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Abstract. In this paper, we propose an approach for realtime optical
flow estimation in ultrasound sequences of vein and arteries based on
knowledge distillation. Knowledge distillation is a technique to train a
faster, smaller model by learning from cues of larger models. Mobile
devices with limited resources could be key in providing effective point-
of-care healthcare and motivate the search of more lightweight solutions
in the deep learning based image analysis. For ultrasound video anal-
ysis motion correspondences of image contents (anatomies) have to be
computed for temporal context and for real time application, fast solu-
tions are required. We use a PWC-Net’s optical flow estimation output
to create soft targets to train a lightweight optical flow estimator. We
analyse how well it works on the challenging task of fast segmentation
propagation of vein and arteries in ultrasound images. Experiments show
that even though we did not fine-tune the teachers on this task, a model
trained with soft targets outperformed a model trained directly with
labels and without a teacher.
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1 Introduction

The analysis of objects in a sequence of images is a task that plenty of research
has been done for, recently mostly in the deep learning field [1]. To achieve a
coherent and accurate result over the different time points, it is important that
the analysis of the current image considers the past. One form of this tempo-
ral context is the estimated optical flow. However, the classical methodology
for its’ calculation is an iterative approach [2] too slow for realtime inference.
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Most recent image registration approaches based on deep learning (e.g. [3]) are
computationally too expensive to be executed on mobile devices in the required
time. Realtime estimation of optical flow of ultrasound sequences would be ad-
vantageous in many practical point-of-care ultrasound (POCUS) applications
that are based on intelligent guidance through image analysis. The aim of this
work is to train a network, that learns from larger, pre-trained flow estimation
networks and is able to accurately propagate relevant information (e.g. segmen-
tations of important anatomies) in ultrasound. Ultrasound images often exhibit
ambiguous structure depiction and a network, that employs only 2D convolu-
tion without temporal context, is not able to perfectly interpret the image with
satisfying accuracy. So instead utilising the motion of the images in a network
trained e.g. to propagate the anatomical labels correctly (which is usually coined
weakly-supervised registration [4]) can leverage temporal context without requir-
ing access to the whole temporal sequence. Clinically, this is relevant e.g. in the
application of labeling vessels for an examination of the leg to diagnose whether
a deep vein thrombosis (DVT) is present.

2 Related Work

2.1 Dynamic ultrasound analysis

The use of automated image analysis for ultrasound is constantly increasing both
in research and practical clinical translations [5]. The recent MICCAI challenge
CLUST [6] has studied the quality of image registration algorithms for tracking
ultrasound but without realtime constraints. A Siamese network for respiratory
motion estimation on ultrasound images has been proposed by Liu and colleagues
[7], which is capable of tracking landmarks through a video sequence.
A system for compression-based DVT examination in ultrasound (US) images
was proposed by Tanno and colleagues [8]. The system, named AutoDVT, uses a
dual-task network to help make predictions about the patient’s VTE status. One
of the tasks consists of classifying the compression status of a registered vein as
either closed or open. The network itself uses stacked consecutive frames as input
to create temporal consistency. The different task networks share the majority
of convolutional layers and only separate the two tasks in the last convolutional
layer, thus each task regulates the other during training.
To achieve higher temporal consistency and capture a more holistic view of
dynamic sequences, optical flow estimations between frames can be leveraged.
To ensure fast inference time, it is of importance that the optical flow prediction
takes as little time as possible, while still generating accurate estimations.

2.2 Optical flow estimation

In recent research in deep learning and optical flow estimation numerous capa-
ble network solutions have been proposed, including Flownet [9], its evolution
Flownet2 [10] and PWC-Net [11]. Flownet uses CNN feature extractors on two
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images, correlates these features over a discretised displacement search window
(originally 21 × 21 pixels with a stride of 4), and further processes these corre-
lations to predict a flow field. Flownet2 extends the original Flownet approach
by employing multiple different and fine-tuned versions of this architecture.
PWC-Net, which was proposed by Sun et al. [?], on the other hand, uses pyra-
midal images with a combination of a cost-volume layer and a warping layer to
estimate the optical flow of the input images.
In the medical domain LapIRN [12] and PDD-Net [13] are two capable networks
for estimating large deformations.
PDD-Net utilizes deformable convolution layers for feature extraction, which
are then correlated. The correlation layer is followed by a min convolution and
mean-field inference to predict dense displacement probabilities in volumes.
Some of these networks are larger, with up to 162m parameters and up to 0.6
seconds of inference time on an NVIDIA graphics card [9, 10]. However, these
models are very accurate, which makes them valuable teachers in a student-
teacher setting. Other models, such as the PDD-Net, can be compressed to use
little space and computation.

2.3 Knowledge Distillation

Student-teacher learning, also known as knowledge distillation, was proposed by
Li et al. [14]. The method uses one (or more) large and accurately trained neural
network(s), also called teacher, and tries to teach the output distribution to a
smaller network, also called student, by minimizing the KL divergence between
the teacher’s output and the students’ prediction.
Yuan et al. proposed that not only accurate teachers can be used in a knowledge
distillation setting. In [15] they found that also insufficiently trained teachers
can increase the performance of the students, as they provide a representative
distribution of the classes in the classification task. Thus, the teachers not only
provide accurate information about the output but also provide regularized soft
targets.
In [16] Kim et al. compared the KL divergence as a loss function, which is widely
used in knowledge distillation, to a mean squared error loss and found, that the
mean squared error loss is superior to the KL divergence, especially, when using
a small tau, as the label noise is mitigated.

2.4 Contributions

We explore one of the aforementioned methods, named knowledge distillation
[14] and train a small and lightweight optical flow estimator network for ul-
trasound motion estimation and vessel segmentation propagation in ultrasound
images. We also compare this method to a different training setup to evaluate
the usage of the distilled knowledge and find an increase in Dice score, as well
as a decrease in Hausdorff distance (HD). As segmented medical reference data
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Fig. 1. Overview of the PDD-Network architecture for image registration, which com-
prises deformable convolutions with batch normalisation and ReLU (red), a correlation
layer (blue) and differentiable mean-field inference as regularisation (purple and green).

is scarce, this approach could potentially help increase performances for ultra-
sound image processing.
We aim at a short inference time of the optical flow to either create an addi-
tional input for further image analysis networks or to use the optical flow itself
for segmentation propagation on mobile devices, such as tablets or phones. This
constrains size and throughput of the network, as computational power on mo-
bile devices differs greatly from stationary setups. Therefore, we use a lightweight
version of the aforementioned PDD-Net as student.

3 Method

We used the PDD-Net [13], which achieved competitive results in the Learn2Reg
challenge [17]. A 2D implementation was made available 5 (Figure 1). In this
version of the Model, an average pooled (yellow) version of the input image is
processed by three convolutional layers each followed by batch normalisation
and ReLU (red). After the first convolution, we adapt the 2D implementation
by applying an Obelisk layer [18], which is then followed by two more convolu-
tional layers. The Obelisk layer is a form of deformable convolution, which uses
learnable weights and a gridsampling operator, to increase the receptive field of
the next convolutional layer [18].
For a fixed and a moving image, the extracted features are correlated, akin to
the correlation used in Flownet-C [9] and then further processed with min con-
volutions and mean-field inference [19].
The whole model has an inference time of around 2.7 ms on an Nvidia RTX
2060 Ti GPU. When looking at the model (Figure 1), we can see two feature

5 https://www.kaggle.com/mattiaspaul/learn2reg-tutorial
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Fig. 2. Illustration of our concept for knowledge distillation for DL-based optical flow
estimation. The teacher (PWC-Net) was not trained on ultrasound sequences but can
provide a soft target for our student (PDD-Net) based on only a single reference frame
segmentation.

extractors, which share weights. By processing one fixed frame at time t and
keeping this frame as a fixed frame, we only need to process the moving frame
at point t + x of the video through the CNN. By reducing the convolutional
operations needed during video processing, the network’s inference time could
be reduced to 1.7 ms.
The same optimization can be applied when using different fixed images. In that
case the extracted feature map of the moving frame can be re-purposed as fea-
ture map of fixed frame, when a new moving frame is presented.
The PDD-Net is trained on a combination of soft and hard targets. The hard
target loss is calculated as the MSE between the one-hot encoded reference seg-
mentation (”fixed reference” in Figure 2), and the networks’ prediction. The
prediction is generated by using the predicted flow field to warp the reference
segmentation from the moving frame towards the fixed frame. This warped seg-
mentation is then compared to the reference segmentation of the fixed frame.
We use the established optical flow estimator PWC-Net [11] as a teacher to pro-
vide soft targets during training. This is done as shown in Figure 2. To generate
the soft targets, the PWC-Net’s optical flow prediction is used to warp the ref-
erence segmentation of the moving frame towards the fixed frame. We calculate
the MSE loss between the one-hot encoded warped moving reference segmenta-
tions of teacher and student networks. The soft and hard target loss and then
summed up, where the soft target loss is scaled by 0.5.

Experimental setup: The task is to propagate a single reference seg-
mentation if veins and arteries through a video of about 10 seconds of a DVT
examination. The dataset was provided by ThinkSono GmbH 6. The dataset
contains video sequences of DVT examinations that were annotated by experts.
An overlay of these reference segmentations can be seen in Figure 3. We use 250
video IDs to create two datasets with which we capture two distinct properties.
The first datset is created as a training dateset an contains 1743 image pairs
with a fixed frame distance of 6 frames that were randomly sampled. Thus, cap-

6 https://thinksono.com/
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Fig. 3. Exemplary image pair used in the fine tuning data set. Reference segmentations
are added for better visualization.

turing smaller and larger displacements while also providing heterogenous image
quality. The second dataset is created as a fine-tuning dataset. This dataset is
created to provide task specific data. We select one random frame in the first
fifth of the video, or before the onset of the vein compression (whatever came
first), for every ID. We then sample the coming frames with a frame distance of
4 and create image pairs with one fixed frame and various moving frames, result-
ing in 3285 image pairs. In this dataset larger displacements and compressions
of the vein are captured.

We proceed to train the PDD-Net adaptation on the training data set with
additional soft targets from the PWC-Net (2) over 100 epochs with a learning
rate of 0.002 and an Adam optimizer. We then trained the distilled network on
the fine-tuning data set for 200 epochs with a learning rate of 0.00025. For com-
parison, we also train one version of the PDD-Net adaptation without additional
soft targets.

4 Results and discussion

We evaluated the networks on 23 unseen videos containing approximately 1600
Frames overall. For each video, we selected one random frame in the first fifth
of the video, which we refer to as ft, for frame at time point t. Each following
frame ft+x is used as moving frame input. The estimated optic flow between ft
and ft+x is used to warp the reference segmentation from t to t+ x, where it is
compared to reference segmentation at time pint t+ x.
This procedure allows us to apply the mentioned runtime optimization towards
video processing. By passing the fixed frame once, keeping it in memory for
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Table 1. Mean Dice ↑ over the test IDs and Mean HD ↓ over the IDs. Comparison
between label loss and KD trained PDD-Nets

registration segmentation
Score PDD PDDKD nnU-Net

vein Dice % 46.9 ± 4.13 47.92 ± 4.15 45.93 ± 6.47
artery Dice % 44.48 ± 6.08 46.67 ± 6.28 66.80 ± 6.91
overall Dice % 45.69 ± 5.0 47.3 ± 5.09 56.36 ± 7.77

vein HD 25.28 ± 166.82 24.16 ± 159.5 23.71 ± 366.06
artery HD 28.3 ± 205.19 27.7 ± 205.54 26.88 ± 640.51
overall HD 26.79 ± 183.79 25.93 ± 181.26 25.33 ± 508.84

correlation, solely the moving frames need to be passed through the CNN for
feature extraction. The reduced inference time per image is about as fast as a
reference segmentation network, nnU-Net, which takes 1.6 ms on the same GPU
(Nvidia RTX 280Ti).
As mentioned by Reinke [20] there are common limitations when applying only
one metric to measure the performance of segmentation masks. Therefore, we
evaluated the two networks with the Dice score and Hausdorff distance. The dice
score is used as a measurement of overlap between the reference and predicted
segmentation. It ranges from 0 to 1, where 1 is the best score, which we have
denoted by ↑. The HD is used as a measurement of furthest distance between
reference and predicted segmentation. We show the absolute values, where lower
is better, as denoted by ↓. The mean results over all IDs can be seen in Table 1.

We found the distilled network to perform slightly better compared to the
label loss trained network over both metrics. When looking at the dice score
between the two networks, we found a 2% increase in accuracy over artery seg-
mentation and a 1% increase in vein segmentation. When looking at the HD,
we found a similar pattern. The KD trained network outperforms the label loss
trained network slightly. We argue that this slight increase is due to the different
conceptual representation learned by the distilled network, which would be in
line with current research [14, 16, 21]. The PWC-Net scored at 40.56 ± 3.74 in
dice and 26.51 ± 160.42 in HD on the evaluation videos.
When compared to a 2D segmentation network (nnU-Net [22] Table 1), which
was trained on the same image IDs, as the optical flow estimator, we find that
the distilled network is performing slightly worse in HD, and worse in Dice score.
This result is somewhat expected, since the motion during longer sequences can
have significant deformations (compression ultrasound of veins) and substantial
drift. The frame-by-frame segmentation is in principle translation invariant and
was trained with a large number of ground truth segmentation annotations. How-
ever, when visually looking at estimated segmentations (and quantitatively the
variance in HD between the optical flow method and the nnU-Net), we can see
that the segmentation network has limited temporal consistency. This suggests
that the 2D nnU-Net creates less smooth segmentations over a video, compared
to the optical flow method. In the future, we therefore plan to experiment with
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the optical flow as additional input for a segmentation network. Using a defor-
mation field between two frames, instead of a stacked tensor of all frames, can
reduce the computational effort needed for processing, while at the same time
containing almost as much information as stacked consecutive frames.
Especially during compression of the vein, this additional information can be
leveraged. Figure 4 shows the estimated deformation field between the fixed and
the moving frame. The compression is clearly visible as and marked with a black
bounding box.

Fig. 4. Visualised deformation field between fixed and moving frame. Segmentation
was overlayed for better visibility. The bounding box shows where the compression of
the vein (pink) is located and in which direction the vein is compressed.

5 Conclusion

As part of a Masters thesis, we presented experiments on possible benefits of
cross-domain knowledge distillation (from computer vision to medical imaging)
for training an optical flow estimator, in this paper. By using additional teacher-
generated soft targets during training, we were able to achieve a small increase
in Dice score and a small decrease in Hausdorff distance. This shows that cross-
domain KD can have a beneficial effect applied in the training of an image
registration network.
We were able to adjust our approach to video inference, such that it is capable
of running in realtime, with 1.7 ms per frame pair or more than 500 frames per
second. Estimating our approach to use approximately 0.14 GFlops per image,
we can calculate an upper limit of roughly 230 frames per second on modern
mobile GPUs (Qualcomm Adreno 660).
Performance of segmentation networks still exceeded segmentation via this op-
tical flow based registration of the labels. But we suggest an increase in the
segmentation networks’ accuracy is possible by combining optical flow informa-
tion with image features, to add temporal context to the segmentation formation.
This was already suggested in previous research in medical video segmentation
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[23], where improved temporal coherence is reported when optical flow is incor-
porated. Therefore, we will further investigate the influence of optical flow on
vessel segmentation in ultrasound videos.
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