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ABSTRACT

Heavy-tailed noise in nonconvex stochastic optimization has garnered increasing
research interest, as empirical studies, including those on training attention mod-
els, suggest it is a more realistic gradient noise condition. This paper studies
first-order nonconvex stochastic optimization under heavy-tailed gradient noise
in a decentralized setup, where each node can only communicate with its di-
rect neighbors in a predefined graph. Specifically, we consider a class of heavy-
tailed gradient noise that is zero-mean and has only p-th moment for p € (1, 2].
We propose GT-NSGDm, Gradient Tracking based Normalized Stochastic Gra-
dient Descent with momentum, that utilizes normalization, in conjunction with
gradient tracking and momentum, to cope with heavy-tailed noise on distributed
nodes. We show that, when the communication graph admits primitive and dou-
bly stochastic weights, GT-NSGDm guarantees, for the first time in the litera-
ture, that the expected gradient norm converges at an optimal non-asymptotic
rate O(1/T®~Y/Gr=2)) " which matches the lower bound in the centralized
setup. When tail index p is unknown, GT-NSGDm attains a non-asymptotic rate
O(l / TP=1/ (Qp)) that is, for p < 2, topology independent and has a speedup

factor n'~1/? in terms of the number of nodes n. Finally, experiments on non-
convex linear regression with tokenized synthetic data and decentralized training
of language models on a real-world corpus demonstrate that GT-NSGDm is more
robust and efficient than baselines.

1 INTRODUCTION

In this paper, we address the problem of nonconvex stochastic optimization under heavy-tailed gra-
dient noise in the decentralized setup. Consider a graph with n nodes connected by a predefined
topology G := (V,&), where V := {1,...,n} is the set of node indices, and £ is the collection
of directed pairs (¢,7), 4,7 € V such that node i can send information to the neighboring node
r. Each node 7 € V holds a local nonconvex differentiable cost function f; : R — R, and can
access its stochastic gradient, subject to zero mean noise with a bounded p-th moment for some

€ (1,2]. Cooperatively, these nodes aim to solve mingcga f() := (1/n) > i fi(x), through
local computation and peer-to-peer communication only with their immediate neighbors.

Decentralized optimization in the above formulation has been studied for decades (Tsitsiklis et al.,
1986)), and has recently attracted growing research interest due to its advantages in scalability and
privacy preservation across a wide range of distributed machine learning, signal processing, and
control tasks over networks (Nedic et al., 2018}, |L1 et al., [2020; Kairouz et al., | 2021)). For instance,
in privacy-sensitive applications such as those in the medical domain (Brisimi et al., [2018)), training
data are often distributed across n nodes due to privacy constraints. In such cases, each f; represents
an empirical risk function, e.g., a neural network, defined over the local dataset on node ¢, and all
nodes collaboratively train a global predictive model via peer-to-peer communication without shar-
ing raw data. Moreover, decentralized optimization is also employed in data centers to reduce com-
munication bottlenecks associated with the central node in traditional centralized training paradigms
(Lian et al.,[2017).
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In decentralized optimization, first-order methods are widely favored for their simplicity and scal-
ability (Xin et al., [2020b). However, computing the exact gradient of each local objective function
fi at every iteration can be computationally expensive, particularly in large-scale settings where
each node holds a substantial volume of local data. To alleviate this computational burden, de-
centralized stochastic gradient methods, which approximate exact gradients, have been extensively
studied. Most existing approaches, including decentralized stochastic (sub)gradient descent (Sund-
har Ram et al.| [2010; [Koloskova et al.| [2020; Wang & Joshi, |2021)), variance reduction techniques
(Yuan et al., 2018)), and gradient tracking-based schemes (D1 Lorenzo & Scutari, [2016; Pu & Nedic,
2021), typically assume that stochastic gradient noise has a finite variance. Nevertheless, recent em-
pirical and theoretical evidence indicates that, when optimizing certain neural network architectures,
especially attention-based models such as Transformers (Vaswani et al.| [2017), the gradient noise
often follows a heavy-tailed distributio with significantly large or even infinite variance (Simsekli
et al.| [2019;|Zhang et al., 2020} |(Gorbunov et al.| |2020; |Gurbuzbalaban et al.|[2021;|Ahn et al., 2024;
Kunstner et al.,[2024). The presence of heavy-tailed gradient noise poses substantial challenges for
existing methods. Empirically, some stochastic gradient descent (SGD) based methods can suffer
from instability and even dramatic drop of training accuracies (Zhang et al., 2020} |Charles et al.,
20215 |Yang et al., 2022), particularly in distributed large-cohort training. Theoretically, unbounded
variance renders many established analyses invalid, and in centralized settings it necessitates the
use of nonlinear adaptive techniques such as clipping, sign, and normalization (Zhang et al.| 2020;
Sadiev et al.l 2023; (Compagnoni et al., [2025b; Hiibler et al., 2024; |Liu & Zhoul 2025; |Armacki
et al., [2025) to combat the strong noise. However, incorporating such adaptive strategies in decen-
tralized algorithms introduces inherent nonlinearity into the algorithmic dynamics associated with
the average-sum structured function f, making the design and analysis of decentralized algorithms
under heavy-tailed noise significantly more challenging.

Decentralized optimization under heavy-tailed gradient noise remains underexplored. To the best of
our knowledge, only recent studies [Sun & Chen| (2024); |Yu et al.| (2023) have attempted to address
this problem under restrictive assumptions. Specifically, |Sun & Chen| (2024) considers zero-mean
gradient noise with bounded p-th central moment (p € (1,2]) similar to our setting but assumes a
compact domain or bounded gradients. Their proposed decentralized gradient descent method with
¢y gradient clipping achieves almost sure convergence for strongly convex local functions. How-
ever, the restrictive compact domain or gradients assumption in Sun & Chen|(2024) limits its prac-
tical applicability, and the convergence rate is not explicitly provided. Another work, |Yu et al.
(2023), also assumes strongly convex local objectives and develops a decentralized gradient method
with smoothed clipping and error feedback under gradient noise that is zero-mean, symmetric, and
has bounded first absolute moment, showing an in-expectation convergence rate of 1/t° for some
d € (0,2/5). Although the noise assumption in Yu et al. (2023) is weaker than ours (as it requires
only a first-moment bound), the additional assumptions of noise symmetry and the dependence of
the rate exponent 0 on both the problem dimension and condition number restrict its general ap-
plicability. Moreover, both works [Sun & Chen| (2024)); [Yu et al.| (2023)) assume strong convexity,
whereas many practical optimization problems involving heavy-tailed noise, particularly in modern
machine learning, are inherently nonconvex. Further, the convergence rates in|Sun & Chen| (2024));
Yu et al.[(2023) are either unclear or sub-optimal, even compared to the optimal iteration complexity
bound O (1 / TP=1)/Gp ’2)) for general nonconvex functions. In this work, we relax these restrictive
assumptions and address the following question:

Can we design a decentralized algorithm for nonconvex optimization under general zero-mean
gradient noise with only a finite p-th moment for p € (1, 2] with optimal iteration complexity?

1.1 CONTRIBUTIONS
We answer this question affirmatively through the following key contributions:

* We develop a decentralized method, called GT-NSGDm, using normalization, coupled with
momentum variance reduction, to combat heavy-tailed noise, and using gradient tracking

'A random variable X is called heavy-tailed if it exhibits a heavier tail than any exponential distribution;
formally, for any constant @ > 0, limsup,_, . P(X > z)e®® = oo (Nair et al., [2022). While some heavy-
tailed distributions, such as log-normal and Weibull, still have bounded variance, this paper also considers the
sub-class of heavy tailed gradient noise that may have unbounded (infinite) variance such as a-stable noise.
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to handle cross-node heterogeneity. To further shed light on the design of GT-NSGDm,
we provide a negative result for a vanilla variant of normalized decentralized SGD that
employs no gradient tracking nor momentum.

» For general nonconvex and smooth local functions f;’s that are bounded from below,
we show that GT-NSGDm converges in expectation at a rate O(1/7?~1/(3=2)) "which
matches the lower bound in centralized setting and is order-optimal. Our convergence rate
significantly improves upon related works (Sun & Chenl 2024; [Yu et al.| [2023), which
assume strong convexity and lack an explicit rate exponent.

* When the tail index p is unknown, GT-NSGDm achieves a rate of O(1/7(~1)/(2P)) match-
ing the best-known rate in the centralized setting without requiring knowledge of p. No-
tably, for p € (1,2) and sufficiently large 7', this rate is independent of the network topol-
ogy and exhibits a speedup in the number of nodes, with a factor of n' /7.

* We test our theoretical findings in nonconvex linear regression models on a synthetic
dataset that is built to simulate language tokens under controlled heavy-tailed noise injec-
tions. We also test GT-NSGDm on distributed training of decoder-only Transformer models
on Multi30k datasets (Elliott et al., 2016). Experiments on multiple variants of network
topologies show that GT-NSGDm is more robust to injected and empirical heavy-tailed
noise and converges faster.

1.2 RELATED WORK

Heavy-tailed gradient noise. Recent empirical studies suggest that the distribution of gradient
noise in training various deep learning models resembles heavy-tailed distributions, such as Lévy’s
a-stable distribution (Simsekli et al.l [2019; |Zhang et al.| 2020; Barsbey et al., 2021} [Battash et al.,
2024])). For instance, the work [Zhang et al.| (2020) demonstrates that the empirical distribution of
gradient norm samples during BERT pre-training closely aligns with an «-stable distribution, rather
than a Gaussian one (see their Figure 1). The presence of heavy-tailed gradient noise is also sup-
ported by theoretical insights (Simsekli et al., |2019; [Peluchetti et al.| |2020; |Gurbuzbalaban et al.,
2021} Barsbey et al [2021). In particular, [Simsekli et al.| (2019) leverages generalized central limit
theorems to show that the gradient noise in SGD can converge to an a-stable random variable.

Adaptive methods. Under heavy-tailed noise, vanilla SGD based methods are shown to suffer from
slower convergence or even model collapses in centralized settings (Zhang et al.l [2020) as well as
distributed settings with a central server (Yang et al., {2022} |Lee et al., 2025), and adaptive methods
such as clipping and normalization are introduced to stabilize training dynamics. In centralized set-
tings, the work [Zhang et al.| (2020) provides lower bounds for both nonconvex and strongly convex
smooth functions, showing that SGD with gradient clipping achieves in-expectation upper bounds
matching lower bounds. In|Sadiev et al.| (2023)); Liu et al.| (2023)); Nguyen et al.| (2023); Chezhegov
et al|(2024), the authors show that when equipped with gradient clipping, SGD, accelerated meth-
ods, AdaGrad (Duchi et al., [2011), and Adam (Kingma & Bal [2014) can achieve (near-)optimal
high-probability convergence under various function assumptions. Besides, the work |(Compagnoni
et al.| (2025b)) shows that signSGD is also robust to heavy-tailed noise through the lens of stochastic
differential equations. Further, SGD with gradient normalization, which advantageously requires
less hyper-parameter tuning than clipping, is shown to achieve optimal in-expectation convergence
(Hiibler et al.l |2024; Liu & Zhou, |2025; [Sun et al., |2024). Our method incorporates the same nor-
malization and variance reduction approach as|Liu & Zhou! (2025). Notably, in another line of works
Jakovetic et al.|(2023));|/Armacki et al.[(2025;|2024)), the authors conduct a unified convergence anal-
yses for generic nonlinear methods including clipping, sign, and normalization under symmetric
noise with positive probability mass around zero without assuming any noise moment bound or only
assuming first absolute noise moment bound. In distributed settings with a server, the work |Gor-
bunov et al.|(2024) proposes an algorithm that incorporates an error feedback mechanism, wherein
clipping is applied to the discrepancy between a local gradient estimator and a stochastic gradient,
and establishes optimal high-probability bounds. Moreover, the work |Compagnoni et al.| (2025a))
shows that distributed signSGD converges to an asymptotic neighborhood depending on the ‘fat-
ness’ of noise tail. When multiple local updates are permitted between communication rounds, the
authors of [Yang et al.|(2022)) show that clipping per local step achieves order-optimal in-expectation
convergence, albeit under a restrictive bounded gradient assumption. More recently, the work |[Lee
et al.[(2025)) introduces the TailOPT framework, which adaptively leverages gradient geometry by
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applying clipping operators during local updates on distributed nodes and utilizing adaptive opti-
mizers for global updates at the server, achieving in-expectation sublinear convergence rates that are
independent of the moment parameter p.

Nonlinearities in decentralized optimization. Extending existing methods that are robust to heavy-
tailed noise, whether developed for centralized settings or distributed settings with a server, to de-
centralized environments is highly nontrivial, primarily due to the nonlinearities introduced to peer-
to-peer communication. This difficulty is reflected in that existing decentralized methods incorporat-
ing nonlinear adaptive techniques for other purposes often impose restrictive conditions (Yu & Kar,
2023} L1 & Chil 2025). For example, to achieve differential privacy through gradient clipping, the
work|Li & Chi|(2025) establishes convergence in decentralized setups under the assumption of either
bounded gradient or a stringent similarity condition, namely ||V f;(x)—V f(x)|| < (1/12)||V f(2)]]
for all i € [n| and all . Similarly, to attain adversarial robustness against gradient attacks, the
authors of [Yu & Kar|(2023) employ gradient clipping with momentum, assuming that all local func-
tions are convex, share a common minimizer, and that Y ", f; is strongly convex. In this work, we
significantly relax these conditions and demonstrate the effective use of nonlinearity (specifically,
normalization) in decentralized optimization, thereby motivating broader applications of nonlinear
techniques in this setting.

1.3 NOTATION

We denote by N, R, R and R4, respectively, the set of positive natural numbers, real numbers,
nonnegative real numbers, and the d-dimensional Euclidean space. We use lowercase normal letters
for scalars, lowercase boldface letters for vectors, and uppercase boldface letters for matrices. Fur-
ther, we denote by 1; and Oy the all-ones and all-zeros vectors of size k, respectively, and by I},
the k& x k identity matrix. We let ||| denote the ¢5 norm of x, and || A||2 denote the operator norm
of A. For functions p(t) and ¢(t) in ¢, we write p(t) = O(q(t)) if limsup,_, . p(t)/q(t) < oc.
Finally, we use E to denote expectation over random quantities.

2 PROBLEM FORMULATION

We consider a graph with n nodes, where each node holds a local and private function f; : R — R,
and the nodes collectively minimize the unconstrained global objective f(x) := (1/n) > ., fi(x)
through peer-to-peer communication. We now present some standard assumptions on the problem.

Assumption 1 (Finite lower bound). There exists some f, := infycpa f(2) > —oc0.

Assumption 2 (L-smoothness). The local function f; at each node i € [n] is differentiable and
L-smooth, i.e., Va,y € RL |V fi(z) — Vfi(y)|| < Lz — y||.

We next introduce the heavy-tailed noise model. For each node ¢ € V, at ¢-th iteration with query
x!, the stochastic first-order oracle returns the gradient estimator g;(x!, &), where £! denotes the
random sample. Let €2, () denote the universe, empty set, respectively. We use the following natural
filtration, i.e., an increasing family of sub-o-algebras, to denote the past history up to iteration ¢:

Foi={00}, Fr=0c({&,....&  rien]}),vt>0.

We then assume this stochastic first-order oracle have the following properties.

Assumption 3 (Heavy-tailed noise). For any JFi-measurable random vectors x € R, we have
the following: Yi € [n],Vt > 0, (1) E[g;(x, &}) | Fi] = Vfi(x); (2) There exist p € (1,2], some
constant o > 0 such that E[||g;(x, &)=V f;(x)||P | F] < oF; (3) The family {€! : ¥t > 0,i € [n]}

of random samples is independent.

Remark 1 (Heavy-tailed distributions). Assumption [3] covers a broad class of heavy-tailed distri-
butions, including Lévy’s a-stable distributions, Student’s ¢-distributions, and Pareto distributions.
Note that we do not assume noise symmetry as in|Yu et al.[(2023), and when p = 2, Assumption
reduces to the standard bounded variance condition commonly assumed in the literature.

Remark 2 (Empirical evidence). Similar to|Zhang et al.| (2020); |Yang et al.| (2022), we investigate
the empirical distribution of the gradient noise norm ||g(x, &) — V f(x)|| in a centralized setting by
training a GPT model (Radford et al.| |2018)) with 3M parameters on the Multi30k dataset (Elliott
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Figure 1: Comparisons of the empirical density of gradient noise norm in different epochs of training
a Transformer model with a synthetic Lévy a-stable distribution.

et al.l 2016), where g(x) denotes the mini-batch stochastic gradient and V f(x) denotes the full-
batch gradient. We train the model for 12 epochs using SGD and plot the empirical density of the
noise norm at the beginning of epochs 0, 6, and 10. As shown in Figure[T] as training progresses, the
tail of the empirical gradient noise norm distribution becomes heavier (and longer) and increasingly
resembles that of a synthetic a-stable distribution.

For peer-to-peer communication in decentralized settings, we need to specify a mixing matrix W
on graph G = (V,€).

Assumption 4 (Weight matrix). The nonnegative weight matrix W, whose (i,1)-th component of
W, denoted as w;,, is positive if and only if (i,r) € € or i = r, is primitive and doubly stochastic,
e, 1, W=1,and W1, =1,.

Assumption |4 is standard in the decentralized optimization literature (Xin et al.l 2020a), and it
guarantees that there exists some nonnegative ), i.e., spectral gap, such that

W —1,17 /s =A< 1.

The assumed weight matrix W can be constructed on undirected and connected graphs (Olshevsky,
2014), and also on some directed and strongly connected graphs that are weight-balanced (Ghare-
sifard & Cortés} [2012)). For instance, the family of directed exponential graphs, is weight-balanced
and serves as an important topology configuration in decentralized training (Assran et al., 2019).

3 ALGORITHM DEVELOPMENT: GT-NSGDM

We now describe the proposed Algorithm GT-NSGDm and discuss the intuition of its construction.
We use x! to denote the estimate of a stationary point for the global cost function f at node 4 and
t-th iteration, and recall that g;(x!, £!) denotes the corresponding stochastic gradient returned from
local first-order oracle. Motivated by the error-feedback approach in|Yu et al.|(2023), which serves
as a momentum-type of variance reduction after applying a nonlinear operator to handle heavy-tailed
noise, we also employ local momentum variance reduction

vj = Bu "+ (1= B)gi(=}, £), (1)
where $ € [0, 1) serves as the momentum coefficient. Then, we use gradient tracking (Di Lorenzo

& Scutari, 2016) to handle heterogeneous local functions { f; }7_ ;. Specifically, we use an estimator
y? to track global gradient

Yl = wir (Yl ol — ol ). 2)
r=1

It is known that gradient tracking helps eliminate the dependence on heterogeneity among local
functions {f;}?_;, such as the requirement of bounded gradient similarity. Furthermore, similar
to the approach in |Liu & Zhou| (2025), which uses normalization to address heavy-tailed noise in
centralized settings, we avoid applying normalization in the recursive updates of the local gradient
estimator v! in (T)) and the global gradient tracker y!. Instead, normalization is applied only during
the update of !, with step size «, and nonnegative mixing weights {w;,.} where w;,. > 0 only when
(i,ryeori=r,
t

n
Y
2 =Y wi (2~ a IIyzH)' 3)
r=1

r
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We combine the local updates (I)Z)(@) on node i € V and call it GT-NSGDm, Gradient Tracking
based Normalized Stochastic Gradient Descent with momentum. When taking S = 0, this simplifies
to momentum-free gradient tracking with normalization in step [3] However, our analysis shows that
GT-NSGDm performs optimal for some 3 € (0, 1), making GT-NSGDm a non-trivial and optimal al-
gorithmic design for the considered problem class. We provide a tabular description for GT-NSGDm
in Algorithm (1| where all {z?} are initialized from the same point Z° for simplicity.

Algorithm 1 GT-NSGDm at each node ¢

Require: w;l =z) = EO,Ufl = y[l =04, , B, {wir }, T.
I: fort =0toT — 1do

2:  Sample éf; (random sample for stochastic gradient)
3 vl 6%_ + (1 - B)gi(xt, &h); (local gradient estimator)
40 oyl > wp(yl ol — vﬁ by, (local gradient tracker)
5 t+1 “yr, ww( —ap H) (peer-to-peer communication)
6: end for

Remark 3 (Why vanilla gradient normalization fails?). Although vanilla normalization is success-
fully used in centralized settings to robustify SGD against heavy-tailed noise (Hiibler et al., [2024)),
its direct extension to the decentralized settings fails. Suppose we run a vanilla decentralized nor-
malized (noiseless) gradient descent, i.e., in parallel Vi € V),

Vfr(xr)

t+1 r

wir (x TS T 4)
-3 IV @D

Then, the global average &' would update in the negative direction of the sum of normalized
local gradients: &' = &' — 2% " Hg?i(wt;” Let for some t,Vr € Vx| = z. =
argmin’y ., f;(x), i.e., all nodes hold the optimal global solution that >, V f,(z,) = 0. Since
||V f-(2.)|| can be different quantities for » = 1,...,n, due to function heterogeneity, then &*+!

will move away from «x... Therefore, vanilla gradient normalization adds some intrinsic errors from
heterogeneous local normalizations. By incorporating gradient tracking, we expect that ¢! would
converge to its global average §‘, and ¢ would converge to (1/n) Y"1V fi(x%). In this way, !
would move along the direction of the normalized sum of local gradients, and thus emulating the
centralized setting.

In the following claim, we further demonstrate that vanilla gradient normalization can cause the
iterates ! to remain arbitrarily far from the optimal solution (see Appendix .for a proof).

Claim 1. Constder algorithm l For any even n, for any B > 1, there exist {f;}_, satisfying
Assumptions[I}2} a gradient oracle satisfying Assumption[3| a mixing matrix satlsfylng Assumption
l K and an initialization xq, such that the assoctated parameters fe, L, 0, W, xq, are independent

of B. Then, VT > 1,Ya > 0, it holds that —= i E[IVF(=)]] = B.

We next break the limitations of vanilla gradient normalization in Claim[I]by incorporating gradient
tracking and momentum variance reduction. This enables the successful use of normalization to
suppress heavy-tailed noise while maintaining optimal convergence despite the added nonlinearity.

4 MAIN RESULTS

We present the main convergence results of GT-NSGDm and discuss their implications. The detailed
analyses are deferred to the Appendix [B] We first consider the case where the tail index p is known.

Theorem 1. LetAssumptzonsI 2B Hnotd. Denote f(2°) — f. = Ao, [V f1(2°), ...,V fu(z0)]T
=VF(1, ®x"). Take

o Ao(1—B)(1—N) \/Ao(l—/\) (1—X)2A,
CY_mm(l’\/ ALT N 35T N\ ot ) )
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and1 - = 1/T3z%2. Assume 3 > 1/10, then the sequence generated by GT-NSGDm satisfies that

T—1 n _
1 o 1 LAy |[VF(EY) 3.5LA
— E[|Vf(z)]] = O o+ — + I+
o 2 2 BVl o=t oVt e oo
nzLAg N on? IVF(1, @ 29| o n2 @>
(L=X2T  (1—NsTm=  (1=AniTw= 1-Api= T/

Remark 4 (Order-optimal rate). Theorem [I|establishes a non-asymptotic upper bound on the mean
{5 norm stationary gap of GT-NSGDm over any finite time horizon 7. The O(+) here only absorbs
universal constants and preserves all problem parameters. It achieves the optimal O(l / TBPTlZ)
convergence rate in terms of 7" as it matches the lower bound proved in [Zhang et al.[(2020). This
optimal guarantee is achieved in decentralized settings for the first time.

Remark 5 (Speedup in n). We discuss the asymptotic speedup in number of nodes n. For sufficiently
large T (or sufficiently small target optimality gap), the upper bound in Theorem |I|is dominated

by the leading terms (I/T%)(a/nl_l/p + v/LAo/(1 — X)). In the high-noise regime o >
n'=1/P /LAo/(1 — \), the upper bound has a speedup factor n'!~/P. In practice, the noise scale

(measured by o) in training attention models or in other high-dimensional problems can be very
large, and the speedup in n contributes as a noise reduction.

When the tail index p is unknown in advance, we establish the following convergence rate.

Theorem 2. Let Assumptions hold and take o as in (3). Take 1 — 3 = 1/\/T and assume
B > 1/10. Then GT-NSGDm guarantees that

T—1 n )

: 7 1 [TA, | |[VF@")] , | 35LA
i 2 BNV < O( T+ TS5+
o + IVE(L, © 2% n? LA on? + @>

(I—A)%\/T (I—A)n%\/T (1—N)? (17)\T25;1 )

Theoremestablishes an upper bound of O(1/T pTPl) when the tail index p is unknown, matching
the best-known rate in the centralized setting where algorithm parameters do not rely on p (Liu &
Zhoul, [2025)). While the convergence rate in|Yu et al.| (2023) is also independent of the knowledge
of p, it is only for strongly convex functions and its exact rate exponent remains unspecified.
Remark 6 (Speedup in n and topology independent rate). Consider p € (1,2), i.e., the heavy-tailed
case with unbounded variance this paper focuses on. When T is sufficiently large (as required to
achieve sufficiently small target optimality gap), the upper bound in Theorem [2|is dominated by
—o . __L___ Significantly, this upper bound is independent of network topolo (M) and
ni-1/p = TG-1/2p g Y pp D pology

exhibits a speedup factor n'~1/? in all regimes.

5 EXPERIMENTS

We assess the performance of GT-NSGDm through numerical experiments. We first conduct studies
on synthetic datasets that mimic language modeling under controlled heavy-tailed noise injection,
following|Lee et al.|(2025). We also present experiments on decentralized training of a decoder-only
Transformer (GPT) model with 3M parameters on the Multi30k dataset.

Baselines. We compare GT-NSGDm with four decentralized baselines: DSGD(Nedic & Ozdaglar,
2009), GT-DSGD (Xin et al., 2020b), DSGD-Clip (Sun & Chen, 2024), and SClip-EF
-Network (Yu et al., 2023). DSGD and GT-DSGD handle regular stochastic noise with bounded
variance. DSGD-Clip converges for strongly convex functions under bounded domains or gra-
dients (Sun & Chenl [2024). SC1lip-EF-Network achieves convergence under symmetric noise
with bounded E[[|€!||P | F;_1] for p = 1. All methods are initialized identically and tuned via grid
search. Detailed baseline descriptions appear in Table [2] (Appendix [C.I).

Graph topology. We consider three graph topologies: undirected ring, directed exponential, and
complete graphs (see Lian et al.|(2017); [NedicC et al.[(2018); |Assran et al.| (2019)). Weight matrices
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use Metropolis weights (Xiao et al.,|2005). For synthetic experiments, we set the number of nodes
to n = 20, we obtain A = 0.904, 0.714, and 0 for the ring, exponential, and complete graphs,
respectively. For Transformer training with n = 8, we have corresponding A = 0.804, 0.6, and 0.

5.1 ROBUST LINEAR REGRESSION ON SYNTHETIC TOKENIZED DATA

We use this synthetic experiment to test our convergence rates under controlled heavy-tailed noise.
We consider nonconvex regularized linear regression on synthetic data mimicking language tokens.
In language modeling, token frequencies exhibit heavy-tailed distributions: few tokens appear fre-
quently, while most are rare but contextually important. We construct the following synthetic dataset
X of 1k samples of dimension d = 20. The first two features simulate frequent tokens, sampled
from Bernoulli distributions Bern(0.9) and Bern(0.5), respectively. The remaining 8§ features repre-
sent rare tokens, each sampled from Bern(0.1). The optimal weight w, is Gaussian-sampled, with
labels y = Xw,. The synthetic dataset (X, y) is evenly distributed over n = 20 nodes, where
each node 7 holds a sub-dataset (X, y;), estimate w;, and a linear regression model with noncon-
vex robust Tukey’s biweight loss function (Beaton & Tukeyl [1974)) to estimate w.. We inject three
different zero-mean noises, Gaussian noise (N (0, 31;)), Student’s ¢ noise (degrees of freedom 1.5,
scale 1.0), and Lévy a-stable noise (stability parameter 1.5, skewness parameter 0.5, scale 1.0, non-
symmetric, multiplied by 0.1) into exact gradient, using corrupted stochastic gradients for updates.
See Appendix [C.2]for additional details.

In Figure 2] we evaluate GT-NSGDm against baselines on ring graphs under various gradient
noise. DSGD and GT-DSGD converge under Gaussian noise but become unstable under heavy-
tailed noise. DSGD-Clip remains stable but fails to reach optimum. Both GT-NSGDm and
SClip-EF-Network exhibit robust convergence and near-optimal performance across all sce-
narios, consistent with their theoretical guarantees under heavy-tailed noise.

Ring Graph, Gaussian Noise Ring Graph, Student's ¢ Noise Ring Graph, Lévy a-stable Noise
86 —— DSGD 8oy 2
o . C - o
c |l DSGD-Clip c il B c
.0 —= GT-DSGD .8 .0
w4 e ® - K R
27| [Rrrmmmemerte e GT-NSGDM 23 © e
7 + 4+ SClip-EF-Network . 2o
o, o2 P o
() 2 [ ®, [
50 50 0 50
I\ ol e (R ol
S H P e e 2
<0 <9 <, :
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(a) Gaussian Noise (b) Student’s ¢ noise (c) Lévy a-stable noise

Figure 2: Comparison of performance on a ring graph under various types of injected stochastic
gradient noise, measured by the average estimation error (1/n) Y, ||w! — w.|| over step count ¢.

In Figure 3] we test GT-NSGDm’s dependence on connectivity (\), noise level (o), and the number
of nodes (n), varying each while fixing others. In Figure[3(a), we inject Lévy a-stable noise and test
the performance of GT-NSGDm on ring, directed exponential, undirected exponential, and complete
graphs with A = 0.904,0.714, 0.6, 0, respectively. GT-NSGDm achieves comparable final errors
under weak connectivity (i.e., large A) versus complete graphs, showing favorable dependence on
network connectivity under heavy-tailed noise. In Figure 3(b), we evaluate GT-NSGDm’s perfor-
mance under different noise levels on a directed exponential graph. Under Gaussian noise with
scale 1 (unit variance), GT-NSGDm reaches the best optimality; the final error increases as o grows,
as observed under both Gaussian and Lévy a-stable noise. In Figure 3[c), we inject Lévy a-stable
noise on complete graphs (A = 0 for all n) with varying number of nodes. As n increases from
2 to 40, convergence speed improves with final errors [0.4,0.35,0.29,0.20,0.21], demonstrating
speedup over certain n ranges, supporting theoretical discussions in Remarks [5|and [6]

5.2 DECENTRALIZED TRAINING OF TRANSFORMERS

We evaluate GT-NSGDm’s empirical performance on language modeling using a 3M-parameter GPT
model (Radford et al., [2018) for auto-regressive modeling on Multi30k (29k sentences, 4.4M to-
kens). We assess performance using validation log-perplexity. On 8-node graphs with three topolo-
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Figure 3: Empirical studies on GT-NSGDm’s dependence on problem parameters A, o, n.

gies, we distribute training data evenly and initialize identical GPT models per node. We introduce
three additional baselines: DSGD-GC1lip (DSGD with constant step size and /o gradient clipping
level), DSGD—-CClip (DSGD with constant step size and component-wise gradient clipping level),
QG-DSGDm (Lin et al.l |2021)) and GT-Adam (Carnevale et al., 2022) (all without theoretical guar-
antees under heavy-tailed noise; see Table [2]in Appendix [C.I)). We run all methods for 12 epochs
with batch size 64. See Appendix [C.3]for model and hyperparameter details.

Table [T] presents average validation loss and standard deviation over five independent runs for each
algorithm across three topologies. Results show that GT-NSGDm nearly matches the best baseline
DSGD-GC1lip (which lacks theoretical guarantees under heavy-tailed gradient noise) while signifi-
cantly outperforming the other two theoretically-guaranteed baselines across all topologies. We note
that this decentralized training experiment is simulated to demonstrate algorithm effectiveness and
has practical limitations.

Table 1: Topologies ring, directed exponential (Exp.), and complete (Comp.) graphs. Algorithms
are grouped by theoretical (Theo.) guarantees under heavy-tailed noise: with (w/) or without (w/0).

Algorithms Theo. Ring Exp. Comp.
DSGD w/o | 5.63310.008 | 95.63240.007 | 5.63510.007
DSGD-GClip w/o | 0.25310.007 | 0.24910.010 | 0.26710.010
DSGD-CClip w/o | 2.72543179 | 5.05812.388 | 8.22511 695
GT-DSGD w/o | 5.36210.002 | 5.63210.002 | 5.63110.002
GT-Adam w/o | 0.52040.038 | 0.58710.006 | 0.52440.045
QG-DSGDm w/o | 0.39410.007 | 0.38810.013 | 0.35310.011
SClip-EF-Network w/ 5.65310.012 | 5.63210.003 | 5.63640.004
DSGD-Clip w/ 5.63340.004 | 5.659410.013 | 5.66110.006
GT-NSGDm w/ 0.258_0.007 | 0.2619.007 | 0.282¢.009

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed GT-NSGDm for solving decentralized nonconvex smooth optimiza-
tion to address heavy-tailed noise. The key idea is to leverage normalization, together with momen-
tum variance reduction, to combat heavy-tailed noise, and use gradient tracking to handle cross-
node heterogeneity and the nonlinearity brought by normalization. Theoretical analyses establish
that GT-NSGDm attains optimal convergence rate when the tail index p is known, and a rate that
matches the best centralized one when p is unknown. Extensive experiments on nonconvex linear
regression and decentralized Transformer training show that GT-NSGDm is robust and efficient un-
der heavy-tailed noise across various topologies, and achieves a speedup in n. Future directions
include extending the current analysis to other nonlinearities, such as sign and clipping (Zhang
et al.| [2020), and generalizing GT-NSGDm to handle objective functions under relaxed smoothness
conditions (Liu & Zhoul, [2025)).
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REPRODUCIBLE STATEMENT

We provide detailed proofs for Claim([I]in Appendix[A]and for our main theoretical results, Theorems
and 2] in Appendix [B] In Appendix [5] we provide detailed hardware configurations, algorithm
descriptions, and hyperparameter settings for our numerical experiments.
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APPENDIX

A  PROOF OF CLAIM

Proof. Consider n scalar functions that for each i € V, fi(z) = (1/2)(z — a;)? for some a;,
and complete graph with W = (1/n)1,1]. Leta; = a,Vi = 1,...,n/2, and a; = b,Vi =
n/2+1,...,n,andb—a > 2B+1. Let x? =a+0.5,Vi € V. Then, Vi € V), vanilla normalization
reduces to

1 n
1_ 1 0 _ eion(s0 _
i =~ E (xr asign(x; ar))

r=1

n
et
0 : 0
T, — — E sign(z, — a,)
n
r=1

n/2 n

=0 — e Z sign(0.5) — e Z sign(0.5 — (b —a))
n r=1 " r=n/2+1
_—
Therefore, J;ﬁ =a+0.5,Vr € V,Vt > 0. Since the optimal solution to the original problem is “T*b,
the optimality gap is b_Ta —05>B. O

Remark 7. Note that the proof above can be further extended to the case where the gradient oracle
admits almost surely bounded gradient noise. We can use the noise bound to adapt the choices of
a, b, ¢ such that all signs still get canceled. Similar examples have been used to show divergence
results in|Shulgin et al.| (2025)).
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B PROOFS OF THEOREMS

B.1 PRELIMINARIES

We define some stacked long vectors,

< Y= [falad), ol
2) = [VAEDT, .., Vhulat) T,
( €)= [ (@} €T, gala £0)T]T
o = (W) T, )T,
: (y) " (yh)"17
N = [ T
xt = [(wﬁ)—r, ce (:ch)T]T

Then, Algorithm [1|can be rewritten in the compact long-vector form:
vt = fu' T+ (1 P)g(", &)

Yy =WelkL)(y " +ov —ov'h),
't = (W e I)(z" — aN(y")).

We define the following averages over network:

o= Zy

B.2 INTERMEDIATE LEMMAS

We first present some standard useful relations to be used in our analyses.
Lemma 1. The following relations hold:

1y
2 W —-1,1) /n=(W —1,1] /n)(I,, — 1,1 /n) = (
3 Wk —1,10 /n=(W —1,1] /n)* Vk € N,;

4. (1/vn) i llaill < llall < 325 =laf,....a,]"
5.3l < (X0 a)’ <mPTE YT 6P Vm € Ny, Va; € Ry

We then present a standard decent lemma for L-smooth functions .

I, 1,1} /n)(W

c Rnd

(6)
(7
®)

(10)

— 1,1} /n);

Lemma 2 (Decent lemma for L-smooth functions). Let Assumption 2| hold. For any x,y € RY,

there holds

Fly) < fl@) + V@) (g - o) + oo -yl

We next present the main descent lemma on the network average.

Lemma 3 (Decent lemma for network average). Let Assumption[2hold. Let €' = gt — V f(z*). We

have
T—1 n

Yo alviE)l < f@

t=0

14

f*+zza||et||+z;“Z||y —yz||+Z 5o’
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Proof. Since ||z*! — z!|| = || g!|| = o, applying Lemma[2on '+, ! gives that

45l - )P

f@) < f@)+viE) (@ -2
< @) oy )9+

(ii) —t —t\T ~t t L 2

< f(@) —aly’) g +ale] + 5o, (11)

where we used the definitions (O)(T0) in (¢), and used Cauchy-Schwartz inequality followed by
I g*]| < 1in (). Next,

)

gl

||y
<y ||+||*Zyl Iy 1)

(i ) )
< =Ivi@)li+lle'l + Z gl = il
=1

i

(i) - 1
< —IVr@EH + el + 5Z||yt -yl (12)
=1

where we used ' = [Vf(a) + €' > |V f(a')
(i), and [||a| — [|b]|| < ||@ — b]| for any @, b € R? in (ii). Plugging in (I2) into (TT)), and summing
overt =0,...,7 — 1, we have

T-1 T—

»—'

i, . & L
f@") < f(@) =) a|Vi H+Z2alletll+z ley —yill+ ) 5o
t=0 i= t=0
Using f(27) > f. and rearranging terms above give the desired result. O

Wlth Lemma [ it remains to bound the gradient estimation error ||€!|| and the consensus error
y! — g'. Let us decompose the gradient estimation error as follows:

=y' - V(@) =0 -Vf(@") =0 - VF(z")+ VF(z') - Vf(z"). (13)

:=e! €R4 =€l cR4

It is clear that €} is the gradient estlmatlon error, and €4, exploiting the smoothness property 1nl

can be bounded by the consensus error x! — . Slnce the consensus error is also used in bounding

€}, we need to first bound the consensus errors ! — & and y! — y'.

Lemma 4 (Consensus errors of {z!}). We have forallt =0,...,T,
1=, ; ‘ a
— T < . 14
WDl =2 < 5% (14)

Proof. Using the relation 4 in Lemma [T we have
Sy 15)
n —Vn " '

From the compact form update in (8]), we have

= (Wel)z’ -« X_:(W ® 12)" "N (y").
k=0
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It follows that
&' — 1, @ &'

1

t—1
) 1 -
Ll Y (ha = 1] @ L)W @ 1) N )|
k=0
t—1

_ 1
<all Y IWE = 1T LN

k=0

@) =t 1 -
<ald W - ElnletQ MNPl
k=0

t—1
<ayn ) ANTF (16)
k=0
i)y /m
< .
< (17)

where we used the double stochasticity of W and =¥ = £°,Vi € [n] in (i), the relation 3 in Lemma
[T]in (47), and Assumption[]in (iii). Substituting into (T3) gives the desired bound in (I4). O

Before proceeding to bound consensus errors for {y!}, we present the following bound on vector-
valued martingale difference sequence from |Liu & Zhou|(2025).

Lemma 5. Given a sequence of random vectors d; € R%, Vt such that E[d; | Fi_1] = O where

Fi =o(dy,...,dy:) is the natural filtration, then for any p € [1,2), there is
T T 1
E[I Y dil] < 2var[( S Jdifr) ] v > 0.
t=1 t=1
Lemma 6 (Consensus errors for {y!}). We have forallt =0,...,T,

1 n
B[ Iyt~ ']
=1

t 1 t
1,1 P 1 1 —
<22t (5 = 1) (oA g4 o (£ = 1) Y NTHHE[|VF(2R) - o).
f k=0 Vs k=0
Proof. Similar to (T3), we have
LS ot = ey e as)
n vn
Following from (7),
y -1.oy (19)
U]

(Ind - %17111 ® Id) (W ® Id) (yt71 + ’Ut — ’Util)

=(Wol— %1,;1 @Iy '+ (Wel;— %1n12 ® I) (v — v

K3

=(Wel, - %mg ® 1) (Ina — %17112 ®I)y" + (Wel, - %ml ® Ig) (v — ')

t
i 1 _
(@) S (Wel - 51,11;[ ® L) ! — oY), (20)

k=0

—~
=
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where we used relation 3 in Lemmalm and used y? = 0,4,Vi € [n] in (ii). From the update in
(6], we have
v =o' = (-1 + (1= B)g(a’ €)= (1= B)(v" — v + (1= B)(g(a", &) — v").
Then, there holds,

ot — vl = (% ~1)(g(at, &) — vh) = (% _1)(g(ah &) — VF(@') + VF(@') — o)), (1)

Putting the relation above into (20) and applying (20) recursively, from y? = 4°, we have

t
Hyt -1, ® gtH < (% — 1)” Z (W ®I;— %1711;[ ® Id)t—k-‘rl (g(wk,ék) . VF(a:k))H

k=0
1 ¢ 1 T t—k+1 k k
G-I (Weli- 211, 0 L) (VE@E) - )|
k=0
(22)
We note that the first half of the right hand side above can be addressed by Lemma [5}
t
1 —k
E[IY. (W e L ~1.1] @ L) ™ (g(a*,¢") - VF (")
k=0 t 1 (23)
<2V2R[(S A gk 65 - VF @) )]
" k=0
We observe that
t
2V/3E (ZA<t—k+1>p||g<w’as’f)— F@OI)” | 7]
¢ n 1
< 2V3E (Z NP (S gi(ark, €8) — VA(@hI)") | Fia)
i=1
@ L »
< 2VIR[ (30 S AP g, b gh) — V fi(@h)1P) | Fod]
" k=0 i=1 (24)
£ 2va(8[3 W g (et €) — VA7 | Fiol]
=1
t—1 n 1
30N AR gy, €F) - V(b))
k=0 i=1
t—1 n 1
" ava(wnrer 4 33 A g, (2t ) - V() 7).
k=0 1=1

where we used relation 5 from Lemmalm , Jensen’s inequality in (i%), and Assumptlonlm (47).
From (23)), taking expectations on both 51des of (24), and applying the above arguments recursively
from F;_o to Fy, we have

t 1
1 T t—k+1 k sk (t—k+1)p\ P
E{%(wmd—nlnln @ 1)) (glat ) - VF @) <2f(2A ") no
Therefore, using the relation above, and (T8)), (22)), we reach the desired relation. O

We then bound average gradient estimation errors €] = o' — VF(z?).
Lemma 7 (Average gradient estimation errors). Forallt =0,...,T, we have

E[Hf)t —vF(mt)H] < ﬁtJrlHVf(a—:O” 51\/51 (Zﬁ(t*k)P(l ) o+ Zﬂt k+1( 20{)\
¥ k=0
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Proof. Following from the step 4 in Algorithm(I] Vi € [n],
vf = Vfi(a}) = Blo; "t = Vfi(zi™h) + (1= B)(gi(}, &) — Vfi®) + B(V filz{™h) = V fi(z}).

(25)
Averaging the above relation over ¢ = 1, ..., n leads to that:
e =v' - VF(z")
I RS - -
= B~ VF@ ) + (1 5) -~ S (gi(al, )~ Vhilah) +6 -~ S (Vhilai™) - Viilal)
i=1 i=1
:=steR? :=zt€R4
t
_ ﬁt-l-l + Zﬁt k B)Slc + Zﬁt_k+lzk.
k=0
Taking Euclidean norms on both sides gives that
t t
letll < 8 et + 1) 87 = B)s™Il + 11 Yy 575 F1EH]. (26)
k=0 k=0
We now bound the terms on the right hand side of (26)) one by one. First,
lex* I =11o7" - ~ Zsz M = IVF@°)]l- 27)

Second, notice that {3*=%(1 — B)(g;(x¥, &F) — V f;(x¥))} is a martingale difference sequence that
falls into the pursuit of Lemma@ and thus we obtain

E[l Sk - 8)s" ]

k=0
= TE[IY0 3840 ) (gt &) — V)] 28)
k=0 i=1
< P2E[(SO0 18- B)lgilat €8) ~ VAEh)IP) .
k=0 i=1
Note that
225 (318 H (- B)(gi(at &)~ VD)) | Fioa
k=0 i=1
Q22 (5[ S S k1 - (et ) - VaNIP | i)
k=0 i=1
< 22 (B[ Y00 B gt €) ~ VA | Fio] 09)
t—1 n 1
3D IB T - A)gilat €5) — Vi) )
k=0 i=1
D221 pper+ 318741 - Alautat €D — VG IP)

k=0 i=1

where we used Jensen’s inequality in (i) and Assumption[3in (i¢). From (28), taking expectations
on (29), and recursively applying the preceding arguments from F;_o to Fy, we have

: t—k k 2\@ d (t—k)p P %
E[Ilkzoﬂ (1-8)s"|] < 1;(;05 (1-8y)". (30)
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Third,

t
H Z Bt—k-‘rlzlc”

< Zﬁf b L Z(Wi(wf‘l)—wi(wf»ll

i=1

< ZW“( an — V@) + - an 1) — Vi@
k=0

=1

*%Z 195" — Vb))

n

1o 1
g (L an“ S+ L= E T -3+ L Y[ — o)
i=1

i=1

INS
ol
u M~
[}

—~

IN S
&

M~

=~
Il
=]

3D

where in (i) we used Assumption 2] and in (ii) we used (T4) in Lemma [ Putting relations
7 BO)@I) together leads to the final bound for this lemma.

We next bound the stacked gradient estimation errors.

Lemma 8 (Stacked gradient estimation errors). Forallt = 0,...,T, we have
Effv" — VF(z")]]
i > 20\
< t+1 Ia 1 ) ( t k)p 1 _ ) P t— k‘+1< >L
<BTVE(L @ 2% +2v2( )8 By no+n2/3 Ty te

k=0

Proof. Define €} := v' — VF(z!) € R". Similar to 23], we have
v~ VF(z') = B0~ = VF(@'™") + (1 - 5) (g(z',£') - VF(z")) +5 (VF(z'") - VF(a'))
:=s§tcRnd :=ztcRnd
t t
=pE + Y BT - B+ Y pER
k=0 k=0
Taking Euclidean norms on both sides gives that

t t
€t < BHIE I+ 1) B8R = B)&*| + (1) B ER.
k=0 k=0
Similar to the analysis in Lemma[7] we bound the right hand side above term by term. First,
el = IVF (1, @ 2°)]].

Second, notice also that {3~%(1 — 3)8*} is a martingale difference sequence and can be dealt with
using Lemmal[5] We have

B[ 871 - )8

k=0

=E[|> 871 - B)(g(a', &) — VF(x"))] (32)

k=0

<2VIE[(Y 4P (- P llg(at, &) — VE@)|) 7).
k=0
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In addition,
t

2V2E[( Y B P(1 - pPllg(at, €') — VF(2')|?)

k=0

=

| Fii]

(1) 1
< 2V3(B[Y AU (1 - g7 g(at,€") - VF@)|] | Fon)
k=
(i4) ¢ 1
< 2v2(B[_ g anz @}, &h) = Vi@))"] | Fioa)
k=0

k=0 i=1

t
>
0
(i’it) 1
2 aVa(B Y30 81— (el — VAP | i) ()
S0 By Vgi(at, €) — VHEDIP | Fooi]

=1

=2v2(E[

t—

1 n ¥
+ 30D B = gy gi(at, €)) — Vfi(@h)])7)”

k=0 i=1
t—1 n 1
<2v2((1 = Bynra? + 30" B4R - B lgi(w!, €)) — Y fila!)|)
k=0 i=1

where in (¢) we used Jensen’s inequality, and in (i¢), (i) we used relations 4,and 5 in Lemma
[T} respectively. Based on (32), taking expectations on both sides of (33), and applying the above
arguments from JF;_o to Jy, we obtain

t

||Zﬂt Y1 - 8)8t] < 2v2( 3 8P - B) e

k=0

=

Third,

t
H Z ﬂt7k+12~’,k”

k=0

t
< Y BTEYVE(@M ) — VE (2N
k=0

ZZ BRIV i@y = Vi)

\/\
-~ H

) LIV (@b = VA@ T+ VL@ - VAE] + Vi) - @)

(@) t
: z REG=EOE
k=

where ( ) follows from similar arguments in (30). O

Now we are ready to prove our main theorems.

Proof of Theorem[I} We observe that

T 1 n 1T71 n
LSS ENVAEDI < - S0 S E[IVA@) - Vi@ + V@]
t=0 =1 t=0 i=1 - (34)
- -
=1 AL SRV @)].
t=0
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From Lemmas[3] (I3), and Lemmal6]

T—1
> allviE
=0

T—-1 o T— 10& n TflL
< @)~ fo+ ) 20(el] + [VF(!) - V@) + gz g =yl + > §a2
t=0 t=0 i=1 t=0
< f(&°) - f.
+T212a{5t+1w(:50)||+ 2v2 (iﬁ“"")p(l—ﬂ )%a+26t "“( 200 )L+ O‘AL}
nl=3 \ & 11—\ A
1 t
il (t—k+p\ P, L (L - _
Z {2[71 E 1)(};,\t k+1 p) U+\/ﬁ(5 1);:0>\t k+1]E[||VF(mk) vk”H
+%a2LT
(3) 0 0 « 420 11 4L o?T 2L 9
Sf(w)_f*+2||vf($)H176—"_n17_%a(1_6) PT+17)\175+17>\O[T
2\/0 1 1,
Z —1DaT+ =L -a°T
(1—A)% (6 JoT g l-a
—~ < t—k+1{ pt+1 ) 11 2nL af
to aZZ)\ (B IV E Ly @ 2% +2V3no(1 = §)' 75 + = 175)

where in ( ) we used 8 < 1 /\ < 1 and Lemma|8} Denote f(z°) — f. = Ay. Dividing oT from the
above relation on both 51des and putting it into (34)), then rearranging terms leads to

T—1 n
TZZE IVf(x
t=0 i=1
Ao 2|V 1-p)'% 4L  « 3L L
< — 4 . -
Sor T Ta=pT T4V L TTox1-3 (1—A+2>O‘
22,1 IVF(1,®2% 3-1 2V20 1,1 1
+——7-n2(5 1)+ - nz(—-—1)(1- P
(1—X)7 (ﬁ ) - A nz 11—\ (5 J1-5)
L 2L
(1_/\)2 n2ow
© A 2| VI(E°)] (1-8)'» , 4L  a  B35L
<= 4 .
~ar T a=ar + V20 e S A T
20120 1 0|VF(1, 2z 1-8 20/20 . 91 2L 1
-  .n2(1 - .n2(1 — P 2
+(17A)% nz(1-p6)+ T . + T nz(1-p) +(17A)2 n2a
@ (Ao 2|V (1 6)1*% LA, 3.5LAg
<O(=+ A + 420 — + +
(T (1-BT n'"v (1=N1=8)T (1=-NT
N 204/20 _n%(l_ﬁ)+10||VF(1n®:E0)H . 1_5+ T aba-prh g nz LA )
(1—A\)7 1—\ na 1—A (1—N)2T
(@) LA S5LA
< 0( HW; 2)|| o . 3.5LAg
T T2  pl 5T = (1— \)T52 (1-NT
N on? IVF(1, © 2% o ni n¥LA, )
1-NpT5=  (1-AniTwz  1=ApEs (1—X\2T
(35)
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where in (¢) we take 8 > 1/10, in (4i) we used

o Ao(1—p)(1—N) \/Aou—A) (1—A)2A
O‘_mm(l’\/ ALT N T35 N\ T onior ) (36)

and in (74i) we used 1 — 3 = —L—. O
T3p—2

Proof of Theorem 2] Note that (35))(ii) still holds under the same choice of « in (36) and 5 > 1/10.
Continuing with 1 — =1/ /T, we have

T—-1 n

7 2 ElV(@

t=0 i=1

-0 %
< O( HVf(CE )” + g i 1 - + 11 LA(] 3. 5LAO i i_’_
T VT % 7% Ti V1 /\ (1- (1=X\7# VT
IVF(1, @z L onz 1 mLAO )
(1-XNnz VT 1-2A T22;1

Rearranging above terms leads to the desired upper bound. O

C ADDITIONAL EXPERIMENT DETAILS

C.1 BASELINE DESCRIPTIONS

Please see Table 2] for detailed descriptions of baselines.

C.2 ADDITIONAL DETAILS FOR SYNTHETIC EXPERIMENTS

Loss function. Let (X 1, y; 1) denote the k-th sample of sub-dataset (X;, y;) on node i. The loss
function of the considered nonconvex linear regression model on this sample is £(y; . — Xi,kwﬁ),

where the
P (1— [1- (T)2r> if r < c,

5 otherwise

=%

)

N

and we use the suggested value ¢ = 4.6851 in the robust statistics literature.

Hyperparameter tuning. Please see Table [3| for hyperparameter searching ranges for this experi-
ment.

Hardware. We ran this experiment on Mac OS X 15.3, CPU M4 10 Cores, RAM 16GB.

C.3 ADDITIONAL DETAILS FOR DECENTRALIZED TRAINING OF TRANSFORMERS

Transformer architecture. We consider the following decoder-only Transformer model (GPT):
vocabulary size is 10208, context length is 64, embedding size is 128, number of attention heads is
4, number of attention layers is 2, the linear projection dimension within attention block is 512, and
LayerNorm is applied after the 2nd attention block. The total number of parameters of this model is
3018240.

Hyperparameter tuning. See Table 4| for our grid search range for algorithm hyperparameters.

Hardware. We simulate the distributed training on one NVIDIA H100 GPU, using PyTorch 3.2
with CUDA 12. The total hyperparameter search and training procedure took around 100 GPU
hours.
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Table 2: Summary of Baseline Methods

Method Parallel update on node Hyper-parameters
DSGD it =30 wi (2l — ag, (2, €L)) «a: constant stepsize
DSGD-GClip it =" wal — aclip(gi(!, €),7) «, T: stepsize a,
and /2 clipping
levels 7
DSGD-CClip it =" wiat — aclip(gi(zt, €),7) a, T: stepsize a,
and
component-wise
clipping levels 7
DSGD—-Clip it =31 wal — oy clip(gi(xt, €1), ) «, T: stepsize
ar=af(t+1),
and /5 clipping
levels
7 =71(t +1)2/°
t+1 n t t gt t—1 gt—1
1 W; + x - x .
GT-DSGD ylt_H Z:l_l " (yz Ir (t Tl’ &) —or(@ ™ 670) «: constant stepsize
i = E'r:l Wiy (wz - ayr+ )
mt+1 51’"’1? + (1 — 51)8%
vit! = min (Bv! + (1 — Ba)st @ s, G)
t+1
GT-Adam :cﬁJrl = Ele wirxt — aimjﬂ «, G: constant
VT te .
t+1 H1 stepsize «, and
= Vfi(z;") upper bound G,
sf“ =31 wy,st+gt —gt stabilization factor
€
mit! = Bt + gi(x!, &)
it n t+1
= wir (X, — M,
0G-DSGDm ' E{" i (@ = ) 1, B, p: constant
d; = (z; x})/n stepsize 7,
mt+1 _ Mm + (1 _ )df momentum

parametes 3,

SClip-EF- Networkt

m; " = Bml + (1 - B) W, (gi(xh, &) —m!) .
[ N NR

1 ) 1 :
=" wie (2l — aymlTh) Component-wise
smooth clipping
operator \I’t( )=

\/t—&- \/y2+‘r t+1)8/5°
stepsize

ap=a/(t+1)1/5,
momentum stepsize

B = B/t + 1.
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Table 3: Hyperparameter grid search in synthetic experiments

Method Hyperparameter search set

DSGD a € {1075,5%107°,1074, 5% 1074,1073,5 %
1072,1072,5% 1072,1071,0.5, 1,5, 10}

DSGD-Clip a € {1075, 5% 107°,1074, 5% 1074,1073,5 %

1073,1072,5% 1072,1071,0.5,1,5, 10}, 7 €
{1073,5%1073,1072,5 *
1072,1071,0.5,1, 5, 10,50, 102}

GT-DSGD a € {1075, 5% 107°,1074, 5% 1074,1073,5 %
1073,1072,5 % 1072,10,0.5,1, 5,10}
GT-NSGDm a € {1075,5%107°,1074, 5% 1074,1073,5 %

1073,1072,5% 1072,1071,0.5,1,5,10}, 8 €
{0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99}

SClip-EF-Network € {1073,1072,0.1,1,10,30},8 €
{1072,0.1,0.5,0.8,0.99}, ¢, €
{1,5,10,20, 30,50}, 7 € {0.1,1, 10,50, 100}

Table 4: Hyperparameter grid search in decentralized training of Transformers

Method Hyperparameter search set

DSGD a€ {1074, 5% 1074,1073,5% 1073,1072,5 %
1072,1071,0.5,1}

DSGD-GClip a € {1074,1073,1072,1071,1,10,10%},7 €
{1073,1072,1071, 1, 10, 10}

DSGD-CClip ae {107%,107%,107%,1071,1,10,10%}, 7 €
{10*3, 1072,1071, 1, 10, 102}

DSGD-Clip e {1074,1073,1072,1071,1,10,10%},7 €
{1073,1072,1071, 1, 10, 10}

GT-DSGD a€ {1074, 5% 107%,1073,5% 1072,1072,5 %
1072,1071,0.5,1}

GT-Adam a€{5x107°,107%,5%107%,1073,5 *

1073,1072,5%1072,107*,0.5,1,5,10},G €
{1073,1072,107%,1,10},e = 1078

QG-DSGDm n€{5*1075,107%, 510741073, 5
1073,1072,5%1072,1071,0.5,1,5,10}, 8 = p €
{0.01,0.2,0.4,0.6,0.8,0.99}

GT-NSGDm a€{1074,1073,1072,1071,1,10},8 €
{0.01,0.2,0.4,0.6,0.8,0.99}

SClip-EF-Networke € {1074,1073,1072,1071,10%,10%,10%},3 €
{0.01,0.4,0.8,0.99}, ¢, € {0.1,1,10,102}, 7 €
{0.01,0.1,1,10}
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