comparisons per direction
during pruning phase n = 4, max generated directions to 8, max depth of reasoning to 6.

AIME (Mathematical Association of America, 2024) is a highly prestigious and challenging mathe-
matics contest administered to top-performing participants of the AMC. It serves as a key benchmark
for evaluating the mathematical reasoning and problem-solving capabilities of large language mod-
els. Here we set the pruning pool size threshold m = 4, the number of comparisons per direction
during pruning phase n = 4, max generated directions to 8, max depth of reasoning to 6.
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Figure 4: Visualizing the Phases of Game 24

B.2 ADDITIONAL RESULTS

We conducted additional experiments using the Qwen3-8B model (Yang et al., 2025), comparing
our results with two key baselines: the fundamental CoT method and one of the top-performing
baselines, CToT. The results are presented in Table 6. We also include experimental results on the
smaller model, Qwen2.5-7B and the proprietary GPT-4o-mini, in Table 7.

B.3 ADDITIONAL ABLATION STUDY

To evaluate our method, we conducted ablation studies on the AQUA, GSM8K, and Game of 24
datasets Table 5, focusing on two key questions: 1) whether the selection is sensitive to the initial
ordering of options, and 2) how critical the Borda count component is. Specifically, we designed
two experimental variants: Random, where we shuffle the options before each Borda count to
eliminate positional bias; w/o Gen, where the phase generator is removed from our framework;
and w/o Borda, where we replace the Borda count with a simpler selection process to isolate its
contribution.

The experimental results demonstrate that our Borda selection method effectively mitigates posi-
tional bias, maintaining robust performance even when the option order is randomized. Meanwhile,
the phase generator helps guide the direction of reasoning and plays an important role in complex
reasoning tasks. Furthermore, the component ablation study confirms the critical role of the Borda
framework within the selection pipeline. It significantly reduces selection biases of the LLM while
ensuring algorithmic stability, thereby enabling efficient and accurate selection of subsequent rea-
soning paths.

Table 5: Additional ablation study

Methods AQUA (%) GSM8K(%) Game of 24(%)

Random 84.8 95.9 91.8
w/o Gen 72.4 70.6 69.9
w/o Borda 76.1 79.4 75.2
ARCA 86.2 96.7 91.3
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B.4 THE ANALYSIS OF THE GENERATED PHASES

In this section, we evaluate the quality of the generated phases, illustrated with concrete examples
from Sudoku, Game of 24, and GSM8K. We also provide a visual representation of the phases for
Game of 24 in Figure 4.

Phases of Sudoku [’Basic Elimination’, ’Candidate Reasoning’, ’Guessing and Backtracking’].

Phases of Game 24 [’Analyze numbers and explore groupings - Identify relationships and test
pairing possibilities’, ’Plan operations and manage calculations - Determine sequence and ensure
mathematical viability’, ’Validate and adjust solution - Verify results and refine approach to achieve
24’].

Phases of GSM8K [’Calculate the total number of eggs consumed for breakfast and baking’,
’Calculate the daily earnings from selling the remaining eggs’, ’Final verification or solution step
and give the final answer’].

While these phases are often broader and exhibit less consistency compared to those created by
human experts, they prove to be sufficiently accurate to effectively guide the reasoning process.

Moreover, the system demonstrates a degree of fault tolerance: even coarse or imperfect phase
decompositions rarely lead to catastrophic failures. This robustness is achieved because the down-
stream Phase Classifier and Borda-based selection mechanism work in concert to steer the model
toward phase-relevant reasoning trajectories, effectively compensating for upstream imperfections.

Table 6: Additional results with Qwen3-8B

Methods Datasets Average (%)
AQUA (%) BBEH (%) GSM8K (%) Game of 24 (%) Sudoku Puzzle 5×5 (%)

CoT 79.4 16.7 79.2 75.7 70.0 64.2
CToT 84.9 28.8 87.7 82.4 73.3 71.4
ARCA 90.6 47.1 93.5 91.1 90.0 82.4

Table 7: Additional results with Qwen2.5-7B and GPT-4o-mini

Models Datasets

AQUA (%) BBEH (%) GSM8K (%) Game of 24 (%) Sudoku Puzzle 5×5 (%)

Qwen2.5-7B 84.7 40.2 89.4 90.2 80
GPT-4o-mini 89.8 45.6 94.7 88.3 90

C IMPLEMENTATION DETAILS

C.1 DETAILS OF THE SELECTION ALGORITHM

In this section, we provide a detailed explanation of how the Borda-aggregated direction selection
algorithm identifies the most preferred direction in Equation 4. To select the optimal reasoning path
via LLM-based preference comparisons, prior work has often adopted the dueling bandit frame-
work (Zhang et al., 2024). In this setting, when comparing two candidate thoughts i and j, candidate
i is chosen with probability q(i, j), while candidate j is selected with the complementary probability
q(j, i) = 1− q(i, j). Here, q(i, j) ≥ 1

2 whenever i is ranked higher than j.

However, dueling bandit algorithms such as DTS (Wu & Liu, 2016) typically rely on the Copeland
score (Zoghi et al., 2015) to aggregate comparison outcomes. A major limitation of the Copeland
score in LLM-based preference assessment is its sensitivity to minor preference variations (Goel
et al., 2017). This sensitivity arises from its win-counting mechanism, which can amplify stochastic
fluctuations inherent in LLM judgments (Li et al., 2025b). Consequently, achieving stable rankings
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often requires extensive comparisons, which is especially challenging in noisy evaluation environ-
ments (Qin et al., 2023). To address this limitation, the Borda score (Rothe, 2019) is adopted as an
alternative. The Borda score for a candidate direction i is defined as:

Borda(i) =
1

|C| − 1

∑
j∈C
j ̸=i

q(i, j),

where C denotes the set of candidates. The Borda score’s win-rate formulation effectively aggregates
pairwise preferences and offers clear practical advantages in LLM evaluation settings. Its scoring
mechanism, which estimates the average probability of victory, is well-suited to the stochastic and
noisy nature of LLM judgments. By averaging outcomes across multiple comparisons, it confers
robustness against minor inconsistencies in individual assessments (Rothe, 2019). Furthermore, the
computational simplicity of maintaining and updating win rates enables highly efficient implemen-
tation in large-scale scenarios, allowing broad candidate coverage without exhaustive evaluations.

We formulate direction selection as a Borda score-based framework (Yan et al., 2022; Clarke et al.,
2021), with an LLM serving as the preference function. In practice, we define the q(i, j) as a binary
indicator:

q(i, j) =

{
1 if direction i is preferred over direction j

0 otherwise

Our algorithm begins with a pruning phase to efficiently eliminate clearly suboptimal directions
while retaining the most promising candidates. During each pruning iteration, approximate Borda
scores are computed by comparing each candidate against a fixed-size random subset of opponents.
This sparse comparison strategy ensures broad coverage without exhaustive evaluations. Candidates
with scores below a elimination score are pruned. We set the elimination score at 0.5, which cor-
responds to random chance performance, while any candidate scoring below this level is deemed
inferior and removed. This pruning process is repeated iteratively until the number of remaining
candidates falls below a predefined threshold. In extreme cases where the scores of all candidates
are close to 0.5, making them difficult to distinguish quickly, the pruning phase will be halted after a
limited number of rounds if no clear selection has been made. The system then proceeds by selecting
the top-m directions with the highest current scores and enters the final phase.

The algorithm then proceeds to a final evaluation stage, conducting full round-robin comparisons
among the remaining candidates. This enables accurate, high-confidence estimation of the true
Borda scores, from which the top-scoring candidate is chosen as the final solution. By combining
efficient broad pruning with precise final assessment, this two-stage approach effectively balances
computational efficiency with selection reliability. Details and further analysis are provided in Al-
gorithm 1 and Appendix C.4.

Complexity Analysis We measure cost by the number of LLM preference queries
preference(u, v). Let the initial pool size be K0 and the pruning threshold be m. In each pruning
iteration, every direction is compared against n sampled opponents, yielding O(Kn) queries when
the current pool size is K. Let Kt denote the pool size at iteration t until it reaches KT ≤m, giving
total pruning cost

∑T
t=1 Ktn. In the best case, the pool shrinks geometrically (e.g., removing a

constant fraction each iteration), so
∑

t Kt = O(K0) and the pruning cost is O(nK0). In the worst
case, the pool shrinks only by O(1) items per iteration, giving T = O(K0) and

∑
t Kt = O(K2

0 ),
for a pruning cost of O(nK2

0 ). After pruning, the final pool of size K ′ ≤m undergoes full pair-
wise comparison, costing O(K ′2) ≤ O(m2). Therefore the overall complexity is O(nK0 +m2) in
the best case and O(nK2

0 + m2) in the worst case; under simplifications and approximations, the
dominant terms are O(nK0) and O(nK2

0 ) respectively.

C.2 THE PROMPT EXAMPLE OF DIFFERENT COMPONENTS

Reasoning Chain Generator The reasoning chain generator in our framework is designed using
the following prompt. It begins by performing a detailed task analysis to identify and delineate
fundamental reasoning phases. It emphasizes logical continuity between phase, and each phase
clearly defines what should be achieved, rather than prescribing how. Based on this analysis, it con-
structs a clear and efficient reasoning blueprint. This blueprint directs subsequent operations along
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logically coherent pathways and prioritizes high-value reasoning trajectories. As a result, the gener-
ator ensures comprehensive problem coverage, significantly improves computational efficiency, and
overcomes the limitations of unstructured chain-of-thought reasoning.

chain_prompt = ’’’You are an expert task decomposer. Your role is
to analyze complex problems and break them down into essential
high-level sub-phases. Each sub-phase should represent a

critical milestone that moves toward solving the task.

Algorithm 1 Borda-Aggregated Direction Selection

1: Input:
2: Pool: Set of K reasoning directions {1, . . . ,K} to select
3: n: Number of comparisons per direction during pruning phase
4: m: Final pool size threshold
5: Preference(u, v): LLM comparison function

6: while K > m do ▷ Pruning Phase
7: E ← ∅
8: for each direction i ∈ {1, . . . ,K} in the Pool do
9: samples← randomly select min(n,K − 1) directions from {1, . . . ,K} \ {i}

10: for each j ∈ samples do
11: E ← E ∪ {(i, j)}
12: end for
13: end for
14: W← 0K , C← 0K ▷ Reset counters
15: for each (u, v) ∈ E do
16: winner← preference(u, v)
17: C[u]← C[u] + 1, C[v]← C[v] + 1
18: W[winner]←W[winner] + 1
19: end for
20: Borda← [W[i]/C[i] for i ∈ {1, . . . ,K}]
21: NewPool← {i | Borda[i] ≥ 0.5}
22: Pool← NewPool, K ← |Pool|
23: end while

24: Efinal ← {(i, j) | i, j ∈ Pool, i ̸= j} ▷ Final Evaluation Phase
25: W← 0K , C← 0K

26: for each (u, v) ∈ Efinal do
27: winner← preference(u, v)
28: C[u]← C[u] + 1, C[v]← C[v] + 1
29: W[winner]←W[winner] + 1
30: end for
31: Borda← [W[i]/C[i] for i ∈ {1, . . . ,K}]

32: return {j | Borda[j] = maxi∈{1,...,K} Borda[i]} ▷ Set of all max-scoring directions

**** Generate only the most essential sub-phases needed to
complete this task, excluding all implementation details and
optional steps.

**SUB-Phase DEFINITION:**
Each sub-phase should specify WHAT needs to be accomplished, not

HOW to do it. Focus on the key objectives that must be
achieved.

**Example Demonstrations:**

**Geometry Problem:**
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Task: "Find the area of a triangle with base 8cm and height 5cm
"

Key Sub-Phases:
1. Identify the area formula for triangles ,
2. Extract given dimensions from the problem ,
3. Compute the area using the formula
4. Final verification or solution step and give the final

answer

**Output Format Strictly Follow This Pattern:**
1. [Action-oriented sub-phase description] ,
2. [Next essential sub-phase] ,
...

**Critical Reminders:**
- Phases should answer "what needs to be done" not "how to do it"
- Avoid transitional words ("then", "next", "after")
- Exclude mathematical symbols, formulas, or specific methods
- Maintain consistent verb tense and clarity
- Ensure sub-phases are truly sequential and complementary
’’’

Phase Classifier The phase classifier enhances complex reasoning by dynamically identifying
the current phase in real time, enabling the solver to strategically allocate computational resources
toward phase-specific objectives. Once a phase concludes, the module seamlessly transitions to
another, directing the LLM’s resources to the most relevant ongoing stage. By focusing efforts on
the active phase and reducing investments in completed or irrelevant directions, it maintains efficient
and targeted progress throughout the reasoning process, thereby avoiding wasteful allocation.

classifier_prompt = f’’’You are a Sub-phase Reasoning Engine. I
will give the sub-phase list:{phases_list} and current
thinking progress:{current_context}. Analyze the task progress
and determine:

Which sub-phase should be actively worked on now.
***********
Choose the sub-phase from the list:{phases_list}, give me the

number of index in the list.

**TASK ANALYSIS PROCESS:**
1. Compare current progress with each sub-phase’s requirements
2. Identify the most immediate sub-phase that needs attention
3. Verify the selection matches logical progression

**OUTPUT FORMAT STRICTLY FOLLOW:**
[index]

**EXAMPLE:**
Phases: ["Data collection", "Analysis", "Validation"]
Current Context: "Finished gathering raw data, need to process it"
You choose [Analysis]
Output:
1

**CRITICAL RULES:**
- ******** Sub-phase MUST be from provided list and return in the

number of index
- No explanations or additional text
- Sub-phase should logically follow from current_context
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’’’

Reasoning Direction Generator At each reasoning step, the reasoning direction generator takes
the current phase and contextual state as input and produces a focused set of actionable, executable
directions. These outputs provide timely and targeted guidance aligned with the specific objectives
of the phase.

direction_prompt = f’’’You are a Phase-Oriented Direction
Generator. Given the current step and the phase which needs to
be achieved, Generate between {min_directions} and {

max_directions} practical methods (directions) to achieve the
specified phase.

**Current step: {current_step}
**Phase:** {current_phase}

**Direction Definition:**
Each direction should be a concrete, actionable method that:
1. Directly contributes to achieving the phase according to

current step
2. Represents a distinct approach or technique
3. Is executable without external knowledge

**Output Requirements:**
- Generate between {min_directions} and {max_directions}

directions
- Each direction must start with an action verb
- Format each direction as a bullet point ("- [direction

description]")
- Keep directions concise (5-15 words)
- Exclude explanations or examples

**Quality Validation:**
- Each direction is a distinct method (not a restatement)
- Directions cover different aspects of the phase
- Methods are practical and executable
- Avoid overlapping or redundant directions

=== COMPLETE EXAMPLES ===
Example:
Current step: "Already generate several passwords."
Phase: "Validate password strength"
Directions:
- Check minimum password length
- Verify mixed character types
- Test against common passwords

=== FORMAT REQUIREMENTS ===
Output MUST be:
- [Direction 1]
- [Direction 2]
...
- [Direction n] (where n is between {min_directions} and {

max_directions})
**Critical Rules:**
- STRICTLY use the given format
- NO numbering or other formats
- NO additional text outside bullet points
- Directions must answer "how to achieve the phase based on

current step"
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’’’

Thought Generator We use the following prompt to generate the thought at each step, based on
the task description, phase and optimal direction.

purpose_prompt = f’’’You are a heuristic assistant specialized in
sub-phase-based problem solving.

**CURRENT SUB-PHASE:** {phase}
**REQUIRED DIRECTION:** {direction[i]}

**TASK:** Generate exactly the next step that:
1. Directly applies the specified direction: "{direction[i]}"
2. Advances the current sub-phase: "{phase}"
3. Reach the phase as fast as possible !!!

**OUTPUT FORMAT RULES:**
- The next step should reach the phase as fast as possible.
- However, when the final step leads you to the final answer, give

me only the numerical answer and print "###" before it,
format as: ###[ANSWER]

- Otherwise, provide a clear action step
- No explanations, just the step itself

**VERIFICATION CHECKLIST:**
- Does this step directly follows the direction "{direction[i]}"?
- Does this step achieves the sub-phase "{phase}" as fast as

possible?
- If final answer, does it start with "###"?
’’’

LLM comparison function At each step, the generated direction are compared through Borda-
aggregated direction selection framework using LLM comparison function, and the example of this
comparison function is presented below.

preference_prompt=’’’As an analytical reasoning expert, critically
evaluate which of the two reasoning paths demonstrates

superior logical coherence, mathematical accuracy, and problem
-solving effectiveness for the task. Consider: step-by-step
validity, premise consistency, conclusion support, and error
minimization. If both are objectively equal in all aspects,
randomly select 1 or 2. Output must be exactly 1 or 2 with no
additional text, explanations, or formatting.’’’

C.3 THE REASONING AND SELECTION PROCESS

We present the reasoning steps and selection process employed by ARCA on AIME and BBEH
tasks. The results indicate that the reasoning procedure, along with the Borda selection mechanism,
aligns closely with typical human decision-making patterns.

The reasoning and selection process of AIME task:

Step 0 (Round 0)
Phase: Select the 0th option (Establish the core geometric model)
Available options:
"Let speed be v, height h. At 45◦: distance = h, at 60◦: distance

= h/
√
3. Distance covered in 10 min = h - h/

√
3 = h(1-1/

√
3)"

"Set up trigonometric equations: tan45◦ = h/x ⇒ h = x, tan60◦ = h/

y ⇒ h = y
√
3"
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"Complete solution: v×10 = h(1-1/
√
3), remaining distance h/

√
3,

time = 10/(
√
3-1) = 5(

√
3+1)"

"Use cotangent: h cot45◦ = h, h cot60◦ = h/
√
3, find speed from 10

min travel"
Selection: Option 2 - Set up basic trigonometric equations

Step 1 (Round 1)
Phase: Relate the key variables from different scenarios
Available options:

"Substitute values: x = h, y = h/
√
3, distance = h(1 - 1/

√
3)"

"Calculate distance traveled: x - y = y
√
3 - y = y(

√
3 - 1)"

"Equate height expressions: x = y
√
3"

"Introduce speed: v×10 = x - y"
Selection: Option 3 - Equate the two height expressions

Step 2 (Round 2)
Phase: Execute the complete algebraic derivation to solve for the

target quantity
Available options:
"Calculate remaining time: t = y/v = y/[(x-y)/10] = 10y/(x-y) =

10/(
√
3-1) = 5(

√
3+1)"

"Express distance traveled in 10 min as x - y"

"Rationalize denominator: 10/(
√
3-1) × (

√
3+1)/(

√
3+1) = 5(

√
3+1)"

"From x = y
√
3, find y = x/

√
3, then compute time"

Selection: Option 1 - Calculate the final remaining time with
complete computation

Final Computation Process:

From x = y
√
3, distance in 10 min: x - y = y

√
3 - y = y(

√
3 - 1)

Speed v = y(
√
3 - 1)/10

Remaining distance to base: y

Time needed: t = y/v = y / [y(
√
3 - 1)/10] = 10/(

√
3 - 1)

Rationalize: t = 10(
√
3 + 1)/[(

√
3 - 1)(

√
3 + 1)] = 10(

√
3 + 1)/2 =

5(
√
3 + 1)

Final Result

Algorithm answer: A [5(
√
3 + 1)]

Correct answer: A

The reasoning and selection process of BBEH task:

Step 0 (Round 0)
Phase: Establish the boundary framework for reasoning
Available options:
"Place the raven as the third bird from the left."
"Position robin immediately left of raven in the remaining slots (

positions 2 and 3)."
"Determine the rightmost bird as quail."
"Identify the leftmost bird as owl: Position 1 = owl."
Selection: Option 4 - Identify the leftmost bird as owl: Position

1 = owl.
Step 1 (Round 1)
Phase: Establish the key anchor point and determine the fixed

point
Available options:
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Table 8: Results of test case, modeling LLM preference feedback with uncertainty and ties.

Algorithm One found Both found Comparisons Assessors
DTS(Copeland score) (Wu & Liu, 2016) 710 7 1000 4–20
Borda score method (Yan et al., 2022) 733 81 616–795 3–6

"Assign positions: Position 1 = owl (leftmost), Position 5 = quail
(rightmost)."

"Position robin left of raven: since raven is third, place robin
in position 2."

"Given raven is third from left: Position 3 = raven. Robin is left
of raven, so robin must be in position 2."

"Place the raven as the third bird from the left: Position 3 =
raven."

Selection: Option 4 - Place the raven as the third bird from the
left: Position 3 = raven.

Step 2 (Round 2)
Phase: Apply the remaining constraints to finalize the entire

arrangement
Available options:
"Set quail at position 5 (rightmost)."
"Place the falcon in the only remaining position (position 4)."
"Position robin left of raven: since position 1 is owl and

position 3 is raven, robin must be in position 2."
"Confirm all constraints are satisfied with the complete

arrangement."
Selection: Option 1 - Set quail at position 5 (rightmost).
Final Computation Process:
Position 1: owl (given as leftmost)
Position 3: raven (given as third from left)
Position 2: robin (must be left of raven, and position 1 is

occupied by owl)
Position 5: quail (given as rightmost)
Position 4: falcon (only remaining position)
The rightmost bird is in position 5, which is the quail.
Final Result:
Algorithm answer: A (The quail is the rightmost)
Correct answer: A

C.4 ANALYSIS OF BORDA SCORE IN LLM FEEDBACK

To assess the ability of the Borda score to accommodate uncertainty, fine-grained distinctions, and
potential ties commonly encountered in LLM preference feedback (Li et al., 2025b), we simulate a
test scenario based on the setup and results from (Yan et al., 2022). The test case represents a sce-
nario with no single winner and many ties, mirroring the challenges of LLM preference judgments.

Test Case:

q0,1 = q1,0 = 0.5

i > 1 =⇒ q0,i = 0.75 and qi,0 = 0.25

i > 1 =⇒ q1,i = 0.75 and qi,1 = 0.25

i > 1 and j > 1 =⇒ qi,j = 0.5

We adopted experimental parameters and evaluation criteria of (Yan et al., 2022). The experiment
involved a large set of 100 options, and a fixed budget of 1000 comparisons. As shown in Table. 8,
the simulation results demonstrate the superior performance of the Borda score method over the
Copeland-based approach in identifying optimal outputs from LLM preference feedback.

23


	Introduction
	Related Work
	Adaptive Reasoning via Cognitive Allocation
	Reasoning Chain Construction
	Cognitive Resource Allocation
	Borda-Aggregated Direction Selection

	Experiments
	Reasoning Tasks
	Baselines and Results
	Ablation Study

	Conclusion
	Use of Large Language Models (LLMs)
	Experiments and Settings
	The Details of Experiment
	Additional Results
	Additional Ablation Study
	The Analysis of the Generated Phases

	Implementation Details
	Details of the Selection Algorithm
	The Prompt Example of Different Components
	The Reasoning and Selection Process
	Analysis of Borda Score in LLM Feedback


