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Abstract
Designing faithful yet accurate AI models is chal-
lenging, particularly in the field of individual treat-
ment effect estimation (ITE). ITE prediction mod-
els deployed in critical settings such as healthcare
should ideally be (i) accurate, and (ii) provide faith-
ful explanations. However, current solutions are in-
adequate: state-of-the-art black-box models do not
supply explanations, post-hoc explainers for black-
box models lack faithfulness guarantees, and self-
interpretable models greatly compromise accuracy. To
address these issues, we propose DISCRET, a self-
interpretable ITE framework that synthesizes faithful,
rule-based explanations for each sample. A key in-
sight behind DISCRET is that explanations can serve
dually as database queries to identify similar sub-
groups of samples. We provide a novel RL algorithm
to efficiently synthesize these explanations from a
large search space. We evaluate DISCRET on diverse
tasks involving tabular, image, and text data. DIS-
CRET outperforms the best self-interpretable mod-
els and has accuracy comparable to the best black-
box models while providing faithful explanations.
DISCRET is available at https://github.com/
wuyinjun-1993/DISCRET-ICML2024.

1. Introduction
Designing accurate and explainable AI models is a key
challenge in solving a wide range of problems that require
individualized explanations. In this paper, we tackle this
challenge in the context of individual treatment effect (ITE)
estimation. ITE quantifies the difference between one in-
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dividual’s outcomes with and without receiving treatment.
Estimating ITE is a significant problem not only in health-
care (Basu et al., 2011) but also in other domains such as
linguistics (Pryzant et al., 2021; Feder et al., 2021) and
poverty alleviation (Jerzak et al., 2023a;b). A large body of
literature has investigated accurately estimating ITE using
various machine learning architectures, including GANs
(Yoon et al., 2018) and transformers (Zhang et al., 2022),
among others (Shalit et al., 2017; Liu et al., 2022).

ITE prediction models deployed in critical settings should
ideally be (i) accurate, and (ii) provide faithful explana-
tions in order to be trustable and usable. In this paper, we
follow prior work on evaluating the faithfulness of explana-
tions in terms of consistency, which measures the degree to
which samples with similar explanations have similar model
predictions (Dasgupta et al., 2022; Nauta et al., 2023).

Current solutions for predicting ITE are either accurate or
faithful, but not both, as illustrated in the first two rows of
Figure 1. While self-interpretable models such as Causal
Forest and others (Athey & Wager, 2019; Chen et al.,
2023b) produce consistent explanations, they struggle to
provide sufficiently accurate ITE estimations. On the other
hand, while black-box models like transformers are typi-
cally the most accurate, explanations generated by post-hoc
explainers, such as Anchor (Ribeiro et al., 2018), are not
provably consistent.

We therefore seek to answer the following central question:
Is it possible to design a faithfully explainable yet accu-
rate learning algorithm for treatment effect estimation? To
this end, we propose DISCRET1, the first provably-faithful,
deep learning based ITE prediction framework. Given a
sample x, DISCRET follows prior work and estimates ITE
by computing the average treatment effect (ATE) of samples
that are similar to x. However, in contrast to prior methods
that discover similar samples through statistical matching
(Anderson et al., 1980; Chen et al., 2023a) or clustering
(Xue et al., 2023), DISCRET finds similar samples by (i)
synthesizing a logical rule that describes the key features
of sample x (and hence explains the subgroup the sample
belongs to) and then (ii) evaluating this rule-based expla-

1DIScovering Comparable items with Rules to Explain
Treatment Effect
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Figure 1. Motivating examples from the Uganda dataset. We predict how providing economic aid (the treatment) helps to develop remote
regions of the country (the outcome) via satellite images. The task is to estimate the ITE for each sample x1 and x2. DISCRET predicts
that, because both images have several indicators of rich soil and urbanization, they will have similar ITE if given aid. Self-interpretable
models such as Causal Forest (Athey & Wager, 2019) produce consistent ITE estimates (i.e., samples with same explanations have same
model predictions, viz. 3.97 and 3.97), but have poor accuracy ( ˆITEx1 ≪ ITEx1 = 4.25). Black-box models such as TransTEE (Zhang
et al., 2022), are accurate but do not produce similar predictions for samples x1 and x2 with similar explanations, when the explanations
are sourced from post-hoc explainers such as Anchor (Ribeiro et al., 2018). DISCRET produces both consistent and accurate predictions.

nation on a database of training samples (see Figure 2 for
our pipeline). As shown in Figure 1, DISCRET produces
consistent explanations for samples with similar predictions;
in fact, it is guaranteed to be consistent by construction, as
we show later.

How does DISCRET synthesize rules which correctly group
similar samples, and thus lead to accurate predictions?
Learning to synthesize rules is challenging since the ex-
ecution of database queries is non-differentiable and thus
we cannot compute an end-to-end loss easily. To address
this issue, we design a deep reinforcement learning algo-
rithm with a novel and tailored reward function for dynamic
rule learning. We also state the theoretical results of the
convergence of DISCRET under some mild conditions sug-
gesting if the ground-truth explanations are consistent, then
our training algorithm can always discover them.

Due to the widely recognized trade-offs between inter-
pretability and prediction performance (Dziugaite et al.,
2020), DISCRET slightly underperforms the state-of-the-
art black-box models (Zhang et al., 2022). In addressing
this, we found that regularizing the training loss of black-
box models such as TransTEE to penalize discrepancy with
DISCRET predictions yields new state-of-the-art models.

We evaluate the capabilities of DISCRET through compre-
hensive experiments spanning four tabular, one image, and
one text dataset, covering three different types of treatment
variables. For tabular data, among others, we use the IHDP

dataset (Hill, 2011) which tracks cognitive outcomes of pre-
mature infants. Other datasets used are TCGA (tabular)
(Weinstein et al., 2013), IHDP-C (tabular), Uganda satellite
images for estimating poverty intervention (image), and the
Enriched Equity Evaluation Corpus (text). Notably, our ap-
proach outperforms all self-interpretable methods, including
by 34% on IHDP, is comparable to the accuracy of black-
box models, and produces more faithful explanations than
post-hoc explainers. In addition, regularizing the state-of-
the-art black-box models with DISCRET reduces their ITE
prediction error across tasks, including by 18% on TCGA.

Our contributions can be summarized as follows:

1. We introduce DISCRET, a self-interpretable frame-
work that synthesizes faithful rule-based explanations,
and apply it to the treatment effect estimation problem.

2. We present a novel Deep Q-learning algorithm to au-
tomatically learn these rule-based explanations, and
supplement it with theoretical results.

3. We conduct an extensive empirical evaluation that
demonstrates that DISCRET outperforms existing self-
interpretable models and is comparable to black-box
models across tabular, image, and text datasets span-
ning a diverse range of treatment variable types. More-
over, regularizing the state-of-the-art black-box models
with DISCRET further reduces their prediction error.
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2. Preliminaries
2.1. Individual Treatment Effect (ITE) Estimation

Suppose each sample consists of (i) the pre-treatment co-
variate variable X , (ii) the treatment variable T , (iii) a dose
variable S associated with T , and (iv) observed outcome
Y under treatment T and dose S. We embrace a versatile
framework throughout this study, where T can take on either
discrete or continuous values, S is inherently continuous
but can be either present or absent, Y can be discrete or
continuous, and X may incorporate structured features as
well as unstructured features, such as text or image data. In
the rest of the paper, we primarily explore a broadly stud-
ied setting where Y is a continuous variable, T is a binary
variable (T = 1 and T = 0 represent treated and untreated
respectively) and there is no dose variable. The goal is to es-
timate individual treatment effects (ITE), i.e., the difference
of outcomes with T = 1 and T = 0. Typically, the average
treatment effect (ATE), the average of ITE across all sam-
ples (i.e., ATE = E[ITE]) is reported. Generalizations to
other settings are provided in Appendix C.6.

Beyond the treatment effect definitions, the propensity score,
represented as the probability of treatment assignment T
conditioned on the observed covariates X , often plays a
pivotal role in regularizing the treatment effect estimation.
This propensity score is denoted as π(T |X).

Unlike conventional prediction tasks, we are unable to di-
rectly observe the counterfactual outcomes during training,
rendering the ground-truth treatment effect typically un-
available. To address this challenge and ensure the causal
interpretability of our estimated treatment effect, we ad-
here to the standard assumptions proposed by Rubin (1974),
which are formulated in Appendix C.1.

2.2. Syntax of Logic Rules

We assume that the covariate variable X is composed of m
features, X1, X2, . . . , Xm, which can be categorical or nu-
meric attributes from tabular data or pre-processed features
extracted from text data or image data. We then build logic
rule-based explanations upon those features to construct our
treatment effect estimator. Those logic rules are assumed to
be in the form of K disjunctions of multiple conjunctions,
i.e., R1 ∨R2 ∨ · · · ∨RH where each Ri is a conjunction of
K literals: li1 ∧ li2 ∧ li3 ∧ · · · ∧ liK . Each lij(j = 1, 2, . . . )
represents a literal of the form lij = (A op c), where
A ∈ {X1, X2, ..., Xm}; op is equality or inequality for
categorical attributes, and op ∈ {<,>,=} for numeric at-
tributes; and c is a constant.

3. The DISCRET Framework
Given a database D of individual samples with their co-
variate variables, and their ground-truth outcomes under

treatment T and dose S, we want to estimate the treatment
effect on a new sample x. To do so, DISCRET consists
of a two-step process: (i) explanation synthesis where a
rule-based explanation Rx is synthesized for the given sam-
ple x, such that Rx captures pertinent characteristics about
the sample, and then (ii) explanation evaluation, where a
subgroup of similar samples Rx(D) ⊆ D satisfying the
explanation is selected from D. Finally, the predicted ITE
is computed over this subgroup Rx(D).

This section first outlines these two steps of DISCRET (§3.1
and §3.2, Fig. 2). We then explain the training algorithm
(§3.3). Additionally, we show how DISCRET can be em-
ployed to regularize state-of-the-art deep learning models
for maximal performance (§3.4).

3.1. Explanation Synthesis

3.1.1. OVERVIEW

DISCRET’s explanation synthesizer consists of a set of
three models, Θ = {Θ0, Θ1, Θ2}. Θ0 is a backbone model
for encoding features, Θ1 is a feature-selector, and Θ2 a
thresholding constant selector for features. Note that Θ0

can be any encoding model, such as the encoder of the
TransTEE model (Zhang et al., 2022). Θ0 can be optionally
initialized with a pre-trained phase (see Appendix C.2) and
can be frozen or fine-tuned during the training phase.

Gven a sample x, and models Θ0, Θ1 and Θ2, we want to
synthesize a conjunctive rule Rx which takes the form of
Rx :- l1∧ l2∧ l3∧· · ·∧ lK . We synthesize Rx by generating
lk, k = 1, 2, · · · ,K recursively, where each lk takes the
form (A op c). Specifically, for each lk = A op c, we select
a feature A using Θ1, a thresholding constant c using Θ2,
and an operator op based on x, A and c. Before illustrating
how to synthesize these rules during the inference phase
in §3.1.3, we take a light detour to describe some desired
properties for them in §3.1.2.

3.1.2. DESIRED PROPERTIES OF EXPLANATIONS

We state four desired properties of a rule-based explanation,
which guide the design of DISCRET. We will refer to these
properties in §3.1.3 and §3.3.

1. Local interpretability: We aim to synthesize a rule-
based explanation Rx for each individual sample x rather
than for a population of samples. Thus, explanations may
differ for different samples.

2. Satisfiability: For any rule Rx generated for a given
sample x, x’s features must satisfy Rx. This guarantees
that the sample x and any samples retrieved by Rx share
the same characteristics.

3. Low-bias: We expect that Rx can retrieve a set of similar
samples so that the bias between the estimated ATE over
them and the ground-truth ITE is as small as possible.
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Figure 2. Illustration of DISCRET on the IHDP dataset, which tracks premature infants. Given a sample x, DISCRET synthesizing an
explanation L1:k where it iteratively constructs each literal in the explanation. In particular, DISCRET (i) embeds the given sample
and any previously generated literals (Θ0), (ii) passes the embedding to the feature selection network (Θ1) to pick a feature, and then
(iii) passes the embedding and selected feature to the constant selection network (Θ2) to get a thresholding constant. The operator is
auto-assigned based on the feature and sample. DISCRET executes this explanation on the database to find relevant samples, which are
used (i) during training to compute a reward function for Θ0,Θ1 and Θ2, and (ii) during testing to calculate the ITE.

4. Non-emptiness: There should be at least one sample
from the database whose covariates satisfy Rx. In ad-
dition, for those samples satisfying Rx, their treatment
variables should cover all essential treatment values for
treatment effect estimations, e.g., containing both treated
and untreated units in binary treatment settings.

3.1.3. RULE GENERATION

The generation of the rule Rx during inference is straight-
forward. At each round k, we encode the features Ex and
the so-far generated rule L1:k−1(= l1 ∧ l2 ∧ l3 ∧ · · · ∧ lk−1)
and select a feature Ak from Θ1 by (see Appendix C.3 for
details). For each feature Ak, we select a thresholding con-
stant c and operator op to form literal lk. Selection of c and
op depends on the type of Ak.

Categorical Features. If A is a categorical attribute, then
we assign c = x[A], where x[A] is the value of attribute A
in sample x; and we assign op as =, which guarantees the
satisfiability of Rx on x.

Numeric Features. If A is a numeric attribute, we first
discretize the range of A into bins, and query Θ2 to choose
a bin Cj . As suggested in Figure 2, Θ2 takes the encoding
of the covariates and L1:k−1, and the one-hot encoding of
feature A as the model input. After the feature A and the
constant c are identified, the operator op is then determinis-

tically chosen by comparing the value x[A] and c. If x[A] is
greater than c, then op is assigned as ≥, and as ≤ otherwise,
thus again guaranteeing the satisfiability of the rule Rx.

In addition, we observe that the samples retrieved by the rule
Rx may not contain all essential treatment values for treat-
ment effect estimations, thus violating the Non-emptiness.
To address this issue, we keep track of the retrieved samples
for each L1:k(k = 1, 2, . . . ,K) and whenever the addi-
tion of one literal lk+1 leads to the violation of the Non-
emptiness property, we stop the rule generation process
early and return L1:k as Rx.

To produce multiple disjunctions with DISCRET, multiple
literals are generated simultaneously at each round, each
of which is assigned to one disjunction respectively (see
Appendix C.4).

3.2. Explanation Evaluation

As Figure 2 shows, given a sample x (e.g., a patient) with
(X,T, S, Y ), and a rule Rx (i.e., L1:k in Figure 2), we
evaluate the rule Rx on a database D to retrieve a sub-
group of similar samples, which is denoted by Rx(D) =
{(x∗

i , t
∗
i , s

∗
i , y

∗
i )}ni=1.

ITE Estimation. The ITE of the sample x is then estimated
by computing the average treatment effect (ATE) estimated
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within this subgroup. In this paper, we take the empir-
ical mean by default for estimating ATE of Rx(D), i.e.,
ŷ(1)− ŷ(0), in which ŷ(t), (t = 0, 1) denotes the estimated
outcome calculated with the following formula:

ŷ(t) =
1∑

I(t∗i = t)

∑
I(t∗i = t) · y∗

i (1)

We also estimate the propensity score for discrete treat-
ment variables by simply calculating the frequency of every
treatment within Rx(D): π̂(T = t|X = x) =

∑
I(t∗i =

t)/|Rx(D)|.

3.3. RL-based Training

We train Θ to satisfy the desired properties mentioned in
§3.1.2. In particular, to preserve the low-bias property, we
need to guide the generation of rules such that the estimated
ITE is as accurate as possible. However, a key difficulty
in training Θ is the non-differentiability arising from the
explanation evaluation step (§3.2), i.e. evaluating Rx on our
database. We overcome this issue by formulating the model
training as a deep reinforcement learning (RL) problem and
propose to adapt the Deep Q-learning (DQL) algorithm to
solve this problem. Briefly, we define a reward function
over the selected subgroup of samples Rx(D), and use it to
learn the RL-policy.

We first map the notations from §3.1.1 to classical RL ter-
minology. An RL agent takes one action at one state, and
collects a reward from the environment, which is then tran-
sitioned to a new state. In our rule learning setting, a state
is composed of the covariates x and the generated literals
in the first k − 1 rounds, L1:k−1. With x and L1:k−1, the
model Θ1 and Θ2 collectively determine the kth literal, lk,
which is regarded as one action. Our goal is then to learn
a policy parameterized by Θ, which models the probabil-
ity distribution of all possible lk conditioned on the state
(x, L1:k−1), such that the value function calculated over all
K rounds is maximized:

V1:K =
∑K

k=1
rkγ

k−1, (2)
in which γ is a discounting factor. Note that there are only
K horizons/rounds in our settings since the number of con-
junctions in the generated rules is limited. To bias rule
generation towards accurate estimation of ITE, we expect
that the value function V1:K reflects how small the ITE esti-
mation error is. However, since the counterfactual outcomes
are not observed in the training phase, we therefore use
the errors of the observed outcomes as a surrogate of the
ITE estimation error. Also, we give a zero reward to the
case where the retrieved subgroup, L1:K(D), violates the
non-emptiness property. As a result, V1:K is formulated as

V1:K = e−α(y−ŷ1:K)2 · I(L1:K(D) is non-empty), (3)

in which ŷ1:K represents the estimated outcome by using the
generated rule composed of literals L1:K and α is a hyper-
parameter. As a consequence, the reward collected at the kth

round of generating lk becomes rk = (V1:k−V1:k−1)/γ
k−1.

We further discuss how to automatically fine-tune the hyper-
parameter α and incorporate the propensity score defined in
§3.2 for regularization in Appendix C.9.

Next, to maximize the value function V1:K , we employ Deep
Q-learning (DQL) (Mnih et al., 2013) to learn the parameter
Θ. To facilitate Q learning, we estimate the Q value with
the output logits of the models given a state (x, L1:k−1)
and an action lk. Recall that since DISCRET can generate
consistent explanations by design, we can show that if Θ0 is
an identity mapping and Θ1 is a one-layer neural network,
the following theorem holds:

Theorem 3.1. Suppose we have input data
{(xi, ti, si, yi)}Ni=1 where xi ∈ Rm and discrete,
ti ∈ R, si ∈ R, and yi ∈ R, then the ˆITEx obtained from
DISCRET converges to zero generalization error with prob-
ability 1 for ITE estimation (i.e. (ITEx− ˆITEx)

2 → 0 w.p.
1) for any fixed K ≤ m over the dataset with all discrete fea-
tures under the data generating process y = f(XK)+c·t+ϵ,
where XK ⊆ {X1, X2, · · · , Xm}, c ∈ R, t is the treatment
assignment, and ϵ ∼ N (0, σ2) for some σ > 0.

Intuitively, Theorem 3.1 suggests if the ground-truth ex-
planations are consistent, then our training algorithm can
perfectly discover them. We prove the theorem and explain
our algorithm in detail in Appendix C.

3.4. Regularizing black-box models with DISCRET

Due to the widely recognized trade-offs between model
interpretability and model performance (Dziugaite et al.,
2020), self-interpretable models typically suffer from poorer
performance than their neural network counterparts. To
achieve a better balance between performance and inter-
pretability, we further propose to regularize the prediction
of black-box models with that of DISCRET. Since DIS-
CRET also leverages part of the black-box model such as
the encoder of TransTEE as the backbone Θ0, we thus ob-
tain the predictions of black-box models by reusing Θ0.
Specifically, starting from the encoded covariates Ex gen-
erated by Θ0, we predict another outcome ŷ′ directly with
Ex adhering to the mechanism employed by state-of-the-art
neural models. This prediction is then regularized by the
predicted outcome ŷ1:K by DISCRET as follows:

ŷ′
1:K = (ŷ′ + λŷ1:K)/(1 + λ),

in which λ is a hyperparameter for controlling the impact
of ŷ′. Afterward, ŷ1:K is replaced with ŷ′1:K in Equation 3
or Equation 9 for model training. In addition, to facilitate
accurate ŷ′, we further minimize the loss involving ŷ′ and y
along with the Deep Q-learning loss.
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Dataset Type Treatment Dose # Features

IHDP Tabular 2 ✗ 25
TCGA Tabular 3 ✓ 4000
IHDP-C Tabular cont. ✗ 25
News Tabular cont. ✗ 2000
EEEC Text 2 ✗ 500
Uganda Image 2 ✗ 20

Table 1. Datasets used for evaluation (cont. means continous)

4. Experiments
In this section, we aim to answer the following research
questions about DISCRET:

RQ1: Does DISCRET produce faithful explanations?
RQ2: How does the accuracy of DISCRET perform com-
pared to existing self-interpretable models and black-box
models?

4.1. Setup

Datasets. We evaluate across tabular, text, and image
datasets, covering diverse categories of treatment variables.
Specifically, we select IHDP (Hill, 2011), TCGA (Wein-
stein et al., 2013) IHDP-C (a variant of IHDP), and News
for tabular setting, the Enriched Equity Evaluation Corpus
(EEEC) dataset (Kiritchenko & Mohammad, 2018) for text
setting and Uganda (Jerzak et al., 2023b;a) dataset for the
image setting. We summarize the modality, categories of
treatment and dose variables, and number of features for
each dataset in Table 1, with more details in Appendix A.

Baselines. We use extensive baselines for neural network
models, self-interpretable models, and post-hoc explainers.

Neural network models. For neural networks, we select
the state-of-the-art models: TransTEE (Zhang et al., 2022),
TVAE (Xue et al., 2023), Dragonnet (Shi et al., 2019), TAR-
Net (Shalit et al., 2017), Ganite (Yoon et al., 2018), DRNet
(Schwab et al., 2020), and VCNet (Nie et al., 2020). Not all
of these models support all categories of treatment variables,
as discussed in Appendix B. Also, since our regularization
strategy can be regarded as the integration of two models
through weighted summation, we compare our regularized
backbone (TransTEE) against the integration of TransTEE
and another top-performing neural network model (Drag-
onnet for IHDP, EEEC, and Uganda dataset, VCNet for
TCGA, DRNet for IHDP-C) in the same manner.

Self-interpretable models. We compare against classical
self-interpretable models, e.g., Causal Forest (Athey & Wa-
ger, 2019), Bayesian Additive Regression Trees (BART)
(Chipman et al., 2010; Hahn et al., 2020), decision tree
(DT), and random forests (RF), in which the latter two are
integrated into R-learner (Nie & Wager, 2021) for treat-
ment effect estimation. We also adapt three general-purpose
self-interpretable models to treatment effect estimation—

ENRL (Shi et al., 2022), ProtoVAE (Gautam et al., 2022)2,
and Neural Additive Model (NAM) (Agarwal et al., 2021),
which generate rules, prototypes, and feature attributes as
explanations respectively. For tree-based models among
these methods, we maintain the same explanation complex-
ity as DISCRET. For the sake of completeness we also
conduct additional experiments to vary the complexity (e.g.,
the number of trees and tree depth) of all self-interpretable
models, provided in Table 3 in Appendix E.1; DISCRET
outperforms self-interpretable models even when they are
configured to high complexity.

Post-hoc explainers. We apply several post-hoc explainers
to the TransTEE model to evaluate the consistency of expla-
nations. Thy include Lore (Guidotti et al., 2018), Anchor
(Ribeiro et al., 2018), Lime (Ribeiro et al., 2016), Shapley
values (Shrikumar et al., 2017), and decision tree-based
model distillation methods (Frosst & Hinton, 2017) (here-
inafter referred to as Model Distillation). We enforce the
complexity of these explanations to be the same as DIS-
CRET for fair comparison.

Evaluation metrics. We primarily evaluate faithfulness by
measuring consistency, proposed by (Dasgupta et al., 2022);
we also measure sufficiency, which is a generalization of
consistency. Briefly, consistency quantifies how similar
the model predictions are between samples with the same
explanations, while sufficiency generalizes this notion to
arbitrary samples satisfying the same explanations (but not
necessarily producing the same explanations). Appendix D
provides formal definitions of these two metrics.

We evaluate ITE estimation accuracy using different met-
rics for datasets to account for different settings. For
the datasets with binary treatment variables, by follow-
ing prior studies (Shi et al., 2019; Shalit et al., 2017), we
employ the absolute error in average treatment effect, i.e.,
ϵATE = | 1n

∑n
i=1 ITE(xi)− 1

n

∑n
i=1 ÎTE(xi)|. Both in-

sample and out-of-sample ϵATE are reported, i.e., ϵATE

evaluated on the training set and test set respectively. For
the datasets with either continuous dose variables or con-
tinuous treatment variables, we follow (Zhang et al., 2022)
to report the average mean square errors AMSE between
the ground-truth outcome and predicted outcome on the
test set. For the image dataset, Uganda, since there is no
ground-truth ITE, we therefore only report the average out-
come errors between the ground-truth outcomes and the
predicted outcomes conditioned on observed treatments,
i.e., ϵoutcome =

1
n

∑n
i=1 |yi − ŷi|.

Configurations for DISCRET. We consider two variants
of DISCRET: vanilla DISCRET and backbone models regu-
larized with DISCRET (denoted as DISCRET + TransTEE).

2ProtoVAE is designed for image data. We therefore only
compare DISCRET against this method on the Uganda dataset.
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For both variants, we perform grid search on the number of
conjunctions, K, and the number of disjunctions, H , and
the regularization coefficient λ, in which K ∈ {2, 4, 6},
H ∈ {1, 3} and λ ∈ {0, 2, 5, 8, 10}.

Extracting features from text and image data. For
text data, we employ the word frequency features such as
“Term Frequency-Inverse Document Frequency” (Baeza-
Yates et al., 1999). For image data, we follow (Fel et al.,
2023) to extract interpretable concepts as the features, which
we further discuss in Appendix G. Note that we only ex-
tract features for DISCRET and self-interpretable baselines
such as Causal Forest while all neural network model-based
baselines still take raw images or text data as input.

4.2. RQ1: Faithfulness Evaluation on Explanations

We evaluate the consistency and sufficiency of explana-
tions produced by DISCRET, the state-of-the-art self-
interpretable models, and the post-hoc explainers. For those
explainers producing feature-based explanations, we also
follow (Dasgupta et al., 2022) to discretize the feature im-
portance scores, say, by selecting the Top-K most important
features, for identifying samples with exactly the same ex-
planations. For fair comparison, we evaluate the explana-
tions generated w.r.t. the same set of features extracted from
NLP and image data.

We graph the consistency scores in Figure 3; full consis-
tency scores are provided in Table 6 in Appendix E.4. As
Figure 3 indicates, DISCRET always achieves near 100%
consistency since the same explanations in DISCRET deter-
ministically retrieve the same subgroup from the database,
thus generating the same model predictions. In contrast, the
baseline explanation methods generally have extremely low
consistency scores in most cases. We also include the suffi-
ciency score results in Table 7, which shows that DISCRET
can still obtain higher sufficiency scores in most cases than
other explanation methods.

4.3. RQ2: Accuracy Evaluation on ITE Predictions

We include the ITE estimation results for tabular setting,
NLP setting, and image setting in Table 2. For brevity, the
results on News dataset are not reported in Table 2, but are
included in Table 8 in Appendix E.5.

As Table 2 shows, DISCRET outperforms all the self-
interpretable methods, particularly on text (ϵATE = 0.011
for DISCRET v/s 0.0011 for causal forest). Compared to
black-box models, DISCRET only performs slightly worse
in most cases, and even outperforms them on the Uganda
dataset. The outperformance is possibly caused by equiva-
lent outcome values among most samples in this dataset as
suggested by Figure 6 in Appendix E.6. Hence, consistent
predictions (e.g., by DISCRET) between samples lead to

a lower error rate. DISCRET underperforms TransTEE on
IHDP-C, likely due to the complexity of the dataset; DIS-
CRET still beats all other black-box models on this dataset.

Further, backbone models (TransTEE) regularized with
DISCRET outperform the state-of-the-art neural network
models, reducing their estimation errors by as much as
18% (TCGA dataset.) Interestingly, for the IHDP dataset,
TransTEE outperforms its regularized version only on in-
sample (i.e. training) error, but underperforms the regu-
larized version when we consider out-of-sample (i.e. test)
error. Intuitively, DISCRET’s regularization incentivizes the
underlying backbone’s training (TransTEE) to focus on only
a subset of the most important features, thereby reducing its
variance and allowing it to perform better.

4.4. Misc. Experiments

Appendix E includes other experiments such as the abla-
tion studies (Appendix E.2) with respect to dataset size
and reward functions, and evaluating the training cost of
DISCRET (Appendix E.3).

5. Related Work
Treatment effect estimation. ML-based approaches
to determine treatment effects can be divided into self-
interpretable (often, tree-based), and deep-learning ap-
proaches. Deep-learning approaches mainly focus on how to
appropriately incorporate treatment variables and covariates
by designing various ad-hoc neural networks, such as Drag-
onnet (Shi et al., 2019), DRNet (Schwab et al., 2020) and
TARNet (Shalit et al., 2017). Recently, it has been demon-
strated that transformers (Zhang et al., 2022) can encode
covariates and treatment variables without any ad-hoc adap-
tations, which outperforms other deep-learning approaches.
We thus select transformers as our default backbone models.

Self-interpretable models can be further subdivided into ap-
proaches specifically meant for causal inference, such as
causal forests (Wager & Athey, 2018), and general-purpose
models adapted to ITE such as random forests, Bayesian Ad-
ditive Regression Trees (BART) (Hahn et al., 2020), ENRL
(Shi et al., 2022). As shown earlier, these approaches are
faithful, but often inaccurate. Prior work for treatment rec-
ommendation has also used rules to drive model decisions
(Lakkaraju & Rudin, 2017), but use static rule sets (rules
and partitions of subgroups are pre-determined) and have
been restricted to learning via Markov processes. In contrast,
DISCRET enables dynamic rule generation for each sample
and predicts ITE accurately with deep reinforcement learn-
ing. Past approaches for treatment recommendation such as
LEAP (Zhang et al., 2017) have used reinforcement learning
to fine-tune models, but were not inherently interpretable.

Recent work (Curth et al., 2024; Chen et al., 2023b; Nie &
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Modality → Tabular Text Image

Dataset → IHDP TCGA IHDP-C EEEC Uganda

Method ↓ Self-
interp.?

ϵATE
(In-sample)

ϵATE
(Out-of-sample)

ϵATE
(In-sample)

ϵATE
(Out-of-sample) AMSE ϵATE ϵoutcome

Decision Tree ✓ 0.693±0.028 0.613±0.045 0.200±0.012 0.202±0.012 22.136±1.741 0.014±0.016 1,796±0.021
Random Forest ✓ 0.801±0.039 0.666±0.055 19.214±0.163 19.195±0.163 21.348±1.222 0.525±0.573 1.820±0.013

NAM ✓ 0.260±0.031 0.250±0.032 - - 24.706±0.756 0.152±0.041 1.710±0.098
ENRL ✓ 4.104±1.060 3.759±0.087 10.938±2.019 10.942±2.019 24.720±0.985 - 1.800±0.143

Causal Forest ✓ 0.177±0.027 0.240±0.024 - - - 0.011±0.001 -
BART ✓ 1.335±0.159 1.132±0.125 230.74±0.312 236.81±0.531 12.063±0.410 0.014±0.016 1.676±0.042

DISCRET (ours) ✓ 0.089±0.040 0.150±0.034 0.076±0.019 0.098±0.007 0.801±0.165 0.001±0.017 1.662±0.136

Dragonnet ✗ 0.197±0.023 0.229±0.025 - - - 0.011±0.018 1.709±0.127
TVAE ✗ 3.914±0.065 3.573±0.087 - - - 0.521±0.080 49.55±2.38

TARNet ✗ 0.178±0.028 0.441±0.088 1.421±0.078 1.421±0.078 12.967±1.781 0.009±0.018 1.743±0.135
Ganite ✗ 0.430±0.043 0.508±0.068 - - - 1.998±0.016 1.766±0.024
DRNet ✗ 0.193±0.034 0.433±0.080 1.374±0.086 1.374±0.085 11.071±0.994 0.008±0.018 1.748±0.127
VCNet ✗ 3.996±0.106 3.695±0.077 0.292±0.074 0.292±0.074 - 0.011±0.017 1.890±0.110

TransTEE ✗ 0.081±0.009 0.138±0.014 0.070±0.010 0.067±0.008 0.112±0.008 0.003±0.017 1.707±0.158
TransTEE + NN ✗ 0.224±0.022 0.300±0.035 0.093±0.013 0.094±0.013 0.363±0.033 0.006±0.008 2.001±0.425

TransTEE + DISCRET
(ours) ✗ 0.082±0.009 0.120±0.014 0.058±0.010 0.055±0.009 0.102±0.007 0.001±0.017 1.662±0.136

Table 2. ITE estimation errors (lower is better). We bold the smallest estimation error for each dataset, and underline the second smallest
one. We show that DISCRET outperforms self-interpretable models across all datasets, particularly on text (ϵATE = 0.001 for DISCRET
v/s 0.011 for causal forest). DISCRET is comparable to the performance of black-box models, with the exception of the IHDP-C dataset.
Regularizing black-box models with DISCRET (shown here as TransTEE + DISCRET) outperforms all models.

Figure 3. Consistency scores (higher is better) for DISCRET and a black-box model (TransTEE) combined with a post-hoc explainer.
Our results confirm that DISCRET produces faithful explanations, and importantly, show that post-hoc explanations are rarely faithful, as
evidenced by low consistency scores across datasets.

Wager, 2021; Kim & Bastani, 2019) discusses key chal-
lenges in all ML-based solutions to ITE, notably inter-
pretability and identifiability (i.e, ensuring the dataset con-
tains appropriate features to infer treatment effects). Evi-
dently, our work tackles interpretability by generating rule-
based explanations. DISCRET enhances identifiability for
image data via concept-extraction, in line with a sugges-
tion by (Curth et al., 2024) to extract lower-dimensional
information from the original feature space.

Model interpretability. There are two lines of work to
address the model interpretability issues, one is for inter-
preting black-box models in a post-hoc manner while the
other one is for building a self-interpretable model. Post-hoc
explainers could explain models with feature importance
(e.g., Lime (Ribeiro et al., 2016) and Shapley values (Shriku-
mar et al., 2017)) or logic rules (e.g., Lore (Guidotti et al.,
2018), Anchor (Ribeiro et al., 2018)). However, post-hoc
explanations are usually not faithful (Rudin, 2019; Bhalla
et al., 2023). To mitigate this issue, there are recent and
ongoing efforts (Shi et al., 2022; Gautam et al., 2022; Huang

et al., 2023; You et al., 2023) in the literature to develop
self-interpretable models. For example, ENRL (Shi et al.,
2022) to learn tree-like decision rules and leverage them for
predictions, ProtoVAE (Gautam et al., 2022) learns proto-
types and predicts the label of one test sample by employing
its similarity to prototypes.

Integrating rules into neural models. How to integrate
logic rules into neural models has been extensively studied
(Seo et al., 2021b;a; Khope & Elias, 2022; Naik et al., 2023;
2024). For instance, DeepCTRL (Seo et al., 2021b) has
explored the use of existing rules to improve the training
of deep neural networks; in contrast, DISCRET does not
require existing rules; it effectively learns (i.e. synthesizes)
rules from training data and can be incorporated into neural
models as regularization.

Program synthesis. Program synthesis concerns synthe-
sizing human-readable programs out of data, which has been
extensively studied in the past few decades. Initial solutions,
e.g., ILASP (Law et al., 2020) and Prosynth (Raghothaman
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a. Synthesizing a Query

weight 1727

head circumference 30.0

alcohol 0

... ...

𝑥  =

DISCRET

𝑄: weight < 1894, head circumference > 27.8, alcohol = 0

weight 1.4

mom age 17

drugs? Y

... ...

𝑥  =

DISCRET Explanation Synthesizer

weight < 1.5, mom age ≤ 19, drugs = Y

a. Synthesizing a Query

... ...

𝑥  =

DISCRET

𝑄: weight < 1894, head circumference > 27.8, alcohol = 0

b. Evaluating 𝑄 over a labeled database

𝑥  =

DISCRET Rule Synthesizer

   count(      ) ≥ 1, count(      ) < 1

𝑥  = Betsy told us all about the recent
hilarious events as we were
walking to the hairdresser.

Feature Extractor ( )

DISCRET Explanation Synthesizer DISCRET Explanation Synthesizer

Feature Extractor ( )

Textfreq(hilarious) > 0.96, 

freq(frightened) < 0.35

Similar Samples in

weight mom age drugs? ...

1.2 16 Y ...

1.1 19 Y ...

1.3 18 Y ...

Tabular Data Image Data

Alonzo told us all
about the recent
hilarious events,
to our surprise.

To our surprise,
Roger found
himself in a

hilarious
situation.

The conversation
with my aunt was

hilarious, we
could from simply

looking.

Text Data

Similar Samples in Similar Samples in

Figure 4. DISCRET identifies similar samples across diverse datasets – tabular (IHDP), image (Uganda), and text (EEEC). 1) In the
first setting, given a tabular sample x describing a premature infant, DISCRET establishes a rule associating extremely underweight
(weight ≤ 1.5) infants born to teenage mothers (mom age ≤ 19) with a history of drug use; such groups likely benefit from childcare
visits (treatment), and will have highly improved cognitive outcomes. 2) In the second scenario on satellite images, for a sample x,
DISCRET discerns a rule based on the presence of concepts like ”high soil moisture” (reddish-pink pixels) and absence of minimal soil
(brown pixels); thus characterizing areas with high soil moisture. DISCRET’s synthesized rule aligns with findings that government grants
(treatment) are more effective in areas with higher soil moisture content (outcome) (Jerzak et al., 2023b). 3) Likewise, the text setting
aims to measure the impact of gender (treatment) on the mood (outcome). Given a sentence x where the gendered noun (”Betsy”) does
not affect the semantic meaning, DISCRET’s rule focuses on mood-linked words in the sentence, i.e., ”hilarious”.

et al., 2020) utilize pure symbolic reasoning to search logic
rules. Recent approaches have explored neural-based syn-
thesis, such as NeuralLP (Yang et al., 2017) and NLIL (Yang
& Song, 2019) for guiding the rule generation process.

6. Conclusion & Limitations
In this work, we tackled the challenge of designing a faith-
ful yet accurate AI model, DISCRET, in the context of ITE
estimation. To achieve this, we developed a novel deep
reinforcement learning algorithm that is tailored to the task
of synthesizing rule-based explanations. Extensive exper-
iments across tabular, image, and text data demonstrate
that DISCRET produces the most consistent (i.e. faithful)
explanations, outperforms the self-interpretable models, is
comparable in accuracy to black-box models, and can be
combined with existing black-box models to achieve state-
of-the-art accuracy.

However, some limitations remain. DISCRET requires users
to fix the grammar of explanations and set suitable hyper-
parameters like the number of literals prior to training. Ad-
ditionally, DISCRET relies on the extraction of interpretable
symbols from unstructured data, like images. While the ex-

traction of concepts from unstructured data is a widespread
practice [8-10], DISCRET requires these concepts as input,
which may not always be readily available. We leave these
as avenues for future work.

Impact Statement
Our work aims at the societally pertinent problem of Indi-
vidual Treatment Estimation. A key positive impact of our
work is improving trust in the faithfulness and explainabil-
ity of ML predictions, especially in healthcare and poverty
alleviation. In addition, we provide transparency to decision-
makers who rely on treatment outcomes such as clinicians
and policymakers. We do not foresee negative impacts of
our work. As with all ML models, we caution end-users to
rigorously test models for properties such as fairness (e.g.
for implicit bias) before deploying them.
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A. Datasets
IHDP is a semi-synthetic dataset composed of the observations from 747 infants from the Infant Health and Development
Program, which is used for the effect of home visits (treatment variable) by specialists on infants’ cognitive scores (outcome)
in the future.

TCGA. We obtain the covariates of TCGA from a real data set, the Cancer Genomic Atlas (Bica et al., 2020). We then
follow the data generation process of (Zhang et al., 2022) to generate synthetic treatments, dosage values and outcomes.

IHDP-C is a variant of the IHDP dataset, where we modify the treatment variable to become continuous, and follow (Nie
et al., 2020) to generate the synthetic treatment and outcome values.

News is composed of 3000 randomly sampled news items from the NY Times corpus (Newman, 2008). Bag-of-Word
features are used for treatment effect estimation and we follow prior studies (Bica et al., 2020) to generate synthetic treatment
and outcome values.

EEEC consists of 33738 English sentences. Each sentence in this dataset is produced by following a template such as
“<Person> made me feel <emotional state word>” where <Person> and <emotional state word> are placeholders to be
filled. To study the effect of race or gender on the mood state, placeholders such as <Person> are replaced with race-related
or gender-related nouns (say an African-American name for <Person>) while the placeholder <emotional state word> is
filled with one of the four mood states: Anger, Sadness, Fear and Joy. The replacement of those placeholders with specific
nouns is guided by a pre-specified causal graph (Feder et al., 2021). Throughout this paper, we only consider the case in
which gender is the treatment variable.

Uganda is composed of around 1.3K satellite images collected from around 300 different sites from Uganda. In addition
to the image data, some tabular features are also collected such as age and ethnicity. However, as reported by (Jerzak
et al., 2022), such tabular features often fail to cover important information such as the neighborhood-level features and
geographical contexts, which, are critical factors for determining whether anti-poverty intervention for a specific area is
needed.

Note that the generation of synthetic treatments and outcomes on IHDP-C, News and TCGA dataset relies on some
hyper-parameters to specify the number of treatments or the range of dosage. For our experiments, we used the default
hyper-parameters provided by (Zhang et al., 2022).

B. Additional notes on baseline methods
TVAE and Ganite can only handle binary treatments without dose variables, which are thus not applicable to TCGA, IHDP-C,
and News datasets. VCNet is not suitable for continuous treatment variables, and hence is not evaluated on IHDP-C and
News datasets.

C. Additional Technical Details
C.1. Conventional Assumptions for Treatment Effect Estimation

Assumption 1. (Strong Ignorability) Y (T = t) ⊥ T |X . In the binary treatment case, Y (0), Y (1) ⊥ T |X.
Assumption 2. (Positivity) 0 < π(T |X) < 1,∀X,∀T .
Assumption 3. (Consistency) For the binary treatment setting, Y = TY (1) + (1− T )Y (0).

C.2. Pre-training phase

As mentioned in Section 3.1.1, the backbone model Θ0 can be initialized with a pre-training phase. Specifically, we perform
pre-training by training a black-box model, such as TransTEE, that leverages Θ0 as the encoder. We utilize the same training
set during the pre-training phase as the one used during the training phase of DISCRET.

C.3. Encoding Rules

To encode a literal, lk = A op c, we perform one-hot encoding on feature A and operator op, which are concatenated with
the normalized version of c (i.e., all the values of A should be rescaled to [0, 1]) as the encoding for lk. We then concatenate
the encoding of all lk to compose the encoding of L1:K .

13



DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation

C.4. Generalizing to Disjunctive Rules

The above process of building a conjunctive rule can be viewed as generating the most probable conjunctive rules among
all the possible combinations of A, op and c. This can be generalized to building a rule with multiple disjunctions, by
generating the H most probable conjunctive rules instead, where H represents the number of disjunctions specified by users.
Specifically, for the model Θ1, we simply select the H most probable features from its model output while for the model
Θ2, we leverage beam search to choose the H most probable (A, c) pairs.

C.5. Generalizing to Categorical Outcome Variables

To generalize DISCRET to handle categorical outcome variables, by following (Feder et al., 2021), the treatment effect
is defined by the difference between the probability distributions of all categorical variables. Additionally, to estimate
outcomes within a subgroup of similar samples, we simply compute the frequency of each outcome as the estimation.

C.6. Generalizing to Other Categories of Treatment Variables

We first discuss general settings for various treatment variables and then discuss how to estimate the treatment effect for
each of them.

The settings for all treatment variables that our methods can deal with:

1. Tabular data with a binary treatment variable T and no dose variables. In this setting, T = 1 represents treated unit while
T = 0 represents untreated unit, and the ITE is defined as the difference of outcomes under the treatment and under the
control, respectively (i.e., ITE(x) = y1(x)− y0(x), where y1(x) and y0(x) represents the potential outcome with and
without receiving treatment for a sample x). The average treatment effect, ATE, is the sample average of ITE across all
samples (i.e., ATE = E[ITE]).

2. Tabular data with a continuous treatment variable T . Following (Zhang et al., 2022), the average dose-response function
is defined as the treatment effect, i.e., E[Y |X, do(T = t)].

3. Tabular data with a discrete treatment variable T with one additional continuous dose variable S. Following (Zhang
et al., 2022), the average treatment effect is defined as the average dose-response function: E[Y |X, do(T = t, S = s)].

The treatment effect for each of the above settings is then estimated as follows:

1. With a binary treatment variable and no dose variable, we can estimate the ATE of Rx(D) via arbitrary treatment effect
estimation methods, such as the classical statistical matching algorithm (Kline & Luo, 2022), or state-of-the-art neural
network models. In this paper, we adopt the K-Nearest Neighbor Matching by default for estimating the ATE of Rx(D):
ITE = y1(x) − y0(x). We can also obtain the estimated outcome by averaging the outcome of samples from Rx(D)
with the same treatment as the sample x, i.e.:

ŷ(t) =
1∑

I(t∗i = t)

∑
I(t∗i = t) · y∗

i (4)

2. With a continuous treatment variable T but without dose variables, then as per 2, the ITE is represented by the outcome
conditioned on the observed treatment. One straightforward way to estimate it is to employ the average outcome of
samples within Rx(D) that receive similar treatments to x, which is also the estimated outcome for this sample:

ŷ =

∑
I[(x∗

i , t
∗
i , y

∗
i ) ∈ topk(Rx(D))] · y∗

i∑
I[(x∗

i , t
∗
i , y

∗
i ) ∈ topk(Rx(D))]

, (5)

in which topk(Rx(D)) is constructed by finding the top-k samples from Rx(D) with the most similar treatments to x.
But again, any existing treatment effect estimation methods for continuous treatment variables from the literature are
applicable to estimate ÎTEx.

3. With a discrete treatment variable T and one associated continuous dose variable S, ITE is estimated in a similar way to
equation 5. Specifically, we estimate ATE over the subgroup of similar samples with the following formula:

ŷ =

∑
I[(x∗

i , t
∗
i , s

∗
i , y

∗
i ) ∈ topk(Rx(D))] · y∗

i∑
I[(x∗

i , t
∗
i , s

∗
i , y

∗
i ) ∈ topk(Rx(D))]

. (6)

In the above formula, topk(Rx(D)) is constructed by first selecting the samples with the same treatment as the sample x
and then only retaining the k samples with the most similar dose values to x.
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C.7. Deep Q-learning and Training Algorithm

To facilitate Q-learning, we estimate the Q value with the output logits of the models given a state (x, L1:k−1) and an action
lk, which is denoted by Q(lk, (x, L1:k−1)). Note that lk is generated collaboratively by using two models, Θ1 and Θ2, we
therefore need to collect two sub-Q values from these two models, and then aggregate (say average) them as the overall Q
value, which follows prior multi-agent Q-learning literature (Wang et al., 2021). In the end, by following the classical DQL
framework, we optimize the following objective function adapted from the Bellman equation (Dixit, 1990):

LΘ = E[Q(lk, (x, L1:k−1))− (γ ·max
lk+1

Q(lk+1, (x, L1:k)) + rk)]
2, (7)

which is estimated over a sampled mini-batch of cached experience taking the form of < (x, L1:k−1), lk, rk, (x, L1:k) >
during the experience replay process. The training algorithm for rule learning is outlined in Algorithm 1 below.

Algorithm 1 The overview of Deep Q-Learning (DQL) algorithm for rule learning in DISCRET
Input: target model update: t, gamma: γ, batch size: b, target model parameters: Θtarget, policy model parameters: Θpolicy , experience
replay cache: cache =< (x, L1:k−1), lk, rk, (x, L1:k) > where x is a covariate, L1:k−1 is the set of literals at step k− 1, lk is the literal
synthesized at step k, rk is the reward at step k, and L1:k is L1:k−1 ∪ lk
Output: None

1: Initialize wpred and wtarget of length b
2: Construct batch by sampling b entries from cache
3: for i, < (xi, Li

1:k−1), l
i
k, r

i
k, (x

i, Li
1:k) > in Enumerate(batch) do

4: Use Θpolicy
0 and a deterministic function to encode both xi and Li

1:k−1, respectively, to get Ei
k−1;

5: Forward pass Ei
k−1 through Θpolicy

1 and select the index of the feature from lik to obtain Qi
f ;

6: Append a one-hot encoding of the feature from lik to Ei
k−1 to get Ei

partial;
7: forward pass Ei

partial through Θpolicy
2 and select the index of the constant from lik to get Qi

c;
8: Obtain Qi

k−1 by averaging Qi
f and Qi

c;
9: Obtain Qi

k by forward passing xi and Li
1:k through Θtarget and averaging the maximum Q values from Θtarget

1 and Θtarget
2 ;

10: wpred
i ← Qi

k−1; wtarget
i ← γQi

k ∗+rik;
11: end for
12: Backpropogate and update Θpolicy using loss MSE(wpred,wtarget)
13: if len(cache)%t == 0 then
14: Θtarget ← Θpolicy

15: end if

C.8. Proof of Theorem 3.1

We first state some additional preliminary notations and settings for Q-learning. We denote the Markov decision process
(MDP) as a tuple (Sk,Lk, Pk, rk) where

• Sk is the state space with a state (x, L1:k);

• Lk is the action space with an action lk;

• Pk represents the transition probability;

• rk represents the reward function.

Theorem 3.1 is a direct implication of Lemma C.1 below.
Lemma C.1. Suppose we have input data {(xi, ti, si, yi)}Ni=1 where xi ∈ Rm and discrete, ti ∈ R, si ∈ R and yi ∈ R,
then the ŷ obtained from DISCRET converges to zero generalization error with probability 1 (i.e. (y − ŷ)2 → 0 w.p. 1) for
any fixed K ≤ m over the dataset with all discrete features under the data generating process y = f(XK) + c · t+ ϵ, where
XK ⊆ {X1, X2, · · · , Xm}, c ∈ R, t is the treatment assignment, and ϵ ∼ N (0, σ2) for some σ > 0.

To prove Lemma C.1, we need to use results from C.2.
Theorem C.2. Given a finte Markov decision process (Sk,Lk, Pk, rk), given by the update rule

Q(lk, (x, L1:k)) = Q(lk−1, (x, L1:k−1)) + αk−1(lk−1, (x, L1:k−1))×(
rk−1 + γ max

(x∗,L∗
1:k−1)∈Sk×Lk

Q(lk−1, (x
∗, L∗

1:k−1))−Q(lk−1, (x, L1:k−1))

)
(8)
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converges with probability 1 to the optimal Q-function as long as∑
k

αk(lk, (x, L1:k−1)) = ∞,
∑
k

α2
k(lk, (x, L1:k−1)) < ∞

for all (lk, (x, L1:k−1)) ∈ Sk × Lk.

Proof. We start rewriting equation (8) as

Q(lk, (x, L1:k)) = (1− αk−1(lk−1, (x, L1:k−1)))Q(lk−1, (x, L1:k−1)) + αk−1(lk−1, (x, L1:k−1))×(
rk−1 + γ max

(x∗,L∗
1:k−1)∈Sk×Lk

Q(lk−1, (x
∗, L∗

1:k−1))

)

Denote the optimal Q function be Q∗(lk, (x, L1:k)), subtracting equation above from both sides the quantity Q∗(lk, (x, L1:k))
and letting

∆k(lk, (x, L1:k)) = Q(lk, (x, L1:k))−Q∗(lk, (x, L1:k))

yields

∆k(lk, (x, L1:k)) = (1− αk−1(lk−1, (x, L1:k−1)))∆k(lk, (x, L1:k))

+ αk−1(lk−1, (x, L1:k−1))

(
rk + γ max

(x∗,L∗
1:k−1)∈Sk×Lk

Q(lk−1, (x
∗, L∗

1:k−1))−Q∗(lk, (x, L1:k))

)
.

If we write

Fk(lk, (x, L1:k)) = rk((x, L1:k), lk,S(x, L1:k)) + γ max
(x∗,L∗

1:k−1)∈Sk×Lk

Q(lk−1, (x
∗, L∗

1:k−1))−Q∗(lk, (x, L1:k))

where S(x, L1:k) is a random sample state obtained from the Markov chain (Sk, Pk), we have

E[Fk(lk, (x, L1:k))|Fk]

=
∑
b∈Sk

Pk((lk, (x, L1:k), b)[rk((lk, (x, L1:k), lk) + γ max
(x∗,L∗

1:k−1)∈Sk×Lk

Q(lk−1, (x
∗, L∗

1:k−1))−Q∗(lk, (x, L1:k))]

= (HQ)(x, L1:k)−Q∗(lk, (x, L1:k)).

Using the fact that Q∗ = (HQ)(x, L1:k),

E[Fk(lk, (x, L1:k))|Fk] = (HQ)(x, L1:k − (HQ∗)(x, L1:k ≤ γ∥Q−Q∗∥ = γ∥∆k∥∞.

We could also verify that

V ar[Fk(lk, (x, L1:k))|Fk] ≤ C(1 + ∥∆k∥2W )

for some constant C. Then by the theorem below, ∆k converges to zero with probability 1. Hence, Q converges to Q∗ with
probability 1.

Theorem C.3 (Jaakkola et al. (1993)). The random process {∆t} taking values in Rn and defined as

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x)

converges to zero with probability 1 under the following assumptions:

• 0 ≤ αt ≤ 1,
∑

t αt(x) = ∞ and
∑

t α
2
t (x) < ∞;

• ∥E[Ft(x)|Ft]∥W ≤ γ∥∆t∥W , with γ < 1;
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• V ar(Ft(x)|Ft) ≤ C(1 + ∥∆t∥2W ), for C > 0.

Proof. See Jaakkola et al. (1993) for the proof.

Proof of Lemma C.1. Using Theorem C.2, we can see that Q obtained from DISCRET converges to optimal Q∗. As a result,
haty obtained from DISCRET converges to optimal y∗. We left to prove that y∗ leads to a zero mean square error (i.e.,
∥y − y∗∥22). We can prove this using the fact that all features are discrete. Since all features are discrete and the optimal
feature being selected in each step leads to a zero mean square error and other features lead to non-zero mean square error, it
turns out that y∗ obtained from DISCRET leads to a zero mean square error.

C.9. Additional Reward Function Optimizations

We further present some strategies to optimize the design of the cumulative reward function defined in equation 3, which
includes incorporating estimated propensity scores into this formula and automatically fine-tuning its hyper-parameters.

Regularization by estimating propensity scores Similar to prior studies on ITE estimation (Shi et al., 2019; Zhang et al.,
2022), we regularize the reward function rk by integrating the estimated propensity score, π̂(T = t|X = x). Specifically,
for discrete treatment variables, we re-weight equation 9 with the propensity score as a regularized reward function, i.e.:

V reg
1:K = [e−α(y−ŷ1:K)2 + β · π̂1:k(T = t|X = x)]

· I(L1:K(D) is non-empty),
(9)

Automatic hyper-parameter fine-tuning We further studied how to automatically tune the hyper-parameter α and β in
equation 9. For α, at each training epoch, we identify the training sample producing the median of (y − ŷ1:K)2 among the
whole training set and then ensure that for this sample, equation 3 is 0.5 through adjusting α. This can guarantee that for
those training samples with the smallest or largest outcome errors, equation 3 approaches 1 or 0 respectively.

We also designed an annealing strategy to dynamically adjust β by setting it as 1 during the initial training phase to focus
more on treatment predictions, and switching it to 0 so that reducing outcome error is prioritized in the subsequent training
phase.

D. Addendum on Performance Metrics
D.1. Faithfulness Metrics

We evaluate the faithfulness of explanations with two metrics, i.e., consistency and sufficiency from (Dasgupta et al., 2022).
For a single sample x with local explanation ex, the consistency is defined as the probability of getting the same model
predictions for the set of samples producing the same explanations (denoted by Cx) as x while the sufficiency is defined in
the same way, except that it depends on the set of samples satisfying ex (denoted by Sx) rather than generating explanation
ex. These two metrics could be formalized with the following formulas:

Consistency(x) = Prx′∈µCx(ŷ(x) == ŷ(x′))

Sufficiency(x) = Prx′∈µSx(ŷ(x) == ŷ(x′))

in which µ represents the probability distribution of Cx and Sx. To evaluate explanations with these two metrics, (Dasgupta
et al., 2022) proposed an unbiased estimator for Consistency(x) and Sufficiency(x), i.e.,:

̂Consistency(x) =
1

N

N∑
i=1

I(Cx > 1) ·
Cx,ŷ(x) − 1

Cx − 1

̂Sufficiency(x) =
1

N

N∑
i=1

I(Sx > 1) ·
Sx,ŷ(x) − 1

Sx − 1

in which Cx,ŷ(x) represents the set of samples sharing the same explanation and the same model predictions as the sample x
while Sx,ŷ(x) represents the set of samples that satisfy the explanation produced by x and share the same explanation as x.
As the above formula suggests, both the consistency and sufficiency scores vary between 0 and 1.
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But note that for typical ITE settings, the model output is continuous rather than discrete numbers. Therefore, we discretize
the range of model output into evenly distributed buckets, and the model outputs that fall into the same buckets are regarded
as having the same model predictions. As (Dasgupta et al., 2022) mentions, the sufficiency metric is a reasonable metric for
evaluating rule-based explanations since it requires retrieving other samples with explanations. So we only report sufficiency
metrics for methods that can produce rule-based explanations in Table 7.

D.2. Additional Notes for the EEEC Dataset

Note that for EEEC dataset, ϵATE is used for performance evaluation but the ground-truth ITE is not observed, which is
approximated by the difference of the predicted outcomes between factual samples and its ground-truth counterfactual
alternative (Feder et al., 2021).

D.3. AMSE for Continuous Treatment Variable or Dose Variable

To evaluate the performance of settings with continuous treatment variables or continuous dose variables, we follow (Zhang
et al., 2022) to leverage AMSE as the evaluation metrics, which is formalized as follows:

AMSE =

{
1
N

∑N
i=1

∫
t
[ŷ(xi, t)− y(xi, t)]π(t)dt continuous treatment variable

1
NT

∑N
i=1

∑T
t=1

∫
s
[ŷ(xi, t)− y(xi, t)]π(t)dt continuous dose variable,

in which we compute the difference between the estimated outcome ŷ and the observed outcome y conditioned on every
treatment t, and average this over the entire treatment space and all samples for evaluations. Due to the large space of
exploring all possible continuous treatments t or continuous dose values s, we collect sampled treatment or sampled dose
rather than enumerate all s and t for the evaluations of AMSE.

E. Additional Experimental Results
E.1. Performance of Self-interpretable Models with Varying Complexity

On evaluating the performance of self-interpretable models when trained with a high depth, i.e number of conjunctive
clauses (K = 100, as opposed to low-depth K = 6, see Table 3), we see that DISCRET (K = 6) outperforms these models
despite having lower depth, and thus better interpretability.

It is worth noting that in both Table 2 and Table 3, the ITE errors for the IHDP-C dataset are pretty high for the baseline
self-interpretable models and some black box models. This is because computing ITE for the IHDP-C dataset is a particularly
hard problem, and necessitates the use of powerful models with high complexity. Indeed, IHDP-C dataset is a semi-synthetic
dataset where values of the outcome variable are generated by a very complicated non-linear function (Zhang et al., 2022).
Hence, tree-based models may not be able to capture such complicated relationships well. This is evidenced by high training
errors and likely underfitting (training error was 48.17 for random forest v/s 0.58 for DISCRET). Even simple neural
networks such as TARNet and DRNet, also significantly underperform as Table 2 suggests. Thus, ITE for IHDP-C can only
be effectively encoded by powerful models, such as DISCRET and transformer-based architectures like TransTEE.

E.2. Ablation Studies

We further perform ablation studies to explore how different components of DISCRET such as the database and featurziation
process (for NLP and image data), affect the ITE estimation performance. In what follows, we analyze the effect of the size
of the database, different featurization steps, and different components of the reward function.

Ablating the reward functions for DISCRET. Recall that in Section 3.3, the reward function used for the training phase
could be enhanced by adding propensity scores as one regularization and automatically tuning the hyper-parameters, α and
β. We removed these two components from the reward function one after the other to investigate their effect on the ITE
estimation performance. We perform this experiment on Uganda dataset and report the results in Table 4. As this table
suggests, throwing away those two components from the reward function incurs higher outcome errors, thus justifying the
necessity of including them for more accurate ITE estimation.

Ablating the database size. Since DISCRET estimates ITE through rule evaluations over a database, the size of this
database can thus influence the estimation accuracy. We therefore vary the size of the IHDP dataset, i.e., the number of
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Modality→ Tabular

Dataset→ IHDP TCGA IHDP-C

Method ↓ Trees Depth ϵATE
(In-sample)

ϵATE
(Out-of-sample)

ϵATE
(In-sample)

ϵATE
(Out-of-sample) AMSE

Decision Tree - 6 0.693±0.028 0.613±0.045 0.200±0.012 0.202±0.012 21.773±0.190
- 100 0.638±0.031 0.549±0.052 0.441±0.004 0.445±0.004 23.382±0.342

Random Forest
1 6 0.801±0.039 0.666±0.055 19.214±0.163 19.195±0.163 21.576±0.185
1 100 0.734±0.041 0.653±0.056 0.536±0.011 0.538±0.012 33.285±0.940
10 100 0.684±0.033 0.676±0.034 0.536±0.011 0.538±0.012 38.299±0.841

NAM - - 0.260±0.031 0.250±0.032 - - 24.706±0.756

ENRL 1 6 4.104±1.060 3.759±0.087 10.938±2.019 10.942±2.019 24.720±0.985
1 100 4.094±0.032 4.099±0.107 10.938±2.019 10.942±2.019 24.900 ± 0.470

Causal Forest

1 6 0.144±0.019 0.275±0.035 - - -
1 100 0.151±0.019 0.278±0.033 - - -

100 max 0.124±0.015 0.230±0.031 - - -

BART 1 - 1.335±0.159 1.132±0.125 230.74±0.312 236.81±0.531 12.063±0.410
N - 0.232±0.039 0.284±0.036 - - 4.323±0.342

DISCRET (ours) - 6 0.089±0.040 0.150±0.034 0.076±0.019 0.098±0.007 0.801±0.165
TransTEE + DISCRET

(ours)* - - 0.082±0.009 0.120±0.014 0.058±0.010 0.055±0.009 0.102±0.007

Table 3. ITE estimation errors (lower is better) at varying complexities for self-interpretable models. We bold the smallest estimation
error for each dataset, and underline the second smallest one. Results in the first row for each method are duplicated from Table 2. For
BART, we set N = 200 for IHDP, and N = 10 for TCGA and IHDP-C due to large feature number of features in the latter. We show that
DISCRET outperforms self-interpretable models and has simpler rules regardless of the model complexity used. Asterisk (*) indicates
model is not self-interpretable.

Outcome error
DISCRET 1.662±0.136

DISCRET without propensity score 1.701±0.161

DISCRET without propensity score or auto-finetuning 1.742±0.151

Table 4. Ablation studies on the reward function in DISCRET

training samples, and compare DISCRET against baselines with varying database size. The full results are included in Table
5. As expected, error drops with increasing dataset size, and DISCRET outperforms baselines (particularly self-interpretable
models) at smaller dataset sizes. The results suggest that with varied dataset sizes, TransTEE + DISCRET still outperforms
all baseline methods while DISCRET performs better than all self-interpretable models. It is also worth noting that when the
database size is reduced below certain level, e.g., smaller than 200, DISCRET can even outperform TransTEE. This implies
that DISCRET could be more data-efficient than the state-of-the-art neural network models for ITE estimations, which is
left for future work.

E.3. Training Cost of DISCRET

We further plot Figure 5 to visually keep track of how the ATE errors on test set are evolved throughout the training process.
As this figure suggests although the best test performance occurs after 200 epochs (ATE error is around 0.12). However,
the performance in the first few epochs is already near-optimal (ATE error is around 0.14). Therefore, despite the slow
convergence in typical reinforcement learning training processes, our methods obtain reasonable treatment effect estimation
performance without taking too many epochs.
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Method 100 200 400 Full (747)

Decision Tree 7.08±4.61 1.04±0.30 1.19±0.52 0.73±0.13
Random Forest 8.05±5.15 1.43±0.39 0.63±0.19 0.87±0.12

NAM 1.56±0.86 0.46±0.21 0.75±0.46 0.29±0.13
ENRL 4.40±0.33 4.05±0.04 4.40±0.33 4.05±0.05

Causal forest 0.87±0.47 0.88±0.24 0.31±0.14 0.18±0.06
BART 3.32±0.71 1.54±0.59 1.46±0.80 0.71±0.22

DISCRET 0.55±0.13 0.47±0.10 0.32±0.15 0.21±0.05
Dragonnet 0.94±0.47 0.46±0.09 1.06±0.61 0.23±0.08

TVAE 4.35±0.33 4.00±0.04 4.35±0.33 3.87±0.05
TARNet 0.33±0.12 0.23±0.03 0.16±0.03 0.17±0.03
Ganite 0.65±0.23 0.32±0.04 0.75±0.26 0.57±0.11
DRNet 0.37±0.11 0.43±0.23 0.19±0.06 0.17±0.03
VCNet 4.27±0.29 3.98±0.04 4.09±0.31 3.95±0.06

TransTEE 0.33±0.05 0.35±0.15 0.16±0.07 0.15±0.03
DISCRET 0.55±0.13 0.47±0.10 0.32±0.15 0.21±0.05

TransTEE + DISCRET 0.24±0.05 0.21±0.06 0.09±0.03 0.08±0.03

Table 5. ITE test errors (out-of-sample) with varied numbers of samples randomly selected from IHDP dataset

Figure 5. The curve of ATE errors on test split of IHDP by DISCRET

E.4. Consistency and Sufficiency Scores

We provide the full results of the consistency and sufficiency scores below.

IHDP TCGA IHDP-C News EEEC Uganda
Model distillation 0.243±0.126 0.562±0.026 0.127±0.008 0.816±0.032 0.004±0.001 0.198±0.008

Lore 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.001
Anchor 0.084±0.083 0.001±0.000 0.293±0.022 0.000±0.000 0.000±0.000 0.066±0.015
Lime 0.182±0.129 0.000±0.000 0.001±0.001 0.000±0.000 0.000±0.000 0.000±0.000

Shapley 0.009±0.017 0.005±0.002 0.046±0.027 0.031±0.035 0.034±0.003 0.412±0.195
NAM 0.343±0.065 0.120±0.002 0.045±0.006 0.493±0.110 - 0.082±0.018
ENRL 0.134±0.002 0.231±0.043 0.053±0.002 0.002±0.000 - 0.102±0.032

DISCRET 1.00±0.00 1.00±0.00 1.00±0.00 0.982±0.00 0.974±0.000 0.789±0.011

Table 6. Explanation consistency scores across datasets
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IHDP TCGA IHDP-C News EEEC Uganda
Model distillation 0.243±0.126 0.529±0.001 0.029±0.003 0.712±0.032 0.004±0.001 0.198±0.008

Lore 0.320±0.084 0.034±0.013 0.030±0.009 0.142±0.012 0.002±0.001 0.265±0.008
Anchor 0.084±0.083 0.125±0.002 0.332±0.016 0.391±0.040 0.002±0.001 0.221±0.007
ENRL 0.452±0.012 0.512±0.005 0.032±0.018 0.053±0.020 - 0.004±0.002

DISCRET 0.562±0.056 0.9999±0.000 0.588±0.019 0.697±0.017 0.926±0.067 0.104±0.011

Table 7. Explanation sufficiency scores across datasets (larger score indicates better sufficiency)

E.5. Results for News dataset

Table 8 shows the results for the News dataset.

News

AMSE
Decision Tree 0.428±0.051

Random Forest 0.452±0.048
NAM 0.653±0.026
ENRL 0.638±0.019

Causal Forest 0.829±0.042
BART 0.619±0.040

DISCRET(ours) 0.385±0.083
Dragonnet -

TVAE -
TARNet 0.073±0.020
Ganite -
DRNet 0.065±0.021
VCNet -

TransTEE 0.063±0.005
TransTEE + NN 0.383±0.041

DISCRET+ TransTEE (ours) 0.043±0.005

Table 8. ITE estimation errors for the News dataset

E.6. Consistent Ground-truth Outcomes in the Uganda Dataset

We observe that in Uganda dataset, the ground-truth outcome values are not evenly distributed, which is visually presented
in Figure 6. As this figure suggests, the outcome value of most samples is −0.8816 while other outcome values rarely occur.
This thus suggests that our method is preferable in such datasets due to its consistent predictions across samples, which can
explain the performance gains of DISCRET over baseline methods.

F. Additional Qualitative Analysis
As shown in Figure 4, DISCRET generates one rule for one example image from Uganda dataset, which is defined on two
concepts, i.e., one type of patches mainly containing reddish pink pixels that represent “soil moisture content” and the other
type of patches mainly comprised of brown pixels indicating little soil. This rule thus represents the images from one type
of location where there is plenty of soil moisture content that is suitable for agricultural development. Therefore, after
the government grants are distributed in such areas, a more significant treatment effect is observed, i.e., 0.65. This is an
indicator of significantly increasing working hours on the skilled jobs by the laborers in those areas. This is consistent to the
conclusions from (Jerzak et al., 2023b;a) which states that government grant support is more useful for areas with more soil
moisture content.

G. Feature Extraction from Image Data
To extract concepts from images of Uganda dataset, we segment each image as multiple superpixels (Achanta et al., 2012),
embed those superpixels with pretrained clip models (Radford et al., 2021), and then perform K-means on these embeddings.
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Figure 6. Frequency of the outcome values on Uganda dataset

Each of the resulting cluster centroids is regarded as one concept and we count the occurrence of each concept as one feature
for an image. Specifically, we extract 20 concepts from the images of Uganda dataset, which are visually presented in Figure
7.

Figure 7. Extracted concepts from Uganda dataset

Various patterns of image patches are captured by Figure 7. For example, patch 12 is almost all black, which represents the
areas with water, say, river areas or lake areas. Also, as mentioned in Figure 4, patch 11 with reddish pink pixels represents
“soil moisture content”, which is an important factor for determining whether to take interventions in the anti-poverty
program conducted in Uganda.
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