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Abstract001

Parameter-efficient fine-tuning (PEFT) is cru-002
cial for customizing Large Language Mod-003
els (LLMs) with constrained resource. Al-004
though there have been various PEFTmethods005
for dense-architecture LLMs, PEFT for sparse-006
architecture LLMs is still underexplored. In007
this work, we study the PEFT method for008
LLMs with the Mixture-of-Experts (MoE) ar-009
chitecture and the contents of this work are010
mainly threefold: (1) We investigate the dis-011
persion degree of the activated experts in cus-012
tomized tasks, and found that the routing distri-013
bution for specific task tend to be highly con-014
centrated, while the distribution of activated015
experts varies significantly across different016
tasks. (2) We propose the expert-specialized017
fine-tuning method, which tunes the experts018
most relevant to downstream tasks while freez-019
ing the other experts and modules; experimen-020
tal results demonstrate that our method not021
only improves the tuning efficiency, but also022
matches or even surpasses the performance of023
full-parameter fine-tuning. (3) We further an-024
alyze the impact of the MoE architecture on025
expert-specialized fine-tuning. We find that026
MoE models with finer-grained experts are027
more advantageous in selecting the combina-028
tion of experts that are most relevant to down-029
stream tasks, thereby enhancing the both the030
training efficiency and effectiveness.031

1 Introduction032

As the parameter scale of large language mod-033

els (LLMs) continues to increase (Meta, 2024;034

Mistral, 2024a; DeepSeek, 2024; Qwen, 2024),035

parameter-efficient fine-tuning (PEFT) methods036

(Han et al., 2024) are becoming more and more037

important in adapting pre-trained LLMs to down-038

stream customization tasks. However, existing039

works (Hu et al., 2021; Liu et al., 2021) on PEFT040

have primarily focused on dense-architecture041

LLMs, with research on sparse-architecture LLMs042

still being markedly insufficient.043

In this work, we focus on exploring PEFT 044

techniques within the Mixture-of-Experts (MoE) 045

LLMs (Mistral, 2024b; Databricks, 2024). Unlike 046

dense model where all tasks are handled by the 047

same parameters, in the MoE architecture, differ- 048

ent tasks are processed by distinct activated ex- 049

perts (Lepikhin et al., 2021; Fedus et al., 2021). 050

Motivated by the observation that specialization 051

of tasks in expert systems is the key to the perfor- 052

mance of MoE LLMs (Dai et al., 2024), we pro- 053

pose Expert-Specialized Fine-Tuning (ESFT) so- 054

lution (as shown in Figure 1), which only tunes a 055

limited subset of experts with the highest affinity 056

to the customization task, while freezing the pa- 057

rameters of the other experts and other modules. 058

The primary advantages of ESFT lie in two as- 059

pects: (1) Saving Computation Resources: only 060

the parameters of the selected experts need to be 061

updated, which effectively reduces the storage, 062

memory and training time required for tuning. Em- 063

pirical results indicate that generally selecting less 064

than 25% experts can achieve near-performance in 065

different tasks. (2) Maintaining Expert Special- 066

ization: ESFT can prevent the decrement of spe- 067

cialization in full-parameter fine-tuning, where ex- 068

perts not adept at the task also update their param- 069

eters. Experimental results demonstrate that the 070

ESFT can achieve aligned or even superior perfor- 071

mance in downstream task evaluations compared 072

to full-parameter fine-tuning. Additionally, it bet- 073

ter maintains performance in general tasks when 074

learning new tasks. 075

Besides, we delved deeper into the reasons why 076

our method works. We analyze the distribution of 077

activated experts among different tasks. We dis- 078

cover that the distribution of experts activated by 079

the same task’s data is quite concentrated, while 080

there are significant differences among the dis- 081

tributions of experts activated by different tasks’ 082

data. This analysis indicates that the MoE model 083

utilizes specialized combinations of experts to han- 084
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dle different tasks, and our method can strengthen085

this tendency toward specialization. In contrast,086

updating all expert parameters can lead to a reduc-087

tion in this level of specialization.088

More importantly, our investigative experi-089

ments reveal that a key factor of our approach090

is the fine-grained expert system. We take the091

DeepSeek-V2-Lite (DeepSeek, 2024) as the exper-092

iment backbone, which features a much more re-093

fined expert division (8 out of 66 experts are ac-094

tivated for each token) compared to other MoE095

models (Lepikhin et al., 2021; Fedus et al., 2021).096

The fine-grained MoE model facilitates our ap-097

proach in selecting the expert combinations that098

are most relevant to the task, thereby enhancing099

both the learning efficiency and effectiveness on100

downstream tasks.101

2 Related Work102

2.1 Parameter-efficient fine-tuning for dense103

architectural LLMs104

The goal of parameter-efficient fine-tuning (Han105

et al., 2024) is to efficiently customize LLMs for106

downstream tasks, while existing studies primar-107

ily focused on dense architectural LLMs. PEFT108

methods for dense models can generally be cate-109

gorized into three approaches: (1) Adding new110

parameters: methods of this kind fix the exist-111

ing model parameters and fine-tune the model112

on a small number of newly-added parameters.113

Adapter (Houlsby et al., 2019; Pfeiffer et al., 2020;114

He et al., 2021; Wang et al., 2022) and Soft115

Prompt (Li and Liang, 2021; Liu et al., 2021;116

Zhang et al., 2023b; Lester et al., 2021) are two117

typical representatives of this category of methods.118

(2) Selecting existing parameters: methods of119

this type fine tune a limited part of existing parame-120

ters, while keeping themajority of the other param-121

eters fixed. Based on whether the trainable param-122

eter space is continuous, these methods can gener-123

ally be divided into structured training (Guo et al.,124

2020; Gheini et al., 2021; He et al., 2023; Vucetic125

et al., 2022) and unstructured training (Liao et al.,126

2023; Ansell et al., 2021; Sung et al., 2021; Xu127

et al., 2021). (3) Applying low-rank adaptation:128

LoRA (Hu et al., 2021; Fomenko et al., 2024) is a129

widely-used PEFTmethod, which decomposes the130

origin weight matrices into low-rank components.131

Subsequent works (Zhang et al., 2023a; Ding et al.,132

2023; Lin et al., 2024; Liu et al., 2023) have in-133

troduced numerous improvements to the original134

LoRA method. However, PEFT study of MoE 135

models is still scarce. In this work, we select and 136

tune part of experts according to their affinity to 137

downstream task, which is a unique selection di- 138

mension exclusive to the sparse MoE architecture. 139

2.2 Coarse- and Fine-grained MoE LLMs 140

Compared to dense-structure LLMs (e.g. LLaMA 141

series (Meta, 2023b,a)), MoE-structure LLMs (e.g. 142

Mixtral MoE series (Mistral, 2024a,b)) can in- 143

crease model size while saving on inference costs. 144

Based on the granularity of experts, existing 145

large MoE architectural models can generally be 146

divided into two categories: coarse- and fine- 147

grained experts. Most existing MoE LLMs (Lep- 148

ikhin et al., 2021; Fedus et al., 2021; Roller et al., 149

2021; Dai et al., 2022; Shen et al., 2024) have 150

coarse-grained expert systems where the number 151

of experts all very limited. For example, 2 out of 8 152

experts are activated for Mixtral MoE series (Mis- 153

tral, 2024a,b) and Grok-V1 (XAI, 2024). As a re- 154

sult, the same expert has to learn complicated pat- 155

terns from different domain tasks simultaneously. 156

To address this issue, the DeepSeek MoE (Dai 157

et al., 2024) has introduced a fine-grained expert 158

pattern. In the DeepSeek-V2 (DeepSeek, 2024), 159

there are as many as 162 experts, with 8 active 160

experts (8 out of 66 experts are activated for the 161

DeepSeek-V2-Lite). The fine-grained division of 162

experts ensures a high degree of specialization 163

among the experts. Moreover, the specialized ex- 164

pert system enables the selection of experts that 165

are most relevant to the task for efficient tuning. 166

3 Methods 167

3.1 Preliminaries: Mixture-of-Experts for 168

Transformers 169

In the Mixture-of-Experts (MoE) architecture 170

for Transformers, MoE layers can replace Feed- 171

Forward Networks (FFNs). Each MoE layer con- 172

tains multiple experts structurally identical to a 173

standard FFN. Tokens are assigned to and pro- 174

cessed by only a subset of experts based on their 175

affinity scores. The sparse gate routing mecha- 176

nism ensures computational efficiency inMoE lay- 177

ers, as each token is assigned to a subset of experts. 178

The output hidden state hlt of the t-th token in 179

the l-th MoE layer is computed as: 180

hlt =
N∑
i=1

(
gi,tFFNi

(
ult
))

+ ult, (1) 181
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Figure 1: Comparison between Expert-Specialized Fine-Tuning (ESFT) and other fine-tuning methods. FFT trains
all parameters. LoRA combines pretrained weights with low-rank matrices to reduce training cost. ESFT only
trains a subset of experts in anMixture-of-Expert (MoE) architecture, optimizing efficiency and task specialization.

182

gi,t =

{
si,t, si,t ∈ TopK({sj,t|1⩽j⩽N},K),

0, otherwise,
(2)183184

si,t = Softmaxi
(
ul⊤t eli

)
, (3)185

where N denotes the total number of experts,186

FFNi(·) is the i-th expert FFN, gi,t denotes the gate187

value for the i-th expert, si,t denotes the token-to-188

expert affinity, TopK(·,K) denotes the set com-189

prisingK highest affinity scores among those cal-190

culated for the t-th token and allN experts, and eli191

is the centroid of the i-th expert in the l-th layer.192

Recently, DeepseekMoE (Dai et al., 2024)193

proposed enhancements to the MoE architecture194

through fine-grained expert segmentation. It seg-195

ments each expert FFN into multiple smaller ex-196

perts and keeps the fraction of experts computed,197

enabling the smaller experts to specialize in differ-198

ent knowledge types while maintaining the same199

computational cost. Mathematically, the output of200

an MoE layer with fine-grained segmentation is:201

hlt =
mN∑
i=1

(
gi,tFFNi

(
ult
))

+ ult, (4)202

203

gi,t =

{
si,t, si,t ∈ TopK({sj,t|1⩽j⩽mN},mK),

0, otherwise,
(5)204

where each expert is segmented intom small ones.205

3.2 Task-Specific Specialization in MoE206

Models207

Despite the significant success of MoE LLMs, a208

clear understanding of the underlying mechanisms209

remains elusive. We conducted several experi-210

ments to understand how experts are selected and211

utilized across various tasks. These tasks, as de- 212

tailed in §4.1, include general domains such as 213

math and code, as well as specialized domains like 214

translation, intent recognition, text summarization, 215

and legal judgment prediction. These experiments 216

reveal the concentration and specialization of ex- 217

perts. 218

Expert Routing is Concentrated in a Task We 219

investigate the distribution of normalized gate val- 220

ues for each expert in various tasks, as shown in 221

Figure 2. Gate values are the sum of all expert- 222

token gate values for each expert, normalized by 223

dividing by the total across all experts. In the fig- 224

ure, the experts are sorted by their normalized val- 225

ues from high to low. The figure shows that a 226

small subset of experts handles themajority of gate 227

values, indicating the model’s specialization and 228

efficient expert allocation for specific tasks. 229

Active Experts Vary Significantly by Task We 230

investigate the joint distribution of experts across 231

tasks. Figure 3 shows a heatmap of the shared 232

TOP-6 routed experts between tasks. The number 233

indicates the shared experts averaged across layers 234

for two independent sets of samples for each task. 235

The off-diagonal values are near zero and the diag- 236

onal values are near 6, showing that the same task 237

uses similar sets of experts while different tasks 238

use different sets. Therefore, each task leverages 239

a distinct subset of experts. 240

3.3 Expert-Specialized Fine-tuning 241

The highly specialized expert routing suggests 242

that different experts can be optimized for spe- 243

cific tasks. Inspired by this, we propose Expert- 244

Specialized Fine-Tuning (ESFT) that selectively 245

fine-tune the most relevant experts for each task. 246

Our method enhances computational efficiency 247
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Figure 2: Top Expert distribution for specific tasks.
Shaded areas represent variance across layers. The
lines show that few experts handle most gate values,
highlighting expert specialization for different tasks.

Figure 3: The average number of shared TOP-6 experts
across tasks. The values are averaged by layer, indicat-
ing that the sets of experts used for the same task are
consistent while different tasks are distinct.

and maintains expert specialization as only the248

most relevant experts are trained. Figure 1 com-249

pares our method and existing methods.250

Data Sampling We randomly sample a subset251

Ds = {(xi, yi)}Ns
i=1 from the training data D =252

{(xi, yi)}Ni=1 for expert affinity evaluation, where253

xi and yi denote the input and label, respectively.254

Empirically, we find that a subset of 32 concate-255

nated samples, each with a fixed sequence length256

of L = 4096, is sufficient and robust to select the257

most relevant experts for specialized tasks.258

Expert Relevance Score We propose two meth-259

ods to calculate the relevance of an expert to a task,260

based on its affinity to the tokens in the samples:261

1. Average Gate Score (ESFT-Gate):262

gli =
1

Ns

Ns∑
j=1

1

Lj

Lj∑
k=1

gli,k, (6)263

where Lj is the length of the input sequence xj 264

in the sampled data Ds. This method calculates 265

the average affinity of expert ei to all tokens in the 266

sampled data. 267

2. Token Selection Ratio (ESFT-Token): 268

rli =
1

Ns

Ns∑
j=1

1

Lj

Lj∑
k=1

1

(
gli,k > 0

)
K

, (7) 269

Both methods provide a measure of the relevance 270

of each expert to the downstream task, based on 271

the sampled data. The choice between the two 272

methods depends on the specific characteristics of 273

the task and the MoE model. 274

Expert Selection and Fine-tuning For each 275

MoE layer l, we select a subset of experts to be 276

fine-tuned based on their relevance scores. We de- 277

fine a threshold p ∈ (0, 1] as a hyperparameter con- 278

trolling the proportion of total relevance scores to 279

be included in the selected subset. For each layer 280

l, we select a set of top-scored experts El
s whose 281

cumulative relevance score exceeds the threshold 282

p, satisfying: 283∑
i∈El

s

Rl
i ⩾ p, (8) 284

where Rl
i is the relevance score (either rli or gli) of 285

expert i in layer l. 286

During fine-tuning, we only update the selected 287

expertsEl
s in each MoE layer l, while freezing the 288

remaining experts and other modules of the model. 289

4 Experiment Setup 290

4.1 Main Evaluation 291

We evaluate our method on two common scenar- 292

ios: (1) improving themodel’s specific ability in a 293

domainwhere the model may already have decent 294

performance; (2) adapting the model to a possibly 295

narrow but unfamiliar downstream task. 296

4.1.1 Specialized Ability Improvement 297

We choose theMath and Code domains to evaluate 298

our method. These domains are suitable as many 299

pre-trained models perform decently, yet there 300

is significant potential for improvement through 301

training. We expect to assess our method’s effec- 302

tiveness through performance gains. 303

For the Math domain, we use the Meta- 304

math dataset (Yu et al., 2023) for training and 305

use GSM8K (Cobbe et al., 2021) and Math 306

(Hendrycks et al., 2021a) for evaluation. For the 307
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Code domain, We train the model on the evol-308

codealpaca dataset (Chen et al., 2021b) and as-309

sess its performance on HumanEval (Chen et al.,310

2021a) and MBPP (Austin et al., 2021).311

4.1.2 Downstream Task Adaptation312

We select four diverse tasks. The tasks cover a313

range of specific abilities that most models can ex-314

cel at after training but not without training, aim-315

ing to show our method’s effectiveness through316

performance gains. The tasks include: (1) Low-317

resource Translation in the ChrEn dataset (Li et al.,318

2023), requiring translating the minority Chero-319

kee to English. (2) Text-to-JSON Intent Recogni-320

tion in the BDCI-21 Smart HCI NLU Challenge1,321

which requires converting text instructions into322

JSON format for home appliances. (3) Text Sum-323

marization in the BDCI-21 Summarization Chal-324

lenge2, which summarizes customer service call325

transcripts. (4) Legal judgment Prediction in the326

the BDCI-21 Law Event Prediction Challenge3,327

where the “case description” and “judgment” are328

repurposed as a legal judgment prediction task. An329

example for each task is shown in Appendix A.330

To measure model performance, for the text-to-331

JSON task, we calculate the exact match between332

model output and reference answer; for other tasks,333

we employ GPT-4 to score model output between334

0 and 10 given reference answer4.335

4.2 General Ability Evaluation336

To evaluate whether training on new tasks with dif-337

ferent methods leads to catastrophic forgetting on338

existing tasks, we select a wide range of bench-339

marks to evaluate the general abilities of the mod-340

els after training with different methods. These341

benchmarks include CLUEWSC (Xu et al., 2020),342

TriviaQA (Joshi et al., 2017), IFEval (Smith and343

Doe, 2021), MMLU (Hendrycks et al., 2021b),344

CEval (Wang et al., 2021), HellaSwag (Zellers345

et al., 2019), and ARC (Clark et al., 2018).346

4.3 Model and Training Settings347

We use the DeepSeek-V2-Lite (DeepSeek, 2024)348

model as the backbone model for all experiments.349

The model features a fine-grained set of 66 experts350

for each of the 26 transformer layers, making it351

1https://www.datafountain.cn/competitions/511
2https://www.datafountain.cn/competitions/536
3https://www.datafountain.cn/competitions/540
4The exact version we use is gpt-4-1106-preview. The

evaluation instructions are in Appendix B

highly suitable for our method which requires ex- 352

pert specialization. We train the model on a care- 353

fully curated alignment dataset that excludes math 354

and code data and take the resulting checkpoint as 355

our base model for subsequent experiments. This 356

alignment phase can activate model ability across 357

different domains while forbidding data leakage 358

for math/code evaluation. 359

We adopt two baselines: Full-Parameter Fine- 360

Tuning (FFT) and Low-Rank Adaptation (LoRA, 361

Hu et al. (2021)). During training, we maintain a 362

1:1 ratio for alignment data and task-specific data 363

for all methods, which we observe is highly effec- 364

tive for keeping general abilities obtained from the 365

alignment phase. We train all tasks on 2 servers of 366

8x Nvidia A100 PCIe GPUs. 367

For hyperparameter settings, all methods use a 368

batch size of 32 and a sequence length of 4096 for 369

training. For every task, we set themaximum steps 370

of training to 500, and evaluate the model every 371

100 steps. The learning rates are set to 3e-5, 1e-4, 372

and 1e-5 for FFT, LoRA, and ESFT, respectively, 373

based on a hyperparameter search in {1e-5, 3e-5, 374

1e-4, 3e-4}. The LoRA rank is set to 8 and scal- 375

ing is set to 2, following (Hu et al., 2021). The 376

threshold p is set to 0.1 for ESFT-Gate and 0.2 for 377

ESFT-Token, respectively. §6.2 shows how we de- 378

termine the threshold for ESFT. 379

5 Results 380

5.1 Benchmark Performance Results 381

The results in Table 1 show that our method ESFT 382

achieves competitive performance compared to 383

the baselines. As shown in Table 1, ESFT- 384

Token and ESFT-Gate achieve near-best results 385

in domain-specific abilities like Math, and ESFT- 386

Gate achieves the best performance in the Hu- 387

maneval task. ESFT also excels in specialized 388

tasks, with ESFT-Gate achieving near-best perfor- 389

mance in 3 tasks out of 4. Notably, ESFT-Gate’s 390

average of 50.4 is competitive compared to FFT’s 391

51.0, slightly better than ESFT-Token’s 49.5, and 392

significantly surpasses LoRA’s 45.1. 393

For general ability evaluation, as illustrated in 394

Table 2, ESFT consistently outperforms FFT and 395

LoRA by showing less performance degradation. 396

Notably, ESFT-token performs better than ESFT- 397

gate, with average scores of 61.5 and 60.6, respec- 398

tively. The results demonstrate a wide range of 399

retention in tasks such as TriviaQA and IFEval, 400

surpassing FFT’s 58.8 and LoRA’s 59.1. Both 401

5
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Math Ability Code Ability Specialized Tasks

MATH GSM8K Humaneval MBPP Intent Summary Law Translation Average

Base 19.7 55.9 42.1 44.6 16.8 59.4 17.1 14.5 33.8
FFT 23.4 66.4 42.1 42.2 78.8 69.4 47.0 38.4 51.0
LoRA 20.6 58.9 39.6 44.8 67.8 66.4 39.7 23.1 45.1
ESFT-Token (Ours) 22.6 66.0 41.5 42.6 75.6 65.4 45.7 36.2 49.5
ESFT-Gate (Ours) 23.2 64.9 43.3 41.8 78.6 67.2 49.1 35.2 50.4

Table 1: Main performance comparison across methods and tasks. Best or near-best results are shown in bold and
second-best results are underlined. Our method ESFT provides a strong balance of performance across diverse
tasks, rivaling FFT and surpassing LoRA, particularly in specialized task domains.

CLUEWSC TriviaQA IFEval MMLU CEval HellaSwag ARC Average

Base 81.5 67.7 42.5 57.5 59.9 74.0 53.7 62.4
FFT 80.8 ± 0.9 65.9 ± 0.6 34.2 ± 3.3 55.5 ± 0.8 58.8 ± 0.7 67.9 ± 3.0 48.4 ± 1.9 58.8 ± 1.0
LoRA 74.3 ± 6.2 63.4 ± 4.3 38.7 ± 2.0 55.5 ± 1.0 57.0 ± 1.2 72.8 ± 1.5 51.7 ± 1.8 59.1 ± 2.0
ESFT-Token 80.9 ± 1.7 66.7 ± 3.5 40.7 ± 2.6 57.2 ± 1.0 59.6 ± 1.5 72.2 ± 7.0 52.9 ± 3.0 61.5 ± 2.2
ESFT-Gate 81.3 ± 0.9 66.5 ± 1.9 40.2 ± 1.2 57.0 ± 0.3 59.5 ± 0.6 68.2 ± 8.0 51.5 ± 2.5 60.6 ± 1.9

Table 2: General ability performance comparison across methods and tasks. The performance for a task is averaged
across all training experiments, taking 95% confidence interval. Best or near-best results are shown in bold. Our
method ESFT consistently achieves good performance among all tasks.

Figure 4: Computational efficiency of different meth-
ods. Blue bars show the training time, orange dots/lines
indicate VRAM usage and green lines show storage
space. ESFT models balance training time, VRAM us-
age, and storage space efficiently.

methods better retain previously learned knowl-402

edge compared to the baselines, highlighting their403

effectiveness in maintaining task performance.404

5.2 Computational Efficiency Results405

The results in Figure 6 demonstrates that ESFT ex-406

hibits several advantages in terms of training time,407

VRAM usage, and storage space requirements:408

Training Time The average training time for409

ESFT-Token and ESFT-Gate is 19.8 minutes and410

20.9 minutes, respectively. The FFT method takes411

significantly longer at 28.5 minutes. Although412

LoRA achieves a shorter training time of 16.5 min- 413

utes, our methods are relatively close. 414

Model VRAM Usage The VRAM usage for 415

ESFT-Token ranges from 42.3 to 58.28 GB across 416

4 tasks, and for ESFT-Gate from 45.02 to 64.2 GB. 417

These are much lower than the 263 GB required 418

by FFT and comparable to the 30.05 GB used by 419

LoRA. Notably, both our methods and LoRA can 420

train the 16B model on a single A100-80GB GPU, 421

which is not feasible with FFT. 422

Storage Space The storage requirement (i.e., av- 423

erage storage space of parameters trained) is 2630 424

MB for ESFT-Token and 3280MB for ESFT-Gate, 425

while FFT demands a substantial 29300 MB. Al- 426

though LoRA requires less storage of only 107 427

MB, ESFT offers a more balanced performance in 428

terms of VRAM usage and training time. 429

In summary, ESFT demonstrates excellent per- 430

formance in training time, VRAM usage, and stor- 431

age space requirements. It particularly excels in 432

VRAM and storage space efficiency, significantly 433

outperforming FFT. These advantages show that 434

ESFT can effectively select a subset of experts for 435

better efficiency, making ESFT more competitive 436

and practical for language model customization 437

and efficient adaptation. 438

6 Analysis 439

In this section, we investigate the expert selection 440

process of ESFT in §6.1, and demonstrate the per- 441
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Figure 5: Number of experts trained in ESFT across different layers and tasks. The trained experts are less than
25% of all experts for all tasks, showing the effectiveness of ESFT in selecting the most task-related experts.

formance of ESFT and LoRA under different com-442

putational constraints in §6.2. We also conduct ab-443

lation experiments in §6.3 to show the importance444

of our expert relevance scores and fine-grained ex-445

pert segmentation model architecture.446

6.1 ESFT Leverages Specialized Experts447

Effectively448

We analyze the number of experts ESFT trains449

across tasks and layers to understand its expert se-450

lection process. Results are shown in Figure 5.451

From the results, we have four key observations:452

(1) The average number of experts used per task453

across layers ranges from 2 to 15 out of 66, indi-454

cating ESFT can have 75%-95% fewer trainable455

parameters than FFT; (2) ESFT-Token generally456

employs fewer experts while better maintaining457

general performance, comparable to ESFT-Gate in458

tasks like Math, Intent, and Law; (3) The number459

of experts varies by task, with more specialized460

tasks like Math and Translation using fewer ex-461

perts. Our method’s performances for these tasks462

exceed LoRA to the most extent, indicating that463

our method is especially suitable for more special-464

ized tasks; (4) For most tasks, few experts are cho-465

sen in the middle layers, indicating that expert dis-466

tribution is more concentrated in these layers.467

6.2 ESFT Leverages Training Resources468

Efficiently469

Both ESFT and LoRA have a training efficiency470

hyperparameter (p for ESFT and rank for LoRA).471

It affects computational resource usage and poten-472

tial performance, as a larger value increases com-473

putational resource usage and may improve perfor- 474

mance. To understand how ESFT and LoRA per- 475

form under different efficiency settings, we evalu- 476

ate benchmark performance on the Math task. We 477

set rank ⩽ 512 for LoRA as a higher value will 478

result in more trainable parameters than FFT. Fig- 479

ure 6 illustrates both specialized and general abil- 480

ity under different training efficiency settings. 481

From the results, we can conclude: (1) All three 482

methods show a trade-off between training effi- 483

ciency and performance. Increasing trained pa- 484

rameters (p for ESFT and rank for LoRA) can im- 485

prove performance to a point. (2) ESFT-Token 486

peaks in both specialized and general ability at 487

p=0.5, while ESFT-Gate peaks at p=0.3 for spe- 488

cialized ability and p=0.1 for general ability. (3) 489

ESFT-Token and ESFT-Gate performance satu- 490

rates at p=0.2 and p=0.1, respectively. (4) Both 491

ESFT-Token and ESFT-Gate outperform LoRA at 492

any point, demonstrating higher specialized ability 493

and more stable general ability. (5) Notably, p=0.2 494

for ESFT-Token means trained experts cover 20% 495

of expert choices among all tokens, indicating that 496

many task-related tokens, such as punctuation and 497

function words, may be less relevant. 498

6.3 Ablation Studies 499

In this section, we demonstrate that the effective- 500

ness of our method lies in two aspects: (1) our 501

proposed expert relevance score function and (2) 502

the fine-grained expert segmentation of the MoE 503

model architecture. 504

Expert Relevance Score Function In this 505

work, we propose two expert relevance scores: av- 506

7



Figure 6: Comparison of three methods under different training efficiency settings on the Math task. The x-axis
shows experts for ESFT and rank for LoRA, indicating the ratio of parameters trained. The y-axis represents
specialized and general ability. Markers on the lines indicate p and rank values. ESFT-Token and ESFT-Gate
consistently outperform LoRA in both specialized and general ability.

Math Ability Code Ability Specialized Tasks

MATH GSM8K Humaneval MBPP Intent Summary Law Translation Average

ESFT-Token 22.6 66.0 41.5 42.6 75.6 65.4 45.7 36.2 49.5
∆ of rand -1.0 -3.7 -2.5 0.2 -2.6 -1.7 1.3 -13.5 -2.9
ESFT-Gate 23.2 64.9 43.3 41.8 78.6 67.2 49.1 35.2 50.4
∆ of rand -1.7 -3.2 -4.3 1.6 -5.0 -1.1 -2.9 -20.4 -4.6

Table 3: Performance comparison between original experts and random experts. Replacing high-affinity experts
with random ones significantly harms model performance across different tasks.

1 2 4
Group Size

14

16

18

20

22

24

Pe
rf

or
m

an
ce

 (M
AT

H
)

Performance

SFT MATH
ESFT-Token MATH
ESFT-Gate MATH
SFT GSM8K
ESFT-Token GSM8K
ESFT-Gate GSM8K

1 2 4
Group Size

4

8

16

32

64

Av
er

ag
e 

N
um

be
r o

f E
xp

er
ts Average Number of Experts

SFT Experts
ESFT-Token Experts
ESFT-Gate Experts

40

45

50

55

60

65

70

Pe
rf

or
m

an
ce

 (G
SM

8K
)

Figure 7: Experiment results for grouped experts. As
the experts become more coarse-grained, ESFT de-
grades more severely than FFT.

erage gate score and token selection ratio, to fil-507

ter relevant experts for different tasks. To demon-508

strate their effectiveness, we replace the experts509

obtained from the two functions with random ex-510

perts while keeping the number of activated ex-511

perts for each layer the same. Results in Ta-512

ble 3 show that replacing relevant experts with513

random ones significantly decreases task perfor-514

mance, demonstrating the effectiveness of our pro-515

posed relevance scores.516

Fine-Grained Expert Segmentation of the517

MoE Model We leverage the fine-grained seg-518

mented DeepSeek-V2 MoE model as our back-519

bone. To prove the effectiveness of this fine-520

grained segmentation, we used greedy search (De-521

tailed in Appendix C) to bind experts in groups,522

simulating models with coarse-grained expert seg- 523

mentation. Experts in the same group share the 524

same gate for each token, initialized by the aver- 525

age of the original gates’ vector. We conduct ex- 526

periments in the Math domain as an example. Re- 527

sults in Figure 7 show that as the group size in- 528

creases, the performance of our method decreases 529

more severely than FFT. However, the average 530

number of experts used becomes larger. These ob- 531

servations demonstrate that more fine-grained seg- 532

mentedmodels will have more specialized experts, 533

making them suitable for our method ans effective 534

LLM customization. 535

7 Conclusion 536

In this work, we study parameter-efficient fine- 537

tuning methods for sparse large language models 538

with the Mixture of Experts (MoE) architecture. 539

We observe that tasks from different domains are 540

handled by distinct combinations of experts. We 541

propose selecting the most relevant experts for 542

downstream tasks using two metrics: average gate 543

score and token selection ratio. Experimental re- 544

sults show that our method significantly reduces 545

training costs while matching or surpassing full pa- 546

rameter fine-tuning results. Further analysis con- 547

firms that our method enhances the specialization 548

of the expert system within the MoE architecture. 549

8



8 Limitation550

Firstly, due to the limitation of the availability of551

other fine-grained MoE models, our method was552

only tested on the DeepSeek-V2-Lite MoE model.553

The conclusions drawn from this model require554

further validation when applied to other contexts.555

Besides, due to the lack of parameter and struc-556

tural alignment in MoE models with different ex-557

pert granularities, we used a simulation approach558

by binding several groups of experts to compare559

coarse-grained and fine-grained MoE methods.560
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A Downstream Task Examples770

Table 4 presents task descriptions and correspond-771

ing responses for different tasks as intent detection,772

summarization, law prediction, and translation.773

B Evaluation Instruction for774

Benchmarks775

Table 5 details the criteria for evaluating tasks such776

as summary, law prediction, and translation. Each777

task type includes specific instructions on how778

to assess predicted answers against reference an-779

swers, focusing on aspects such as content accu-780

racy, completeness, relevance, and consistency.781

C Strategy for Grouping Experts782

In the DeepSeek-V2-Lite architecture, each token783

selects 6 non-shared experts and two shared ex-784

perts. These experts selected by the same token are785

considered similar because they appear together,786

so we add a score of 1 to them in a co-occurrence787

matrix until a token sample set (batch size of 32788

with sequence length of 4096) is iterated. The sim-789

ilarity between expert i and expert j is calculated790

using the cosine similarity between the vectors of791

row i and row j in this co-occurrence matrix.792

To obtain an expert grouping strategy through,793

we calculate the average intra-group similarity (the794

average pairwise similarity of all experts within795

the group) for all possible K-expert groups (where796

K is the group size) from the 64 non-shared experts797

out of the 66 experts in each layer. We then select798

a K-expert group with the highest score. For the799

unselected experts, we repeat this process until all800

experts are selected and grouped.801
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Dataset Task Description

Intent Prompt: 将二楼主卧的小台灯关掉吧
Response: {”intent”: ”HomeAppliance-Control”, ”slots”: {”appliance”: ”小台灯”, ”command”: ”关
机”, ”details”: ”二楼主卧”}}

Summary Prompt:【坐席】您好，实习话务员为您服务？【客户】，唉，你好，嗯，请问我这个手机话费这
个月为什么这么多呀？【坐席】噢，是这个本月的话费是吧，【客户】嗯，对啊，【坐席】噢，稍
等，我帮您看一下啊，女士您好，感谢等待这边看到您这个本月的上网费是产生了169块八毛
三，【客户】我我这个上网费就是这个流量用了这么多...
Response: 用户来电反馈，对1月份上网费169.83元不认可，我方向用户解释用户强烈不认可，表
示并没有收到流量超出提醒短信，用户要求全额退还，烦请后台处理，谢谢！

Law Prediction Prompt: 1987年4月1日原告**（男方）、被告**（女方）在**民政局登记结婚，1989年2月14日
生育女儿**，1990年3月2日生育儿子**，由于二人性格不和，1999年二人分居至今，为此
于2016年8月23日诉来**人民法院要求：一、判令原、被告解除婚姻关系；二、本案诉讼费
由被告承担。
Response: 依照《中华人民共和国婚姻法》第三十二条第二款、《中华人民共和国民事诉讼法》
第六十四条、《最高人民法院关于适用�中华人民共和国民事诉讼法�的解释》第九十条之规定，
判决如下：准许原告与被告离婚，本案诉讼费200元，由原告承担。

Translation ᎠᏁᎸᏗᏍᎨ ᎤᏍᏓᏩᏛᏍᏗ ᎠᏂᏁᎬ ᏧᎵᎢ� ᎠᏎᏃ ᎨᏍᏗ ᎨᏓᎵ ᎠᎴ ᎦᏚᏏ ᎫᏩᏓᏒᏍᏗ ᏱᎨᏎ ᎢᏧ
ᎴᎭ� ᎨᏍᏗ ᎫᏩᏓᏄᏖᏲᏗ ᏱᎨᏎ ᎠᏓᎾᏫᏛᏍᎬ ᏃᎴ ᎠᎵᏍᎩᏍᎬ� ᏃᎴ ᏍᏓᏯ ᎠᏦᏱᎮ� ᎨᏍᏗ ᎣᏍᏓ
ᎫᏩᎪᏩᏛᏗ ᏱᎨᏎ ᏂᎦᎵᏍᏔᏂᏙᎲ
He tried to follow the instructions his friends were giving him, but he couldn’t run downhill and uphill
at the same time, and he couldn’t turn and twist when he was jumping and dancing, and he was crying
so hard he could barely see anything that was happening.

Table 4: Task examples for different datasets.

Task Type Instruction

Summary 请你进行以下电话总结内容的评分。请依据以下标准综合考量，以确定预测答案与标准答案
之间的一致性程度。满分为10分，根据预测答案的准确性、完整性和相关性来逐项扣分。请先
给每一项打分并给出总分，再给出打分理由。总分为10分减去每一项扣除分数之和，最低可扣
到0分。请以“内容准确性扣x分，详细程度/完整性扣x分，...，总分是：x分”为开头。1. 内容准
确性：-预测答案是否准确反映了客户问题或投诉的核心要点。-是否有任何关键信息被错误陈
述或误解。2. 详细程度/完整性：-预测答案中包含的细节是否充分，能否覆盖标准答案中所有
重要点。-对于任何遗漏的关键信息，应相应减分。3. 内容冗余度：-预测答案是否简洁明了，
和标准答案风格一致，不存在冗余信息。-如果预测答案过长或与标准答案风格不一致，需相
应减分。4. 行动指令正确性：-预测答案对后续处理的建议或请求是否与标准答案相符。-如果
处理建议发生改变或丢失，需相应减分。预测答案：{prediction}参考答案：{ground_truth}

Law Prediction 请你进行以下法案判决预测内容的评分。请依据以下标准综合考量，以确定预测答案与标准答
案之间的一致性程度。满分为10分，根据预测答案的准确性、完整性和相关性来逐项扣分。请
先给每一项打分并给出总分，再给出打分理由。总分为10分减去每一项扣除分数之和，最低可
扣到0分。请以“相关性扣x分，完整性扣x分，...，总分是：x分”为开头。1. 相关性：预测答案
与标准答案的相关程度是最重要的评分标准。如果预测的判决情况与标准答案完全一致，即所
有事实和结果都被精确复制或以不同但等效的方式表述，则应给予高分。若只有部分一致或存
在偏差，则根据一致的程度适当扣分。如果没有预测判决内容，扣10分。2. 完整性：评估预测
答案是否涵盖了所有标准答案中提到的关键点，包括但不限于当事人、具体金额、责任判定、
费用承担等。如果遗漏重要信息，则应相应扣分。3. 准确性：检查预测答案中提及的细节、数
字、日期和法律依据是否与标准答案保持一致。任何错误信息均需扣分，并且严重错误应该导
致更多的扣分。4. 客观性与专业性：预测答案应客观反映法案内容并使用恰当的法律术语。主
观臆断或非专业表达需酌情扣分。预测答案：{prediction}参考答案：{ground_truth}

Translation You are an expert master in machine translation. Please score the predicted answer against the stan-
dard answer out of 10 points based on the following criteria: Content accuracy: Does the predicted
answer accurately reflect the key points of the reference answer? Level of detail/completeness: Does
the predicted answer cover all important points from the standard answer? Content redundancy: Is the
predicted answer concise and consistent with the style of the standard answer? Respond following the
format: ”Content accuracy x points, level of detail/completeness x points, ..., total score: x points”. The
total score is the average of all the scores. Do not give reasons for your scores. Predicted answer: {pre-
diction} Reference answer: {ground_truth}

Table 5: Task instructions for model performance evaluation.
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