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Abstract

Parameter-efficient fine-tuning (PEFT) is cru-
cial for customizing Large Language Mod-
els (LLMs) with constrained resource. Al-
though there have been various PEFT methods
for dense-architecture LLMs, PEFT for sparse-
architecture LLMs is still underexplored. In
this work, we study the PEFT method for
LLMs with the Mixture-of-Experts (MoE) ar-
chitecture and the contents of this work are
mainly threefold: (1) We investigate the dis-
persion degree of the activated experts in cus-
tomized tasks, and found that the routing distri-
bution for specific task tend to be highly con-
centrated, while the distribution of activated
experts varies significantly across different
tasks. (2) We propose the expert-specialized
fine-tuning method, which tunes the experts
most relevant to downstream tasks while freez-
ing the other experts and modules; experimen-
tal results demonstrate that our method not
only improves the tuning efficiency, but also
matches or even surpasses the performance of
full-parameter fine-tuning. (3) We further an-
alyze the impact of the MoE architecture on
expert-specialized fine-tuning. We find that
MoE models with finer-grained experts are
more advantageous in selecting the combina-
tion of experts that are most relevant to down-
stream tasks, thereby enhancing the both the
training efficiency and effectiveness.

1 Introduction

As the parameter scale of large language mod-
els (LLMs) continues to increase (Meta, 2024;
Mistral, 2024a; DeepSeek, 2024; Qwen, 2024),
parameter-efficient fine-tuning (PEFT) methods
(Han et al., 2024) are becoming more and more
important in adapting pre-trained LLMs to down-
stream customization tasks. However, existing
works (Hu et al., 2021; Liu et al., 2021) on PEFT
have primarily focused on dense-architecture
LLMs, with research on sparse-architecture LLMs
still being markedly insufficient.

In this work, we focus on exploring PEFT
techniques within the Mixture-of-Experts (MoE)
LLMs (Mistral, 2024b; Databricks, 2024). Unlike
dense model where all tasks are handled by the
same parameters, in the MoE architecture, differ-
ent tasks are processed by distinct activated ex-
perts (Lepikhin et al., 2021; Fedus et al., 2021).
Motivated by the observation that specialization
of tasks in expert systems is the key to the perfor-
mance of MoE LLMs (Dai et al., 2024), we pro-
pose Expert-Specialized Fine-Tuning (ESFT) so-
lution (as shown in Figure 1), which only tunes a
limited subset of experts with the highest affinity
to the customization task, while freezing the pa-
rameters of the other experts and other modules.

The primary advantages of ESFT lie in two as-
pects: (1) Saving Computation Resources: only
the parameters of the selected experts need to be
updated, which effectively reduces the storage,
memory and training time required for tuning. Em-
pirical results indicate that generally selecting less
than 25% experts can achieve near-performance in
different tasks. (2) Maintaining Expert Special-
ization: ESFT can prevent the decrement of spe-
cialization in full-parameter fine-tuning, where ex-
perts not adept at the task also update their param-
eters. Experimental results demonstrate that the
ESFT can achieve aligned or even superior perfor-
mance in downstream task evaluations compared
to full-parameter fine-tuning. Additionally, it bet-
ter maintains performance in general tasks when
learning new tasks.

Besides, we delved deeper into the reasons why
our method works. We analyze the distribution of
activated experts among different tasks. We dis-
cover that the distribution of experts activated by
the same task’s data is quite concentrated, while
there are significant differences among the dis-
tributions of experts activated by different tasks’
data. This analysis indicates that the MoE model
utilizes specialized combinations of experts to han-



dle different tasks, and our method can strengthen
this tendency toward specialization. In contrast,
updating all expert parameters can lead to a reduc-
tion in this level of specialization.

More importantly, our investigative experi-
ments reveal that a key factor of our approach
is the fine-grained expert system. We take the
DeepSeek-V2-Lite (DeepSeek, 2024) as the exper-
iment backbone, which features a much more re-
fined expert division (8 out of 66 experts are ac-
tivated for each token) compared to other MoE
models (Lepikhin et al., 2021; Fedus et al., 2021).
The fine-grained MoE model facilitates our ap-
proach in selecting the expert combinations that
are most relevant to the task, thereby enhancing
both the learning efficiency and effectiveness on
downstream tasks.

2 Related Work

2.1 Parameter-efficient fine-tuning for dense
architectural LLMs

The goal of parameter-efficient fine-tuning (Han
et al., 2024) is to efficiently customize LLMs for
downstream tasks, while existing studies primar-
ily focused on dense architectural LLMs. PEFT
methods for dense models can generally be cate-
gorized into three approaches: (1) Adding new
parameters: methods of this kind fix the exist-
ing model parameters and fine-tune the model
on a small number of newly-added parameters.
Adapter (Houlsby et al., 2019; Pfeiffer et al., 2020;
He et al., 2021; Wang et al., 2022) and Soft
Prompt (Li and Liang, 2021; Liu et al., 2021;
Zhang et al., 2023b; Lester et al., 2021) are two
typical representatives of this category of methods.
(2) Selecting existing parameters: methods of
this type fine tune a limited part of existing parame-
ters, while keeping the majority of the other param-
eters fixed. Based on whether the trainable param-
eter space is continuous, these methods can gener-
ally be divided into structured training (Guo et al.,
2020; Gheini et al., 2021; He et al., 2023; Vucetic
et al., 2022) and unstructured training (Liao et al.,
2023; Ansell et al., 2021; Sung et al., 2021; Xu
et al., 2021). (3) Applying low-rank adaptation:
LoRA (Hu et al., 2021; Fomenko et al., 2024) is a
widely-used PEFT method, which decomposes the
origin weight matrices into low-rank components.
Subsequent works (Zhang et al., 2023a; Ding et al.,
2023; Lin et al., 2024; Liu et al., 2023) have in-
troduced numerous improvements to the original

LoRA method. However, PEFT study of MoE
models is still scarce. In this work, we select and
tune part of experts according to their affinity to
downstream task, which is a unique selection di-
mension exclusive to the sparse MoE architecture.

2.2 Coarse- and Fine-grained MoE LLMs

Compared to dense-structure LLMs (e.g. LLaMA
series (Meta, 2023b,a)), MoE-structure LLMs (e.g.
Mixtral MoE series (Mistral, 2024a,b)) can in-
crease model size while saving on inference costs.
Based on the granularity of experts, existing
large MoE architectural models can generally be
divided into two categories: coarse- and fine-
grained experts. Most existing MoE LLMs (Lep-
ikhin et al., 2021; Fedus et al., 2021; Roller et al.,
2021; Dai et al., 2022; Shen et al., 2024) have
coarse-grained expert systems where the number
of experts all very limited. For example, 2 out of 8
experts are activated for Mixtral MoE series (Mis-
tral, 2024a,b) and Grok-V1 (XA, 2024). As a re-
sult, the same expert has to learn complicated pat-
terns from different domain tasks simultaneously.
To address this issue, the DeepSeek MoE (Dai
et al., 2024) has introduced a fine-grained expert
pattern. In the DeepSeek-V2 (DeepSeek, 2024),
there are as many as 162 experts, with 8 active
experts (8 out of 66 experts are activated for the
DeepSeek-V2-Lite). The fine-grained division of
experts ensures a high degree of specialization
among the experts. Moreover, the specialized ex-
pert system enables the selection of experts that
are most relevant to the task for efficient tuning.

3 Methods

3.1 Preliminaries: Mixture-of-Experts for
Transformers

In the Mixture-of-Experts (MoE) architecture
for Transformers, MoE layers can replace Feed-
Forward Networks (FFNs). Each MoE layer con-
tains multiple experts structurally identical to a
standard FFN. Tokens are assigned to and pro-
cessed by only a subset of experts based on their
affinity scores. The sparse gate routing mecha-
nism ensures computational efficiency in MoE lay-
ers, as each token is assigned to a subset of experts.

The output hidden state h. of the ¢-th token in
the [-th MoE layer is computed as:

N
b= (gsFPN: (uf)) +ul, ()

i=1
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Figure 1: Comparison between Expert-Specialized Fine-Tuning (ESFT) and other fine-tuning methods. FFT trains
all parameters. LoRA combines pretrained weights with low-rank matrices to reduce training cost. ESFT only
trains a subset of experts in an Mixture-of-Expert (MoE) architecture, optimizing efficiency and task specialization.

sit, St € TopK({s;[I<j<N}, K),
git = .
0, otherwise,
(2)
s;,¢ = Softmax; (uiTeé) , 3)

where N denotes the total number of experts,
FFN; (-) is the i-th expert FFN, g; ; denotes the gate
value for the i-th expert, s; ; denotes the token-to-
expert affinity, TopK(-, K) denotes the set com-
prising K highest affinity scores among those cal-
culated for the ¢-th token and all N experts, and eé
is the centroid of the ¢-th expert in the /-th layer.
Recently, DeepseekMoE (Dai et al., 2024)
proposed enhancements to the MoE architecture
through fine-grained expert segmentation. It seg-
ments each expert FFN into multiple smaller ex-
perts and keeps the fraction of experts computed,
enabling the smaller experts to specialize in differ-
ent knowledge types while maintaining the same
computational cost. Mathematically, the output of
an MoE layer with fine-grained segmentation is:

mN
=Y (gZ,tFFNZ- (ui)) +ul,

=1

(4)

Sity Sit € TopK({sj’t|1<j<mN},mK),

0, otherwise,

git = {
(5)

where each expert is segmented into m small ones.

3.2 Task-Specific Specialization in MoE
Models

Despite the significant success of MoE LLMs, a
clear understanding of the underlying mechanisms
remains elusive. We conducted several experi-
ments to understand how experts are selected and

utilized across various tasks. These tasks, as de-
tailed in §4.1, include general domains such as
math and code, as well as specialized domains like
translation, intent recognition, text summarization,
and legal judgment prediction. These experiments
reveal the concentration and specialization of ex-
perts.

Expert Routing is Concentrated in a Task We
investigate the distribution of normalized gate val-
ues for each expert in various tasks, as shown in
Figure 2. Gate values are the sum of all expert-
token gate values for each expert, normalized by
dividing by the total across all experts. In the fig-
ure, the experts are sorted by their normalized val-
ues from high to low. The figure shows that a
small subset of experts handles the majority of gate
values, indicating the model’s specialization and
efficient expert allocation for specific tasks.
Active Experts Vary Significantly by Task We
investigate the joint distribution of experts across
tasks. Figure 3 shows a heatmap of the shared
TOP-6 routed experts between tasks. The number
indicates the shared experts averaged across layers
for two independent sets of samples for each task.
The off-diagonal values are near zero and the diag-
onal values are near 6, showing that the same task
uses similar sets of experts while different tasks
use different sets. Therefore, each task leverages
a distinct subset of experts.

3.3 Expert-Specialized Fine-tuning

The highly specialized expert routing suggests
that different experts can be optimized for spe-
cific tasks. Inspired by this, we propose Expert-
Specialized Fine-Tuning (ESFT) that selectively
fine-tune the most relevant experts for each task.
Our method enhances computational efficiency
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Figure 2: Top Expert distribution for specific tasks.
Shaded areas represent variance across layers. The
lines show that few experts handle most gate values,
highlighting expert specialization for different tasks.
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Figure 3: The average number of shared TOP-6 experts
across tasks. The values are averaged by layer, indicat-
ing that the sets of experts used for the same task are
consistent while different tasks are distinct.

and maintains expert specialization as only the
most relevant experts are trained. Figure 1 com-
pares our method and existing methods.

Data Sampling We randomly sample a subset
D, = {(zy, yi)}ZN;l from the training data D =
{(xi, i)}, for expert affinity evaluation, where
z; and y; denote the input and label, respectively.
Empirically, we find that a subset of 32 concate-
nated samples, each with a fixed sequence length
of L = 4096, is sufficient and robust to select the
most relevant experts for specialized tasks.

Expert Relevance Score We propose two meth-

ods to calculate the relevance of an expert to a task,

based on its affinity to the tokens in the samples:
1. Average Gate Score (ESFT-Gate):

1 d 1 &
I _ I
9i = EZfZgzka (6)

j=1 "7 k=1

where L; is the length of the input sequence z;
in the sampled data Dg. This method calculates
the average affinity of expert e; to all tokens in the

sampled data.
2. Token Selection Ratio (ESFT-Token):
N b1 (g > 0)
rl s 1 L (7)
(2 K I

Both methods provide a measure of the relevance
of each expert to the downstream task, based on
the sampled data. The choice between the two
methods depends on the specific characteristics of
the task and the MoE model.

Expert Selection and Fine-tuning For each
MoE layer [, we select a subset of experts to be
fine-tuned based on their relevance scores. We de-
fine a threshold p € (0, 1] as a hyperparameter con-
trolling the proportion of total relevance scores to
be included in the selected subset. For each layer
I, we select a set of top-scored experts E! whose
cumulative relevance score exceeds the threshold
p, satisfying:

> Rizp, ®)

iEEL

where Rﬁ is the relevance score (either rﬁ or gﬁ) of
expert ¢ in layer [.

During fine-tuning, we only update the selected
experts £ in each MoE layer [, while freezing the
remaining experts and other modules of the model.

4 Experiment Setup

4.1 Main Evaluation

We evaluate our method on two common scenar-
i0s: (1) improving the model’s specific ability in a
domain where the model may already have decent
performance; (2) adapting the model to a possibly
narrow but unfamiliar downstream task.

4.1.1 Specialized Ability Improvement

We choose the Math and Code domains to evaluate
our method. These domains are suitable as many
pre-trained models perform decently, yet there
is significant potential for improvement through
training. We expect to assess our method’s effec-
tiveness through performance gains.

For the Math domain, we use the Meta-
math dataset (Yu et al., 2023) for training and
use GSM8K (Cobbe et al,, 2021) and Math
(Hendrycks et al., 2021a) for evaluation. For the



Code domain, We train the model on the evol-
codealpaca dataset (Chen et al., 2021b) and as-
sess its performance on HumanEval (Chen et al.,
2021a) and MBPP (Austin et al., 2021).

4.1.2 Downstream Task Adaptation

We select four diverse tasks. The tasks cover a
range of specific abilities that most models can ex-
cel at after training but not without training, aim-
ing to show our method’s effectiveness through
performance gains. The tasks include: (1) Low-
resource Translation in the ChrEn dataset (Li et al.,
2023), requiring translating the minority Chero-
kee to English. (2) Text-to-JSON Intent Recogni-
tion in the BDCI-21 Smart HCI NLU Challenge!,
which requires converting text instructions into
JSON format for home appliances. (3) Text Sum-
marization in the BDCI-21 Summarization Chal-
lenge?, which summarizes customer service call
transcripts. (4) Legal judgment Prediction in the
the BDCI-21 Law Event Prediction Challenge?,
where the “case description” and “judgment” are
repurposed as a legal judgment prediction task. An
example for each task is shown in Appendix A.
To measure model performance, for the text-to-
JSON task, we calculate the exact match between
model output and reference answer; for other tasks,
we employ GPT-4 to score model output between

0 and 10 given reference answer”.

4.2 General Ability Evaluation

To evaluate whether training on new tasks with dif-
ferent methods leads to catastrophic forgetting on
existing tasks, we select a wide range of bench-
marks to evaluate the general abilities of the mod-
els after training with different methods. These
benchmarks include CLUEWSC (Xu et al., 2020),
TriviaQA (Joshi et al., 2017), IFEval (Smith and
Doe, 2021), MMLU (Hendrycks et al., 2021b),
CEval (Wang et al., 2021), HellaSwag (Zellers
et al., 2019), and ARC (Clark et al., 2018).

4.3 Model and Training Settings

We use the DeepSeek-V2-Lite (DeepSeek, 2024)
model as the backbone model for all experiments.
The model features a fine-grained set of 66 experts
for each of the 26 transformer layers, making it

"https://www.datafountain.cn/competitions/511

“https:/ /www.datafountain.cn/competitions/536

https://www.datafountain.cn/competitions /540

“The exact version we use is gpt-4-1106-preview. The
evaluation instructions are in Appendix B

highly suitable for our method which requires ex-
pert specialization. We train the model on a care-
fully curated alignment dataset that excludes math
and code data and take the resulting checkpoint as
our base model for subsequent experiments. This
alignment phase can activate model ability across
different domains while forbidding data leakage
for math/code evaluation.

We adopt two baselines: Full-Parameter Fine-
Tuning (FFT) and Low-Rank Adaptation (LoRA,
Hu et al. (2021)). During training, we maintain a
1:1 ratio for alignment data and task-specific data
for all methods, which we observe is highly effec-
tive for keeping general abilities obtained from the
alignment phase. We train all tasks on 2 servers of
8x Nvidia A100 PCle GPUs.

For hyperparameter settings, all methods use a
batch size of 32 and a sequence length of 4096 for
training. For every task, we set the maximum steps
of training to 500, and evaluate the model every
100 steps. The learning rates are set to 3e-5, le-4,
and le-5 for FFT, LoRA, and ESFT, respectively,
based on a hyperparameter search in {le-5, 3e-5,
le-4, 3e-4}. The LoRA rank is set to 8 and scal-
ing is set to 2, following (Hu et al., 2021). The
threshold p is set to 0.1 for ESFT-Gate and 0.2 for
ESFT-Token, respectively. §6.2 shows how we de-
termine the threshold for ESFT.

5 Results

5.1 Benchmark Performance Results

The results in Table 1 show that our method ESFT
achieves competitive performance compared to
the baselines. As shown in Table 1, ESFT-
Token and ESFT-Gate achieve near-best results
in domain-specific abilities like Math, and ESFT-
Gate achieves the best performance in the Hu-
maneval task. ESFT also excels in specialized
tasks, with ESFT-Gate achieving near-best perfor-
mance in 3 tasks out of 4. Notably, ESFT-Gate’s
average of 50.4 is competitive compared to FFT’s
51.0, slightly better than ESFT-Token’s 49.5, and
significantly surpasses LoRA’s 45.1.

For general ability evaluation, as illustrated in
Table 2, ESFT consistently outperforms FFT and
LoRA by showing less performance degradation.
Notably, ESFT-token performs better than ESFT-
gate, with average scores of 61.5 and 60.6, respec-
tively. The results demonstrate a wide range of
retention in tasks such as TriviaQA and IFEval,
surpassing FFT’s 58.8 and LoRA’s 59.1. Both
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Math Ability Code Ability Specialized Tasks
MATH GSM8K Humaneval MBPP Intent Summary Law Translation Average
Base 19.7 55.9 42.1 44.6 16.8 59.4 17.1 14.5 33.8
FFT 234 66.4 42.1 422 78.8 69.4 47.0 38.4 51.0
LoRA 20.6 58.9 39.6 44.8 67.8 66.4 39.7 23.1 45.1
ESFT-Token (Ours) 22.6 66.0 41.5 42.6 75.6 65.4 45.7 36.2 49.5
ESFT-Gate (Ours) 23.2 64.9 43.3 41.8 78.6 67.2 49.1 35.2 50.4

Table 1: Main performance comparison across methods and tasks. Best or near-best results are shown in bold and
second-best results are underlined. Our method ESFT provides a strong balance of performance across diverse
tasks, rivaling FFT and surpassing LoRA, particularly in specialized task domains.

CLUEWSC TriviaQA IFEval MMLU CEval HellaSwag ARC Average
Base 81.5 67.7 425 57.5 59.9 74.0 53.7 62.4
FFT 80.8+09 659+£06 342+33 5554+08 588+£0.7 679+£3.0 484+£19 588+1.0
LoRA 743+62 634+£43 387+20 555+10 570+12 728+15 517418 59.1+£20
ESFT-Token 809+17 66.7+35 40.7+26 572+10 59.6+15 722+£7.0 529+30 615+22
ESFT-Gate 813+09 665+19 402+12 570+03 595+06 682+80 51.54+25 606=+19

Table 2: General ability performance comparison across methods and tasks. The performance for a task is averaged
across all training experiments, taking 95% confidence interval. Best or near-best results are shown in bold. Our

method ESFT consistently achieves good performance among all tasks.
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Figure 4: Computational efficiency of different meth-
ods. Blue bars show the training time, orange dots/lines
indicate VRAM usage and green lines show storage
space. ESFT models balance training time, VRAM us-
age, and storage space efficiently.

methods better retain previously learned knowl-
edge compared to the baselines, highlighting their
effectiveness in maintaining task performance.

5.2 Computational Efficiency Results

The results in Figure 6 demonstrates that ESFT ex-
hibits several advantages in terms of training time,
VRAM usage, and storage space requirements:

Training Time The average training time for
ESFT-Token and ESFT-Gate is 19.8 minutes and
20.9 minutes, respectively. The FFT method takes
significantly longer at 28.5 minutes. Although

LoRA achieves a shorter training time of 16.5 min-
utes, our methods are relatively close.

Model VRAM Usage The VRAM usage for
ESFT-Token ranges from 42.3 to 58.28 GB across
4 tasks, and for ESFT-Gate from 45.02 to 64.2 GB.
These are much lower than the 263 GB required
by FFT and comparable to the 30.05 GB used by
LoRA. Notably, both our methods and LoRA can
train the 16B model on a single A100-80GB GPU,
which is not feasible with FFT.

Storage Space The storage requirement (i.e., av-
erage storage space of parameters trained) is 2630
MB for ESFT-Token and 3280MB for ESFT-Gate,
while FFT demands a substantial 29300 MB. Al-
though LoRA requires less storage of only 107
MB, ESFT offers a more balanced performance in
terms of VRAM usage and training time.

In summary, ESFT demonstrates excellent per-
formance in training time, VRAM usage, and stor-
age space requirements. It particularly excels in
VRAM and storage space efficiency, significantly
outperforming FFT. These advantages show that
ESFT can effectively select a subset of experts for
better efficiency, making ESFT more competitive
and practical for language model customization
and efficient adaptation.

6 Analysis

In this section, we investigate the expert selection
process of ESFT in §6.1, and demonstrate the per-
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Figure 5: Number of experts trained in ESFT across different layers and tasks. The trained experts are less than
25% of all experts for all tasks, showing the effectiveness of ESFT in selecting the most task-related experts.

formance of ESFT and LoRA under different com-
putational constraints in §6.2. We also conduct ab-
lation experiments in §6.3 to show the importance
of our expert relevance scores and fine-grained ex-
pert segmentation model architecture.

6.1 ESFT Leverages Specialized Experts
Effectively

We analyze the number of experts ESFT trains
across tasks and layers to understand its expert se-
lection process. Results are shown in Figure 5.
From the results, we have four key observations:
(1) The average number of experts used per task
across layers ranges from 2 to 15 out of 66, indi-
cating ESFT can have 75%-95% fewer trainable
parameters than FFT; (2) ESFT-Token generally
employs fewer experts while better maintaining
general performance, comparable to ESFT-Gate in
tasks like Math, Intent, and Law; (3) The number
of experts varies by task, with more specialized
tasks like Math and Translation using fewer ex-
perts. Our method’s performances for these tasks
exceed LoRA to the most extent, indicating that
our method is especially suitable for more special-
ized tasks; (4) For most tasks, few experts are cho-
sen in the middle layers, indicating that expert dis-
tribution is more concentrated in these layers.

6.2 ESFT Leverages Training Resources
Efficiently

Both ESFT and LoRA have a training efficiency
hyperparameter (p for ESFT and rank for LoRA).
It affects computational resource usage and poten-
tial performance, as a larger value increases com-

putational resource usage and may improve perfor-
mance. To understand how ESFT and LoRA per-
form under different efficiency settings, we evalu-
ate benchmark performance on the Math task. We
set rank < 512 for LoRA as a higher value will
result in more trainable parameters than FFT. Fig-
ure 6 illustrates both specialized and general abil-
ity under different training efficiency settings.

From the results, we can conclude: (1) All three
methods show a trade-off between training effi-
ciency and performance. Increasing trained pa-
rameters (p for ESFT and rank for LoRA) can im-
prove performance to a point. (2) ESFT-Token
peaks in both specialized and general ability at
p=0.5, while ESFT-Gate peaks at p=0.3 for spe-
cialized ability and p=0.1 for general ability. (3)
ESFT-Token and ESFT-Gate performance satu-
rates at p=0.2 and p=0.1, respectively. (4) Both
ESFT-Token and ESFT-Gate outperform LoRA at
any point, demonstrating higher specialized ability
and more stable general ability. (5) Notably, p=0.2
for ESFT-Token means trained experts cover 20%
of expert choices among all tokens, indicating that
many task-related tokens, such as punctuation and
function words, may be less relevant.

6.3 Ablation Studies

In this section, we demonstrate that the effective-
ness of our method lies in two aspects: (1) our
proposed expert relevance score function and (2)
the fine-grained expert segmentation of the MoE
model architecture.

Expert Relevance Score Function In this
work, we propose two expert relevance scores: av-
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specialized and general ability. Markers on the lines indicate p and rank values. ESFT-Token and ESFT-Gate
consistently outperform LoRA in both specialized and general ability.

Math Ability Code Ability Specialized Tasks
MATH GSM8K Humaneval MBPP Intent Summary Law Translation Average
ESFT-Token 22.6 66.0 41.5 42.6 75.6 65.4 45.7 36.2 49.5
A of rand -1.0 -3.7 2.5 0.2 -2.6 -1.7 1.3 -13.5 -2.9
ESFT-Gate 232 64.9 433 41.8 78.6 67.2 49.1 35.2 50.4
A of rand -1.7 -3.2 -4.3 1.6 -5.0 -1.1 -2.9 -20.4 -4.6

Table 3: Performance comparison between original experts and random experts. Replacing high-affinity experts
with random ones significantly harms model performance across different tasks.
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Figure 7: Experiment results for grouped experts. As
the experts become more coarse-grained, ESFT de-
grades more severely than FFT.

erage gate score and token selection ratio, to fil-
ter relevant experts for different tasks. To demon-
strate their effectiveness, we replace the experts
obtained from the two functions with random ex-
perts while keeping the number of activated ex-
perts for each layer the same. Results in Ta-
ble 3 show that replacing relevant experts with
random ones significantly decreases task perfor-
mance, demonstrating the effectiveness of our pro-
posed relevance scores.

Fine-Grained Expert Segmentation of the
MoE Model We leverage the fine-grained seg-
mented DeepSeek-V2 MoE model as our back-
bone. To prove the effectiveness of this fine-
grained segmentation, we used greedy search (De-
tailed in Appendix C) to bind experts in groups,

simulating models with coarse-grained expert seg-
mentation. Experts in the same group share the
same gate for each token, initialized by the aver-
age of the original gates’ vector. We conduct ex-
periments in the Math domain as an example. Re-
sults in Figure 7 show that as the group size in-
creases, the performance of our method decreases
more severely than FFT. However, the average
number of experts used becomes larger. These ob-
servations demonstrate that more fine-grained seg-
mented models will have more specialized experts,
making them suitable for our method ans effective
LLM customization.

7 Conclusion

In this work, we study parameter-efficient fine-
tuning methods for sparse large language models
with the Mixture of Experts (MoE) architecture.
We observe that tasks from different domains are
handled by distinct combinations of experts. We
propose selecting the most relevant experts for
downstream tasks using two metrics: average gate
score and token selection ratio. Experimental re-
sults show that our method significantly reduces
training costs while matching or surpassing full pa-
rameter fine-tuning results. Further analysis con-
firms that our method enhances the specialization
of the expert system within the MoE architecture.



8 Limitation

Firstly, due to the limitation of the availability of
other fine-grained MoE models, our method was
only tested on the DeepSeek-V2-Lite MoE model.
The conclusions drawn from this model require
further validation when applied to other contexts.
Besides, due to the lack of parameter and struc-
tural alignment in MoE models with different ex-
pert granularities, we used a simulation approach
by binding several groups of experts to compare
coarse-grained and fine-grained MoE methods.
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A Downstream Task Examples

Table 4 presents task descriptions and correspond-
ing responses for different tasks as intent detection,
summarization, law prediction, and translation.

B Evaluation Instruction for
Benchmarks

Table 5 details the criteria for evaluating tasks such
as summary, law prediction, and translation. Each
task type includes specific instructions on how
to assess predicted answers against reference an-
swers, focusing on aspects such as content accu-
racy, completeness, relevance, and consistency.

C Strategy for Grouping Experts

In the DeepSeek-V2-Lite architecture, each token
selects 6 non-shared experts and two shared ex-
perts. These experts selected by the same token are
considered similar because they appear together,
so we add a score of 1 to them in a co-occurrence
matrix until a token sample set (batch size of 32
with sequence length of 4096) is iterated. The sim-
ilarity between expert ¢ and expert j is calculated
using the cosine similarity between the vectors of
row ¢ and row j in this co-occurrence matrix.

To obtain an expert grouping strategy through,
we calculate the average intra-group similarity (the
average pairwise similarity of all experts within
the group) for all possible K-expert groups (where
K is the group size) from the 64 non-shared experts
out of the 66 experts in each layer. We then select
a K-expert group with the highest score. For the
unselected experts, we repeat this process until all
experts are selected and grouped.
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Dataset Task Description

Intent Prompt: 1§ & FEMY/ING AT e BEIE
Response: {’intent”: “HomeAppliance-Control”, ”slots”: {’appliance”: ” /NG ,T”, “command”: ” 3
1:)1‘7’) ”details”: 9 :ﬁéiﬁl\,’}}

Summary Prompt: [ABNEY fihf, SC)ih 55 GUOMGRSS? L&), W, AREF, MR, 33 A FoX A TAILIE 2k

NHI2EXAZWF? DRREY W, 2 XA BT, &)1 W, X7, LARRET IR, fi
%, BIEHE T, by, BRI R B B0X A A B B R 2R T 1698\ E
=, &/ T EMe X EN TXA4%..

Response: F FfRHLET, X 1H 6 EM 21698350 IART, 3877 0] F FfRE F P 2UANIA T, 3%
AFBAWE R SRS, T EOREBURE, BUEE G AR,

Law Prediction

Prompt: 19874F4 1 H i+ (J57) . gedl** (%) FEX*IRBURECEE, 19894F2)1 141

A L, 19904E3H2H A F LT, i+ — APEAR A, 19994 Z A\ e 245, it

ggﬁgggéﬁﬂﬂiﬁﬂé**)\%‘%lﬁﬁﬁ@ — AL BOE MRS R R . ARIFIL R
TR IH .

Response: M (A A ROILFIE IS ARVEY 55 = 488 3k, PR A RIURIE R SR IATAY

SN AR L e N RYRBE T ) A N R SEA [ RESERIAR DIRe) S ILH 22

HFIPANT - HEVFIE SRS B, ARIYRIA2E20000, R R

Translation DNAJ®RF 0°60bG0°®JA DhAE JPTO D4Z kéJd FbLP DJ SSBb JGbRoWA Hk4 Td
do’0 FRJ JGLABAI Y4 DLEOIRE Zd” DPLRVSHEDN Zd® Wb DKAPI FRJL HRL
JGAGCU D4 hSPOWhVE
He tried to follow the instructions his friends were giving him, but he couldn’t run downhill and uphill
at the same time, and he couldn’t turn and twist when he was jumping and dancing, and he was crying
so hard he could barely see anything that was happening.
Table 4: Task examples for different datasets.
Task Type Instruction
Summary TERPEAT AN R S A N AR B IP TEIME DA R AR SR 25 B, DABE T 5 56 S AR E T 58

Z A — SRR . Wi o107y, ARIEFUINE A MERTE . SeBMEAIM SR B I 7. 155
MU Ay, AT . B 10508 R — R B M, AR
BIOgy. TELA “NEHERGIEIIXTY, PRI/ SRS IXGY, , BUME D x0T ATk 1 AR
e - - SO SR A HER S T BB AL O B R - 2 A A S B R IR R
R, 2. VRANRRSE/ S et s - BN R U ENMTR TS, R EmRESR P
B - XA B AE R, AR 3. NARICARIE: - T E S M T
FIRREE A — 2L, AFAETURE R . - MR PN 25 S R s S bR e B 58 WU A — 2, Tt
JU8GT . 4 ATENHRAS IERTE : - 00N E S0 5 SR AL PR E B SRR A S AR AT . - AR
AL PEASCR R AR S R, SRRy . IS {prediction} 2% #55E: {ground_truth}

Law Prediction

TEARHEAT A N ARSI N 0o TR VA M ARIELE G5 &, DA E T B 8 S A e 2
F2ZM SR . W 107y, ARGETN TR AGERTE . SERPEAIAE KRBT 2. i
FeL T I R Y, TR AT o B 105 IR E B — TN A B R, efiin]
EN07y o FELA “HHRKPEAIxGY, SEREMEAIXTY, ., B xp RTRk. 1OHIDeME: BN
SRR UER SRR KA R d BB PEArE . RB  F A O S AR E R S se B, RIPY
A PSRN RTINS S AR [AMBEAE Ry ik, W2 T oo 7 Ay —Elify
TEZE, DIARME— B RERERE 2441 70 . MRV BB NEE, 41107 2. 58k P4 F
ERREE T IAARER R R BIR BN, ERREARTYFEA. BEEH. SUEHE.
PRI . RGN S S, WV AT AN ;. 3. AEROPE: R i 4 58 i S an s . 2%
T HIANERILE S SARMES B2 EMERERSTMS, H L EERNZS
BOEZ Ry 4 RMPE S T B 5 B UL S Wk 58 A A5 B M A R .
WSR2 b ZIR TR 070 . B S {prediction} Z5#55¢: {ground_truth}

Translation

You are an expert master in machine translation. Please score the predicted answer against the stan-
dard answer out of 10 points based on the following criteria: Content accuracy: Does the predicted
answer accurately reflect the key points of the reference answer? Level of detail/completeness: Does
the predicted answer cover all important points from the standard answer? Content redundancy: Is the
predicted answer concise and consistent with the style of the standard answer? Respond following the
format: ”Content accuracy x points, level of detail/completeness x points, ..., total score: x points”. The
total score is the average of all the scores. Do not give reasons for your scores. Predicted answer: {pre-
diction} Reference answer: {ground truth}

Table 5: Task instructions for model performance evaluation.
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