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Abstract001

In this paper, we introduce a new process pre-002
judge strategy in LLM reasoning to demon-003
strate that bootstrapping with process prejudge004
allows the LLM to adaptively anticipate the005
errors encountered when advancing the subse-006
quent reasoning steps, similar to people some-007
times pausing to think about what mistakes may008
occur and how to avoid them, rather than rely-009
ing solely on trial and error. Specifically, we010
define a prejudge node in the rationale, which011
represents a reasoning step, with at least one012
step that follows the prejudge node that has no013
paths toward the correct answer. To synthe-014
size the prejudge reasoning process, we present015
an automated reasoning framework with a dy-016
namic tree-searching strategy. This framework017
requires only one LLM to perform answer judg-018
ing, response critiquing, prejudge generation,019
and thought completion. Furthermore, we de-020
velop a two-phase training mechanism with su-021
pervised fine-tuning (SFT) and reinforcement022
learning (RL) to further enhance the reason-023
ing capabilities of LLMs. Experimental re-024
sults from competition-level complex reason-025
ing demonstrate that our method can teach the026
model to prejudge before thinking and signifi-027
cantly enhance the reasoning ability of LLMs 1.028

1 Introduction029

Large language models (LLMs) have made great in-030

roads in solving natural language processing (NLP)031

tasks (Brown et al., 2020; Ouyang et al., 2022;032

OpenAI, 2023), but still struggle to produce ac-033

curate answers to complex reasoning problems.034

Prior research tackles this challenge by designing035

well-crafted prompts to elicit the LLM to follow a036

step-by-step thinking paradigm, such as in-context037

learning (Liu et al., 2023), chain-of-thought (Wei038

et al., 2022; Wang et al., 2023b, 2024c), and agen-039

tic learning (Park et al., 2023). However, these040

1Code and data is released at https://github.com/
xxx.

Prejudge in Real World

Key Step: The entrance of the curve 
Prejudge Hint: Warning Road Ahead

Note: When driving a car reaching a
curve near to the cliff, a warning sign
which can be viewed as a prejudge hint
to explicitly elicit drivers to slow down to
avoid failing

Prejudge in LLM Reasoning

Key Step: The reasoning step where exists one
next step that has no correct rationales
Prejudge Hint: The denominator cannot be 0

Note: When LLM finishes step 1, the searching
procedure will be performed and find that there
exists Step 2 that has no correct rationale, so it
should provide prejudge hint after Step 1 

Q: If $f(a, k) = \frac{(a - k)^2 - 9}{a + 1}$ and $F(f(a,
k))$ represents the sum of real $a$ when $f(a, k)=0$.
Please calculate $F(f(a, 2))$. 

...

4
❌Let $f(a, 2)=0$,

we can ... So,
$a$ is 5 or -1.

First, we know
that $f(a, 2)=
\frac{(a - 2)^2
- 9}{a+1}$

...

...

...

4

4
❌

❌

Step1 Step2

Wait, I should
consider that the
denominator cannot
be 0... <|prejudge|>

Let $f(a, 2)=0$, we
can ... So, $a$ is 5
or -1 (remove).

5
✅

5
✅Step1-Prejudge

Step2'

Figure 1: Examples of prejudge in the scenarios of the
real world and LLM reasoning.

approaches akin to the System 1-style fast-thinking 041

paradigm (Kahneman, 2011) inevitably bring er- 042

rors to the inherent steps, making it hard to generate 043

accurate and complete solutions in one breath. 044

Inspired by human recognition of System 2 (Kah- 045

neman, 2011), which is denoted as a slow-thinking 046

paradigm emulates human reasoning through a 047

slower and deeper thought process (Zelikman et al., 048

2024), most of the works have unveiled that extend- 049

ing the reasoning with verification, critiquing, and 050

refinement components can significantly enhance 051

the reasoning capability (Cobbe et al., 2021; Light- 052

man et al., 2024; Snell et al., 2024; Qi et al., 2024; 053

Shinn et al., 2023; Gou et al., 2024; Plaat et al., 054

2024; Madaan et al., 2023). One major benefit is 055

that these components can offer precise feedback, 056

which is a valuable signal that enables the LLM 057

to adapt or roll back the current of thought oppor- 058

tunely (Kumar et al., 2024; Wang et al., 2024e; 059

Chen and Li, 2024). In addition, a series of re- 060

search (e.g., OpenAI’s o1 (Jaech et al., 2024), 061

DeepSeek R1 (Guo et al., 2025)) has explored that 062

post-training in the supervised fine-tuning (SFT) or 063

reinforcement learning (RL) stage can inject these 064

capabilities into model parameters and achieve high 065
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grades by scaling test-time cost, which spurred the066

development of System 2-like reasoning (Brown067

et al., 2024; Snell et al., 2024; Shao et al., 2024;068

Rafailov et al., 2023). Despite this success, the069

generated responses expose that LLMs tend to fre-070

quently prefer trial and error, leading to redundant071

error and reflection information, which is not very072

advocated in human consciousness.073

In this paper, we introduce a new thought mode074

named process prejudge 2, which is defined as prior075

consideration or judgment about what is about to076

happen in the subsequence reasoning steps. In the077

real world, this capability aims to help people learn078

from past experiences and improve the accuracy of079

each thinking step when solving similar problems080

in the future. It is usually acquired after repeated in-081

teraction with the environment. Take a vivid exam-082

ple illustrated in Figure 1, when driving a vehicle083

and reaching the entrance of a curve close to a cliff,084

an experienced driver will slow down in advance.085

This is a prejudge action based on the experience086

that the vehicle will fall off the cliff due to iner-087

tia. Therefore, a natural question arises: is process088

prejudge useful for LLM in reasoning scenarios?089

To reach this goal, we first define a prejudge090

node in the rationale, which is a specific reasoning091

step, and at least one step follows the prejudge node092

that has no path toward the correct answer. For ex-093

ample in Figure 1, the LLM may make mistakes094

at “Step 2” and it can be prevented when prompted095

with a prejudge hint as “The denominator cannot096

be 0”. To synthesize large-scale step-by-step rea-097

soning data with process prejudge, we then propose098

an automatic reasoning framework with a dynamic099

tree-searching strategy, which is similar to Monto100

Carlo Tree Search (MCTS) (Kocsis and Szepesvári,101

2006; Silver et al., 2016) but needs only one LLM102

to perform thinking, critiquing, prejudging and ver-103

ifying during searching.104

Ultimately, we construct 234k data from multi-105

ple open-source datasets to train the LLM with SFT106

and RL techniques. The extensive experiments con-107

ducted on mathematics and logic reasoning demon-108

strate that the paradigm of prejudge before use can109

substantially boost the LLM’s reasoning ability.110

2Notely, the “prejudge” in this paper means the “predictive
ability” instead of “prejudice”, we use the word “prejudge”
aim to distinguish it from “predict” in machine learning.

2 Preliminary 111

2.1 LLM Reasoning with Textual Rationale 112

Given a LLM πθ(·) which is a transformer-based 113

pre-trained model to map the input prompt to gen- 114

erated text, where θ is the parameters. For the 115

reasoning task, given a question Q, the LLM can 116

provide a step-by-step reasoning chain consist- 117

ing of T intermediate step, and the entire chain 118

can be formed as Z = [z1, · · · , zT ], where zi 119

(i ∈ [1, T ]) means the specific step3. The reasoning 120

chain can be step-by-step generated by the LLM as 121

zi = πθ(I = I(Q, z1, · · · , zi−1)), where I(· · · ) is 122

function to concate all generated prefix sequences 123

to form the input prompt I. 124

2.2 Bootstrapping with Tree Searching 125

Suppose that the prefix reasoning steps of Q 126

are Z1:i−1 = [z1, · · · , zi−1], the set of the 127

next steps can be obtained by repeated sampling 128

with the greedy method as {zij |zij ∼ πθ(I = 129

I(Q, z1, · · · , zi−1))}. Tree searching is an itera- 130

tive generation process via repeatedly concatenat- 131

ing each sampled next step with a prefix sequence 132

to form a new sequence before the next repeated 133

sampling. Thus, the tree generated from zi−1 can 134

be formed as Tzi−1 . In this tree, zi−1 represents 135

the root node in the first layer, and each node in 136

the second layer is the child node of zi−1 denoted 137

as {zij}Nj=1, which is also the root node in the cor- 138

responding tree Tzij , N is the number of repeated 139

sampling at each layer. The searching process stops 140

when the final answer is generated, and the last rea- 141

soning step can be viewed as the leaf node. Similar 142

to MCTS, each node has a corresponding value 143

score denoted as v(·) that represents the potential 144

that reaches the correct answer. 145

3 Methodology 146

In this section, we introduce a new reasoning 147

method named Prejudge Before Think (PBT), 148

which aims to elicit the LLM pauses to deeply 149

consider what errors will occur and how to bypass 150

them instead of excessive trial and error. Hence, we 151

pose three questions to illustrate how our approach 152

works: 153

• R1: Where should the LLM pause to make a 154

prejudgement when reasoning? 155

3To elicit the LLM to generate this chain, the question Q
should be articulated through a well-crafted instruction prompt
or template. We omit this component to minimize the use of
variables in writing.
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Q: Three vertices of a cube are $P=(7,12,10)$ , $Q=(8,8,1)$ , and $R=(11,3,9)$ . What is the
surface area of  the cube? Let's think step by step, and put the final answer within \boxed{}.

Thought Generating
Step1: To find the surface area of the cube, we first must
determine the side length of the cube. First, calculate the distance
between points P and Q, ...<|think|>

Step2: Using the distance formula, we can find the distance
between points \( P \) and \( Q \): ... <|think|>

Q 1 2 Tree
Searching🌲

I
I

3'

4'

5'

6'

...

...

... ...

...

...

...

Prejudge Node

⚠

LLM
🤖

I=Q+Step1+Step2

v(3')=1
v(4')=0v(6')=0

v(5')=1v(I)=1

Process Estimating

Q LLM
🤖

✅

❌

❌

Q 1 2
I 3'

4'

6' ...

... ...

...

...
Error

Analysis
Prejudge

Hint

Putting all incorrect steps after 
current reasoning step

LLM as a critic

LLM
🤖

Reasoning Critiquing

LLM as a judger

Prejudge Estimating
Step2-Prejudge: Wait, I need to ensure that the distance calculated
between the points is actually the edge length of the cube; it should not
be the length of a face diagonal. I should ... <|prejudge|>

Ip
3 3v 4 5 ✅

6 6v 7 8

...

...
Thinking next step Verifying next step

... ✅

Searching for estimating

❌

❶

❷

❸

❹

LLM as a generator

The 2nd searching aims at estimating 
if prejudge hint is useful for Step 2 before thinking

Q 1 2 2p

Tree
Searching🌲

Ip=Q+Step1+Step2+Prejudge
...

The 1st searching aims at estimating 
Step 2 can be a prejudge node

❺ Thought Expanding

Step3: Distance between P and
Q: is \[ d_{PQ} = \sqrt{(8 - 7)^2
+ (8 - 12)^2 + (1 - 10)^2} = ... =
7\sqrt{2} \] <|think|>

Step3-Verify: Since all distances
are equal to \( 7\sqrt{2} \), these
points ... Thus:\[ 7\sqrt{2} =
a\sqrt{2} \implies a = 7 \]<|verify|>

Q 1 2 2p 3 3v

Expanding rationale with 
next thinking and verify step 

❷❸❹❺
❷❸❹ ...

Continual Dynamic
Searching Util FinishIfor_next=Q+Step1+Step2+Prejudge+Step3+Verify

Figure 2: The automated reasoning framework for synthesizing process prejudge with the dynamic tree-searching.

• R2: How to obtain the trajectory with PBT au-156

tomatically without any external annotation?157

• R3: How to boost the LLM reasoning capabil-158

ity with post-training techniques?159

3.1 Prejudge Node in Rationale160

To answer the first question, we observe that161

humans can use historical experience to help162

them make prejudgements before facing potential163

risks (Kahneman, 2011). Likewise, the time before164

errors occur is more suitable for stimulating the165

ability of LLMs to prejudge. Hence, we define this166

position as prejudge node.167

Formally, given a question Q and the correspond-168

ing prefix reasoning steps Z1:i. To detect whether169

the LLM needs to make prejudgement after the170

step zi, we can perform tree searching from this171

step to construct a tree denoted as Tzi , the value172

of each tree node can be obtained by hard estima-173

tion (Wang et al., 2024e). Specifically, we first use174

LLM-as-a-judger to check whether the final answer175

is correct, and the value of each leaf node can be176

set as 1 (or 0) if the result is correct (or incorrect).177

Then, the value of each internal node zk can be178

backtracked from the leaf node as:179

v(zk) =

{
Judger(zk), if k = T

max({v(zk+1j)}Nj=1)), if k < T
(1)180

where Judger(·) ∈ {0, 1} is the function of LLM-181

as-a-judger, zk+1j is the child node of zk.182

Based on this value score, we can define a pre- 183

judge value that represents whether LLM should 184

make prejudgement at the step zi, which can be 185

calculated as: 186

vp(zi) = v(zi)× 1(min({v(zi+1j)}Nj=1) = 0),
(2) 187

where vp(·) is the prejudge value and the step zi 188

is a prejudge node when vp(zi) = 1, 1(·) is the 189

indicator function, zi+1j is the child node of zi. 190

Through this definition, at least one step follows the 191

prejudge node and has no path toward the correct 192

answer. This indicates that the LLM may make 193

errors in the future so that needs to be prejudged. 194

3.2 Dynamic Tree Searching 195

We thus introduce how to synthesize the reason- 196

ing data with prejudge. We present a dynamic 197

tree searching strategy in the reasoning framework, 198

which enables only one LLM to find the prejudge 199

position, generate critical information, and perform 200

deep thought. The whole framework is shown in 201

Figure 2, consisting of five stages: thought gen- 202

erating, process estimating, reasoning critiquing, 203

prejudge estimating and thought expanding. 204

Thought Generating Given a question, we first 205

to let the LLM generate a few steps without boot- 206

strapping. Inspired by (Wang and Zhou, 2024), 207

the start sequence has a greater impact on the per- 208

formance of subsequent reasoning, especially for 209

smaller models, so a lower temperature coefficient 210
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is selected to ensure the accuracy of reasoning in211

the first few steps. By default, we urge the model212

to generate two steps as the prefix sequence. Each213

thinking step will be ended with a special tag as214

“<|think|>”.215

Process Estimating Once the prefix sequence216

is generated, we improve the temperature coeffi-217

cient and perform the first tree-searching process.218

This tree-searching aims to estimate whether the219

current step is a prejudge node, we can obtain the220

corresponding prejudge value vp. Specifically, if221

the prejudge value is 0, it means that there is no222

need to make prejudgement here, we can randomly223

select one child node and concatenate it with the224

prefix sequence for the next iteration. Otherwise,225

we will continue the following process to obtain226

the prejudge hint before the next thinking step.227

Reasoning Critiquing This stage aims to gener-228

ate error analysis based on the incorrect reasoning229

path derived from the tree search. Specifically, we230

concatenate the question and prefix sequence with231

all incorrect reasoning paths to form a prompt and232

use the LLM as a critic (Shinn et al., 2023; Gou233

et al., 2024) to generate the corresponding error234

analysis. Generally, error analysis summarizes and235

induces existing reasoning results, making all rea-236

soning steps visible. In contrast, LLM prejudging237

guesses possible errors without examining subse-238

quent reasoning steps. To achieve this goal, we239

design an instruction prompt for the LLM to gen-240

erate a prejudging hint based on the error analysis,241

and this information will be used to prompt the242

LLM to avoid errors. The prejudging hint can be243

tagged with a “<|prejudge|>” token at the end of the244

text. The specific prompt and generated examples245

are shown in Appendix C.3.246

Prejudge Estimating After the prejudge hint is247

generated, we aim to evaluate its usefulness for the248

upcoming reasoning steps. Specifically, we per-249

form tree-searching for the second time. Unlike250

the tree-searching conducted during the process es-251

timation stage, the requirements of the generated252

response consist of three components: i) the next253

step thought (tagging with “<|think|>”): we expect254

the LLM to reconsider the next reasoning step in255

light of the prejudge hint; ii) the verification of256

the next step thought (tagging with “<|verify|>”):257

we introduce an explicit verification step for the258

LLM to check if the new thought aligns with the259

prejudge hint; and iii) the remaining steps with260

Algorithm 1 Algorithm for Prejudge Reasoning
Require: LLM πθ , question Q, and prompt function I(·).
1: Generating the first step via z0 = πθ(I(Q));
2: for iteration i in [0, · · · , T ] do
3: Expanding the next steps {zij |zij ∼ πθ(I =

I(Q, z1, · · · , zi−1))};
4: Process Estimating: Perform Judgement to detect

whether each of next steps are prejudge node.
5: Reasoning Critiquing: Generate self-critique informa-

tion to guide the LLM to reach correct answer in the
next step;

6: Prejudge Estimating: Estimate whether the whole rea-
soning chains is correct.

7: end for
8: Obtain all training data and perform the first-time SFT,

obtaining the model πθ1 .
9: Use πθ1 to distill a large-scale prejudge-like data, and

perform the second-time SFT and RL training, obtaining
the model πθ2 .

10: return The LLM model πθ2 .

bootstrapping (tagging with “<|think|>”): we em- 261

ploy tree-searching to sample all reasoning steps to 262

determine if the prejudge hint enables the LLM to 263

arrive at the correct answer, utilizing the rejected 264

sampling method to select the appropriate prejudge 265

hint. We have crafted an instruction prompt to en- 266

courage the LLM to generate the aforementioned 267

information, with the prompt and generated exam- 268

ples displayed in Appendix C.4. 269

Thought Expanding Finally, we expand the rea- 270

soning chain with a prejudge hint, the selected next 271

step consideration, and the corresponding verifi- 272

cation. Then, we continue the next iteration of 273

dynamic searching until we reach the final answer. 274

3.3 Two-phase Post-training 275

Dynamic tree searching involves significant test- 276

time costs because it necessitates constructing mul- 277

tiple trees for each query. To equip the more effi- 278

cient data synthesis pipeline with prejudge reason- 279

ing, we introduce a two-phase post-training strat- 280

egy that allows for simultaneous data synthesis and 281

model training. The whole algorithm is illustrated 282

in Algorithm 1. 283

First Phase: Cold Start via Dynamic Search- 284

ing In the first phase, the aim is to construct 285

a small amount of data with prejudge reason- 286

ing. To collect this data, we choose a small 287

instruct-based LLM to finish the dynamic tree- 288

searching and obtain all correct rationales by re- 289

jected sampling. Specifically, we select multiple 290

training sources from GSM8K (Cobbe et al., 2021), 291

MATH (Hendrycks et al., 2021), SVAMP (Pa- 292

tel et al., 2021), AQuA (Ling et al., 2017), Nu- 293
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mina Math (LI et al., 2024), American Invitational294

Mathematics Examination (AIME 1983∼2023) 4,295

PRM800K (Lightman et al., 2024), and MetaMath296

QA (Yu et al., 2024) and thus filter out about297

21k complex queries for dynamic tree-searching,298

which can derive long CoT responses by zero-shot299

prompting (Kojima et al., 2022). Finally, we gather300

approximately 39k rationales and utilize these train-301

ing samples to train a base LLM through SFT as302

the cold start model.303

Second Phase: Distillation for Data Scaling304

The second phase focuses on self-evolution, aim-305

ing to leverage the SFT mode from the first phase306

to perform distillation. A large-scale, prejudge-307

style rationale will be constructed using a simple308

zero-shot prompting (Kojima et al., 2022). To en-309

hance the quality of the rationale, we employ the310

self-consistency strategy to recall the most reliable311

rationale, which can be utilized as the prejudge312

estimation stage in dynamic tree-searching. We313

thus select the remaining queries from the train-314

ing sources, obtaining approximately 195k ratio-315

nales. During the training periods, we combine316

the curated data generated from both phases and317

retrain SFT on the base LLM. For the RL, we per-318

form Group Relative Policy Optimization (GRPO)319

(Shao et al., 2024) and Directly Preference Opti-320

mization (DPO) (Rafailov et al., 2023) algorithms321

to investigate how performance improvement.322

4 Experiments323

4.1 Implementation Settings324

In the first phase, we choose Qwen2.5-14B-325

Instruct (Team, 2024) as the small instruct-based326

LLM to perform dynamic tree-searching. By de-327

fault, we use the “\n\n” as the step terminator,328

and the maximum sampling step length is 14 for329

each query. Complete implementation details of330

our dynamic tree-search algorithm are provided in331

Appendix B.1. For the cold start SFT, we choose332

Qwen2.5-7B/32B (Team, 2024) as the base LLM.333

In the second phase, we use the cold start 32B LLM334

to perform the distillation, and the number of re-335

peated samples in Self-consistency is N = 32. For336

the SFT and RL, we choose Qwen2.5-32B as the337

base model.338

4https://artofproblemsolving.com/wiki/
index.php/AIME_Problems_and_Solutions.

4.2 Benchmarks and Evaluations 339

We select several competition-level reasoning 340

benchmarks to demonstrate how LLM perfor- 341

mance is improved with prejudge reasoning. 342

These include GSM8K (Cobbe et al., 2021), 343

MATH-500 (Lightman et al., 2024), AQuA (Ling 344

et al., 2017), SVAMP (Patel et al., 2021), Theo- 345

remQA (Chen et al., 2023), AIME-2024 (MAA, 346

2024), GAOKAO-2023 (Zhang et al., 2023), and 347

GPQA-Diamond (Rein et al., 2023). We follow pre- 348

vious works (Wang et al., 2024e) to use Qwen2.5- 349

72B-Instruct (Team, 2024) as a judger to evaluate 350

whether the generated answer matches the ground 351

truth, and the metric is accuracy value. 352

4.3 Baselines 353

We select the following baselines to compare with 354

our method: 1) Chain-of-Thought (CoT) Train- 355

ing, which aims to distill multiple rationales using 356

CoT prompts for the supervised fine-tuning (SFT) 357

training data. 2) Self-Refine (Kumar et al., 2024), 358

which seeks to correct mistakes based on outcome- 359

or process-based feedback. We obtain this rationale 360

by prompting the small LLM with a well-designed 361

zero-shot instruction. 3) PBT w/o. Verify, a variant 362

version of our method that removes all verification 363

components in dynamic tree searching; this means 364

the LLM only makes prejudgments without any 365

verification. 4) PBT w. CoT, which combines all 366

data from prejudge and CoT. We also select GPT- 367

4o (Hurst et al., 2024) and OpenAI’s o1 (Jaech 368

et al., 2024) as strong baselines to demonstrate 369

state-of-the-art performance. 370

4.4 Main Results 371

Table 1 presents the performance comparison with 372

multiple baselines on competition-level complex 373

reasoning tasks. Through the results, we thus draw 374

the following conclusion: 1) Our PBT consistently 375

outperforms CoT training and Self-Refine across 376

all benchmarks using both 7B and 32B backbones. 377

Specifically, in the first phase, PBT achieves an av- 378

erage accuracy of 59.0% and 65.6% for Qwen2.5- 379

7B and Qwen2.5-32B, representing improvements 380

of 3.5% and 2.4% over CoT and 2.5% and 1.2% 381

over Self-Refine. 2) The “verify” components in 382

PBT are crucial for ensuring the accuracy of pre- 383

judgment. We can see that all results decline when 384

this component is removed, except for Qwen2.5- 385

32B on AIME-2024. 3) Combining CoT data with 386

PBT can further enhance the accuracy of the 32B 387

5

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions


Methods GSM8K MATH AQuA SVAMP Theorem AIME GAOKAO GPQA Avg.500 QA 2024 2023 Diamond

OpenAI’s o1 - 94.8 - - - 74.4 - 77.3 -
GPT-4o 94.2 76.8 - 93.9 49.7 9.3 88.1 50.6 -
DeepSeek R1 - 97.3 - - - 79.8 - 71.5 -

dist. Qwen-7B - 92.8 - - - 55.5 - 49.1 -
dist. Qwen-32B - 94.3 - - - 72.6 - 62.1 -

Base Model: Qwen2.5-7B

CoT#1 84.6 65.2 67.7 89.0 39.3 6.7 71.4 19.7 55.5
Self-Refine#1 85.1 66.4 68.3 90.7 40.6 6.7 71.0 23.5 56.5
PBT#1 87.6 68.0 70.1 90.3 41.4 13.3 73.5 27.8 59.0

w/o. Verify 85.9 67.4 68.9 89.7 41.1 10.0 73.1 25.6 57.7
w. CoT 85.6 67.2 68.5 91.7 41.0 13.3 73.4 26.2 58.4

PBT#2 89.4 72.6 71.7 92.0 43.2 16.7 75.5 31.3 61.6

Base Model: Qwen2.5-32B

CoT#1 91.7 77.6 75.2 89.3 48.7 6.7 77.6 38.4 63.2
Self-Refine#1 92.6 77.3 76.8 90.4 49.3 10.0 79.4 39.4 64.4
PBT#1 92.4 78.2 80.3 91.0 50.6 13.3 78.6 40.2 65.6

w/o. Verify 92.1 77.8 79.1 90.7 50.0 13.3 78.3 39.5 65.1
w. CoT 93.9 77.8 79.2 92.3 51.8 16.7 83.7 38.9 66.8

PBT#2 93.1 81.0 81.7 93.7 52.0 20.0 85.6 47.7 69.4

Table 1: Main results (%) over multiple complex reasoning tasks. PBT (prejudge before think) is our method, and
the subscript #1 and #2 denotes the first phase and second phase, respectively.

Methods PBT#1 w. DPO w. GRPO

GSM8K 87.6 90.5 91.7
MATH500 68.0 70.4 71.2
AQuA 70.1 74.0 74.8
SVAMP 90.3 91.5 92.2
Theorem QA 41.4 44.8 45.3
AIME2024 13.3 16.7 26.7
GAOKAO2023 73.5 78.4 79.3
GPQA-Diamond 27.8 28.6 30.1

Avg. 59.0 61.9 63.9

Table 2: The improvement (%) of RL for Qwen2.5-7B.

model. We find that PBT#1 w. CoT outperforms388

PBT#1 by 1.2%, indicating that larger models can389

benefit from diverse rationales, enabling them to390

utilize various styles of rationales to solve prob-391

lems. 4) The two-phase strategy can bring obvious392

improvement. Compared with PBT#1, PBT#2 can393

further improve by 3%, demonstrating the effec-394

tiveness of two-phase post-training strategy.395

5 Analysis396

5.1 Performance Improvement of RL397

To investigate performance improvements when398

applying RL with pre-judgment reasoning, we uti-399

lize two RL techniques to further enhance the SFT400

model in the first phase. Results shown in Table 2401

demonstrate that the two RL methods substantially402
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Figure 3: Effect of prejudge in complex reasoning with
Qwen2.5-7B-Instruct (Left) and Qwen2.5-32B-Instruct
(Right).

outperform the SFT. GRPO achieves the best per- 403

formance, surpassing DPO by 2.0%, indicating that 404

online RL is more effective in boosting reasoning 405

ability than the offline method. 406

5.2 Effect of Prejudge in Test-time 407

To explore why prejudgment is effective for com- 408

plex reasoning, we designed a thought completion 409

task that demonstrates how the LLM reasons with 410

prejudgment hints. Specifically, we randomly se- 411

lect 2,000 queries from the second phase that do 412

not appear in the first phase and keep only the first 413

prejudge node with the prejudge hint and the prefix- 414

generated steps. For each query, we can obtain 415

two incomplete responses: one that contains only 416

the thinking step (i.e., remove the prejudge hint) 417

and the other that contains the prejudge hint (i.e., 418

6
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Figure 4: Effect of the number of prejudge hints over
GSM8K (Left) and MATH500 (Right).

maintain the prejudge hint). We choose Qwen2.5-419

7B/32B-Instruct as the LLM. To observe the per-420

formance, we let the LLM complete the reasoning421

steps with only the prompt “Let’s think step by step”422

concatenated with the query and prefix-generated423

steps. We then draw a curve to see the performance424

when the test time scales up. Figure 3 shows that425

the Pass@N value is, on average, 3% higher with426

prejudge hints than without, suggesting that the427

rationale provided by the prejudge hint can better428

assist the LLM in avoiding mistakes.429

5.3 Effect of the Number of Prejudge430

In this section, we explore what’s the effect of431

the number of prejudge in LLM reasoning. We432

sample five different sets Dk from the synthesized433

data in the first phase for SFT training, where434

k ∈ {1, 2, 3, 4, 5} denotes the number of the pre-435

judge node in the corresponding rationale. In other436

words, each rationale in Dk has only k prejudge437

hint. We perform data processing to ensure that438

the number of queries and rationales in each set439

is consistent. To this end, each set has about 9k440

examples for SFT training. The results displayed441

in Figure 4 suggest that adding the number of pre-442

judge hints into the training data can significantly443

improve the reasoning ability of LLM. We believe444

that the increase in the number of prejudges will445

indirectly increase the overall length of rationale,446

which can further improve the certainty of LLM’s447

output when thinking about problems (Jaech et al.,448

2024; Guo et al., 2025). In addition, the more pre-449

judges there are, the more likely the model will450

make prejudges, which can better guide the model451

to make incorrect prejudges before thinking.452

5.4 Compatibility with o1-like Reasoning453

We end this section by investigating the perfor-454

mance of mixing with o1-like training data. We455

select data that has been widely used recently from456

LIMO (Ye et al., 2025), which utilizes less data457

Methods LIMO LIMO + PBT Gain

GSM8K 95.1 95.5 +0.4
MATH500 94.8 94.0 -0.8
AQuA 86.9 87.8 +0.9
SVAMP 91.3 92.3 +1.0
Theorem QA 54.6 58.0 +4.6
AIME2024 57.1 54.6 -2.5
GAOKAO2023 81.0 83.6 +2.6
GPQA-Diamond 66.7 63.0 -3.7

Table 3: The performance (%) with o1-like data.

Methods PBT#1 MCTS Math-Shepherd

GSM8K 87.6 79.50 85.1
MATH500 68.0 53.1 66.2
AIME2024 13.3 6.7 13.3
GPQA-Diamond 27.8 19.5 26.2

Table 4: The comparison of performance (%) with Math-
Shepherd and MCTS.

to achieve optimal performance on competition- 458

level tasks. We gather all queries from AIME 459

(1983∼2023) to create prejudge reasoning data 460

through dynamic tree searching and blend them 461

with LIMO. As shown in Table 3, we can obtain 462

the following suggestion: Although prejudge be- 463

fore use is not entirely o1-like data, simply mixing 464

them can still maintain very high performance, and 465

some benchmarks can be further improved. This 466

shows that prejudge can be better integrated into 467

o1-like reasoning, which also provides a new mode 468

as a reference for o1-like reasoning community. 469

5.5 Effectiveness of Dynamic Tree-searching 470

We provide a comparison with some related search- 471

ing methods, such as MCTS, Math-Shepherd. In 472

the experiment, MCTS is directly used for the 473

sampling generation of the model, while Math- 474

Shepherd directly reproduces the reward model 475

training and RL enhancement used in the original 476

paper. Finally, it is compared with PBT. The result 477

is shown in Table 4, our PBT can obtain the best 478

performances. This suggests that moving the sam- 479

pling phase forward to training can significantly 480

improve the inference performance of the model, 481

surpassing the performance of using tree sampling 482

in the inference phase. 483

6 Related Works 484

LLM Reasoning by Learning From Mistakes 485

Developing the LLM with capabilities for correct- 486

ing, reflecting, critiquing, and verifying has been 487

7



one of the essential strategies for enhancing the488

LLM’s reasoning ability. The essence of these489

methods is to learn from mistakes. Previous works490

aim to design zero-shot prompts or few-shot ex-491

amples to encourage the LLM to utilize external492

feedback (Madaan et al., 2023; Welleck et al., 2023;493

Xi et al., 2023; Wang et al., 2024b). However, these494

methods heavily rely on external feedback and limit495

the model’s ability to think spontaneously. To rem-496

edy this dilemma, most recent works focus on post-497

training by injecting these abilities (i.e., correcting,498

reflecting, critiquing, and verifying) into model’s499

parameters (Gao et al., 2024a; Wang et al., 2023a;500

Zhou et al., 2024). Another line of research lever-501

ages self-training ways to develop these capabil-502

ities (Qu et al., 2024; Kumar et al., 2024; Zheng503

et al., 2024; Xi et al., 2024). Unlike them, we504

focus on the ability to prejudge, which helps the505

LLM take a moment to consider potential mistakes506

and think about how to avoid them before acting.507

Prejudging is also a way to learn from mistakes508

without trial and error.509

Post-training in LLM Reasoning With the de-510

velopment of OpenAI’s o1 (Jaech et al., 2024) and511

Deepseek R1 (Guo et al., 2025), the post-training512

with test-time scaling has been powerful and ver-513

satile techniques in reasoning enhancement. These514

studies typically increase inference computation515

by extending the model’s thinking chains with tree516

search (Hao et al., 2023; Zhang et al., 2024; Ze-517

likman et al., 2024; Nori et al., 2024; Gao et al.,518

2024b), process-based optimization (Uesato et al.,519

2022; Wang et al., 2024e; Lightman et al., 2024;520

Wang et al., 2024a), and self-play (Huang et al.,521

2023; Chen et al., 2024; Wang et al., 2024d; Wu522

et al., 2024). To enhance the reasoning ability of523

small language models, some recent works per-524

form distillation by DeepSeek R1 on Qwen2.5-7B525

and achieve satisfactory performance (Wen et al.,526

2025; Ye et al., 2025). Unlike them, we use a small527

Instruct-like LLM and propose a dynamic tree-528

searching algorithm to synthesize rationale with529

prejudgment and verification and develop a two-530

phase post-training strategy to enhance the model’s531

reasoning ability. We also investigate the perfor-532

mance gains achieved by scaling up the testing time,533

which indicates that prejudging before thinking can534

effectively elicit the model to avoid mistakes.535

7 Discussions536

We thus provide discussions about this works.537

The relation with Tree-of-Thoughts and MCTS 538

For Tree-of-Thought (Yao et al., 2023) and 539

MCTS (Kocsis and Szepesvári, 2006; Silver et al., 540

2016), which belong to System 1 mode, aim to im- 541

prove the self-consistency method by ensembling 542

multiple step-wise trajectories derived from tree- 543

searching. Yet, our works focus on exploring a 544

novel reasoning behavior in System 2 mode (i.e., 545

prejudge reasoning) along with self-verify and re- 546

flection. Hence, we have very different research 547

motivations. From the perspective of technique, 548

we found that the Tree-of-thought and MCTS can 549

only help us find the prejudge node through the 550

estimated value, but the tree is still static so it can- 551

not combine self-verify and reflection to dynami- 552

cally adjust the reasoning path when meeting the 553

prejudge node and obtain the corresponding pre- 554

judge hint. Therefore, we introduce a dynamic 555

tree-searching algorithm, which can be viewed as 556

the major extension in Tree-of-Thought. 557

The difference from PBT to Math-Shepherd 558

For Math-Shepherd (Wang et al., 2024e) and our 559

work, both of them use tree-searching method to 560

estimate the value of each step, and we refer to 561

the value estimation strategy in Math-Shepherd to 562

help find the prejudge node. However, the main 563

differences are still obvious: 1) Math-Shepherd fo- 564

cuses on using tree-search to form step-wise labels 565

to train a PRM model, which can be viewed as a 566

reward model or value model in RL, and the exper- 567

iments demonstrate that the PRM model is effect 568

for RL. 2) our PBT focuses on LLM (policy) itself 569

by using the dynamic tree-searching algorithm to 570

construct prejudge-like trajectories along with self- 571

verify and reflection, and the two-stage training 572

strategy is designed to elicit the prejudge behavior 573

in LLM reasoning via SFT and RL to enhance the 574

accuracy of complex tasks. 575

8 Conclusion 576

In this paper, we present a novel paradigm of "pre- 577

judge before thinking" inspired by System 2’s slow 578

thinking mode. We propose synthesizing training 579

data using a dynamic tree-searching method with a 580

small LLM and introduce a two-phase post-training 581

strategy to enhance the model’s reasoning ability 582

with SFT and RL techniques. We conduct extensive 583

experiments on multiple competition-level complex 584

reasoning benchmarks, and the results demonstrate 585

that the rationale embedded with the prejudged 586

hints can guide the LLM to avoid making mistakes. 587
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Limitations588

Our paper has some limitations, which we leave for589

future work:590

The computational cost of dynamic tree-591

searching The dynamic tree-searching algorithm592

incurs a high computational cost in the experiments.593

Each query takes about 5 minutes to generate four594

entire rationales. We attempted to use few-shot595

examples to prompt the strong LLM to generate596

the rationale with a preconceived notion, but we597

found that the preconceived notion was incorrect598

and the responses were not coherent. In the fu-599

ture, we will focus on the time efficiency on the600

searching strategy.601

The reasoning format We found that recent re-602

search from Deepseek R1 suggests that large-scale603

reinforcement learning based on a backbone can604

stimulate the model’s self-reflection and slow think-605

ing style. In contrast, our work focuses on data606

synthesis to construct System 2-like data. However,607

this leads us to a research topic concerning how608

to selectively activate specific reasoning modes609

through the RL stage. In other words, can we610

design a reward function or other strategies that611

allow LLMs to make prejudgments and combine612

them with some novel modes (e.g., aha moments)613

to enhance reasoning capabilities?614

Social Impact and Ethics615

In terms of social impact, the reasoning data we616

utilize are all from publicly available data sources.617

Infusing this information into the model’s reason-618

ing process will not introduce additional bias. How-619

ever, the open-source backbones we used may have620

some negative impacts, such as gender and social621

bias. Our work would unavoidably suffer from622

these issues. We suggest that users should carefully623

address potential risks when the proposed method624

is deployed online.625
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Task Domain Source Sampling The 1st Phase The 2nd Phase
#Search #Train #Search #Train

GSM8K MATH (Cobbe et al., 2021) 7,473 7,473 7,473 0 0
MATH MATH (Hendrycks et al., 2021) 3,994 3,994 2,000 1,994 1,200
SVAMP MATH (Patel et al., 2021) 700 700 700 0 0
AQuA MATH (Ling et al., 2017) 97467 7,000 5,350 1,650 210

Numina Math MATH (LI et al., 2024) 34,473 12,000 4,800 22,473 15,800
AIME (1983∼2023) MATH (LI et al., 2024) 919 919 678 241 89

PRM800K MATH (Lightman et al., 2024) 12,000 12,000 7,800 4,200 1,390
MetaMath QA MATH (Yu et al., 2024) 150,000 0 0 150,000 63,077

Table 5: The data statistics of each task. The data for #Train is smaller than #Search because rejected sampling.

A Data Sources996

For data collection, we select multiple train-997

ing sources from GSM8K (Cobbe et al., 2021),998

MATH (Hendrycks et al., 2021), SVAMP (Pa-999

tel et al., 2021), AQuA (Ling et al., 2017), Nu-1000

mina Math (LI et al., 2024), American Invitational1001

Mathematics Examination (AIME 1983∼2023) 5,1002

PRM800K (Lightman et al., 2024), and MetaMath1003

QA (Yu et al., 2024). The details of each source is1004

shown in Table 5.1005

B Experimental Setup Details1006

B.1 Details of Dynamic Tree-Searching1007

We develop a dynamic tree-searching to release pro-1008

cess estimation and prejudge estimation. We first1009

numbered and named the internal nodes of each1010

tree. In order to facilitate tracing each node, we1011

adopted a continuous coding strategy. For example,1012

the node “2-4-1-3” is located at the fourth layer in1013

the tree, and it is one of the child nodes of “2-4-1”.1014

the reasoning step at the node “2-4-1-3” can be1015

viewed as the third repeated sample generated from1016

“2-4-1”.1017

Since tree search is an algorithm with exponen-1018

tially increasing complexity, we agree that the num-1019

ber of repeated samplings at each layer is different1020

and, finally, ensure that the number of paths (from1021

root to all leaf nodes) does not exceed 1024.1022

C Prompt Engineering1023

C.1 Prompt Format1024

In this paper, we choose Qwen2.5-7B and Qwen2.5-1025

32B as the backbone for post-training, so we design1026

a new prompt format for the subsequence training.1027

The format is:1028

<|im_start|>user1029

{Question}1030

5https://artofproblemsolving.com/wiki/
index.php/AIME_Problems_and_Solutions.

Given a problem and the corresponding ground
truths, the task is to verify if the generated
answer can match one of the candidate ground
truths. Please output "TRUE" or "FALSE"
only.
------
Below is the one you need to verify:
### Start of Problem
{PROBLEM}
### End of Problem
### Start of Generated Answer
{FINAL_ANSWER}
### End of Generated Answer
### Start of Ground Truth
{GROUND_TRUTH}
### End of Ground Truth
### Start of Verification

Prompt for LLM-as-a-Judger

Figure 5: The prompt for LLM-as-a-Judger.

Let's think step by step, and put 1031

the final answer within \boxed{}. 1032

<|im_end|> 1033

<|im_start|>assistant 1034

where “{Question}” is the placeholder for complex 1035

query, “<|im_start|>”, “<|im_end|>” are the special 1036

tokens in vocabulary set of Qwen2.5 model. 1037

C.2 Prompt for LLM-as-a-Judger 1038

The prompt for making the LLM-as-a-Judger is 1039

shown in Figure 5. The prompt will be used in dy- 1040

namic tree searching to detect whether each reason- 1041

ing path is correct (i.e., matching the final answer 1042

in the box with the ground truth). 1043

C.3 Prompt for LLM-as-a-Critic 1044

The prompt for generating analysis and prejudge 1045

hint is shown in Figure 7. This prompt will be 1046
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Question: {Question}
Let's use the self conversation to think step by
step. Do not output '\\n\\n' at will, output '\\n\\n'
only when each complete reasoning step is
completed. After reasoning, please output the
final answer in \\boxed.
If you see a prejudge prompt, you must first
proceed the thinking step ONLY (please be
careful to avoid the mistakes mentioned in the
prejudge). Then verify on this new thinking
step ONLY whether it is correct and
successfully avoided the errors mentioned in
the prejudge. If you find that there are still
some errors, please rethink and improve it until
you think it is correct. Lastly, continually
completing the rest thinking steps. You must
also maintain the conversation style like the
previous thinking step.
The output format must be following:
### Thinking Only Next Step
...
### Verifying And Correcting Only Next Step
...
### Thinking The Rest Steps
...

Prompt for Prejudge Estimating

Figure 6: The prompt for prejudge estimating.

utilized in dynamic tree searching to produce error1047

analysis for all incorrect rationales and construct a1048

prejudge hint for the prejudge node.1049

C.4 Prompt for Prejudge Estimating1050

The prompt for prejudge estimating is shown in1051

Figure 6. When the prejudge hint is generated, we1052

can use this prompt to elicit the LLM to generate1053

the next thinking step, verify that step, and proceed1054

with the remaining steps to reach the final answer.1055

D Case Study1056

To show how the LLM reasoning by prejudge, we1057

provide two cases to demonstrate the rationale. The1058

cases are shown in Figure 8 to Figure 10.1059
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You possess expertise in solving mathematical problems through a systematic, step-by-step reasoning
process during which you are dedicated to preventing repeating any errors analyzed in experiences.
Here is a problem and the corresponding correct answer:

Problem: 
```
{Problem}
```
Correct Answers: 
```
{Correct_Answer}
```

Now, I will give you the initialized reasoning solution steps, and some corresponding incorrect
completions which aim at continually finishing the rest of the solution steps but reach the wrong
answer. The reasoning situations are in the following:

Initialized Reasoning Steps: 
```
{Prefix_Response}
```

{Suffix_Incorrect_Responses}

Please help me and give some following tips:

1) Errors Analysis: Each incorrect completion reaches an incorrect answer due to misconception,
please list the specific mistakes details. 
Cautions:
- DO NOT disclose the complete number (e.g., "Completion #1").

2) Prejudge: You will start reasoning from the given initialized step, please generate some detailed
prejudge information to ask yourself to avoid making errors. 
Cautions: 
- The generated prediction information is intended to guide the next step of reasoning to avoid errors,
it should be closed to the possible errors and the detailed error analysis;
- The generated prediction information prefers to tell yourself what mistakes to avoid, rather than
remind yourself to verify, so DO NOT output any contents like "I should double-check ..." or "I need
to verify ...";
- The generated prejudge should use coherent sentences without explicitly using line breaks or bold
formatting for listing;
- When generating prejudge, please use a self-talk style with only one of the modal particles ("Wait",
"Oh", "Hmmm", "Hold on") to perform smooth out.

Please note that the final output format must be in the following template:
### Errors Analysis
...
### Prejudge
...

Prompt for LLM-as-a-Critic

Figure 7: The prompt for LLM-as-a-Critic.
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The sum of the following seven numbers is exactly 19: $a_1 = 2.56$ , $a_2 = 2.61$ , $a_3 = 2.65$ , $a_4 = 2.71$ ,
$a_5 = 2.79$ , $a_6 = 2.82$ , $a_7 = 2.86$ . It is desired to replace each $a_i$ by an integer approximation $A_i$ ,
$1\le i \le 7$ , so that the sum of the $A_i$ 's is also $19$ and so that $M$ , the maximum of the "errors" $\lvert A_i-
a_i \rvert$ , is as small as possible. For this minimum $M$ , what is $100M$ ?

Question

Response
To solve this problem, we start by calculating the sum of the given numbers:

\[ a_1 = 2.56, \quad a_2 = 2.61, \quad a_3 = 2.65, \quad a_4 = 2.71, \quad a_5 = 2.79, \quad a_6 = 2.82, \quad a_7 =
2.86 \]<|think|>

The sum of these numbers is:

\[
2.56 + 2.61 + 2.65 + 2.71 + 2.79 + 2.82 + 2.86 = 19
\]<|think|>

> Wait, when rounding the numbers, I must carefully consider which numbers to round up or down to minimize the
maximum error. Avoiding arbitrary choices and ensuring a balanced approach is crucial. Additionally, ensure that the
sum of the rounded numbers equals 19 and verify the error calculations to ensure they are minimized.<|prejudge|>

To find the integer approximations $A_i$ for each $a_i$ such that the sum of the $A_i$ is 19 and the maximum error
$M$ is minimized, we first need to consider the possible integer values for each $a_i$. The integer nearest to each
$a_i$ is:

\[
A_1 = 3, \quad A_2 = 3, \quad A_3 = 3, \quad A_4 = 3, \quad A_5 = 3, \quad A_6 = 3, \quad A_7 = 3
\]

However, this would result in a sum of:

\[
3 + 3 + 3 + 3 + 3 + 3 + 3 = 21
\]

We need to adjust some of these values to achieve a sum of 19. We will start by examining the deviations of each
$a_i$ from the nearest integers and decide which values to adjust.<|think|>

The nearest integer values are too high, so we need to round down for some values to get the total sum to 19. We
should balance the rounding to minimize the maximum error. Let’s start by rounding down all values and then adjust
if necessary.<|verify|>

> Wait, I should carefully consider the order in which I round the numbers to achieve the sum of 19 and minimize the
maximum error. For each number, I should choose the rounding that results in the smallest possible maximum error,
and verify that the sum of the rounded numbers is exactly 19. Additionally, I need to carefully calculate the
maximum error after rounding up or down each value, ensuring that I don't miss the optimal combination.
<|prejudge|>

We start by rounding each $a_i$ to the nearest integer and then adjust the rounding if necessary to ensure the sum of
the $A_i$'s equals 19. Let's first consider rounding each $a_i$ to the nearest integer:

- $a_1 = 2.56 \rightarrow 3$
- $a_2 = 2.61 \rightarrow 3$
- $a_3 = 2.65 \rightarrow 3$
- $a_4 = 2.71 \rightarrow 3$
- $a_5 = 2.79 \rightarrow 3$
- $a_6 = 2.82 \rightarrow 3$
- $a_7 = 2.86 \rightarrow 3$

Figure 8: The case of prejudge reasoning (part 1).
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The sum of these rounded values is:

\[
3 + 3 + 3 + 3 + 3 + 3 + 3 = 21
\]

This sum is too high, so we need to round down some of the values to achieve a sum of 19. We will calculate the
errors for rounding down each value and choose the optimal combination.<|think|>

We need to find a combination of rounding down values to achieve a sum of 19 while minimizing the maximum
error. Let's start by rounding down the smallest values first:

1. If we round down $a_1 = 2.56$ and $a_2 = 2.61$ to 2:
   \[
   2 + 2 + 3 + 3 + 3 + 3 + 3 = 19
   \]

   Errors:
   \[
   \lvert A_1 - a_1 \rvert = \lvert 2 - 2.56 \rvert = 0.56
   \]
   \[
   \lvert A_2 - a_2 \rvert = \lvert 2 - 2.61 \rvert = 0.61
   \]

   Maximum error is 0.61.

2. If we try rounding down $a_1 = 2.56$ and $a_3 = 2.65$ to 2:
   \[
   2 + 2 + 3 + 3 + 3 + 3 + 3 = 19
   \]

   Errors:
   \[
   \lvert A_1 - a_1 \rvert = \lvert 2 - 2.56 \rvert = 0.56
   \]
   \[
   \lvert A_3 - a_3 \rvert = \lvert 2 - 2.65 \rvert = 0.65
   \]

   Maximum error is 0.65.

We should continue this process and consider other combinations to ensure the error is minimized.<|verify|>

> Wait, I must ensure that I carefully select which numbers to round up or down to achieve the sum of 19 with the
smallest possible maximum error. Avoiding arbitrary choices and ensuring a balanced approach is crucial.
Additionally, I need to verify that the sum of the rounded numbers equals 19 and calculate the errors accurately to
ensure they are minimized. I should focus on rounding the values with the smallest deviations first and adjust
accordingly to maintain the least overall error.<|prejudge|>

To find the optimal combination of rounding down the values, let's evaluate the deviations and choose the best
rounding strategy:

Figure 9: The case of prejudge reasoning (part 2).
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1. If we round down $a_1 = 2.56$ and $a_2 = 2.61$ to 2:
   \[
   \lvert A_1 - a_1 \rvert = \lvert 2 - 2.56 \rvert = 0.56
   \]
   \[
   \lvert A_2 - a_2 \rvert = \lvert 2 - 2.61 \rvert = 0.61
   \]
   Maximum error is 0.61.

2. If we round down $a_1 = 2.56$ and $a_3 = 2.65$ to 2:
   \[
   \lvert A_1 - a_1 \rvert = \lvert 2 - 2.56 \rvert = 0.56
   \]
   \[
   \lvert A_3 - a_3 \rvert = \lvert 2 - 2.65 \rvert = 0.65
   \]
   Maximum error is 0.65.

3. If we round down $a_2 = 2.61$ and $a_3 = 2.65$ to 2:
   \[
   \lvert A_2 - a_2 \rvert = \lvert 2 - 2.61 \rvert = 0.61
   \]
   \[
   \lvert A_3 - a_3 \rvert = \lvert 2 - 2.65 \rvert = 0.65
   \]
   Maximum error is 0.65.<|think|>

We see that rounding down $a_1 = 2.56$ and $a_2 = 2.61$ to 2 results in a maximum error of 0.61, which is the
smallest among the evaluated combinations. Let's verify if there are any other better combinations:

- Rounding down $a_1 = 2.56$ and $a_4 = 2.71$ to 2:
  \[
  \lvert A_1 - a_1 \rvert = \lvert 2 - 2.56 \rvert = 0.56
  \]
  \[
  \lvert A_4 - a_4 \rvert = \lvert 2 - 2.71 \rvert = 0.71
  \]
  Maximum error is 0.71.

- Rounding down $a_2 = 2.61$ and $a_4 = 2.71$ to 2:
  \[
  \lvert A_2 - a_2 \rvert = \lvert 2 - 2.61 \rvert = 0.61
  \]
  \[
  \lvert A_4 - a_4 \rvert = \lvert 2 - 2.71 \rvert = 0.71
  \]
  Maximum error is 0.71.

The combination of rounding down $a_1 = 2.56$ and $a_2 = 2.61$ to 2 yields the smallest maximum error of 0.61.
<|verify|>

Therefore, the smallest possible maximum error \( M \) is \( 0.61 \).

To find \( 100M \):<|think|>

\[
100M = 100 \times 0.61 = 61
\]

Thus, the final answer is \(\boxed{61}\).<|think|>

Figure 10: The case of prejudge reasoning (part 3).
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