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Abstract

Clustering clients with similar objectives and learning a model per cluster is an intuitive
and interpretable approach to personalization in federated learning. However, doing so with
provable and optimal guarantees has remained an open challenge. In this work, we formalize
personalized federated learning as a stochastic optimization problem. We propose simple
clustering-based algorithms which iteratively identify and train within clusters, using local
client gradients. Our algorithms have optimal convergence rates which asymptotically match
those obtained if we knew the true underlying clustering of the clients, and are provably
robust in the Byzantine setting where some fraction of the clients are malicious.

1 Introduction

We consider the federated learning setting in which there are N clients with individual loss functions {fi}i∈[N ]
who seek to jointly train a model or multiple models. The defacto algorithm for problems in this setting is
FedAvg (McMahan et al., 2017) which has an objective of the form

x∗
FedAvg = arg min

x∈X

1
N

∑
i∈[N ]

fi(x). (1)

From (1), we see that FedAvg optimizes the average of the client losses. In many real-world cases however,
clients’ data distributions are heterogeneous, making such an approach unsuitable since the global optimum
(1) may be very far from the optima of individual clients. Rather, we want algorithms which identify
clusters of the clients that have relevant data for each other and that only perform training within each
cluster. However, this is a challenging exercise since 1) it is unclear what it means for data distributions of two
clients to be useful for each other, or 2) how to automatically identify such subsets without expensive multiple
retraining (Zamir et al., 2018). In this work we propose algorithms which iteratively and simultaneously 1)
identify K clusters amongst the clients by clustering their gradients and 2) optimize the clients’ losses within
each cluster.
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1.1 Related Work

Personalization via Clustering. Personalization in federated learning has recently enjoyed tremendous
attention (see Tan et al. (2022); Kulkarni et al. (2020) for surveys). We focus on gradient-based clustering
methods for personalized federated learning. Several recent works propose and analyze clustering methods.
Sattler et al. (2021) alternately train a global model with FedAvg and partition clients into smaller clusters
based on the global model’s performance on their local data. Mansour et al. (2021) and Ghosh et al. (2020)
instead train personalized models from the start (as we do) without maintaining a global model. They
iteratively update K models and, using empirical risk minimization, assign each of N clients one of the
models at every step. In Section 2 we analyze these algorithms on constructed examples and in Section 3.1.3
compare them to our method.
Since our work is closest to Ghosh et al. (2020), we highlight key similarities and differences. Similarities:
1) We both design stochastic gradient descent- and clustering-based algorithms for personalized federated
learning. 2) We both assume sufficient intra-cluster closeness and inter-cluster separation of clients for the
clustering task (Assumptions 1 and 2 in their work; Assumptions 4 and 5 in ours). 3) Our convergence rates
both scale inversely with the number of clients and the inter-cluster separation parameter ∆. Differences: 1)
They assume strong convexity of the clients’ loss objectives, while our guarantees hold for all smooth (convex
and non-convex) functions. 2) They cluster clients based on similarity of loss-function values whereas we
cluster clients based on similarity of gradients. We show that clustering based on loss-function values instead
of gradients can be overly sensitive to model initialization (see Fig. 1b). 3) Since we determine clusters based
on distances in gradient space, we are able to apply an aggregation rule which makes our algorithm robust
to some fraction of malicious clients. They determine cluster identity based on loss-function value and do
not provide robustness guarantees.
Recently, Even et al. (2022) established lower bounds showing that the optimal strategy is to cluster clients
who share the same optimum. Our algorithms and theoretical analysis are inspired by this lower-bound, and
our gradient-based clustering approach makes our algorithms amenable to analysis à la their framework.

Multitask learning. Our work is closely related to multitask learning, which simultaneously trains sep-
arate models for different-but-related tasks. Smith et al. (2017) and Li et al. (2021) both cast personalized
federated learning as a multitask learning problem. In the first, the per-task models jointly minimize an
objective that encodes relationships between the tasks. In the second, models are trained locally (for per-
sonalization) but regularized to be close to an optimal global model (for task-relatedness). These settings
are quite similar to our setting. However, we use assumptions on gradient (dis)similarity across the domain
space to encode relationships between tasks, and we do not maintain a global model.

Robustness. Our methods are provably robust in the Byzantine (Lamport et al., 2019; Blanchard et al.,
2017) setting, where clients can make arbitrary updates to their gradients to corrupt the training pro-
cess. Several works on Byzantine robust distributed optimization (Blanchard et al., 2017; Yin et al., 2018;
Damaskinos et al., 2018; Guerraoui & Rouault, 2018; Pillutla et al., 2022) propose aggregation rules in lieu
of averaging as a step towards robustness. However, Baruch et al. (2019); Xie et al. (2020) show that these
rules are not in fact robust and perform poorly in practice. Karimireddy et al. (2021) are the first to provide
a provably Byzantine-robust distributed optimization framework by combining a novel aggregation rule with
momentum-based stochastic gradient descent. We use a version of their centered-clipping aggregation rule
to update client gradients. Due to this overlap in aggregation rule, components of our convergence results
are similar to their Theorem 6. However, our analysis is significantly complicated by our personalization and
clustering structure. In particular, all non-malicious clients in Karimireddy et al. (2021; 2022) have the same
optimum and therefore can be viewed as comprising a single cluster, whereas we consider multiple clusters
of clients (without necessarily assuming clients are i.i.d. within a cluster). The personalization algorithm in
Li et al. (2021) also has robustness properties, but they are only demonstrated empirically and analyzed on
toy examples.

Recent Empirical Approaches. Two recent works (Wang et al., 2022; Wu et al., 2023) examine the set-
ting in which clients’ marginal distributions p(x) differ, whereas most prior work only allows their conditional
distributions p(y|x) to differ. One of our experiments (Section 4.1) assumes heterogeneity between clients’
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marginal distributions, while the others (Section 4.2) assume heterogeneity only between their conditional
distributions. In Wang et al. (2022), the server maintains a global pool of modules (neural networks) from
which clients, via a routing algorithm, efficiently select and combine sub-modules to create personalized
models that perform well on their individual distributions. Extending the work of Marfoq et al. (2021), Wu
et al. (2023) model each client’s joint distribution as a mixture of Gaussian distributions, with the weights of
the mixture personalized to each client. They then propose a federated Expectation-Maximization algorithm
to optimize the parameters of the mixture model. In general, the contributions and style of our work and
these others differ significantly. We focus on achieving and proving optimal theoretical convergence rates
which we verify empirically, whereas Wang et al. (2022) and Wu et al. (2023) emphasize empirical application
over theoretical analysis.

1.2 Our Contributions

To address the shortcomings in current approaches, we propose two personalized federated learning al-
gorithms, which simultaneously cluster similar clients and optimize their loss objectives in a personalized
manner. In each round of the procedure, we examine the client gradients to identify the cluster structure as
well as to update the model parameters. Importantly, ours is the first method with theoretical guarantees
for general non-convex loss functions, and not just restrictive toy settings. We show that our method enjoys
both nearly optimal convergence, while also being robust to some malicious (Byzantine) client updates. This
is again the first theoretical proof of the utility of personalization for Byzantine robustness. Specifically in
this work,

• We show that existing or naive clustering methods for personalized learning, with stronger assump-
tions than ours, can fail in simple settings (Fig. 1).

• We design a robust clustering subroutine (Algorithm 3) whose performance improves with the sep-
aration between the cluster means and the number of data points being clustered. We prove nearly
matching lower bounds showing its near-optimality (Theorem 2), and we show that the error due to
malicious clients scales smoothly with the fraction of such clients (Theorem 1).

• We propose two personalized learning algorithms (Algorithm 2 and Algorithm 4) which converge at
the optimal O(1/

√
niT ) rate in T for stochastic gradient descent for smooth non-convex functions

and linearly scale with ni, the number of clients in client i’s cluster.

• We empirically verify our theoretical assumptions and demonstrate experimentally that our learning
algorithms benefit from collaboration, scale with the number of collaborators, are competitive with
SOTA personalized federated learning algorithms, and are not sensitive to the model’s initial weights
(Section 4).

2 Existing Clustering Methods for Personalized Federated Learning

Our task at hand in this work is to simultaneously learn the clustering structure amongst clients and minimize
their losses. Current methods do not rigorously check similarity of clients throughout the training process.
Therefore they are not able to correct for early-on erroneous clustering (e.g. due to gradient stochasticity,
model initialization, or the form of loss-functions far from their optima). In the next section we demonstrate
such failure modes of existing algorithms.

2.1 Failure Modes of Existing Methods

The first algorithm we discuss, Myopic-Clustering, does not appear in the existing literature, but we create it
in order to motivate the design of our method (Algorithm 2). In particular, it is a natural first step towards
our method, but has limitations which we correct when designing our algorithm.

Myopic-Clustering (Algorithm 1). At every step, each client computes their gradient at their current
model and sends the gradient to a central server. The server clusters the gradients and sends each cluster
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(a) Myopic-Clustering
(η = 0.5). Correct clustering:
{1, 2} and {3}. Client {2} gets
stuck at x = 1, not reaching its
optimum, and clients {1, 3}
converge to their optima. All
gradients being 0 at this point, the
clients are incorrectly clustered
together: {1, 2, 3}.
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(b) IFCA/HypCluster.
Correct clustering: {1}, {2}.
Both clients’ function values are
smaller at initialization point x2,0
than x1,0 causing
IFCA/HypCluster to initially
cluster them together. Since the
average of the clients’ gradients at
x2,0 is 0, the models never update
and the algorithm thinks the
initial erroneous clustering, {1, 2}
is correct.
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(c) Clustered Federated
Learning. Correct clustering:
{1}, {2, 3} (client 3 not drawn due
to its stochastic gradient – details
on pg. 5). Clustered FL averages
gradients of clients {1} and {2} to
0, clustering them together, and
with non-0 probability clusters {3}
separately due to its stochastic
gradient. Based on this initial
erroneous, the algorithm
partitions the clients {1, 2} and
{3} and recursively runs on each
group, never recovering the correct
clustering.

Figure 1: We show how existing personalized FL algorithms miscluster and fail to converge on constructed
examples.

center to the clients assigned to that cluster. Each client then performs a gradient descent update on
their model with their received cluster center. This is a natural federated clustering procedure and it is
communication-efficient (O(N)). However, it has two issues: 1) If it makes a clustering mistake at one
step, models will be updated with the wrong set of clients. This can cause models to diverge from their
optima, gradients of clients in the same cluster to drift apart, and gradients of clients in different clusters to
drift together, thus obscuring the correct clustering going forward. Furthermore, these errors can compound
over rounds. 2) Even if Myopic-Clustering clusters clients perfectly at each step, the clients’ gradients will
approach zero as the models converge to their optima. This means that clients from different clusters will
appear to belong to the same cluster as the algorithm converges and all clients will collapse into a single
cluster. The following example (Fig. 1a) demonstrates these failure modes of Myopic-Clustering.
Let N = 3 and K = 2, with client loss functions

f1(x) = 1
6η

x2

f2(x) =
{

4(x− 1)3 + 3(x− 1)4 + 1 x < 1
1

2η (x− 1)2 + 1 x ≥ 1,

f3(x) = 1
2η

(x− 2)2,

where η is the learning rate of the algorithm. With this structure, clients {1, 2} share the same global
minimum and belong to the same cluster, and client {3} belongs to its own cluster. Suppose Myopic-
Clustering is initialized at x0 = 1.5. At step 1, the client gradients computed at x0 = 1.5 are 1/2η, 1/2η, and
−1/2η respectively. Therefore, clients {1, 2} are correctly clustered together and client {3} alone at this step.
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Algorithm 1 Myopic-Clustering
Input Learning rate: η. Initial parameters: {x1,0 = ... = xN,0 = x0}.

1: for round t ∈ [T ] do
2: for client i in [N] do
3: Client i sends gi(xi,t−1) to server.
4: Server clusters {gi(xi,t−1)}i∈[N ], generating cluster centers {vk,t}k∈[K].
5: Server sends vki,t to client i, where ki denotes the cluster to which client i is assigned.
6: Client i computes update: xi,t = xi,t−1 − ηvki,t.
7: Output: Personalized parameters: {x1,T , ..., xN,T }.

After updates, the clients’ parameters will next be x1,1 = 1, x2,1 = 1, x3,1 = 2 respectively. At this point,
clients {2, 3} will be incorrectly clustered together since their gradients will both be 0, while client {1} will be
clustered alone. As the algorithm proceeds, clients {2, 3} will always be clustered together and will remain
at x = 1 and x = 2 respectively, while client {1} will converge to its optimum at x = 0. Consequently, two
undesirable things happen: 1) Client {2} gets stuck at the saddle point at x = 1 which occurred when it was
incorrectly clustered with client {3} at t = 1 and subsequently did not recover. 2) All gradients converge to
0, so at the end of the algorithm all clients are clustered together.
To further motivate the design choice for our algorithms, we now discuss three clustering-based algorithms
in the literature on personalized federated learning. In particular, we generate counter-examples on which
they fail and show how our algorithm avoids such pitfalls.
The first two algorithms IFCA (Ghosh et al., 2020) and HypCluster (Mansour et al., 2021) are closely related.
They both cluster loss function values rather than gradients, and like our algorithm they avoid the myopic
nature of Myopic-Clustering by, at each step, computing all client losses at all current cluster parameters to
determine the clustering. However, as we show in the next example (Fig. 1b), they are brittle and sensitive
to initialization.

IFCA (Ghosh et al., 2020). Let N = 2, K = 2 with loss functions

f1(x) = (x + 0.5)2

f2(x) = (x− 0.5)2,

and initialize clusters 1 and 2 at x1,0 = −1.5 and x2,0 = 0 respectively. Given this setup, both clients
initially select cluster 2 since their losses at x2,0 are smaller than at x1,0.

Option I: At x2,0 = 0, the client gradients will average to 0. Consequently the models will remain
stuck at their initializations, and both clients will be incorrectly assigned to cluster 2.

Option II: Both clients individually run τ steps of gradient descent starting at their selected model
x2,0 (i.e. perform the LocalUpdate function in line 18 of IFCA). Since the clients’ individually updated
models will be symmetric around 0 after this process, the server will compute cluster 2’s model update in
line 15 of IFCA as: x2,1 ← 0 = x2,0. Consequently, the outcome is the same as in Option I: the models
never update and both clients are incorrectly assigned to cluster 2.

HypCluster (Mansour et al., 2021). This algorithm is a centralized version of Option II of IFCA. The
server alternately clusters clients by loss function value and runs stochastic gradient descent per-cluster using
the clients’ data. It performs as Option II of IFCA on the example above.
Finally, we discuss Clustered Federated Learning, the algorithm proposed in Sattler et al. (2021), which runs
the risk of clustering too finely, as in the next example (Fig. 1c).

Clustered Federated Learning (Sattler et al., 2021). Clustered Federated Learning operates by
recursively bi-partitioning the set of clients based on the clients’ gradient values at the FedAvg optimum.
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Consider the following example. Let N = 3 and K = 2 with client gradients

g1(x) = x

g2(x) = x− 1/2

g3(x) =
{

x w.p. 1/2

x− 1 w.p. 1/2.

Therefore the correct clustering here is {1} and {2, 3}. The FedAvg optimum is x∗
FedAvg = 1/4, at which the

clients’ gradient values are g1(1/4) = 1/4, g2(1/4) = −1/4 and g3 = 1/4 w.p. 1/2. Based on this computation,
Clustered Federated Learning partitions the client set into {1, 2} and {3} w.p. 1/2 and then proceeds to
run the algorithm separately on each sub-cluster. Therefore, the algorithm never corrects its initial error in
separating clients {2} and {3}.
The behaviour of these algorithms motivates our method Federated-Clustering, which by rigorously checking
client similarity at every step of the training process can recover from past clustering errors.

3 Proposed Method: Federated-Clustering (Algorithm 2)

At a high level, Federated-Clustering works as follows. Each client i maintains a personalized model which,
at every step, it broadcasts to the other clients j ̸= i. Then each client j computes its gradient on clients
i’s model parameters and sends the gradient to client i. Finally, client i runs a clustering procedure on the
received gradients, determines which other clients have gradients closest to its own at its current model, and
updates its current model by averaging the gradients of these similar clients. By the end of the algorithm,
ideally each client has a model which has been trained only on the data of similar clients.
The core of Federated-Clustering is a clustering procedure, Threshold-Clustering (Algorithm 3), which iden-
tifies clients with similar gradients at each step. This clustering procedure, which we discuss in the next
section, has two important properties: it is robust and its error rate is near-optimal.

Notation. For an arbitrary integer N , we let [N ] = {1, ..., N}. We take a ≳ b to mean there is a sufficiently
large constant c such that a ≥ cb, a ≲ b to mean there is a sufficiently small constant c such that a ≤ cb,
and a ≈ b to mean there is a constant c such that a = cb. We write i ∼ j if clients i and j belong to the
same cluster, i

i.i.d.∼ j if they belong to the same cluster and their data is drawn independently from identical
distributions (we will sometimes equivalently write zi

i.i.d.∼ zj , where zi and zj are arbitrary points drawn
from clients i’s and j’s distributions), and i ̸∼ j if they belong to different clusters. For two different clients
i and j, same cluster or not, we write i ̸= j. Finally, ni denotes the number of clients in client i’s cluster,
δi = ni/N denotes the fraction of clients in client i’s cluster, and βi denotes the fraction of clients that are
malicious from client i’s perspective.

3.1 Analysis of Clustering Procedure

Given the task of clustering N points into K clusters, at step l our clustering procedure has current estimates
of the K cluster-centers, v1,l, ..., vK,l. To update each estimate vk,l+1 ← vk,l, it constructs a ball of radius
τk,l around vk,l. If a point falls inside the ball, the point retains its value; if it falls outside the ball, its value
is mapped to the current cluster-center estimate. The values of all the points are then averaged to set vk,l+1
(update rule (4)). The advantage of this rule is that it is very conservative. If our algorithm is confident
that its current cluster-center estimate is close to the true cluster mean (i.e. there are many points nearby),
it will confidently improve its estimate by taking a large step in the right direction (where the step size and
direction are determined mainly by the nearby points). If our algorithm is not confident about being close to
the cluster mean, it will tentatively improve its estimate by taking a small step in the right direction (where
the step size and direction are small since the majority of points are far away and thus do not change the
current estimate).
To analyze the theoretical properties of this procedure, we look at a natural setting in which clients within
the same cluster have i.i.d. data (for analysis of our federated learning algorithm, we will relax this strong
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notion of intra-cluster similarity). In particular, in our setting there are N points {z1, ..., zN} which can be
partitioned into K clusters within which points are i.i.d.. We assume the following.

• Assumption 1 (Intra-cluster Similarity): For all i ∼ j,

zi
i.i.d.∼ zj .

• Assumption 2 (Inter-cluster Separation): For all i ̸∼ j,

∥Ezi − Ezj∥2 ≥ ∆2.

• Assumption 3 (Bounded Variance): For all zi,

E∥zi − Ezi∥2 ≤ σ2.

Theorem 1. Suppose there N points {zi}i∈[N ] for which Assumptions [1-3] hold with inter-cluster separation
parameter ∆ ≳ σ/δi. Running Algorithm 3 for

l ≳ max
{

1, max
i∈[N ]

log(σ/∆)
log(1− δi/2)

}
steps with fraction of malicious clients βi ≲ δi and thresholding radius τ ≈

√
δiσ∆ guarantees that

E∥vki,l − Ezi∥2 ≲
σ2

ni
+ σ3

∆ + βiσ∆. (2)

Proof. See A.1.

Supposing βi = 0, if we knew the identity of all points within zi’s cluster, we would simply take their mean
as the cluster-center estimate, incurring estimation error of σ2

/ni (i.e. the sample-mean’s variance). Since we
don’t know the identity of points within clusters, the additional factor of σ3

/∆ in (2) is the price we pay to
learn the clusters. This additional term scales with the difficulty of the clustering problem. If true clusters
are well-separated and/or the variance of the points within each cluster is small (i.e. ∆ is large, σ2 is small),
then the clustering problem is easier and our bound is tighter. If clusters are less-well-separated and/or
the variance of the points within each cluster is large, accurate clustering is more difficult and our bound
weakens.

Setting τ . To achieve the rate in (2), we set τ ≈
√

σ∆, which is the geometric mean of the standard
deviation, σ, of points belonging to the same cluster and the distance, ∆, to a different cluster. The
intuition for this choice is that we want the radius for each cluster to be at least as large as the standard
deviation of the points belonging to that cluster in order to capture in-cluster points. The radius could be
significantly larger than the standard deviation if ∆ is large, thus capturing many non-cluster points as well.
However, the conservative nature of our update rule (4) offsets this risk. By only updating the center with
a step-size proportional to the fraction of points inside the ball, it limits the influence of any mistakenly
captured points.
Threshold-Clustering has two important properties which we now discuss: it is Byzantine robust and has a
near-optimal error rate.

3.1.1 Robustness

We construct the following definition to characterize the robustness of Algorithm 3.
Definition 1 (Robustness). An algorithm A is robust if the error introduced by bad clients can be bounded
i.e. malicious clients do not have an arbitrarily large effect on the convergence. Specifically, for a specific
objective, let E1 be the base error of A with no bad clients, let β be the fraction of bad clients, and let E2 be
some bounded error added by the bad points. Then A is robust if

Err(A) ≤ E1 + βE2.
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Threat model. Our clustering procedure first estimates the centers of the K clusters from the N points
and constructs a ball of radius τk around the estimated center of each cluster k. If a point falls inside the
ball, the point retains its value; if it falls outside the ball, its value is mapped to the current cluster-center
estimate. Following the update rule (4), the values of all the points are averaged to update the cluster-center
estimate. Therefore, a bad point that wants to distort the estimate of the k’th cluster’s center has the most
influence by placing itself just within the boundary of the ball around that cluster-center, i.e. at τk-distance
from the cluster-center.
From (2) we see that the base squared-error of Algorithm 3 in estimating zi’s cluster-center is ≲ σ2

/ni + σ3
/∆,

and that the bad points introduce extra squared-error of order σ∆. Given our threat model, this is exactly
expected. The radius around zi’s cluster-center is order

√
σ∆. Therefore, bad points placing themselves at

the edge of the ball around zi’s cluster-center estimate will be able to distort the estimate by order σ∆.
The scaling of this extra error by βi satisfies our definition of robustness, and the error smoothly vanishes
as βi → 0.

3.1.2 Near-Optimality

The next result shows that the upper bound (2) on the estimation error of Algorithm 3 nearly matches the
best-achievable lower bound. In particular, it is tight within a factor of σ/∆.
Theorem 2 (Near-optimality of Threshold-Clustering). For any algorithm A, there exists a mixture of
distributions D1 = (µ1, σ2) and D2 = (µ2, σ2) with ∥µ1 − µ2∥ ≥ ∆ such that the estimator µ̂1 produced by A
has error

E∥µ̂1 − µ1∥2 ≥ Ω
(

σ4

∆2 + σ2

ni

)
.

Proof. See A.2.

3.1.3 Federated-Clustering on Examples in Section 2.1

We describe how Federated-Clustering successfully handles the examples in Section 2.1.

Example 1: Fig. 1a. Federated-Clustering checks at every step the gradient values of all N clients at the
current parameters of all K clusters. This verification process avoids the type of errors made by Myopic-
Clustering. For instance, at t = 1 when Myopic-Clustering makes its error, Federated-Clustering computes
the gradients of all clients at client {1}’s current parameters: g1(1) = 1/3η, g2(1) = 0, and g3(1) = −1/η.
Therefore it correctly clusters {1, 2} together at this point, and client {2}’s parameters update beyond the
saddle-point and converge to the global minimum at x = 0.

Example 2: Fig. 1b. By clustering clients based on gradient instead of loss value, Federated-Clustering
initially computes the clients’ gradients of +1 and −1 respectively at x2,0 = 0, and given the continued
separation of their gradients around 0 as the algorithm converges, correctly identifies that they belong to
different clusters.

Example 3: Fig. 1c. Recall how Clustered FL fails on this example. Based on an initial clustering error,
it partitions the clients incorrectly early on and then evaluates each subset separately going forward, thus
never recovering the correct clustering. Our algorithm avoids this type of mistake by considering all clients
during each clustering at every step.

3.2 Analysis of Federated-Clustering

We now proceed with the analysis of Federated-Clustering. First, we establish necessary assumptions: intra-
cluster similarity, inter-cluster separation, bounded variance of stochastic gradients, and smoothness of loss
objectives.
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• Assumption 4 (Intra-cluster Similarity): For all x, i ∼ j, and some constant A ≥ 0,

∥∇fi(x)−∇f̄i(x)∥2 ≤ A2∥∇f̄i(x)∥2,

where f̄i(x) ≜ 1
ni

∑
j∼i fj(x).

• Assumption 5 (Inter-cluster Separation): For all x, i ̸∼ j, and some constants ∆, D ≥ 0,

∥∇fi(x)−∇fj(x)∥2 ≥ ∆2 −D2∥∇fi(x)∥2.

This formulation is motivated by the information theoretic lower-bounds of Even et al. (2022) who show
that the optimal clustering strategy is to group all clients with the same optimum (even if they are non-iid).
Assumptions 4 and 5 are in fact a slight strengthening of this very statement. To see this, note that for a
client with loss function fi(x), belonging to cluster f̄i(x) with a first-order stationary points x̄∗, Assumption
4 implies that if ∇f̄i(x̄∗) = 0⇒ ∇fi(x̄∗) = 0, and so x̄∗ is also a stationary point for client i. Thus, all clients
within a cluster have shared stationary points. Assumption 4 further implies that the gradient difference
elsewhere away from the optima is also bounded. This latter strengthening is motivated by the fact the the
loss functions are smooth, and so the gradients cannot diverge arbitrarily as we move away from the shared
optima. In fact, it is closely related to the strong growth condition (equation (1) in Vaswani et al. (2019)),
which is shown to be a very useful notion in practical deep learning. We also empirically verify its validity
in Fig. 2 (left).
Similarly, Assumption 5 is a strengthening of the condition that clients across different clusters need to have
different optima. For two clients i and j who belong to different clusters and with first-order stationary
points x∗

i and x∗
j , Assumption 5 implies that ∥∇fi(x∗

j )∥2 ≥ ∆ and ∥∇fj(x∗
i )∥2 ≥ ∆. Thus, they do not share

any common optimum. Similar to the Assumption 4, Assumption 5 also describes what happens elsewhere
away from the optima - it allows for the difference between the gradients to be smaller than ∆ as we move
away from the stationary points. Again, this specific formulation is motivated by smoothness of the loss
function, and empirical validation (Fig. 2, right).
In Corollary 1, we give a setting and precise A, D, and ∆ for which Assumptions 4 and 5 are satisfied.

• Assumption 6 (Bounded Variance of Stochastic Gradients): For all x,

E∥gi(x)−∇fi(x)∥2 ≤ σ2,

where E[gi(x)|x] = ∇fi(x) and each client i’s stochastic gradients gi(x) are independent.

• Assumption 7 (Smoothness of Loss Functions): For any x, y,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

Theorem 3. Let Assumptions [4-7] hold with inter-cluster separation parameter ∆ ≳ max(1,A4) max(1,D2)σ/δi.
Under these conditions, suppose we run Algorithm 2 for T rounds with learning rate η ≤ 1/L, fraction of
malicious clients βi ≲ δi, and batch size |Bi| ≳ min(

√
max(1, A2)(σ2

/ni + σ3
/∆ + βiσ∆)mi, mi), where mi is

the size of client i’s training dataset. If, in each round t ∈ [T ], we cluster with radius τ ≈
√

δiσ∆ for

l ≥ max
{

1, max
i∈N ]

log(σ/
√

|Bi|∆)
log(1− δi/2)

}
steps, then

1
T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲

√
max(1, A2)(σ2

/ni + σ3
/∆ + βiσ∆)

T
. (3)

Proof. See A.3.
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We note a few things. 1) The rate in (3) is the optimal rate in T for stochastic gradient descent on non-convex
functions (Arjevani et al., 2023). 2) The dependence on

√
σ2/ni is intuitive, since convergence error should

increase as the variance of points in the cluster increases and decrease as the number of points in the cluster
increases. It is also optimal as shown in Even et al. (2022). 3) The dependence on

√
βiσ∆ is also expected.

We choose a radius τ ≈
√

σ∆ for clustering. Given our threat model, the most adversarial behavior of the
bad clients from client i’s perspective is to place themselves at the edge of the ball surrounding the estimated
location of i’s gradient, thus adding error of order

√
βiσ∆. When there are no malicious clients, this extra

error vanishes. 4) If the constraint on batch-size in Theorem 3 requires |Bi| = mi, then the variance of
stochastic gradients vanishes and the standard O(1/T) rate for deterministic gradient descent is recovered
(see equation (18) in proof). We also note that as long as there are no malicious clients (i.e. βiσ∆ term is
0), there are a large enough number of clients ni in the cluster, and inter-cluster separation ∆ is sufficiently
larger than the inter-cluster-variance σ2, then minimum-batch size will likely be less than mi.
If losses are smooth and strongly convex, the following convergence rate is achievable.
Corollary 1. Suppose client losses are L-smooth and µ-strongly convex, and that clusters are defined by
clients with the same optimum. Specifically, let x∗

i be client i’s optimum. Define ∆ = maxj ̸∼i
1√
2∥∇fj(x∗

i )∥
and assume losses are such that ∆ ≳ L6σ/µ6δi. If we run Algorithm 2 for T rounds with learning rate η ≤ 1/L,

fraction of malicious clients βi ≲ δi, batch size |Bi| ≳ min
(√

(L/µ)2(σ2
/ni + σ3

/∆ + βiσ∆)mi, mi

)
, where

mi is the size of client i’s training dataset, and cluster in each round t ∈ [T ] with radius τ ≈
√

δiσ∆ for

l ≥ max
{

1, max
i∈N ]

log(σ/
√

|Bi|∆)
log(1− δi/2)

}
steps, then

1
T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲

√
(L/µ)2(σ2

/ni + σ3
/∆ + βiσ∆)

T
.

Proof. See A.4.

Privacy. Since Federated-Clustering requires clients to compute distances between gradients, they must
share their models and gradients which compromises privacy. The focus of our work is not on optimizing
privacy, so we accommodate only the lightest layer of privacy for federated learning: sharing of models and
gradients rather than raw data. Applying more robust privacy techniques is a direction for future work. In
the meantime, we refer the reader to the extensive literature on differential privacy, multi-party computation,
and homomorphic encryption in federated learning.

Communication Overhead. At each step, Federated-Clustering requires O(N2) rounds of communica-
tion since each client sends its model to every other client, evaluates its own gradient at every other client’s
model and then sends this gradient back to the client who owns the model. We pay this communication
price to mitigate the effect of past clustering mistakes. For example, say at one round a client mis-clusters
itself and updates its model incorrectly. At the next step, due to communication with all other clients, it can
check the gradients of all other clients at its current model, have a chance to cluster correctly at this step,
and update its model towards the optimum, regardless of the previous clustering error. Recall on the other
hand that an algorithm like Myopic-Clustering (Alg. 1), while communication efficient (N rounds per step),
may not recover from past clustering mistakes since it doesn’t check gradients rigorously in the same way. In
the next section, we propose a more communication-efficient algorithm, Momentum-Clustering (Algorithm
4), which clusters momentums instead of gradients (reducing variance and thus clustering error) and requires
only O(N) communication rounds per step.

1The batch-size constraint reduces variance of the stochastic gradients (Lemma 6). In Section 3.3 we propose another algo-
rithm Momentum-Clustering for which there is no batch-size restriction and which reduces variance by clustering momentums
instead of gradients.

2gi(xj,t−1) = 1
|Bi|

∑
b

gi(xj,t−1; b), where gi(xj,t−1; b) is the gradient computed using sample b in the batch.

10
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Algorithm 2 Federated-Clustering
Input Learning rate: η. Initial parameters for each client: {x1,0, ..., xN,0}. Batch-size |Bi| (see Theorem 3
for a lower bound on this quantity)1

1: for client i ∈ [N ] do
2: Send xi,0 to all clients j ̸= i.
3: for round t ∈ [T ] do
4: for client i in [N] do
5: Compute gi(xj,t−1) with batch-size |Bi|2and send to client j for all j ̸= i ∈ [N ].
6: Compute vi,t ← Threshold-Clustering({gj(xi,t−1)}j∈[N ]; 1 cluster; gi(xi,t−1)).
7: Update parameter: xi,t = xi,t−1 − ηvi,t.
8: Send xi,t to all clients j ̸= i.
9: Output: Personalized parameters: {x1,T , ..., xN,T }.

Algorithm 3 Threshold-Clustering
Input Points to be clustered: {z1, ..., zN}. Number of clusters: K. Cluster-center initializations:
{v1,0, ..., vK,0}.

1: for round l ∈ [M ] do
2: for cluster k in [K] do
3: Set radius τk,l.
4: Update cluster-center estimate:

vk,l = 1
N

N∑
i=1

(
zi1(∥zi − vk,l−1∥ ≤ τk,l) + vk,l−11(∥zi − vk,l−1∥ > τk,l)

)
. (4)

5: Output: Cluster-center estimates {v1 = v1,M , ..., vK = vK,M}.

3.3 Improving Communication Overhead with Momentum

Federated-Clustering is inefficient, requiring N2 rounds of communication between clients at each step (each
client computes their gradient at every other client’s parameter). Since momentums change much more
slowly from round-to-round than gradients, a past clustering mistake will not have as much of a harmful
impact on future correct clustering and convergence as when clustering gradients.
In Algorithm 4, at each step each client computes their momentum and sends it to the server. The server
clusters the N momentums, computes an update per-cluster, and sends the update to the clients in each
cluster. Therefore, communication is limited to N rounds per step.

3.3.1 Analysis of Momentum-Clustering

The analysis of the momentum based method requires adapting the intra-cluster similarity and inter-cluster
separation assumptions from before.

• Assumption 8 (Intra-cluster Similarity): For all i ∼ j and t ∈ [T ],

mi,t
i.i.d.∼ mj,t,

where mi,t is defined as in (6).

• Assumption 9 (Inter-cluster Separation): For all i ̸∼ j and t ∈ [T ],

∥Emi,t − Emj,t∥2 ≥ ∆2.

Note that the intra-cluster similarity assumption in this momentum setting is stronger than in the gradient
setting (Assumption 4): namely we require that the momentum of clients in the same cluster be i.i.d. at all

11
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Algorithm 4 Momentum-Clustering
Input Learning rate: η. Initial parameters: {x1,0 = ... = xN,0}.

1: for round t ∈ [T ] do
2: for client i in [N] do
3: Client i sends

mi,t = αgi(xi,t−1) + (1− α)mi,t−1 (6)

to server.
4: Server generates cluster centers

{vk,t}k∈[K] ← Threshold-Clustering({mi,t}; K clusters; {vk,t−1}k∈[K])

and sends vki,t to client i, where ki denotes the cluster to which i is assigned in this step.
5: Client i computes update: xi,t = xi,t−1 − ηvki,t.
6: Output: Personalized parameters: {x1,T , ..., xN,T }.

points. This stronger assumption is the price we pay for a simpler and more practical algorithm. Finally,
due to the fact that momentums are low-variance counterparts of gradients (Lemma 13), we can eliminate
constraints on the batch size and still achieve the same rate.
Theorem 4. Let Assumptions [6-9] hold with inter-cluster separation parameter ∆ ≳ σ/δi. Under these

conditions, suppose we run Algorithm 4 for T rounds with learning rate η ≲ min
{

1
L ,

√
E(fi(xi,0)−f∗

i
)

LT (σ2/ni+σ3/∆)

}
(f∗

i

is the global minimum of fi), fraction of bad clients βi ≲ δi, and momentum parameter α ≳ Lη. If, in each
round t ∈ [T ], we cluster with radius τ ≈

√
δiσ∆ for

l ≥ max
{

1, max
i∈N ]

log(
√

ασ/∆)
log(1− δi/2)

}
steps, then for all i ∈ [N ]

1
T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲

√
σ2

/ni + σ3
/∆

T
+ βiσ∆

T
1
4 (σ2

/ni + σ3
/∆) 1

4
. (5)

Proof. See A.5.

We see from (5) that when there are no malicious clients (βi = 0), Momentum-Clustering achieves the same√
σ2

/niT convergence rate observed in (3), with no restrictions on the batch size.

4 Experiments

In this section, we first use a synthetic dataset to verify the assumptions and rates claimed in our theoretical
analysis in the previous section; and second, we use the MNIST dataset (LeCun et al., 2010) and CIFAR
dataset (Krizhevsky, 2009) to compare our proposed algorithm, Federated-Clustering, with existing state-of-
the-art federated learning algorithms. All algorithms are implemented with PyTorch (Paszke et al., 2017).

4.1 Synthetic dataset

Construction of synthetic dataset. We consider a synthetic linear regression task with squared loss for
which we construct K = 4 clusters, each with ni = 75 clients. Clients in cluster k ∈ [K] share the same
minimizer x⋆

k ∈ Rd. For each client i in cluster k, we generate a sample matrix Ai ∈ Rd×n from N (k, 1d×n)
and compute the associated target as yi = A⊤

i x⋆
k ∈ Rn. We choose the model dimension d = 10 to be greater

than the number of local samples n = 9 such that the local linear system yi = A⊤
i x is overdetermined and the
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Figure 2: Here, we show empirically on a synthetic dataset that the intra-cluster variance ratio (7) is
upper-bounded by a constant (left subplot) and the inter-cluster variance (8) that is lower-bounded by a
constant (right subplot).
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Figure 3: The performance of our algorithm vs. baselines on a synthetic dataset. When ni is small, the
ground-truth outperforms our algorithm, but this difference vanishes with increasing ni. This behavior is
consistent with the dependence of the convergence rate on ni in Theorem 3: increasing ni improves
convergence.

error ∥x⋆−x∥2
2 is large. A desired federated clustering algorithm determines the minimizer by incorporating

information from other clients j ∼ i in the same cluster.

Estimating constants in Assumptions 4 and 5. In Fig. 2, using the above synthetic dataset

• we estimate the intra-cluster variance ratio A2 by finding the upper bound of (7)

∥∇fi(x)−∇f̄i(x)∥2
2

∥∇f̄i(x)∥2
2

; (7)

• we estimate the inter-cluster variance ∆2 by setting D = 0 and computing the lower bound of (8)

∥∇fi(x)−∇fj(x)∥2
2. (8)

We run Federated-Clustering with perfect clustering assignments and estimate these bounds over time. The
result is shown in Fig. 2 where grey lines are the quantities in (7) and (8) for individual clients, black lines
are those quantities averaged within clusters, and red dashed lines are empirical bounds on the quantities.
The left figure demonstrates that the intra-cluster variance ratio does not grow with time and can therefore
reasonably be upper bounded by a constant A2. Similarly, the right figure shows that the inter-cluster
variance can be reasonably lower bounded by a positive constant ∆2. These figures empirically demonstrate
that Assumptions 4 and 5 are realistic in practice.
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Table 1: Comparison of test losses and accuracies for federated personalization algorithms on MNIST. FC
outperforms all non-oracle baselines on two learning tasks.

Rotation Private label
Acc.(%) Loss Acc.(%) Loss

Local 71.3 0.517 75.2 0.489
Global 46.6 0.631 22.2 0.803
Ditto 62.0 0.576 61.7 0.578
IFCA 54.6 0.588 65.4 0.531
KNN 52.1 2.395 63.2 1.411

FC (ours) 75.4 0.475 77.0 0.468
GT (oracle) 84.7 0.432 85.1 0.430

Performance. In Fig. 3, we compare the performance of our algorithm Federated-Clustering (FC) with
several baselines: standalone training (Local), IFCA (Ghosh et al., 2020), FedAvg (Global) (McMahan
et al., 2017), and distributed training with ground truth (GT) cluster information. We consider the syn-
thetic dataset from before, starting with cluster parameters (K, ni) = (4, 4) and observe performance when
increasing parameters to ni = 16 and K = 16 separately. In each step of optimization, we run Threshold-
Clustering for l = 10 rounds so that heuristically the outputs are close enough to cluster centers, cf. Fig. 7.
We tune the learning rate separately for each algorithm through grid search, but preserve all other algorith-
mic setups. Our algorithm outperforms the non-oracle baselines in all cases. While Federated-Clustering is
slightly worse than ground truth when (K, ni) = (4, 4), their performances are almost identical in the middle
subplot for ni = 16. This observation is consistent with the ni-scaling observed in (3): as the number of
clients-per-cluster increases, convergence improves.

4.2 MNIST experiment

In this section, we compare Federated-Clustering to existing federated learning baselines on the MNIST
dataset. The dataset is constructed as follows, similar to Ghosh et al. (2020). The data samples are
randomly shuffled and split into K = 4 clusters with ni = 75 clients in each cluster. We consider two
different tasks: 1) the rotation task transforms images in cluster k by k ∗ 90 degrees; 2) the private label
task transforms labels in cluster k with Tk(y) : y 7→ (y + k mod 10), such that the same image may have
different labels from cluster-to-cluster.
Algorithm hyperparameters. For these two experimental tasks, in addition to the baselines from our
synthetic experiment, we include the KNN-personalization (Marfoq et al., 2021) and Ditto (Li et al., 2021)
algorithms which both interpolate between a local and global model. The KNN-personalization is a linear
combination of a global model, trained with FedAvg (McMahan et al., 2017), and a local model which is the
aggregation of nearest-neighbor predictions in the client’s local dataset to the global model’s prediction. We
set the coefficients of this linear combination to be λknn = 0.5 and λknn = 0.9 for the rotation and private
label tasks, respectively. The Ditto objective is a personalized loss with an added regularization term that
encourages closeness between the personalized and global models. Since tuning this regularization parameter
λditto leads to a degenerated "Local" training where λditto = 0, we fix λditto = 1 for both rotation and private
label tasks. To reduce the computation cost of our algorithm, in each iteration we randomly divide the N
clients into 16 subgroups and apply Federated-Clustering to each subgroup simultaneously. The clipping
radius τk,l for each cluster k is adaptively chosen to be the 20th-percentile of distances to the cluster-center.
Performance. The experimental results are listed in Table 1. Since an image can have different labels
across clusters in the private label task, a model trained over the pool of all datasets only admits inferior
performance. Therefore, distributed training algorithms that maintain a global model, such as FedAvg,
Ditto, and KNN, perform poorly compared to training alone. On the other hand, our algorithm Federated-
Clustering outperforms standalone training and all personalization baselines. This experiment suggests that
our algorithm successfully explored the cluster structure and benefited from collaborative training.
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Figure 4: Performance of algorithms on CIFAR-10 dataset with the private labels task. Left: Relative
accuracy of clustering algorithms. Algorithms optimized for global model performance, such as Ditto,
IFCA, Global (FedAvg), perform poorly on personalization. FC outperforms Local training, showing that
it benefits from collaboration between clients, and is competitive with GroundTruth. Middle: Impact of
thresholding radius τ on accuracy. τ is the percentile of gradients distances from the cluster-center. Right:
Impact of local gradient steps between two clustering calls. Early on in training, clusters are less
identifiable so local optimization helps but these gains lessen later on when gradients from different clusters
drift apart and clusters are better defined.

4.3 CIFAR experiment

In this section, we evaluate the efficacy of various clustering algorithms on the CIFAR-10 and CIFAR-100
datasets (Krizhevsky, 2009).

4.3.1 CIFAR-10

For the CIFAR-10 experiment, we create 4 clusters, each containing 5 clients and transform the labels in
each cluster such that different clusters can have different labels for the same image (the private label task in
Section 4.2). We train a VGG-16 model (Simonyan & Zisserman, 2015) with batch size 32, learning rate 0.1,
and momentum 0.9. The outcomes are presented in Fig. 4. The left subplot illustrates that collaborative
clustering algorithms designed for global model training (e.g., Ditto, IFCA, Global) yield suboptimal models,
as not all participating clients benefit from each other. On the other hand, Local and GroundTruth train-
ing are not influenced by the conflicting labels from other clusters so they significantly outperform Ditto
and IFCA. Our Federated-Clustering (FC) algorithm also excludes such adversarial influence and, more
importantly, outperforms Local training, showing that FC benefits from collaboration.
In the middle subplot, we examine the impact on accuracy of varying the thresholding radius τ (i.e. τ is set
as the percentile of gradient distances from the cluster-center, so smaller percentile corresponds to smaller τ).
Our findings indicate that adopting a more conservative value for τ (lower percentile) does not substantially
compromise accuracy.
The right subplot demonstrates the behavior of Federated-Clustering when the clustering oracle is invoked
intermittently. The results suggest that increasing the number of local iterations boosts the learning curve
early in training when gradients from different clusters are close together and clusters are ill-defined. However,
this improvement plateaus when gradients become separated and clusters become well-defined.

4.3.2 CIFAR-100

We consider the CIFAR-100 dataset distributed over 10 clusters so that each cluster contains 10 unique
labels. In each cluster, we set 10 clients with IID data. We use a VGG-8 model for training and the same
hyperparameters as those in the CIFAR-10 experiment (Section 4.3.1) and report the results in Fig. 5. While
clients’ data within each cluster share similar features, a small model like VGG-8 cannot sufficiently benefit
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Figure 5: Performance of
Federated-Clustering (FC) on the
CIFAR-100 dataset. The Global
(FedAvg) accuracy plateaus while FC
continually improves.

0 50 100
Epoch

10

20

30

40

50

Ac
cu

ra
cy

Large gradient attack

FC
Global

0 50 100
Epoch

Ac
cu

ra
cy

Bit-flipping attack

FC
Global

Figure 6: Performance of Federated-Clustering (FC) against a
large gradient attack (left) and bit-flipping attack (right). FC is
robust to these attacks and significantly outperforms Global
(FedAvg) performance.

from intra-cluster collaboration. Therefore the performance of Global training plateaus at a very low level
while in contrast Federated-Clustering (FC) still benefits from collaboration and continues to improve over
time.

4.4 Defense against Byzantine attacks

Byzantine attacks, in which attackers have full knowledge of the system and can deviate from the prescribed
algorithm, are prevalent in distributed environments (Lamport et al., 2019). There are many forms of
Byzantine attacks. For example, our private label setting in Sections 4.2 and 4.3.1 corresponds to the label-
flipping attack in the Byzantine-robustness literature, since a malicious client can try to corrupt the model
by assigning the wrong label to an image in training data.
In this section, we investigate two other attacks: Byzantine workers send either very large gradients or
gradients with opposite signs. Using the MNIST dataset with the private label task, we set 4 clusters with
50 non-malicious clients each (so non-malicious clients from different clusters can have private labels) and
add 50 Byzantine works to each cluster. We demonstrate the robustness of Federated-Clustering (FC) in
Fig. 6. In both cases, Global training suffers from serious model degradation while FC successfully reaches
high accuracy under these attacks, demonstrating its robustness.

4.5 Empirical Study on Clipping Iterations in Algorithm 3

We employ Algorithm 3 (Threshold-Clustering) on datasets to discern the effectiveness of the clipping it-
erations in identifying optimal cluster centers. These datasets share the same groundtruth cluster centers,
and thus the same ∆, but vary in their inter-cluster standard deviations, with σ values of 0.5, 1, 2, 4. Each
dataset is made up of 90 ten-dimensional samples from 10 clusters, generated using the scikit-learn pack-
age (Pedregosa et al., 2011). For each iteration l within cluster k, the clipping radius τk,l is defined as the
10th percentile of gradients’ distances from the cluster-center. We repeat this experimental setup ten times
for consistency.
The outcomes, presented in Fig. 7, show that the average distances initially decrease rapidly, then steadily
approach convergence. To identify the elbow of a given curve f , we use the formula f(l)−f(l−1)

f(l−1)−minl f(l) , where
curves post-elbow are notably flat. These elbows elucidate the correlation between σ and l, indicating that for
a fixed dataset (and its corresponding σ), one can pinpoint the minimal iterations l needed for convergence.
Notably, this observation appears to align with the l ≳ log σ lower bound stated in Theorem 1.
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Figure 7: The average distance to cluster centers as a function of the number of clipping iterations l. The
distance between cluster-centers (∆) is fixed while inter-cluster standard deviation σ differs.

5 Conclusion

We develop gradient-based clustering algorithms to achieve personalization in federated learning. Our algo-
rithms have optimal convergence guarantees. They asymptotically match the achievable rates when the true
clustering of clients is known, and our analysis holds under light assumptions (e.g., for all smooth convex and
non-convex losses). Furthermore, our algorithms are provably robust in the Byzantine setting where some
fraction of the clients can arbitrarily corrupt their gradients. Future directions involve developing bespoke
analysis for the convex-loss case and developing more communication-efficient versions of our algorithms.
Further, our analysis can be used to show that our algorithms are incentive-compatible and lead to stable
coalitions as in Donahue & Kleinberg (2021). This would form a strong argument towards encouraging
participants in a federated learning system. Investigating such incentives and fairness concerns is another
promising future direction.
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A Proofs

A.1 Proof of Theorem 1

First we establish some notation.

Notation.

• Gi are the good points and Bi the bad points from point zi’s perspective. Therefore |Gi|+ |Bi| = N .

• ki denotes the cluster to which client i is assigned at the end of Threshold-Clustering.

• To facilitate the proof, we introduce a variable c2
ki,l that quantifies the distance from the cluster-

center-estimates to the true cluster means at each step of thresholding. Specifically, for client i’s
cluster ki at round l of Threshold-Clustering, we set

c2
ki,l = E∥vki,l−1 − Ezi∥2.

• For client i’s cluster ki at round l of Threshold-Clustering, we use thresholding radius

τ2
ki,l ≈ c2

ki,l + δiσ∆.

• We introduce a variable yj,l to denote the points clipped by Threshold-Clustering:

vk,l = 1
N

∑
j∈[N ]

zj1(∥zj − vk,l−1∥ ≤ τk,l) + vk,l−11(∥zj − vk,l−1∥ > τk,l)︸ ︷︷ ︸
yj,l

.
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Proof of Theorem 1. We prove the main result with the following sequence of inequalities, and then justify
the labeled steps afterwards.

E∥vki,l − Ezi∥2 = E
∥∥∥∥ 1

N

∑
j∈[N ]

yj,l − Ezi

∥∥∥∥2

= E
∥∥∥∥(1− βi)

(
1
|Gi|

∑
j∈Gi

yj,l − Ezi

)
+ βi

(
1
|Bi|

∑
j∈Bi

yj,l − Ezi

)∥∥∥∥2

(i)
≤ (1 + βi)(1− βi)2E

∥∥∥∥(
1
|Gi|

∑
j∈Gi

yj,l

)
− Ezi

∥∥∥∥2
+

(
1 + 1

βi

)
β2

i E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,l

)
− Exi

∥∥∥∥2

≲ E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,l

)
− Ezi

∥∥∥∥2

︸ ︷︷ ︸
E1

+βi E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,l

)
− Ezi

∥∥∥∥2

︸ ︷︷ ︸
E2

(ii)
≲

(
(1− δi)c2

ki,l + σ2

ni
+ σ3

∆

)
+ βi(c2

ki,l + δiσ∆)

(iii)
≲ (1− δi/2)c2

ki,l +
(

σ2

ni
+ σ3

∆ + βiσ∆
)

(iv)
≲ (1− δi/2)lc2

ki,1 +
(

σ2

ni
+ σ3

∆ + βiσ∆
) l−1∑

q=0
(1− δi/2)q

(v)
≲ (1− δi/2)lσ2 +

(
σ2

ni
+ σ3

∆ + βiσ∆
)

(vi)
≲

σ2

ni
+ σ3

∆ + βiσ∆. (9)

Justifications for the labeled steps are:

• (i) Young’s inequality: ∥x + y∥2 ≤ (1 + ϵ)∥x∥2 + (1 + 1/ϵ)∥y∥2 for any ϵ > 0.

• (ii) We prove this bound in Lemmas 1 and 5. Importantly, it shows that the clustering error is
composed of two quantities: E1, the error contributed by good points from the cluster’s perspective,
and E2, the error contributed by the bad points from the cluster’s perspective.

• (iii) Assumption that βi ≲ δi

• (iv) Since E∥vki,l − Ezi∥2 = c2
ki,l+1, the inequality forms a recursion which we unroll over l steps.

• (v) Assumption that c2
ki,1 = E∥vki,0 − Ezi∥2 ≤ σ2. Also, the partial sum in the second term can be

upper-bounded by a large-enough constant.

• (vi) Assumption that l ≥ max
{

1, log(σ/∆)
log(1−δi/2)

}

From (9), we see that c2
ki,l ≲ σ2

ni
+ σ3

∆ + βiσ∆. Plugging this into the expression for τ2
ki,l gives τ2

ki,l ≈
σ2

ni
+ σ3

∆ + δiσ∆ ≈ δiσ∆ for large ni and ∆.

Lemma 1 (Clustering Error due to Good Points).

E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,l

)
− Ezi

∥∥∥∥2
≲ (1− δi)c2

ki,l + σ2

ni
+ σ3

∆
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Proof of Lemma 1. We prove the main result with the following sequence of inequalities and justify the
labeled steps afterward.

E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,l

)
− Ezi

∥∥∥∥2
= E

∥∥∥∥(
1
|Gi|

∑
j∈Gi:j∼i

(yj,l − Ezj)
)

+
(

1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,l − Ezi)
)∥∥∥∥2

(i)
≤

(
1 + 2

δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,l − Ezj)
∥∥∥∥2

+
(

1 + δi

2

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,l − Ezi)
∥∥∥∥2

(ii)
≲

(
1 + 2

δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(Eyj,l − Ezj)
∥∥∥∥2

+
(

1 + 2
δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,l − Eyj,l)
∥∥∥∥2

+
(

1 + δi

2

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,l − Ezi)
∥∥∥∥2

≤
(

1 + 2
δi

)
δ2

i ∥Ej∈Gi:j∼i(yj,l − zj)∥2 +
(

1 + 2
δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,l − Eyj,l)
∥∥∥∥2

+
(

1 + δi

2

)
(1− δi)2Ej∈Gi:j ̸∼i∥yj,l − Ezi∥2

≲ δi ∥Ej∈Gi:j∼i(yj,l − zj)∥2︸ ︷︷ ︸
Ti

+
(

1 + 2
δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,l − Eyj,l)
∥∥∥∥2

︸ ︷︷ ︸
T2

+
(

1 + δi

2

)
(1− δi)2 Ej∈Gi:j ̸∼i∥yj,l − Ezi∥2︸ ︷︷ ︸

T3

(iii)
≲ δi

(
c2

ki,l +
(c2

ki,l + σ2)σ
δi∆

)
+

(
1 + 2

δi

)
ni

|Gi|2
σ2

+ (1− δi)2
(

1 + δi

2

)((
1 + δi

2 + σ2

δi∆2

)
c2

ki,l + σ3

∆

)
≲

(
1− δi + σ

∆ + σ2

δi∆2

)
c2

ki,l +
(

σ2

ni
+ σ3

∆

)
(iv)
≲ (1− δi)c2

ki,l +
(

σ2

ni
+ σ3

∆

)
.

• (i), (ii) Young’s inequality

• (iii) We prove this bound in Lemmas 2, 3, and 4. Importantly, it shows that, from point i’s perspec-
tive, the error of its cluster-center-estimate is composed of three quantities: T1, the error introduced
by our thresholding procedure on the good points which belong to i’s cluster (and therefore ideally
are included within the thresholding radius); T2, which accounts for the variance of the points in
i’s cluster; and T3, the error due to the good points which don’t belong to i’s cluster (and therefore
ideally are forced outside the thresholding radius).

• (iv) Assumption that ∆ ≳ σ/δi.

Lemma 2 (Bound T1: Error due to In-Cluster Good Points).

∥Ej∈Gi:j∼i(yj,l − zj)∥2 ≲ c2
ki,l +

(c2
ki,l + σ2)σ

δi∆
.
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Proof of Lemma 2. By definition of yj,l,

Ej∈Gi:j∼i∥yj,l − zj∥ = E[∥vki,l−1 − zj∥1(∥vki,l−1 − zj∥ > τki,l)]

≤ E[∥vki,l−1 − zj∥2
1(∥vki,l−1 − zj∥ > τki,l)]

τki,l

≤ E∥vki,l−1 − zj∥2

τki,l

≲
E∥vki,l−1 − Ezi∥2 + E∥Ezj − zj∥2

τki,l

≤
c2

ki,l + σ2

τki,l

Finally, by Jensen’s inequality and plugging in the value for τki,l,

∥E(yj,l − zj)∥2 ≤ (E∥yj,l − zj∥)2

≲
(c2

ki,l + σ2)2

τ2
ki,l

≲
c4

ki,l

c2
ki,l

+
c2

ki,lσ
2

δiσ∆ + σ4

δiσ∆

= c2
ki,l +

(c2
ki,l + σ2)σ

δi∆
.

Lemma 3 (Bound T2: Variance of Clipped Points).

E
∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,l − Eyj,l)
∥∥∥∥2
≤ ni

|Gi|2
σ2.

Proof of Lemma 3. Note that the elements in the sum
∑

j∈Gi:j∼i(yj,l−Eyj,l) are not independent. Therefore,
we cannot get rid of the cross terms when expanding the squared-norm. However, if for each round of
thresholding we were sample a fresh batch of points to set the new cluster-center estimate, then the terms
would be independent. With this resampling strategy, our bounds would only change by a constant factor.
Therefore, for ease of analysis, we will assume the terms in the sum are independent. In that case,

E
∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,l − Eyj,l)
∥∥∥∥2
≤ ni

|Gi|2
E∥yj,l − Eyj,l∥2

≤ ni

|Gi|2
E∥zj − Ezj∥2

≤ ni

|Gi|2
σ2,

where the second-to-last inequality follows from the contractivity of the thresholding procedure.

Lemma 4 (Bound T3: Error due to Out-of-Cluster Good Points).

Ej∈Gi:j ̸∼i∥yj,l − Ezi∥2 ≲

(
1 + δi

2 + σ2

δi∆2

)
c2

ki,l + σ3

∆ .

22



Published in Transactions on Machine Learning Research (11/2023)

Proof of Lemma 4. By Young’s inequality,

Ej∈Gi:j ̸∼i∥yj,l − Ezi∥2 ≤
(

1 + δi

2

)
E∥vki,l−1 − Ezi∥2 +

(
1 + 2

δi

)
Ej∈Gi:j ̸∼i∥yj,l − vki,l−1∥2

≤
(

1 + δi

2

)
c2

ki,l +
(

1 + 2
δi

)
Ej∈Gi:j ̸∼i∥yj,l − vki,l−1∥2

=
(

1 + δi

2

)
c2

ki,l +
(

1 + 2
δi

)
Ej∈Gi:j ̸∼i[∥zj − vki,l−1∥2

1{∥zj − vki,l−1∥ ≤ τki,l}]

≤
(

1 + δi

2

)
c2

ki,l +
(

1 + 2
δi

)
τ2

ki,lPj∈Gi:j ̸∼i(∥zj − vki,l−1∥ ≤ τki,l).

We now have to bound the probability in the expression above. Note that if ∥vki,l−1 − zj∥ ≤ τki,l, then

∥Ezj − Ezi∥2 ≲ ∥zj − Ezj∥2 + ∥zj − Evki,l−1∥2 + ∥Evki,l−1 − Ezi∥2

≲ ∥zj − Ezj∥2 + ∥zj − Ezj∥2 + ∥Ezj − Evki,l−1∥2 + E∥vki,l−1 − Ezi∥2 + E∥zi − Ezi∥2

≲ ∥zj − Ezj∥2 + τ2
ki,l + c2

ki,l + σ2.

By Assumption 2, this implies that

∆2 ≲ ∥zj − Ezj∥2 + τ2
ki,l + c2

ki,l + σ2

which means that

∥zj − Ezj∥2 ≳ ∆2 − (τ2
ki,l + c2

ki,l + σ2).

By Markov’s inequality,

P(∥zj − Ezj∥2 ≳ ∆2 − (τ2
ki,l + c2

ki,l + σ2)) ≤ σ2

∆2 − (τ2
ki,l + c2

ki,l + σ2) ≲
σ2

∆2

as long as

∆2 ≳ τ2
ki,l + c2

ki,l + σ2,

which holds due to the constraint on ∆ in the theorem statement. Therefore

Ej∈Gi:j ̸∼i∥yj,l − Ezi∥2 ≲

(
1 + δi

2

)
c2

ki,l +
(

1 + 2
δi

) (c2
ki,l + δiσ∆)σ2

∆2

≤
(

1 + δi

2 + σ2

δi∆2

)
c2

ki,l + σ3

∆ .

Lemma 5 (Clustering Error due to Bad Points).

E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,l

)
− Ezi

∥∥∥∥2
≲ c2

ki,l + δiσ∆

Proof of Lemma 5.

E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,l

)
− Ezi

∥∥∥∥2
≤ Ej∈Bi

∥yj,l − Ezi∥2

≲ Ej∈Bi
∥yj,l − vki,l−1∥2 + E∥vki,l−1 − Ezi∥2

≲ c2
ki,l + δiσ∆.

The last inequality follows from the intuition that bad points will position themselves at the edge of the
thresholding ball, a distance τki,l away from the current center-estimate vki,l−1. Therefore we cannot do
better than upper-bounding Ej∈Bi

∥yj,l− vki,l−1∥2 by τ2
ki,l ≈ c2

ki,l + δiσ∆, the squared-radius of the ball.
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A.2 Proof of Theorem 2

Proof of Theorem 2. Let
D1 =

{
δ w.p. p
0 w.p. 1− p

and
D2 =

{
δ w.p. 1− p
0 w.p. p

and define the mixture M = 1
2D1 + 1

2D2. Also consider the mixture M̃ = 1
2 D̃1 + 1

2 D̃2, where D̃1 = 0 and
D̃2 = δ. It is impossible to distinguish whether a sample comes from M or M̃. Therefore, if you at least
know a sample came from either M or M̃ but not which one, the best you can do is to estimate µ1 with
µ̂1 = δp

2 , half-way between the mean of D1, which is δp, and the mean of D̃1, which is 0. In this case

E∥µ̂1 − µ1∥2 = δ2p2

4 .

If p ≤ 1
2 , then

∆ = (1− p)δ − pδ = (1− 2p)δ. (10)
Also,

σ2 = δ2p(1− p). (11)
Equating δ2 in (10) and (11),

∆2

(1− 2p)2 = σ2

p(1− p) ,

which can be rearranged to
(4σ2 + ∆2)p2 − (4σ2 + ∆2)p + σ2 = 0.

Solving for p,
p = 1

2 −
∆

2
√

4σ2 + ∆2
. (12)

Note that,

δ2p2

4 = σ2p2

4p(1− p)

= σ2p

4(1− p) . (13)

Plugging the expression for p from (12) into (13), we can see that

δ2p2

4 = σ2

4

(√
4σ2 + ∆2 −∆

∆

)
= σ2

4

(√
1 + 4σ2

∆2 − 1
)
≥ σ2

4

(
2σ2

∆2 −
2σ4

∆4

)
.

The last step used an immediately verifiable inequality that
√

1 + x ≥ 1 + x
2 −

x2

8 for all x ∈ [0, 8]. Finally,
we can choose ∆2 ≥ 2σ2 to give the result that

E∥µ̂1 − µ1∥2 ≥ δ2p2

4 ≥ σ4

4∆2 .

Finally, suppose that there is only a single cluster with K = 1. Then, given n stochastic samples. standard
information theoretic lower bounds show that we will have an error at least

E∥µ̂1 − µ1∥2 ≥ σ2

4n
.

Combining these two lower bounds yields the proof of the theorem.
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A.3 Proof of Theorem 3

First we establish some notation.

Notation.

• Gi are the good clients and Bi the bad clients from client i’s perspective. Therefore |Gi|+ |Bi| = N .

• Ex denotes conditional expectation given the parameter, e.g. Exg(x) = E[g(x)|x]. E denotes expec-
tation over all randomness.

• Xt ≜ 1
T

∑T
t=1 Xt for a general variable Xt indexed by t.

• We use fi(x) to denote average loss on a general batch B of samples. That is, if fi(x; b) is the loss
on a single sample b, we define fi(x) = 1

|B|
∑

b∈B fi(x; b).

• f̄i(x) ≜ 1
ni

∑
j∈Gi:j∼i fj(x)

• We introduce a variable ρ2 to bound the variance of the gradients

E∥gi(x)− Exgi(x)∥2 ≤ ρ2,

and show in Lemma 6 how this can be written in terms of the variance of the gradients computed
over a batch size of 1.

• lt is the number of rounds that Threshold-Clustering is run in round t of Federated-Clustering.

• ki denotes the cluster to which client i is assigned.

• vi,l,t denotes the gradient update for client i in round t of Federated-Clustering and round l of
Threshold-Clustering. That is, vi,lt,t corresponds to the quantity returned in Step 6 of Algorithm 2.

• To facilitate the proof, we introduce a variable cki,l,t that quantifies the distance from the cluster-
center-estimates to the true cluster means. Specifically, for client i’s cluster ki at round t of
Federated-Clustering and round l of Threshold-Clustering we set

c2
ki,l,t = E∥vi,l−1,t − Exḡi(xi,t−1)∥2.

• For client i’s cluster ki at round t of Federated-Clustering and round l of Threshold-Clustering, we
use thresholding radius

τ2
ki,l,t ≈ c2

ki,l,t + A4E∥∇f̄i(xi,t−1)∥2 + δiρ∆.

• Finally, we introduce a variable yj,l,t to denote the points clipped by Threshold-Clustering:

vi,l,t = 1
N

∑
j∈[N ]

1(∥gj(xi,t−1)− vi,l−1,t∥ ≤ τkt
i
,l) + vi,l−1,t1(∥gj(xi,t−1)− vi,l−1,t∥ > τkt

i
,l︸ ︷︷ ︸

yj,l,t

).

Proof of Theorem 3. In this proof, our goal is to bound E∥∇fi(xi,t−1)∥2 for each client i, thus showing
convergence. Recall that our thresholding procedure clusters the gradients of clients at each round and
estimates the center of each cluster. These estimates are then used to update the parameters of the clusters.
Therefore, we expect E∥∇fi(xi,t−1)∥2 to be bounded in terms of the error of this estimation procedure. The
following sequence of inequalities shows this.
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By L-smoothness of fi and setting η ≤ 1/L,

fi(xi,t) ≤ fi(xi,t−1) + ⟨∇fi(xi,t−1), xi,t − xi,t−1⟩+ L

2 ∥xi,t − xi,t−1∥2

= fi(xi,t−1)− η⟨∇fi(xi,t−1), vi,lt,t⟩+ Lη2

2 ∥vi,lt,t∥2

= fi(xi,t−1) + η

2∥vi,lt,t −∇fi(xi,t−1)∥2 − η

2∥∇fi(xi,t−1)∥2 − η

2 (1− Lη)∥vi,lt,t∥2

≤ fi(xi,t−1) + η∥vi,lt,t −∇f̄i(xi,t−1)∥2 + ηA2∥∇f̄i(xi,t−1)∥2 − η

2∥∇fi(xi,t−1)∥2 − η

2 (1− Lη)∥vi,lt,t∥2.

(14)

Recall that vi,lt,t is client i’s cluster-center estimate at round t of optimization, so the second term on the
right side of (14) is the error due to the clustering procedure. In Lemma 7, we show that, in expectation,
this error is bounded by

δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 +
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)

.

Therefore, subtracting f∗
i from both sides, summing (14) over t, dividing by T , taking expectations, applying

Lemma 7 to (14), and applying the constraint on ∆ from the theorem statement, we have

ηE∥∇fi(xi,t−1)∥2 ≲
E(fi(xi,0)− f∗

i )
T

+ ηA2E∥∇f̄i(xi,t−1)∥2 + η

(
ρ2

ni
+ ρ3

∆ + βiρ∆
)

. (15)

The third term on the right side of (14) reflects the fact that clients in the same cluster may have different
loss objectives. Far from their optima, these loss objectives may look very different and therefore be hard to
cluster together.
In order to bound this term, we use a similar argument as above. By L-smoothness of fi’s and setting
η ≤ 1/L,

f̄i(xi,t) ≤ f̄i(xi,t−1) + ⟨∇f̄i(xi,t−1), xi,t − xi,t−1⟩+ L

2 ∥xi,t − xi,t−1∥2

= f̄i(xi,t−1)− η⟨∇f̄i(xi,t−1), vi,lt,t⟩+ Lη2

2 ∥vi,lt,t∥2

= f̄i(xi,t−1) + η

2∥vi,lt,t −∇f̄i(xi,t−1)∥2 − η

2∥∇f̄i(xi,t−1)∥2 − η

2 (1− Lη)∥vi,lt,t∥2.

Subtracting f̄∗
i from both sides, summing over t, dividing by T , taking expectations, and applying Lemma

7,

ηE∥∇f̄i(xi,t−1)∥2 ≲
E(f̄i(xi,0)− f̄∗

i )
T

+ ηρ

∆ D2E∥∇fi(xi,t−1)∥2 + η

(
ρ2

ni
+ ρ3

∆ + βiρ∆
)

. (16)

Combining (15) and (16), and applying the constraint on ∆ from the theorem statement, we have that

ηE∥∇fi(xi,t−1)∥2 ≲
E(fi(xi,0)− f∗

i ) + A2E(f̄i(x0)− f̄∗
i )

T
+ η max(1, A2)

(
ρ2

ni
+ ρ3

∆ + βiρ∆
)

. (17)

Dividing both sides of (17) by η = 1/L and noting that ρ2 = σ2
/|B| from Lemma 6,

E∥∇fi(xi,t−1)∥2 ≲
E(fi(xi,0)− f∗

i ) + A2E(f̄i(xi,0)− f̄∗
i )

ηT
+ max(1, A2)

(
ρ2

ni
+ ρ3

∆ + βiρ∆
)

(18)

≤ L(E(fi(xi,0)− f∗
i ) + A2E(f̄i(xi,0)− f̄∗

i ))
T

+ max(1, A2)(σ2
/ni + σ3

/∆ + βiσ∆)√
|B|

≲

√
max(1, A2)(σ2

/ni + σ3
/∆ + βiσ∆)

T
,
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where the last inequality follows from setting

|B| ≳ max(1, A2)
(

σ2

ni
+ σ3

∆ + βiσ∆
)

T.

Since T = mi/|B|, this is equivalent to setting

|B| ≳

√
max(1, A2)

(
σ2

ni
+ σ3

∆ + βiσ∆
)

mi.

Lemma 6 (Variance reduction using batches). If, for a single sample b,

Ex∥gi(x; b)− Exgi(x; b)∥2 ≤ σ2,

then for a batch B of samples,

Ex∥gi(x)− Exgi(x)∥2 ≤ σ2

|B|
.

Proof of Lemma 6. Due to the independence and unbiasedness of stochastic gradients,

Ex∥gi(x)− Exgi(x)∥2 = 1
|B|2

∑
b∈B

Ex∥gi(x; b)− Exgi(x; b)∥2

≤ σ2

|B|
.

Lemma 7 (Bound on Clustering Error).

E∥vi,lt,t −∇f̄i(xi,t−1)∥2 ≲ δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 +
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)
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Proof of Lemma 7. We prove the main result with the following sequence of inequalities and justify the
labeled steps afterwards.

E∥vi,lt,t −∇f̄i(xi,t−1)∥2 = E∥vi,lt,t − Exḡi(xi,t−1)∥2

= E
∥∥∥∥ 1

N

∑
j∈[N ]

yj,lt,t − Exḡi(xi,t−1)
∥∥∥∥2

= E
∥∥∥∥(1− βi)

(
1
|Gi|

∑
j∈Gi

yj,lt,t − Exḡi(xi,t−1)
)

+ βi

(
1
|Bi|

∑
j∈Bi

yj,t,l − Exḡi(xi,t−1)
)∥∥∥∥2

(i)
≤ (1 + βi)(1− βi)2E

∥∥∥∥(
1
|Gi|

∑
j∈Gi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2

+
(

1 + 1
βi

)
β2

i E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2

≤ E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2

︸ ︷︷ ︸
E1

+βi E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2

︸ ︷︷ ︸
E2

(ii)
≲ (1− δi + βi)c2

ki,lt,t + (δi + βiA
4)E∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2

+
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)

(iii)
≲ (1− δi/2)c2

ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 +
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)

(iv)
≲ (1− δi/2)ltc2

ki,1,t + δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 +
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)

(v)
≤ ρ

∆c2
ki,1,t + δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 +
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)

.(19)

Justifications for the labeled steps are:

• (i) Young’s inequality: ∥x + y∥2 ≤ (1 + ϵ)x2 + (1 + 1/ϵ)y2 for any ϵ > 0.

• (ii) We prove this bound in Lemmas 8 and 12. Importantly, it shows that the clustering error is
composed of two quantities: E1, the error contributed by good points from the cluster’s perspective,
and E2, the error contributed by the bad points from the cluster’s perspective.

• (iii) Assumption that βi ≲ min(δi, δi/A4)

• (iv) Since E∥vi,lt,t−∇f̄i(xi,t−1)∥2 = c2
ki,lt+1,t, the inequality forms a recursion which we unroll over

lt steps.

• (v) Assumption that lt ≥ max(1, log(ρ/∆)
log(1−δi/2) )
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Finally, we note that

c2
ki,1,t = E∥gi(xi,t−1)− Exḡi(xi,t−1)∥2

≲ E∥gi(xi,t−1)− Exgi(xi,t−1)∥2 + E∥Exgi(xi,t−1)− Exḡi(xi,t−1)∥2

≤ ρ2 + A2E∥∇f̄i(xi,t−1)∥2.

Applying this bound to (19), and applying the bound on ∆ from the theorem statement, we have

E∥vi,lt,t −∇f̄i(xi,t−1)∥2

≲

(
δi + ρA2

∆

)
E∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 +
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)

≲ δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 +
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)

.

Lemma 8 (Clustering Error due to Good Points).

E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2

≲ (1− δi)c2
ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 +
(

ρ2

ni
+ ρ3

∆

)
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Proof of Lemma 8. We prove the main result in the sequence of inequalities below and then justify the
labeled steps.

E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2

= E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,lt,t

)
− 1
|Gi|

∑
j∈Gi:j∼i

Exgj(xi,t−1)−
(

1
ni
− 1
|Gi|

) ∑
j∈Gi:j∼i

Exgj(xi,t−1)
∥∥∥∥2

= E
∥∥∥∥(

1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Exgj(xi,t−1))
)

+
(

1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,lt,t − Exḡi(xi,t−1))
)∥∥∥∥2

(i)
≤

(
1 + 2

δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Exgj(xi,t−1))
∥∥∥∥2

+
(

1 + δi

2

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,lt,t − Exḡi(xi,t−1))
∥∥∥∥2

(ii)
≲

(
1 + 2

δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(Eyj,lt,t − Exgj(xi,t−1))
∥∥∥∥2

+
(

1 + 2
δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2

+
(

1 + δi

2

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,lt,t − Exḡi(xi,t−1))
∥∥∥∥2

(iii)
≲

(
1 + 2

δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

E(yj,lt,t − gj(xi,t−1))
∥∥∥∥2

+
(

1 + 2
δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(Exgj(xi,t−1)− Egj(xi,t−1))
∥∥∥∥2

+
(

1 + 2
δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2

+
(

1 + δi

2

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,lt,t − Exḡi(xi,t−1))
∥∥∥∥2

(iv)
≲

(
1 + 2

δi

)
δ2

i Ej∈Gi:j∼i∥E(yj,lt,t − gj(xi,t−1))∥2︸ ︷︷ ︸
T1

+
(

1 + 2
δi

)
ni

|Gi|2
ρ2

+
(

1 + 2
δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2

︸ ︷︷ ︸
T2

+
(

1 + δi

2

)
(1− δi)2 Ej∈Gi:j ̸∼i∥yj,lt,t − Exḡi(xi,t−1)∥2︸ ︷︷ ︸

T3

(v)
≲ δi

(
c2

ki,lt,t + E∥∇f̄i(xi,t−1)∥2 + ρ3

δi∆

)
+

(
1 + 2

δi

)
ni

|Gi|2
ρ2

+
(

1 + δi

2

)
(1− δi)2

((
1 + δi

2

)
c2

ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 + ρ3

∆

)
(vi)
≲ δi

(
c2

ki,lt,t + E∥∇f̄i(xi,t−1)∥2 + ρ3

δi∆

)
+ ρ2

ni

+ (1− δi)
(

c2
ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 + ρ3

∆

)
≲ (1− δi)c2

ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 +
(

ρ2

ni
+ ρ3

∆

)
.

Justifications for the labeled steps are:

• (i),(ii),(iii) Young’s inequality

• (iv) First, we can can interchange the sum and the norm due to independent stochasticity of the
gradients. Then by the Tower Property and Law of Total Variance for the 1st and 3rd steps
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respectively,

E∥Exgj(xi,t−1)− Egj(xi,t−1))∥2 = E∥Exgj(xi,t−1)− E[Exgj(xi,t−1)]∥2

= Var(Ex(gj(xi,t−1)))
= Var(gj(xi,t−1))− E(Varx(gj(xi,t−1)))
≤ Var(gj(xi,t−1))− E∥gj(xi,t−1)− Exgj(xi,t−1)∥2

≲ ρ2,

where the last inequality follows since the two terms above it are both bounded by ρ2.

• (v) We prove this bound in Lemmas 9, 10, and 11. It shows that, from point i’s perspective, the
error of its cluster-center-estimate is composed of three quantities: T1, the error introduced by our
thresholding procedure on the good points which belong to i’s cluster (and therefore ideally are
included within the thresholding radius); T2, which accounts for the variance of the clipped points in
i’s cluster; and T3, the error due to the good points which don’t belong to i’s cluster (and therefore
ideally are forced outside the thresholding radius).

• (vi) (1 + x/2)2(1− x)2 ≤ 1− x for all x ∈ [0, 1]

Lemma 9 (Bound T1: Error due to In-Cluster Good Points).

Ej∈Gi:j∼i∥E(yj,lt,t − gj(xi,t−1))∥2 ≲ c2
ki,lt,t + E∥∇f̄i(xi,t−1)∥2 + ρ3

δi∆
.

Proof of Lemma 9. In this sequence of steps, we bound the clustering error due to good points from client
i’s cluster. By definition of yj,lt,t,

E∥yj,lt,t − gj(xi,t−1)∥ = E[∥vi,lt−1,t − gj(xi,t−1)∥1(∥vi,lt−1,t − gj(xi,t−1)∥ > τki,lt,t)]

≤ E[∥vi,lt−1,t − gj(xi,t−1)∥2
1(∥vi,lt−1,t − gj(xi,t−1)∥ > τki,lt,t)]

τkt
i
,lt

≤ E∥vi,lt−1,t − gj(xi,t−1)∥2

τki,lt,t
.

Therefore, by Jensen’s inequality and plugging in the value for τki,lt,t,

∥E(yj,lt,t − gj(xi,t−1))∥2

≤ (E∥yj,lt,t − gj(xi,t−1)∥)2

≤ (E∥vi,lt−1,t − gj(xi,t−1)∥2)2

τ2
ki,lt,t

≲
(E∥vi,lt−1,t − Exḡi(xi,t−1)∥2 + E∥Exḡi(xi,t−1)− Exgj(xi,t−1)∥2 + E∥gj(xi,t−1)− Exgj(xi,t−1)∥2)2

τ2
ki,lt,t

≤
(c2

ki,lt,t + A2E∥∇f̄i(xi,t−1)∥2 + ρ2)2

τ2
ki,lt,t

≲
(c2

ki,lt,t + A2E∥∇f̄i(xi,t−1)∥2 + ρ2)2

c2
ki,lt,t + A4E∥∇f̄i(xi,t−1)∥2 + δiρ∆

≲

(
1 + ρ

δi∆

)
c2

ki,lt,t +
(

1 + ρA2

δi∆

)
E∥∇f̄i(xi,t−1)∥2 + ρ3

δi∆

≲ c2
ki,lt,t + E∥∇f̄i(xi,t−1)∥2 + ρ3

δi∆
, (20)
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where the last inequality follows from constraints on ∆. The second inequality follows from Young’s inequal-
ity. The second-to-last inequality follows by separating the fraction into a sum of fractions and selecting
terms from the denominator for each fraction that cancel with terms in the numerator to achieve the desired
rate.
Summing (20) over t and dividing by T , we have

Ej∈Gi:j∼i∥Ex(yj,lt,t − gj(xi,t−1))∥2 = E∥yj,lt,t − gj(xi,t−1)∥2

≲ c2
ki,lt,t + E∥∇f̄i(xi,t−1)∥2 + ρ3

δi∆
.

Lemma 10 (Bound T2: Variance of Clipped Points).

E
∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2
≤ ni

|Gi|2
ρ2.

Proof of Lemma 10. The first thing to note is that the elements in the sum
∑

j∈Gi:j∼i(yj,lt,t−Eyj,lt,t) are not
independent. Therefore, we cannot get rid of the cross terms when expanding the squared-norm. However, if
for each round of thresholding we sampled a fresh batch of points to set the new cluster-center estimate, then
the terms would be independent. With such a resampling strategy, our bounds in these proofs only change
by a constant factor. Therefore, for ease of analysis, we will assume the terms in the sum are independent.
In that case,

E
∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2
≤ ni

|Gi|2
E∥yj,lt,t − Eyj,lt,t∥2

≤ ni

|Gi|2
E∥gj(xi,t−1)− Egj(xi,t−1)∥2

≤ ni

|Gi|2
ρ2,

where the second-to-last inequality follows from the contractivity of the thresholding procedure.

Lemma 11 (Bound T3: Error due to Out-of-Cluster Good Points).

Ej∈Gi:j ̸∼i∥yj,lt,t − Exḡi(xi,t−1)∥2 ≲

(
1 + δi

2

)
c2

ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 + ρ3

∆ .

Proof of Lemma 11. This sequence of steps bounds the clustering error due to points not from client i’s
cluster. Using Young’s inequality for the first step,

Ej∈Gi:j ̸∼i∥yj,lt,t − Exḡi(xi,t−1)∥2

≤
(

1 + δi

2

)
E∥vi,lt−1,t − Exḡi(xi,t−1)∥2 +

(
1 + 2

δi

)
Ej∈Gi:j ̸∼i∥yj,lt,t − vi,lt−1,t∥2

≤
(

1 + δi

2

)
c2

ki,lt,t +
(

1 + 2
δi

)
Ej∈Gi:j ̸∼i∥yj,lt,t − vi,lt−1,t∥2

=
(

1 + δi

2

)
c2

ki,lt,t +
(

1 + 2
δi

)
Ej∈Gi:j ̸∼i[∥gj(xi,t−1)− vi,lt−1,t∥2

1{∥gj(xi,t−1)− vi,lt−1,t∥ ≤ τki,lt,t}]

≤
(

1 + δi

2

)
c2

ki,lt,t +
(

1 + 2
δi

)
τ2

ki,lt,tPj∈Gi:j ̸∼i(∥gj(xi,t−1)− vi,lt−1,t∥ ≤ τki,lt,t)

≲

(
1 + δi

2

)
c2

ki,lt,t +
(

1
δi

)
(c2

ki,lt,t + A4E∥∇f̄i(xi,t−1)∥2 + δiρ∆)Pj∈Gi:j ̸∼i(∥gj(xi,t−1)− vi,lt−1,t∥ ≤ τki,lt,t).
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The next step is to bound the probability term in the inequality above. Note that if ∥vi,lt−1,t−gj(xi,t−1)∥ ≤
τkt

i
,lt

, then

∥Exgj(xi,t−1)− Exgi(xi,t−1)∥2 ≲ ∥gj(xi,t−1)− Exgj(xi,t−1)∥2 + ∥gj(xi,t−1)− vi,lt−1,t∥2 + ∥vi,lt−1,t − Exgi(xi,t−1)∥2

≲ ∥gj(xi,t−1)− Exgj(xi,t−1)∥2 + τ2
ki,lt,t

+ ∥vi,lt−1,t − Exḡi(xi,t−1)∥2 + ∥Exgi(xi,t−1)− Exḡi(xi,t−1)∥2

≲ ∥gj(xi,t−1)− Exgj(xi,t−1)∥2 + τ2
ki,lt,t

+ ∥vi,lt−1,t − Exḡi(xi,t−1)∥2 + A2∥∇f̄i(xi,t−1)∥2.

By Assumption 4, the previous inequality implies

∆2 −D2∥∇fi(xi,t−1)∥2 ≲ ∥gj(xi,t−1)− Exgj(xi,t−1)∥2 + τ2
ki,lt,t + A2∥∇f̄i(xi,t−1)∥2 + ∥vi,lt−1,t − Exḡi(xi,t−1)∥2

which, summing over t and dividing by T , implies

∥gj(xi,t−1)− Exgj(xi,t−1)∥2 + ∥vi,lt−1,t − Exḡi(xi,t−1)∥2 + A2∥∇f̄i(xi,t−1)∥2 + D2∥∇fi(xi,t−1)∥2 ≳ ∆2 − τ2
ki,lt,t.

By Markov’s inequality, the probability of this event is upper-bounded by

ρ2 + E∥vi,lt−1,t − Exḡi(xi,t−1)∥2 + A2E∥∇f̄i(xi,t−1)∥2 + D2E∥∇fi(xi,t−1)∥2

∆2 − τ2
ki,lt,t

≲
ρ2 + c2

ki,lt,t + A2E∥∇f̄i(xi,t−1)∥2 + D2E∥∇fi(xi,t−1)∥2

∆2 ,

where the second inequality holds due to the constraint on ∆ from the theorem statement. Therefore,

Ej∈Gi:j ̸∼i∥yj,lt,t − Exḡi(xi,t−1)∥2

≲

(
1 + δi

2 + ρ

∆ +
ρ2 + c2

ki,lt,t + A2E∥∇f̄i(xi,t−1)∥2 + D2E∥∇fi(xi,t−1)∥2

δi∆2

)
c2

ki,lt,t

+
(

ρA2

∆ +
A4(ρ2 + c2

ki,lt,t + A2E∥∇f̄i(xi,t−1)∥2 + D2E∥∇fi(xi,t−1)∥2)
δi∆2

)
E∥∇f̄i(xi,t−1)∥2

+ ρ

∆D2E∥∇fi(xi,t−1)∥2 + ρ3

∆

≲

(
1 + δi

2

)
c2

ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 + ρ

∆D2E∥∇fi(xi,t−1)∥2 + ρ3

∆ ,

where for the last inequality we again apply the constraint on ∆.

Lemma 12 (Clustering Error due to Bad Points).

E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2
≲ c2

ki,lt,t + A4E∥∇f̄i(xi,t−1)∥2 + δiρ∆

Proof of Lemma 12. This lemma bounds the clustering error due to the bad clients from client i’s perspective.
The goal of such clients would be to corrupt the cluster-center estimate of client i’s cluster as much as possible
at each round. They can have the maximum negative effect by setting their gradients to be just inside the
thresholding radius around client i’s cluster-center estimate. This way, the gradients will keep their value
(rather than be assigned the value of the current cluster-center estimate per our update rule), but they will
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have maximal effect in moving the cluster-center estimate from its current position. Therefore, in step 3 of
the inequalities below, we can not do better than bounding the distance between these bad points and the
current cluster center estimate (i.e. ∥yj,lt,t − vi,lt−1,t∥2) by the thresholding radius (τ2

ki,lt,t).

E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2
≤ Ej∈Bi

∥yj,lt,t − Exḡi(xi,t−1)∥2

≲ Ej∈Bi∥yj,lt,t − vi,lt−1,t∥2 + E∥vi,lt−1,t − Exḡi(xi,t−1)∥2

≤ τ2
ki,lt,t + c2

ki,lt,t

≲ c2
ki,lt,t + A4E∥∇f̄i(xi,t−1)∥2 + δiρ∆.

The last inequality applies the definition of τki,lt,t, and the result of the lemma follows by summing this
inequality over t and dividing by T .

A.4 Proof of Corollary 1

Proof. We will show that there exist A, D, and ∆ for which Assumptions 4 and 5 are satisfied for smooth
and strongly-convex losses. Then the result follows directly from Theorem 3.
Note that for h an L-smooth function and g a µ-strongly-convex function with shared optimum x∗, the
following inequality holds:

∥∇h(x)∥2 ≤
(

L

µ

)2
∥∇g(x)∥2. (21)

To see this, note that by L-smoothness of h

∥∇h(x)∥2 = ∥∇h(x)−∇h(x∗)∥2 ≤ L2∥x− x∗∥2. (22)

By µ-strong-convexity of g and Cauchy-Schwarz inequality,

µ∥x− x∗∥2 ≤ ⟨∇g(x)−∇g(x∗), x− x∗⟩ ≤ ∥∇g(x)∥∥x− x∗∥. (23)

Rearranging terms in (23), squaring both sides, and combining it with (22) gives (21).
We can now apply (21) to show that Assumptions 4 and 5 hold.
For Assumption 4, let h(x) = fi(x)−∇f̄i(x) and g(x) = ∇f̄i(x). Thus h and g have the same optimum. Since
the average of µ-strongly-convex functions is µ-strongly-convex, g is µ-strongly-convex. By L-smoothness of
fi,

∥(∇fi(x)−∇f̄i(x))− (∇fi(y)−∇f̄i(y))∥ ≤ ∥∇fi(x)−∇fi(y)∥+ ∥∇f̄i(x))−∇f̄i(y)∥
≤ 2L∥x− y∥,

showing that h is 2L-smooth. Therefore, by (21)

∥∇fi(x)−∇f̄i(x)∥2 ≤
(

2L

µ

)2
∥∇f̄i(x)∥2,

which shows that Assumption 4 is satisfied with A = 2L/µ.
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For Assumption 5, let x∗
i be client i’s optimum (equivalently the optimum of all clients in client i’s cluster).

∥∇fi(x)−∇fj(x)∥2 = ∥∇fi(x)− (∇fj(x)−∇fj(x∗
i ))− (∇fj(x∗

i )−∇fi(x∗
i )))∥2

(i)
≥ 1

2∥∇fj(x∗
i )−∇fi(x∗

i )∥2 − ∥∇fi(x)− (∇fj(x)−∇fj(x∗
i ))∥2

(ii)
≥ 1

2∥∇fj(x∗
i )−∇fi(x∗

i )∥2 − 2∥∇fi(x)∥2 − 2∥∇fj(x)−∇fj(x∗
i )∥2

(iii)
≥ 1

2∥∇fj(x∗
i )−∇fi(x∗

i )∥2 − 2∥∇fi(x)∥2 − 2(L/µ)2∥∇fi(x)∥2

= 1
2∥∇fj(x∗

i )−∇fi(x∗
i )∥2 − 2(1 + (L/µ)2)∥∇fi(x)∥2

= 1
2∥∇fj(x∗

i )∥2 − 2(1 + (L/µ)2)∥∇fi(x)∥2, (24)

where justification for the steps are:

• (i) For all a, b, it holds that (a − b)2 ≥ 1
2 b2 − a2, since this inequality can be rearranged to state

(b/
√

2−
√

2a)2 ≥ 0.

• (ii) Young’s inequality.

• (iii) Set h(x) = fj(x)− ⟨fj(x∗
i ), x⟩ and g(x) = fi(x). Then ∇h(x) = ∇fj(x)−∇fj(x∗

i ), from which
we see that h and g have the same optimum x∗

i and h is L-smooth (since ∥∇h(x) − ∇h(y)∥ =
∥(∇fj(x)−∇fj(x∗

i ))− (∇fj(y)−∇fj(x∗
i ))∥ ≤ L∥x− y∥). Applying (21) gives the desired result.

Therefore (24) shows that Assumption 5 is satisfied with ∆ = maxj ̸∼i
1√
2∥∇fj(x∗

i )∥, and D =√
2(1 + (L/µ)2).

Applying these values for A, D, and ∆ to Theorem 3 completes the proof.

A.5 Proof of Theorem 4

First we establish some notation.

Notation.

• Gi are the good clients and Bi the bad clients from client i’s perspective.

• Ex denotes conditional expectation given the parameter, e.g. Exg(x) = E[g(x)|x]. E denotes expec-
tation over all randomness.

• kt
i is the cluster to which client i is assigned at round t of the algorithm.

• Xt ≜ 1
T

∑T
t=1 Xt for a general variable Xt indexed by t.

• f̄i(x) ≜ 1
ni

∑
j∈Gi:j∼i fj(x)

• m̄i,t ≜ 1
ni

∑
j∈Gi:j∼i mj,t

• We introduce a variable ρ2 to bound the variance of the momentums

Ex∥mi,t − Exmi,t∥2 ≤ ρ2,

and show in Lemma 13 how this can be written in terms of the variance of the gradients, σ2.

• lt is the number of rounds that Threshold-Clustering is run in round t of Federated-Clustering.

• ki denotes the cluster to which client i is assigned.
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• vki,l,t denotes the gradient update for client i in round t of Momentum-Clustering and round l of
Threshold-Clustering. That is, vki,l,t corresponds to the quantity returned in Step 4 of Algorithm 4.

• To facilitate the proof, we introduce a variable cki,l,t that quantifies the distance from the cluster-
center-estimates to the true cluster means. Specifically, for client i’s cluster ki at round t of
Federated-Clustering and round l of Threshold-Clustering we set

c2
ki,l,t = E∥vki,l−1,t − Exm̄i,t∥2.

• For client i’s cluster ki at round t of Federated-Clustering and round l of Threshold-Clustering, we
use thresholding radius

τ2
ki,l,t ≈ c2

ki,l,t + δiρ∆.

• Finally, we introduce a variable, yj,l,t, to denote the points clipped by Threshold-Clustering:

vki,l,t = 1
N

∑
j∈[N ]

1(∥mj,t − vki,l−1,t∥ ≤ τki,l,t) + vki,l−1,t1(∥mj,t − vki,l−1,t∥ > τki,l,t︸ ︷︷ ︸
yj,l,t

).

Proof of Theorem 4. In this proof, our goal is to bound E∥∇fi(xi,t−1)∥2. We use L-smoothness of the loss
objectives to get started, and justify the non-trivial steps afterwards.

Efi(xi,t)
(i)
≤ Efi(xi,t−1) + E⟨∇fi(xi,t−1), xi,t − xi,t−1⟩+ L

2 E∥xi,t − xi,t−1∥2

= Efi(xi,t−1)− ηE⟨∇fi(xi,t−1), vki,lt,t⟩+ Lη2

2 E∥vki,lt,t∥2

= Efi(xi,t−1) + η

2E∥vki,lt,t −∇fi(xi,t−1)∥2 − η

2E∥∇fi(xi,t−1)∥2 − η

2 (1− Lη)E∥vki,lt,t∥2

(ii)
≲ Efi(xi,t−1) + ηE∥vki,lt,t − Exm̄i,t∥2 + ηE∥Exm̄i,t −∇fi(xi,t−1)∥2

− η

2E∥∇fi(xi,t−1)∥2 − η

2 (1− Lη)E∥vki,lt,t∥2

(iii)
≲ Efi(xi,t−1) + η

(
ρ2

ni
+ ρ3

∆ + βiρ∆
)

+ ηE∥Exm̄i,t −∇fi(xi,t−1)∥2

− η

2E∥∇fi(xi,t−1)∥2 − η

2 (1− Lη)E∥vki,lt,t∥2. (25)

Justifications for the labeled steps are:

• (i) L-smoothness of fi and η ≤ 1/L

• (ii) Young’s inequality

• (iii) Lemma 14

Now it remains to bound the E∥Exm̄i,t −∇fi(xi,t−1)∥2 term.

E∥Exm̄i,t −∇fi(xi,t−1)∥2 ≤ E∥Exmi,t −∇fi(xi,t−1)∥2

= (1− α)2E∥Exmi,t−1 −∇fi(xi,t−2) +∇fi(xi,t−2)−∇fi(xi,t−1)∥2

(i)
≲ (1− α)2(1 + α)E∥Exmi,t−1 −∇fi(xi,t−2)∥2 + (1− α)2

(
1 + 1

α

)
L2η2E∥vki,lt−1,t−1∥2

(ii)
≤ 1

2(1− Lη)
T∑

t=2
E∥vki,lt−1,t−1∥2,

where justifications for the labeled steps are:
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• (i) Young’s inequality

• (ii) Assumption that α ≳ Lη

Plugging this bound back into (25), summing over t = 1 : T , and dividing by T gives

η

2T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲
E(fi(xi,0)− f∗

i )
T

+ η

(
ρ2

ni
+ ρ3

∆ + βiρ∆
)

. (26)

By the variance reduction from momentum (Lemma 13) it follows from (26) that

1
T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲
E(fi(xi,0)− f∗

i )
ηT

+
(

ασ2

ni
+ α3/2σ3

∆ + βi

√
ασ∆

)
≲

E(fi(xi,0)− f∗
i )

ηT
+

(
Lησ2

ni
+ Lησ3

∆ + βi

√
Lησ∆

)
.

Finally, setting η ≲ min
{

1
L ,

√
E(fi(xi,0)−f∗

i
)

LT (σ2/ni+σ3/∆)

}
,

1
T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲

√
σ2

/ni + σ3
/∆

T
+ βiσ∆

T
1
4 (σ2

/ni + σ3
/∆) 1

4
.

Lemma 13 (Variance reduction using Momentum). Suppose that for all i ∈ [N ] and x,

E∥gi(x)− Exgi(x)∥2 ≤ σ2.

Then

E∥mi,t − Exmi,t∥2 ≤ ασ2.

Proof of Lemma 13.

E∥mi,t − Emi,t∥2 = E∥α(gi(xi,t−1)−∇fi(xi,t−1)) + (1− α)(mi,t−1 − Emi,t−1)∥2

≤ α2E∥gi(xi,t−1)−∇fi(xi,t−1)∥2 + (1− α)2E∥mi,t−1 − Emi,t−1∥2

≤ α2E∥gi(xi,t−1)−∇fi(xi,t−1)∥2 + (1− α)E∥mi,t−1 − Emi,t−1∥2

≤ α2σ2
t−1∑
q=0

(1− α)q

≤ α2σ2 (1− α)t − 1
(1− α)− 1

≤ α2σ2 1
α

= ασ2.

Lemma 14 (Bound on Clustering Error).

E∥vkt
i
,lt
− Exm̄i,t∥2 ≲

ρ2

ni
+ ρ3

∆ + βiρ∆
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Proof of Lemma 14. We prove the main result, and then justify each step afterwards.

E∥vki,lt,t − Exm̄i,t∥2 = E
∥∥∥∥ 1

N

∑
j∈[N ]

yj,lt,t − Exm̄i,t

∥∥∥∥2

= E
∥∥∥∥(1− βi)

(
1
|Gi|

∑
j∈Gi

yj,lt,t − Exm̄i,t

)
+ βi

(
1
|Bi|

∑
j∈Bi

yj,t,l − Exm̄i,t

)∥∥∥∥2

(i)
≤ (1 + βi)(1− βi)2E

∥∥∥∥(
1
|Gi|

∑
j∈Gi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2

+
(

1 + 1
βi

)
β2

i E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2

≲ E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2
+ βiE

∥∥∥∥(
1
|Bi|

∑
j∈Bi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2

(ii)
≲ (1− δi + βi)c2

ki,lt,t +
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)

(iii)
≲ (1− δi/2)c2

ki,lt,t +
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)

(iv)
≲ (1− δi/2)ltc2

ki,1,t +
(

ρ2

ni
+ ρ3

∆ + βiρ∆
)

(v)
≤ ρ

∆c2
ki,1,t +

(
ρ2

ni
+ ρ3

∆ + βiρ∆
)

. (27)

We justify each step.

• (i) Young’s inequality

• (ii) We prove this bound in Lemmas 15 and 19. Importantly, it shows that the clustering error is
composed of two quantities: E1, the error contributed by good points from the cluster’s perspective,
and E2, the error contributed by the bad points from the cluster’s perspective.

• (iii) Assumption that βi ≲ min(δi, δi/A4)

• (iv) Since E∥vi,lt,t − Exm̄i,t∥2 = c2
ki,lt+1,t, the inequality forms a recursion which we unroll over lt

steps.

• (v) Assumption that lt ≥ max(1, log(ρ/∆)
log(1−δi/2) )

Finally, we note that

c2
kt

i
,1,t = E∥m̄i,t − Exmi,t∥2

≲ E∥mj,t − Exmj,t∥2 + E∥Exmj,t − Exmi,t∥2

≤ ρ2.

Applying this bound to (27) gives

E∥vki,lt,t − Exm̄i,t∥2 ≲
ρ2

ni
+ ρ3

∆ + βiρ∆
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Lemma 15 (Clustering Error due to Good Points).

E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2
≲ (1− δi)c2

ki,lt,t +
(

ρ2

ni
+ ρ3

∆

)
.

Proof of Lemma 15. We state the main sequence of steps and then justify them afterwards.

E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,lt,t

)
− Exm̄i,t)

∥∥∥∥2

= E
∥∥∥∥(

1
|Gi|

∑
j∈Gi

yj,lt,t

)
− 1
|Gi|

∑
j∈Gi:j∼i

Exmj,t −
(

1
ni
− 1
|Gi|

) ∑
j∈Gi:j∼i

Exmj,t

∥∥∥∥2

= E
∥∥∥∥(

1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Exmj,t)
)

+
(

1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,lt,t − Exm̄i,t)
)∥∥∥∥2

(i)
≤

(
1 + 2

δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Exmj,t)
∥∥∥∥2

+
(

1 + δi

2

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,lt,t − Exm̄i,t)
∥∥∥∥2

(ii)
≲

(
1 + 2

δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

Eyj,lt,t − Exmj,t

∥∥∥∥2
+

(
1 + 2

δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Exyj,lt,t)
∥∥∥∥2

+
(

1 + δi

2

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,lt,t − Exm̄i,t)
∥∥∥∥2

(iii)
≲

(
1 + 2

δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

E(yj,lt,t −mj,t)
∥∥∥∥2

+
(

1 + 2
δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(Emj,t − Exmj,t)
∥∥∥∥2

+
(

1 + 2
δi

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2

+
(

1 + δi

2

)
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j ̸∼i

(yj,lt,t − Exm̄i,t)
∥∥∥∥2

(iv)
≲

(
1 + 2

δi

)
δ2

i Ej∈Gi:j∼i∥Ex(yj,lt,t −mj,t)∥2︸ ︷︷ ︸
T1

+
(

1 + 2
δi

)
ni

|Gi|2
ρ2

+
(

1 + 2
δi

)
ni

|Gi|2
E

∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2

︸ ︷︷ ︸
T2

+
(

1 + δi

2

)
(1− δi)2 Ej∈Gi:j ̸∼i∥yj,lt,t − Exm̄i,t∥2︸ ︷︷ ︸

T3

(v)
≲ δiEj∈Gi:j∼i∥Ex(yj,lt,t −mj,t)∥2 + ρ2

ni
+

(
1 + δi

2

)
(1− δi)2Ej∈Gi:j ̸∼i∥yj,lt,t − Exm̄i,t∥2

(vi)
≲ δi

(
c2

ki,lt,t + ρ3

δi∆

)
+ ρ2

ni
+

(
1 + δi

2

)
(1− δi)2

((
1 + δi

2

)
c2

ki,lt,t + ρ3

∆

)
≲ δi

(
c2

ki,lt,t + ρ3

δi∆

)
+ ρ2

ni
+ (1− δi)

(
c2

ki,lt,t + ρ3

∆

)
≲ (1− δi)c2

ki,lt,t +
(

ρ2

ni
+ ρ3

∆

)
.

Justifications for the labeled steps are:

• (i), (ii), (iii) Young’s inequality

• (iv) First, we can can interchange the sum and the norm due to independent stochasticity of the
momentums. Then, by the Tower Property and Law of Total Variance for the 1st and 3rd steps
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respectively

E∥Exmj,t − Emj,t∥2 = E∥Exmj,t − E[Exmj,t]∥2

= Var(Exmj,t)
= Var(mj,t)− E(Varx(mj,t))
= Var(mj,t)− E∥mj,t − Exmj,t∥2

≲ ρ2,

where the last inequality follows since the two terms above it are both bounded by ρ2.

• (v) We prove this bound in Lemmas 16, 17, and 18. It shows that, from point i’s perspective, the
error of its cluster-center-estimate is composed of three quantities: T1, the error introduced by our
thresholding procedure on the good points which belong to i’s cluster (and therefore ideally are
included within the thresholding radius); T2, which accounts for the variance of the clipped points in
i’s cluster; and T3, the error due to the good points which don’t belong to i’s cluster (and therefore
ideally are forced outside the thresholding radius).

• (vi) (1 + x/2)2(1− x)2 ≤ 1− x for all x ∈ [0, 1]

Lemma 16 (Bound T1: Error due to In-Cluster Good Points).

Ej∈Gi:j∼i∥E(yj,lt,t −mj,t)∥2 ≲ c2
ki,lt,t + ρ3

δi∆
.

Proof of Lemma 16. By definition of yj,lt,t,

E∥yj,lt,t −mj,t∥ = E[∥vki,lt−1,t −mj,t∥1(∥vki,lt−1,t −mj,t∥ > τki,lt,t)]

≤ E[∥vki,lt−1,t −mj,t∥2
1(∥vki,lt−1,t −mj,t∥ > τki,lt,t)]

τki,lt,t
.

Therefore by Jensen’s inequality,

∥Eyj,lt,t −mj,t∥2 ≤ (E∥yj,lt,t −mj,t∥)2

≤ (E∥vki,lt−1,t −mj,t∥2)2

τ2
ki,lt,t

≲
(E∥vki,lt−1,t − Exm̄i,t∥2 + E∥Exm̄i,t −mj,t∥2)2

τ2
ki,lt,t

= (E∥vki,lt−1,t − Exm̄i,t∥2 + E∥Exmj,t −mj,t∥2)2

τ2
ki,lt,t

≤
(c2

ki,lt,t + ρ2)2

τ2
ki,lt,t

≲
(c2

ki,lt,t + ρ2)2

c2
ki,lt,t + δiρ∆

≲

(
1 + ρ

δi∆

)
c2

ki,lt,t + ρ3

δi∆

≲ c2
ki,lt,t + ρ3

δi∆
.
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Summing this inequality over t and dividing by T , we have

Ej∈Gi:j∼i∥Ex(yj,lt,t −mj,t)∥2 ≤ E∥yj,lt,t −mj,t∥2

≲ c2
ki,lt,t + ρ3

δi∆
.

Lemma 17 (Bound T2: Variance of Clipped Points).

E
∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2
≤ ni

|Gi|2
ρ2.

Proof of Lemma 17. Note that the elements in the sum
∑

j∈Gi:j∼i(yj,lt,t − Eyj,lt,t) are not independent.
Therefore, we cannot get rid of the cross terms when expanding the squared-norm. However, if for each
round of thresholding we sampled a fresh batch of points to set the new cluster-center estimate, then the
terms would be independent. With this resampling strategy, our bounds would only change by a constant
factor. Therefore, for ease of analysis, we will assume the terms in the sum are independent. In that case,

E
∥∥∥∥ 1
|Gi|

∑
j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2
≤ ni

|Gi|2
E∥yj,lt,t − Eyj,lt,t∥2

≤ ni

|Gi|2
E∥mj,t − Emj,t∥2

≤ ni

|Gi|2
ρ2,

where the second-to-last inequality follows from the contractivity of the thresholding procedure.

Lemma 18 (Bound T3: Error due to Out-of-Cluster Good Points).

Ej∈Gi:j ̸∼i∥yj,lt,t − Exm̄i,t∥2 ≲

(
1 + δi

2

)
c2

ki,lt,t + ρ3

∆ .

Proof of Lemma 18. This sequence of steps bounds the clustering error due to points not from client i’s
cluster. Using Young’s inequality for the first step,

Ej∈Gi:j ̸∼i∥yj,lt,t − Exm̄i,t∥2

≤
(

1 + δi

2

)
E∥vkt

i
,lt−1 − Exm̄i,t∥2 +

(
1 + 2

δi

)
Ej∈Gi:j ̸∼i∥yj,lt,t − vki,lt−1,t∥2

≤
(

1 + δi

2

)
c2

ki,lt,t +
(

1 + 2
δi

)
Ej∈Gi:j ̸∼i∥yj,lt,t − vki,lt−1,t∥2

=
(

1 + δi

2

)
c2

ki,lt,t +
(

1 + 2
δi

)
Ej∈Gi:j ̸∼i[∥mj,t − vki,lt−1,t∥2

1{∥mj,t − vki,lt−1,t∥ ≤ τki,lt,t}]

≤
(

1 + δi

2

)
c2

ki,lt,t +
(

1 + 2
δi

)
τ2

ki,lt,tPj∈Gi:j ̸∼i(∥mj,t − vki,lt−1,t∥ ≤ τki,lt,t)

≲

(
1 + δi

2

)
c2

ki,lt,t +
(

1
δi

)
(c2

ki,lt,t + δiρ∆)Pj∈Gi:j ̸∼i(∥mj,t − vkt
i
,lt−1∥ ≤ τki,lt,t).

If ∥vkt
i
,lt−1 −mj,t∥ ≤ τki,lt,t, then

∥Exmj,t − Exmi,t∥2 ≲ ∥mj,t − Exmj,t∥2 + ∥mj,t − vki,lt−1,t∥2 + ∥vkt
i
,lt−1 − Exm̄i,t∥2

≲ ∥mj,t − Exmj,t∥2 + τ2
ki,lt,t + ∥vki,lt−1,t − Exm̄i,t∥2
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By Assumption 9,

∆2 ≲ ∥mj,t − Exmj,t∥2 + τ2
ki,lt,t + ∥vki,lt−1,t − Exm̄i,t∥2

which, summing over t and dividing by T , implies

∥mj,t − Exmj,t∥2 + ∥vki,lt−1,t − Exm̄i,t∥2 ≳ ∆2 − τ2
ki,lt,t.

By Markov’s inequality, the probability of this event is upper-bounded by

ρ2 + E∥vki,lt−1,t − Exm̄i,t∥2

∆2 − τ2
ki,lt,t

≲
ρ2 + c2

ki,lt,t

∆2 ,

where the inequality holds due to the constraint on ∆ from the theorem statement. Therefore,

Ej∈Gi:j ̸∼i∥yj,lt,t − Exm̄i,t∥2 ≲

(
1 + δi

2 + ρ

∆ +
ρ2 + c2

ki,lt,t

δi∆2

)
c2

ki,lt,t + ρ3

∆

≲

(
1 + δi

2

)
c2

ki,lt,t + ρ3

∆ ,

where again we apply the constraint on ∆ for the second inequality.

Lemma 19 (Clustering Error due to Bad Points).

E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2
≲ c2

ki,lt,t + δiρ∆

Proof of Lemma 19. This lemma gives a bound on the clustering error due to the bad clients from client i’s
perspective. The goal of such clients would be to corrupt the cluster-center estimate of client i’s cluster as
much as possible at each round. They can have the maximum negative effect by setting their gradients to be
just inside the thresholding radius around client i’s cluster-center estimate. This way, the gradients will keep
their value (rather than be assigned the value of the current cluster-center estimate per our update rule), but
they will have maximal effect in moving the cluster-center estimate from its current position. Therefore, in
step 3 of the inequalities below, we can not do better than bounding the distance between these bad points
and the current cluster center estimate (i.e. ∥yj,lt,t − vki,lt−1,t∥2) by the thresholding radius τki,lt,t.

E
∥∥∥∥(

1
|Bi|

∑
j∈Bi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2
≤ Ej∈Bi∥yj,lt,t − Exm̄i,t∥2

≲ Ej∈Bi
∥yj,lt,t − vki,lt−1,t∥2 + E∥vki,lt−1,t − Exm̄i,t∥2

≤ τ2
ki,lt,t + c2

ki,lt,t

≲ c2
ki,lt,t + δiρ∆.

The last inequality applies the definition of τki,lt,t, and the result of the lemma follows by summing this
inequality over t and dividing by T .
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