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Abstract

We study fairness in the context of feature-based
price discrimination in monopoly markets. We pro-
pose a new notion of individual fairness, namely,
α-fairness, which guarantees that individuals with
similar features face similar prices. First, we study
discrete valuation space and give an analytical so-
lution for optimal fair feature-based pricing. We
show that the cost of fair pricing is defined as
the ratio of expected revenue in optimal feature-
based pricing to the expected revenue in an optimal
fair feature-based pricing (COF) can be arbitrarily
large in general. When the revenue function is con-
tinuous and concave with respect to the prices, we
show that one can achieve COF strictly less than 2,
irrespective of the model parameters. Finally, we
provide an algorithm to compute fair feature-based
pricing strategy that achieves this COF.

1 INTRODUCTION

The Internet has transformed the way markets function. To-
day’s Internet-based ecosystems, such as entertainment and
e-commerce marketplaces, are more consumer-centric and
information-driven than ever. Data and AI systems are pri-
marily used to power advertising, consumer retention, and
personalized experience. These AI systems are deployed to
aggregate individual choices and preferences to make per-
sonalized experiences possible. It is a common practice to
use aggregated information about consumers to offer differ-
ent prices to different consumers or segments of the market;
this practice is commonly termed price discrimination [Var-
ian, 1992].

Price discrimination has come under ethical scrutiny in mul-
tiple instances in the recent past. For example, it was found
that Orbitz, an online travel agency, charges Mac users more
than Windows users [Mattioli, 2012]. Uber’s strategy to

charge personalized prices came under heavy consumer
backlash [Dholakia, 2015, Mahadawi, 2018], and thanks to
the fine-grained data analysis of consumer behavior, sev-
eral such instances were reported in the e-commerce and
retail industry [Hinz et al., 2011]. More recently, Pandey and
Caliskan [2021] showed that neighborhoods with high non-
white populations, higher poverty, younger residents and
high education levels faced higher cab trip fares in Chicago.
Not surprisingly, the regulatory bodies and research commu-
nity has taken notice. Economists have raised concerns on
fairness issues of personalized pricing [Michel, 2016]. Price
discrimination based on nationality or residence is illegal
in the EU [2020]. In the USA, a white house report pro-
vides guidelines for enforcing existing anti-discrimination,
privacy, and consumer protection laws while practicing dis-
criminatory pricing [White House, 2015]. Given the over-
whelming evidence and rising concerns, there is an urgent
need to formally study price discrimination and fairness.

Sellers or firms use price discrimination for multiple rea-
sons, including increasing revenue, covering transportation
and storage costs, increasing market reach, rewarding loyal
consumers, promoting a social cause, and so on [Cassady,
1946]. In general, price discrimination does not always raise
ethical, and fairness issues and hence requires a careful in-
spection to categorize situations where this practice may
lead to treatment disparity and invite regulatory intervention
[Alan, 2020]. In this work, we focus on designing the pricing
strategies for a seller (monopolist) who wants to maximize
the revenue via price discrimination while ensuring fairness
amongst the consumers.

A revenue-maximizing seller with complete knowledge of
consumer valuations without fairness consideration would
charge each consumer her valuation for the product. This
pricing strategy, otherwise called first-degree price discrimi-
nation, may result in wild price fluctuations and is consid-
ered unfair in general [Moriarty, 2021]. Also, in practice,
sellers do not have full access to individual consumer valu-
ations but may have a distribution over valuations through
features. In such feature-based pricing (FP), the seller seg-
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regates the market into segments through the consumer fea-
tures. The seller’s problem then reduces to finding optimal
pricing for each segment [Bergemann et al., 2015, Cum-
mings et al., 2020]. Such FP is referred to as third-degree
price discrimination in the literature. In this paper, our goal
is to ensure fairness issues in feature-based personalized
pricing.

Cohen et al. [2021] provide a notion of fairness among con-
sumers’ groups called Price Fairness under the assumption
that the consumer valuations are known to the seller. In this
paper, we consider the problem where consumers’ valua-
tions are unknown, and the seller uses the features to offer
prices to the consumers.

Our Contributions We introduce the notion of α-
fairness in price discrimination, ensuring that similar in-
dividuals face similar prices. Following the definition of
individual fairness, proposed by Dwork et al. [2012], we em-
phasize that if individuals with similar features are charged
differently by segregating them into different segments, the
interpersonal price comparison based on their features ren-
ders fairness issues. With this, we introduce a model for
optimal fair feature-based pricing (FFP) as the problem of
maximizing revenue while ensuring α-fairness. We begin
with two segments in the market and discrete valuations and
propose an optimal FFP scheme (Section 4.2). To quantify
the loss in the revenue due to fairness, we then introduce
cost of fairness (COF) – the ratio of expected revenue in
an optimal FFP to the expected revenue in an optimal FP.
We prove that a constant lower bound on COF is generally
impossible to achieve.

Next, in Section 5.1, under the assumption that the revenue
function is concave in offered prices [Bergemann et al.,
2021]1, we show that one can achieve a constant upper
bound on COF. Here, we show that the seller can compute
optimal FFP using a convex program if it has access to
distributional information (knows all consumers’ valuation
distribution functions). We then identify a class of FFP
strategies, namely LINP-FFP that satisfies α-fairness. With
the help of these pricing strategies, we then show that the
COF is strictly less than 2 irrespective of model parameters.
Finally, we propose OPT-LINP-FFP, anO(K log(K)) time
algorithm where K is the number of segments that does
not need access to complete distributional information and
computes α-fair pricing that achieves the aforementioned
COF (Algorithm 1 and Theorem 7).

2 RELATED WORK

The impact of discriminatory pricing on consumer and seller
surplus was first considered by Bergemann et al. [2015]

1This assumption is standard in economics as a large number
of probability distributions follow this.

when the consumer characteristics are known to the seller.
The authors proposed a method to provide the optimal mar-
ket segmentation. Das et al. [2022] considered the problem
setting where the consumer valuations are unknown to the
seller. The generalized problem was then considered by
Cummings et al. [2020] which extended the work of Berge-
mann et al. [2015] to the case where only partial information
about the consumer’s valuation was known to the seller.

When the valuations of the consumers are not known, El-
machtoub et al. [2019, 2021] propose feature-based pricing
and provides bounds on the value generated using idealized
personalized pricing and Feature-based pricing over Uni-
form pricing. The value of feature-based pricing depends
on the correlation between valuations and consumer fea-
tures. Huang et al. [2019] consider the first-degree price
discrimination over the social network where the centrality
measures in social networks determine the features of the
consumers. They provide bounds on the value of network-
based personalized pricing in large random social networks
with varying edge densities. Our work follows a similar
approach because we derive personalized pricing from the
features. However, naive feature-based pricing can be very
unfair to the consumers, as we show in Proposition 2. Our
focus is to design feature-based pricing that is fair at the
same time.

Recently, many questions have been raised on the ethi-
cal side of price discrimination methods. Moriarty [2021]
strongly criticizes online personalized pricing and suggests
that personalized prices compete unfairly for the social
surplus created by transactions. Gerlick and Liozu [2020]
points out the need to design personalized pricing with ethi-
cal considerations, which can provide win-win outcomes for
both organizations and consumers. Richards et al. [2016]
discusses that discriminatory pricing leads to the perception
of unfairness amongst the consumers, which undermines
the stability of retail platforms. They discuss that when
consumers are involved in forming the prices, this leads to
improved fairness perception, thus leading to better reten-
tivity. Levy and Barocas [2017] discusses that web-based
platforms typically use many private features of user pro-
files to connect buyers and sellers. Users interacting on such
platforms leads to discrimination regarding race, gender,
and possibly other protected characteristics. All these stud-
ies lead to understanding the optimal price discriminatory
strategies under the fairness constraint, which is the focus
of our work.

Finally, Kallus and Zhou [2021] presents a list of metrics
like price disparity, equal access, allocative efficiency fair-
ness to measure and analyze fairness in feature-based pric-
ing and study its interplay with welfare. The metrics dis-
cussed are mainly the group fairness notions which are
entirely different from α-fairness discussed in this paper.
We emphasize that though the above papers discuss the ethi-
cal issues in price discrimination, none of them provides a



systematic approach to designing the pricing strategy that
maximizes the revenue and ensures the fairness guarantee.

3 PRELIMINARIES

We consider a market with a monopolist seller seeking
to price a single product available in infinite supply. The
market is divided into finite number of segments X =
{x1, x2, . . . , xK}, where xi represents the ith segment. The
seller, given access to X , can choose to price discriminate
across segments to extract maximum revenue.

Consumers’ valuations for the single product are non-
negative random variables drawn from the set V (same
across all segments). Let Fi(·) be the cumulative distri-
bution function for the valuation of the consumers in ith

segment, and fi(·) be corresponding probability density
function (probability mass function when V is discrete). In
this paper, we consider the following two cases separately,
(a) V is discrete and finite, and (b) V is continuous. Next,
we present feature-based pricing model.

3.1 FEATURE-BASED PRICING MODEL

In feature-based pricing (FP), one can consider, without loss
of generality, that the consumer feature is a representative
of the market segment to which she belongs. Note that
multiple consumers may have the same feature vector and
all the consumers having identical features belong to the
same market segment. For simplicity, we will write pi :=
price offered to the consumer in the ith segment. A consumer
makes the purchase only if her valuation is equal to or more
than the offered price. The expected revenue per consumer
generated from the ith segment with a price pi ∈ R+ is
given by

πi(pi) = pi · (1−Fi(pi)) (1)

Whenever it is clear from the context we refer to ex-
pected revenue per consumer from a segment to be ex-
pected revenue from that segment. Let βi be the fraction
of consumers in the ith segment, then the expected revenue
per consumer generated across all segments is given as
Π(p) =

∑
xi∈X βiπi(pi). We assume that βis are known

to the seller. We call the sellers problem of revenue maxi-
mization as OPTFP (V,X ,F , β) where F = (F1, . . . ,FK)
and β = (β1, . . . , βK).

In the absence of fairness constraints, OPTFP (·) reduces to
charging each segment separately and optimal FP strategy p̂
consisting p̂i for segment i is given by p̂i ∈ argmax

pi∈R+

πi(pi).

Fairness in Feature-based Pricing Let d : X×X → R+

be a distance function over X . We assume that such a func-
tion exists and is well defined in X , i.e., (X , d) is a metric
space. The distance function quantifies the dissimilarity be-
tween feature vectors of individuals belonging to market

segments. For simplicity we write d(xi, xj) := dij . Individ-
ual fairness in FP strategy is defined as:

Definition 1 (α-fairness). A price function p : X → RK+
is α-fair with respect to d iff for all xi, xj ∈ X , we have

|pi − pj | ≤ α · dij . (2)

We call a pricing strategy Fair Feature-based Pricing (α-
FFP) that satisfies Eq. (2) with a given value of α. It is easy
to see from the definition that any α-FFP is also α′-FFP for
any α′ ≥ α. We will drop the quantifier α and call it FFP
when it is clear from the context.

Cost of Fairness (COF) Next, we define COF as the de-
viation from optimality due to fairness constraints given in
Eq. (2). It is defined as the ratio of expected revenue gener-
ated by optimal feature-based pricing and fair feature-based
pricing.

Definition 2 (COST OF FAIRNESS (COF)). Cost of fairness
for an FFP strategy p is defined as

COF =
Π(p̂)

Π(p)
. (3)

In the following sections, we analyze FP and FFP strategies
and their COF when V is discrete (Section 4) and continuous
(Section 5).

4 FFP FOR DISCRETE VALUATIONS

We want to ensure α-fairness in the pricing strategy given
the optimal FP. α-fairness is achieved by maximizing rev-
enue while satisfying the fairness constraints. In this section,
we derive optimal FP (Section 4.1), propose how to achieve
α-fairness (Section 4.2), and provide an upper bound on
COF (Section 4.3) for discrete valuation setting.

We consider the simplest setting described as follows: Let
the consumer segments be given by X = {x1, x2} and their
valuations are drawn from a discrete set V = {v1, v2}, we
assume v1 < v2 without loss of generality. Let β1 = β and
β2 = 1− β. Further, let f1(v1) = q1 (f2(v1) = q2) denote
the probability that a consumer has valuation v1 in segment
1 (segment 2). The expected revenue generated by p is given
by:

Π(p) =βp1[q11(v1 ≥ p1) + (1− q1)1(v2 ≥ p1)]

+ (1− β)p2[q21(v1 ≥ p2) + (1− q2)1(v2 ≥ p2)]
(4)

4.1 OPTIMAL FEATURE-BASED PRICING

As discussed earlier, Π(p) can be maximized by maximiz-
ing πi(pi) for each market segment independently if there



Notation Description
FP Feature-based Pricing

FFP Fair Feature-based Pricing
Fk, fk() Valuations CDF, PDF for kth consumer segment respectively
X Set of all consumer features/types
V Support set of consumers’ valuations
xk Consumer feature of the kth segment
βk The fraction of consumers in the kth segment

p = (p1, p2, . . . pK) Feature-based price vector
πk(pk) Revenue generated per consumer in the kth segment
Π(p) Revenue generated by p across all consumer segments

p̂ = (p̂1, p̂2, . . . p̂K) Price function in optimal price discrimination
dij := d(xi, xj) A real-valued metric on the consumer feature space X

α Fairness parameter
p? = (p?1, p

?
2, . . . p

?
K) Optimal fair feature-based price function

p̃ = (p̃1, p̃2, . . . , p̃K) Price vector for OPT-LINP-FFP
COF Cost of Fairness
Lm Linear approximation of concave revenue curve with m as parameter

Table 1: Notation Table

are no fairness constraints. This problem is an integer pro-
gram with price for each consumer type being a discrete
variable. The revenue generated depends on βi and fi(·) (β,
q1, q2 in the current simplest case). The optimal FP is then
given as

For i ∈ {1, 2} : p̂i =

{
v1 if qi ≥ 1− v1

v2

v2 otherwise
(5)

Proof. For a market segment i, πi(v1) = v1 and πi(v2) =
v2(1− qi). So, p̂i = v1 if

πi(v1) ≥ πi(v2) =⇒ v1 ≥ v2(1− qi) =⇒ qi ≥ 1− v1

v2

otherwise, p̂i = v2.

Next, we analyze the fairness aspects of the above pricing
strategy.

4.2 OPTIMAL FAIR FEATURE-BASED PRICING

Let (X , d) be a metric space. We model the Opti-
mal fair feature-based pricing (FFP) problem as integer
program which maximizes Π(p) with α-fairness con-
straints described in Eq.(2). We denote this problem as
OPTFFP (V,X , d,F , β, α) and the corresponding optimal
FFP strategy is denoted as p?. First we make an interesting
and very useful claim for binary valuations.

Lemma 1. When V = {v1, v2}, and if p̂ is not α-fair, OPT

FFP(V,X , d,F , β, α) reduces to OPTFP(Ṽ,X ,F , β)

where Ṽ is either {v1}, or {v2}, or {v1, v1 + αd12}.

Proof. Let (p1, p2) be the tuple of offered prices. Note that
if v2−v1 ≤ αd12 or p̂1 = p̂2, then the optimal p? = p̂ with
support {v1, v2} and p̂ will be trivially fair. We consider a
more interesting case when v2 − v1 > αd12 and p̂1 6= p̂2.
In this case, the only candidate support sets for optimal fair
pricing strategy are: {v1}, {v2}, {v1, v1 + αd12}, {v2 −
αd12, v2}. The optimal FFP does not take values from the
set {v2 − αd12, v2} as the consumers with valuation v1

would not make any purchase. Hence, the expected revenue
with support {v2 − αd12, v2} will be less than or equal to
the expected revenue with support {v2}.

We now relax the constraint of binary valuation and an-
alyze the optimal fair pricing scheme for n valuations.
The consumer segments are X = {x1, x2} with β1 = β
and β2 = 1 − β, the valuations are drawn from the set
V = {v1, v2, . . . , vn}, and f1(vi) = qi,1 and f2(vi) =
qi,2. This is a simple extension of the pricing problem,
OPTFP (V,X ,F , β) modelled as an integer program where
the prices are drawn from the set V . If p̂ is not α-fair then,
the corresponding OPTFFP (V,X , d,F , β, α) can be solved
by reducing it to OPTFP (Ṽ,X ,F , β) with Ṽ given by:



Ṽ =

{
{vi}, vi ∈ V if p?1 = p?2
{vj , vj + αd12, vj − αd12}, vj ∈ V if p?1 6= p?2

Given the set V̂ , the pricing problem OPTFP (Ṽ,X ,F , β)
can be solved in constant time. It is easy to see that
computing V̂ takes O(n2) time for n valuations and
2 consumer types. Therefore, the fair pricing problem
OPTFFP (V,X , d,F , β, α) can be solved in O(n2) time.

4.3 COF ANALYSIS

For n = 2, based on the values of q1, q2 we have the follow-
ing cases:

1. p?1 = p?2 = v1

2. p?1 = p?2 = v2

3. p?1 = v1 + αd12, p?2 = v1

4. p?1 = v1, p?2 = v1 + αd12

In cases 1 and 2, optimal fair pricing is equivalent to uniform
pricing and therefore are ‘trivially’ fair with COF = 1, i.e.,
Π(p̂) = Π(p?). For case 3, Π(p̂) and Π(p?) are given as:

Π(p̂) = β(v2)(1− q1) + (1− β)v1

Π(p?) = β(v1 + αd12)(1− q1) + (1− β)v1

Then the cost of fairness for case 3 is given as:

COF =
Π(p̂)

Π(p?)
=

β(v2)(1− q1) + (1− β)v1

β(v1 + αd12)(1− q1) + (1− β)v1

=
β(v2 − v1) + v1 − βv2q1

βαd12(1− q1)− βv1q1 + v1

=
β
(

1− v1

v2

)
+ v1

v2
− βq1

β
(
αd12

v2

)
(1− q1)− β

(
v1

v2

)
q1 + v1

v2

(6)

Replacing β with (1 − β) and q1 with q2 in the above ex-
pression, we get a similar approximation of COF for case
4.

Proposition 2. Cost of fairness with discrete valuations can
go arbitrarily bad.

Proof. From Eq. (6) when v1

v2
→ 0, we have COF = v2

αd12
.

The COF (in Case 3 and/or Case 4) is arbitrarily bad if
d12 > 0 when there is a large difference between v1 and v2.
Note that d12 = 0 is uninteresting as the seller is unable to
distinguish between two segments.

Note that v2 being arbitrarily large need not be a typical set-
ting. Hence, we work with bounded support valuations in the
backdrop of the above negative results. In the next section,
we make assumptions based on standard economic litera-
ture about the revenue functions πi(·), i.e., concave revenue

functions and common support [Bergemann et al., 2021].
As argued in Section 3 of Dhangwatnotai et al. [2015], valu-
ation distributions satisfying Monotone Hazard Rate (MHR)
satisfy the assumptions mentioned above regarding revenue
functions. It is also observed that the revenue functions
are concave for another commonly analyzed family of dis-
tributions in literature called the regular distributions, in
which the virtual valuation is non-decreasing (Section 4.3
of Bergemann et al. [2021]). MHR is a common assumption
in Econ-CS [Hartline and Roughgarden, 2009]. Therefore,
in the following section, we analyze the cost of fairness
for such valuation distributions and the associated concave
revenue functions.

5 FFP FOR CONTINUOUS VALUATIONS

In this section, we consider feature-based pricing with con-
tinuous valuations. We impose a standard restriction on the
revenue functions πi(·) such that they are concave on the
common support V = [v, v̄] [Bergemann et al., 2021]. The
consumer segments are identified by the associated feature
vectors xi ∈ X . v is the marginal cost defined as a min-
imum feasible valuation for which a seller is willing to
sell the product. The marginal cost may include the cost of
production, transportation, etc. On the other hand, v̄ is the
maximum consumer valuation. Without loss of generality,
we consider that maximum consumer valuation is greater
than marginal cost; i.e., trade occurs.

We begin with a tight upper bound on the COF under con-
ditions as mentioned above (Section 5.1) followed by two
pricing schemes based on the available information about
the revenue functions (Section 5.2), and finally, we present
an algorithm that achieves the COF bound in Section 5.3.

5.1 OPTIMAL FFP FOR CONTINUOUS
VALUATIONS

The problem of determining optimal FFP can be mod-
eled as a convex program with α-fairness as lin-
ear constraints. The convex program below describes
OPTFFP (V,X , d,F , β, α) model with complete knowl-
edge of revenue functions πi(·).

max
pk∈V,∀k

Π(p) =

K∑
k=1

βkπk(pk)

subject to, |pi − pj | ≤ αd(xi, xj),∀i 6= j

pi ≥ 0,∀i ∈ [K]

Let p? be a solution to the above problem.



5.2 LINP-FFP AND COF ANALYSIS

Let Di := minj 6=i dij . With the following proposition, we
propose a class of α-fair pricing strategies.

Proposition 3. For a given m ∈ [v, v], if the price function
satisfies |pi − m| ≤ α

2Di for all i ∈ [K] then it satisfies
α-fairness.

Proof. From triangle inequality, we have |pi − pj | ≤ |pi −
m|+ |pj −m| ≤ α

2Di + α
2Dj ≤ αdij . The last inequality

results from the fact that Di = mink 6=i dik ≤ dij and
Dj = mink 6=j dik ≤ dji = dij .

In other words, to ensure that the prices for different seg-
ments are not too different, it is enough to ensure that the
pricing for each segment is not too different from some com-
mon point m. The pricing for all the segments would hence
be around this point and could be determined with respect
to this point. We term this point as pivot. We now present
the second FFP model, an α-fair pricing strategy that is
pivot-based and satisfies the condition in Proposition 3, with
access to only p̂i for a given m.

pi =


m+ αDi/2 if p̂i −m ≥ αDi/2

m− αDi/2 if m− p̂i ≥ αDi/2

p̂i otherwise
(8)

We call this pricing scheme LINP-FFP. It is easy to see
that the above pricing strategy is α-fair. We now present the
COF bound for LINP-FFP.

Theorem 4. The Cost of Fairness for optimal fair price
discrimination with concave revenue functions satisfies

COF ≤ 2

1 + min
{
αminiDi

v̄−v , 1
}

Proof. We prove that the above COF is satisfied by LINP-
FFP and hence the theorem. Let m ∈ [v, v̄] be a pivot point
(See Figure 1). Let

γi :=


(m−v)+αDi/2

p̂i−v if p̂i −m ≥ αDi/2
(v̄−m)+αDi/2

v̄−p̂i if m− p̂i ≥ αDi/2

1 otherwise

(9)

Let π̂i be the expected revenue generated from the ith seg-
ment under p̂. We now show the following supporting
lemma.

Lemma 5. The pricing strategy given in Eq. (8) guarantees
at-least γi fraction of optimal revenue from segment i, i.e.,
πi ≥ γiπ̂i.

Figure 1: Concave revenue function πi(·) and its linear ap-
proximation Li(·) (arrows show equations for Li(·)). Figure
represents the case p̂i −m ≥ αDi/2 for which LINP-FFP
assigns pi = m + αDi/2. The case m − p̂i ≥ αDi/2 is
similar.

Proof. A lower bound to the concave revenue functions
πi(·) for any segment i is the piecewise linear approximation
Li, given by (see Figure 1):

Li(p) =

{
π̂i
p̂i−v (p− v), p ≤ p̂i
−π̂i
v̄−p̂i (p− v̄), p > p̂i

(10)

So, for each consumer segment i we have,

Li(p) ≤ πi(p), ∀p ∈ [v, v̄]

Expected revenues generated per consumer in segment i
by pricing rule in Eq. (8) for p̂i −m ≥ αDi/2, m− p̂i ≥
αDi/2, and remaining cases are given below in the respec-
tive order

πi(pi) ≥ Li(pi) =
π̂i

p̂i − v
(m+ αDi/2− v) = π̂iγi

πi(pi) ≥ Li(pi) =
−π̂i
v̄ − p̂i

(m− αDi/2− v̄) = π̂iγi

πi(pi) = Li(p̂i) = π̂i

This proves the lemma.

Let π?i denote the expected revenue generated from the ith

segment by p?. So, COF for optimal FPP is given by:

COF =

∑
i∈[K]

βiπ̂i∑
i∈[K]

βiπ?i
≤

∑
i∈[K]

βiπ̂i∑
i∈[K]

βiπi
(Optimality of π?i )

≤

∑
i∈[K]

βiπ̂i∑
i∈[K]

βiγiπ̂i
(Lemma 5)

In order to prove the said COF bound, it suffices to show
that there exists an m (and hence a corresponding pricing



strategy using Eq. (8)) for which the said COF bound is sat-
isfied. It can be seen that for m = (v + v̄)/2, and replacing
denominators in Eq. (9) by v̄ − v, we have that

COF ≤
∑
i∈[K] βiπ̂i∑

i∈[K] βiπ̂i

(
1
2 + min{ αDi

2(v̄−v) , 1}
)

≤
∑
i∈[K] βiπ̂i(∑

i∈[K] βiπ̂i

)(
1
2 + min{αminj Dj

2(v̄−v) , 1}
)

=
2

1 + min
{
α

minj Dj
v̄−v , 1

}

It is worth noting here that the cost of fairness does not
depend on the number of the segments and the population
distribution among these segments. So, if the segments are
well separated in terms of the distance between features of
consumers across segments, the number of segments, and
the distribution of consumer population in these segments
do not affect revenue guarantee. Also, if the admissible
prices are supported over a large interval, the fairness guar-
antee becomes weaker. This insight discourages pricing
schemes with wildly varying prices across segments. Fi-
nally, if α = 0, i.e., without any fairness constraints, we
recover the bound of 2 proved in Bergemann et al. [2021].

We emphasize that the bound is strictly less than 2 because,
under fairness constraints, α 6= 0 and typically, the con-
sumer types are well separated in the feature space according
to the metric d else, the consumer types are indistinguish-
able for the seller hence, dij 6= 0 for all i, j ∈ [K]. This
is an improvement of the COF bound given in Bergemann
et al. [2021].

Tightness of COF bound: We claim that the COF bound
presented above is tight. In the following example, equality
holds and proves the tightness of the bound.

Example 1 (Tightness of the COF bound). ConsiderK = 2
where β1 = β2 = 1

2 . Consider Fi be such that πi(·) =
Li(·) with p̂1 = v + ε, p̂2 = v̄ − ε, where ε → 0, and
π̂1 = π̂2. It can be seen that if α is such that αd12 <
v̄ − v, any FP satisfying p2 − p1 = αd12 and p1, p2 ∈
[p̂1, p̂2] is an optimal FFP (fair FP), and the corresponding
COF = 2

1+
αd12
v̄−v

. If αd12 ≥ v̄ − v, the optimal FP is α-

fair and so, COF = 1. Hence, for this example, COF =
2

1+min{α d12
v̄−v ,1}

. This shows the tightness of the COF bound

derived in Theorem 4.

We now present an algorithm, OPT-LINP-FFP, to find the
optimal pivot m? in the above LINP-FFP strategy when
only p̂ and π̂is are known.

5.3 PROPOSED ALGORITHM

As LINP-FFP satisfies α-fairness (Proposition 3), and also
achieves COF bounds in Theorem 4, we look for a pricing
strategy optimal within class of LINP-FFP. It reduces to
finding an optimal pivot that maximizes revenue. In this
section, we propose a binary-search-based algorithm for the
same. For pricing p, the expected revenue generated per
consumer is given by Π(p) =

∑K
i=1 βiπi(pi). Let τi :=

α
2Di. Observe from Lemma 5 that Π(p) is lower bounded
as:

Π(p) ≥ Πm(L) =

K∑
i=1

βiγiπ̂i =
∑

i:|p̂i−m|<τi

βiπ̂i +

∑
i:p̂i−m≥τi

βiπ̂i
m+ τi − v
p̂i − v

+
∑

i:m−p̂i≥τi

βiπ̂i
v̄ −m+ τi
v̄ − p̂i

(13)

Determining Optimal Pivot m

As we can see, the revenue generated by LINP-FFP is lower
bounded by a piecewise linear function in m. With the aim
of achieving a better lower bound, we now address the prob-
lem of determining an optimal pivot m? ∈ argmax

m∈[v,v̄]

Πm(L).

Pricing Algorithm

In what follows, we call the candidate points m for optimal
pivot, i.e., for maximizing Πm(L), as critical points. We
denote the set of these critical points asM.

Lemma 6. Πm(L) as a function of m is concave and
piecewise linear with the set of critical points M =(
{p̂i − α

2Di, p̂i + α
2Di}i∈[K] ∩ [v, v̄]

)
∪ {v, v̄}.

Proof. It is easy to see that for a segment i, γi as a
function of m is continuous and piecewise linear with
breakpoints (i.e., points at which piecewise linear func-
tion changes slope): p̂i − α

2Di and p̂i + α
2Di provided

they are in the range [v, v̄]. The set of breakpoints is hence
{p̂i− α

2Di, p̂i+
α
2Di}∩[v, v̄]. Also, the slope monotonically

decreases at the breakpoints, i.e., γi is a concave function
of m.

From Eq. (13), we can see that Πm(L) is a weighted
sum over all segments, of γi’s with constant weights βiπ̂i.
So, Πm(L) as a function of m is concave and piece-
wise linear with breakpoints belonging to the following
set: {p̂i − α

2Di, p̂i + α
2Di}i∈[K] ∩ [v, v̄]. Hence, a point

m that maximizes Πm(L) belongs to either the afore-
mentioned set of breakpoints, or the set of its bound-
ary points {v, v̄}. Thus, the set of critical points M =(
{p̂i − α

2Di, p̂i + α
2Di}i∈[K] ∩ [v, v̄]

)
∪ {v, v̄}.



Our algorithm OPT-LINP-FFP (Optimal Linearized Pivot-
based Fair Feature-based Pricing) which determines an opti-
mal pivot m? and provides an α-fair pricing strategy (p̃) is
presented in Algorithm 1.

Algorithm 1: OPT-LINP-FFP

Input: α, {(p̂i, π̂i, βi, Di)}Ki=1

Output: m?, p̃
/* Creating and sorting the set of

critical points */

1 M← {v, v̄}
2 for i ∈ [K] do
3 τi ← α

2Di

4 if p̂i − τi > v then
5 M←M∪ {p̂i − τi}
6 if p̂i + τi < v̄ then
7 M←M∪ {p̂i + τi}

8 sort(M)
/* Binary search for optimal pivot */

9 `← 0, r ← |M| − 1
10 while ` ≤ r do
11 z ← b`+r2 c // M[z] is the current pivot

/* Computing the expression in

Eq. (13) at current and adjacent

critical points */

12 ΠM[z−1] ← 0, ΠM[z] ← 0, ΠM[z+1] ← 0
13 for y ← {z − 1, z, z + 1} do
14 for i← 1 to K do
15 if p̂i ≥M[y] + τi then
16 γi ← M[y]−v+τi

p̂i−v
17 else if p̂i ≤M[y]− τi then
18 γi ← v̄−M[y]+τi

v̄−p̂i
19 else
20 γi ← 1

21 ΠM[y] ← ΠM[y] + βiγiπ̂i

22 if ΠM[z−1] ≤ ΠM[z] ≤ ΠM[z+1] then
23 `← z + 1
24 else if ΠM[z−1] ≥ ΠM[z] ≥ ΠM[z+1] then
25 r ← z − 1
26 else
27 m? ←M[z]
28 break

/* Pricing for the different segments */

29 for i ∈ [K] do
30 if p̂i ≥ m? + τi then
31 p̃i ← m? + τi
32 else if p̂i ≤ m? − τi then
33 p̃i ← m? − τi
34 else
35 p̃i ← p̂i

Theorem 7. The OPT-LINP-FFP algorithm (a) returns
optimal pivot point m? and runs inO(K log(K)) time, and
(b) achieves the COF bound given in Theorem 4.

Proof. (a) The first module is the creation and sorting of the
set of critical points M, which takes O(K log(K)) time.
Owing to Lemma 6, we can find an optimal pivot m? using
binary search overM. Here, the number of critical points
are at most 2K + 2, i.e., |M| ≤ 2K + 2. So, in the second
module that finds an optimal pivot, the binary search in
the outer (while) loop runs for O(log(|M|)) iterations, and
the inner (for) loops run for O(K) iterations overall. Thus,
the running time of the second module is O(K log(K)).
The third module that computes pricing for the different
segments runs in O(K) time. So, the total running time of
Algorithm 1 is O(K log(K)).

(b) From Theorem 4, for m = (v + v̄)/2, the COF bound
holds. Also, Πm?(L) ≥ Πm(L) for all m 6= m?. We have:

COF =
Π(p̂)

Π(p̃)
≤ Π(p̂)

Πm?(L)
≤ Π(p̂)

Πm(L)

This completes the proof of the theorem.

Experiments on Synthetic Data: We validate our theo-
retical claims on synthetically generated consumer valu-
ations. The data is generated by approximating valuation
distributions fk(·) as triangular functions over a chosen
common support by generating random peaks for each con-
sumer segment k. We then find the revenue peaks π̂k and
the corresponding p̂k values for OPT-LINP-FFP. The con-
sumer features are m-dimensional random vectors where
each entry is in the range [0, 1] and the distance metric used
is Euclidean 2-norm. We assume that βk = 1/n for all con-
sumer types k where, n is the number of consumer types.
On simulated data, OPT-LINP-FFP achieves COF= 1.0806
(worst case COF = 1.1834, average case COF = 1.0806)
with coefficient of variation = 0.027 for 500 iterations.

6 DISCUSSION

This paper built a foundation for the design of fair feature-
based pricing by proposing a new fairness notion called
α-fairness. Our impossibility result on the discrete valu-
ation setting restricted us from attaining a finite cost of
fairness (COF) in general settings. Interestingly, in the con-
tinuous valuation setting with concave revenue functions,
we showed that a family of pricing schemes, LINP-FFP,
provided a COF strictly less than 2. Finally, we proposed
an algorithm, OPT-LINP-FFP, which gave us an optimal
pricing strategy within this family. Peaks of revenue distri-
butions are sufficient statistics for computing optimal fair
feature-based pricing. Compared with the regression mod-
els, which could also be used to learn optimal pricing, our
approach requires significantly less information about the



distribution function. More specifically, we observe that
peaks of revenue distributions are sufficient statistics for
computing optimal fair feature-based pricing.

We leave the problem of finding an optimal segmentation
(optimal value of K and corresponding K-partition of the
market) as interesting future work. We assumed a monopoly
market. It will be interesting to study optimal fair pricing in
the face of competition and other constraints such as finite
supply, non-linear production cost, and variable demand.
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