Under review as a conference paper at ICLR 2017

PROTOTYPICAL NETWORKS FOR
FEW-SHOT LEARNING

Jake Snell' Kevin Swersky?>& Richard S. Zemel!
'University of Toronto
2Twitter

ABSTRACT

A recent approach to few-shot classification called matching networks has demon-
strated the benefits of coupling metric learning with a training procedure that mim-
ics test. This approach relies on an attention scheme that forms a distribution over
all points in the support set, scaling poorly with its size. We propose a more
streamlined approach, prototypical networks, that learns a metric space in which
few-shot classification can be performed by computing Euclidean distances to pro-
totype representations of each class, rather than individual points. Our method is
competitive with state-of-the-art few-shot classification approaches while being
much simpler and more scalable with the size of the support set. We empirically
demonstrate the performance of our approach on the Omniglot and minilmageNet
datasets. We further demonstrate that a similar idea can be used for zero-shot
learning, where each class is described by a set of attributes, and achieve state-of-
the-art results on the Caltech UCSD bird dataset.

1 INTRODUCTION

One-shot classification (Miller et al., 2000; |Lake et al., [201 1} Koch} 2015) (and more generally, few-
shot classification) is a problem in which a classifier must be adapted to accommodate new classes
not seen in training, given only a single (n) example(s) of these classes. A classical approach,
such as retraining the model on the new data, would severely overfit. While the problem is quite
difficult, it has been demonstrated that people have the ability to successfully perform one-shot
classification (Lake et al., [2011). Nonparametric models such as nearest neighbors are useful in
one-shot classification because they naturally adapt to new data, however this comes at the cost of
storing the entire set of examples per class, the “support set”.

To overcome this, much progress has been made recently in applying metric learning (Goldberger
et al.,|2004; Kulis, 2012} |Bellet et al., | 2013) to one-shot tasks. Most recently, (Vinyals et al., [2016))
proposed a metric learning approach that they call matching networks. This approach uses an atten-
tion mechanism over a learned embedding of the support set in order to predict class labels for the
points to be classified, a.k.a the “query set”. It optionally allows the embeddings to be conditioned
on other points in the support set (“full context embeddings”) or for the embeddings to be fine-tuned
at test time. A particularly interesting feature of the matching networks model is that it utilizes
sampled mini-batches called “episodes” during training, where each episode is designed to mimic
the one-shot task. This makes the training problem more faithful to the test environment. Match-
ing networks however optionally utilize additional components such as an attention-based LSTM
to change the embedding based on the support set. This complexity makes implementation more
difficult in addition to the aforementioned poor scaling characteristics due to computing attention
over the entire support set.

In this paper, we propose a few-shot learning classifier based on a relatively simple idea: there exists
an embedding, where points belonging to a class cluster around a single prototype. This inductive
bias is a useful one to combat overfitting for one-shot tasks. Our approach also comes with the
benefit that it is very simple to implement, and computationally fast. In order to do this, we learn a
non-linear mapping of the input into an embedding space using a neural network, and take the class

*Most work done while author was at Twitter.

Under review as a conference paper at ICLR 2017

prototype to be the mean of the support set in the embedding space. Classification is then performed
by simply finding the nearest prototype to the embedded query point. We find that this approach
yields competitive results with matching networks and other one-shot learning approaches, despite
being much simpler.

A related problem is known as zero-shot learning, where instead of being given a small number
of examples of a new class at test-time, each class comes with a set of meta-information, often
attributes, that give a high level description of that class. The idea then is to learn a mapping from
input examples to the high-level attributes of their member class. We adapt the idea of prototypical
networks to this setting by learning a secondary embedding of the attribute vector such that the
image embeddings and attribute embeddings lie within the same space. In this case, we use the
attribute embedding as the class prototype, rather than the class mean.

2 RELATED WORK

Neighborhood Components Analysis (NCA) (Goldberger et al.l |2004) learns a Mahalanobis dis-
tance to maximize K-nearest-neighbour’s (KNNN) leave-one-out accuracy in the transformed space.
A distribution over the neighbors of each data point is computed according to a softmax over the
corresponding Mahalanobis distances. This distribution is marginalized to form a distribution over
class assignments and the projection matrix is updated via gradient descent to maximize the prob-
ability of the true class. (Salakhutdinov & Hintonl 2007)) extend NCA by using a neural network
to perform the transformation. Our approach is similar in that we optimize a softmax based on dis-
tances in the transformed space. Ours differs because it is a softmax over classes, rather than points,
computed from Euclidean distances to each class’s prototype representation. This is more appro-
priate for few-shot learning for two reasons: (a) the number of support points can vary by class,
and (b) each class has a succinct representation independent of the number of data points, and this
representation can optionally be updated in an online manner.

Our approach is similar to the nearest class mean approach of (Mensink et al.,2013)) from the metric
learning literature, where each class is represented by the mean of its examples, and classification is
performed by finding the prototype that is closest to the query point. Their approach was developed
to rapidly incorporate new classes into a classifier without retraining, however it relies on a linear
embedding and is designed to handle the case where the novel classes come with many examples.
In our approach, we utilize neural networks to learn a non-linear embedding of the features and we
couple this with episodic training in order to handle the one-shot scenario. Mensink et al.| do attempt
to extend their approach to perform non-linear classification, but they do this by allowing classes to
have multiple prototypes. They find these prototypes in a pre-processing step by using k-means on
the input space, and then perform a multi-modal variant of their linear embedding. By contrast, we
learn a non-linear embedding in an end-to-end manner with no such pre-processing, producing a
non-linear classifier that still only requires one prototype per class.

In matching networks (Vinyals et al., 2016) they propose a meta-learning strategy in which training
mimics test by stochastically creating one-shot “episodes”. We adopt the same strategy when train-
ing our models. They, like us, use neural networks to non-linearly transform data points into a space
that is more amenable to classification. However, matching networks make predictions by comput-
ing attention weights over each point in the support set. This becomes computationally expensive
as the size of the support set grows. Our approach, on the other hand, first summarizes each class in
the support set by a prototype and then computes a distribution over classes. Ours thus has flexibil-
ity in the way the prototypes are computed and can handle additional support points gracefully by
updating prototypes online.

The neural statistician (Edwards & Storkeyl 2016)) extends the variational autoencoder (Kingma &
Welling|, 2013)) to learn generative models of datasets rather than individual points. One component
of the neural statistician is the “statistic network” which summarizes a set of data points into a
statistic vector. It does this by encoding each point within a dataset, taking a sample mean, and
applying a post-processing network to obtain an approximate posterior over the statistic vector.
Edwards & Storkey|test their model for one-shot classification on the Omniglot dataset (Lake et al.,
2011) by considering each character to be a separate dataset and making predictions based on the
class whose approximate posterior over the statistic vector had minimal KL-divergence from the test
point. Like the neural statistician, we also produce a summary statistic for each class. However, ours

Under review as a conference paper at ICLR 2017

is a discriminative model which is more appropriate because our primary task, one-shot learning,
is also discriminative. Discriminative training has the added benefit of lending our model more
flexibility in both the way we compute summary statistics and use them to make predictions at test
time.

There are many other approaches to one-shot learning that employ very different techniques from
ours. [Koch| uses siamese networks to predict the probability that two images belong to the same
class. [Lake et al.| devise a hierarchical Bayesian generative model of how a handwritten character
is created in order to perform one-shot learning on the Omniglot dataset. [Santoro et al., propose
memory augmented neural networks (MANN) that reference an external memory in a similar fashion
to neural Turing machines (Graves et al.,[2014). This allows them to store support examples in an
external memory and reference them later when making classification decisions. They also introduce
a form of episodic training, similar to that in matching networks.

3 PROTOTYPICAL NETWORKS

At prediction time we are given a support set of N labeled examples: S = {(z;,y;)}Y, = StU...U
SK where S* = {(x,y) € S|y = k}. Our method computes a class representation cy,, or prototype,
of each class through an embedding function fy(z) parameterized by learnable parameters 6:

1
% = T5H] > folx) (1)

(z,y)esk

Given a test point Z, prototypical networks forms a distribution over classes based on a softmax over
the Euclidean distances between its embedding and the prototypes:

exp(—|1fo(Z) — cxll?)

ply =k|I) = - 2)
> exp(=fo(2) — ¢ [1?)
Learning proceeds by maximizing the log-probability of the true class y:
max log p(9 %) (3)

We train in an episodic manner similar to [Vinyals et al. (2016) by randomly selecting a subset of
classes from the training set, then choosing a subset of examples within each class to act as the
support set and the remainder to serve as test points.

3.1 PROTOTYPE NORMALIZATION

In episodic training, the support set is randomly chosen from among the training points. In datasets
with high variability this can lead to a large variance in the class prototypes, ¢, between episodes.
In order to reduce this variability, we found that it can sometimes be beneficial to normalize the
prototypes, ¢ = HE—ZH and use ¢y, in place of ¢ in Equation (). This ensures that the prototypes
always lie on the unit sphere, although the query points are still allowed to be embedded off of the
unit sphere. Normalization has two benefits: the reduction in variance helps to greatly speed up
training, while the restriction of the prototypes to the unit sphere confers additional regularization.

3.2 PREDICTING THE WEIGHTS OF A LINEAR CLASSIFIER

A simple analysis is useful in gaining insight into the nature of the learned classifier (a similar
analysis appears in Mensink et al.|(2013))). When we use Euclidean distance to measure the distance
between a query point and the class prototypes, then the loss function in (2) is equivalent to a linear
classifier with a particular parameterization. To see this, we expand the term within the exponent:

Under review as a conference paper at ICLR 2017

1 Fo(®) — exll? = ~(fol@) — &) (fol@) — cx)
= —fo(®)" fo(@) + 2] fo®) — e ex)

The first term in Equation (@) is constant with respect to the class k, so it does not affect the softmax
probabilities. We can write the remaining terms as a linear classifier as follows:

QCgfg(i‘) — cchk = ’w;;rfg(j?) + b
wE = 2(3;.C

bk = 762616

We can view this through the lens of meta-learning, where the model is predicting the weights
and biases of a linear classifier using a simple function of the mean of the embedded support set.
By contrast, the predictive function in matching networks is a generalization of a nearest neighbor
classifier, rather than a linear classifier.

When using prototype normalization, the biases by will all be 1, and the class weights wy, will be
restricted to have a norm of 2. In this case, using Euclidean distance becomes proportional to cosine
distance.

A natural question is whether it makes sense to use multiple prototypes per class instead of just
one. If each support point were to be considered a prototype, then this would be analogous to doing
nearest neighbor classification in the embedding space, which would be computationally expensive.
On the other hand, if the number of prototypes per class is fixed, then this would require a parti-
tioning scheme. This has been proposed in | Mensink et al.|(2013) and Rippel et al.| (2016)), however
both methods require a separate partitioning phase that is decoupled from the weight updates, while
our approach is simple to learn with ordinary gradient methods. Finally, the equivalence to a lin-
ear classifier suggests that this may be sufficient, as all of the required non-linearity can be learned
within the embedding function. Indeed, this is the approach that state-of-the-art neural network
classification systems currently use, e.g., (Krizhevsky et al.,[2012).

3.3 DESIGN CHOICES

There are still a number of design choices that need to be made with this model in order to achieve
optimal performance. One such choice is in deciding how many classes we would like the classifier
to operate over during each training episode. For example, at test time we might be evaluating on
5-way classification, but at training time we could train each episode with 20-way classification. We
found in general that training on a larger number of classes per episode improves performance, even
if the number of classes we need to decide between at test-time is fewer.

Another choice involves the possible decoupling of the n in n-shot between training and testing. We
could train on 1-shot, but test on 5-shot or vice-versa. We found that it is typically better to match
the shot at training and testing; that is, when it comes to the shot, to match the training procedure to
the test procedure. We demonstrate this empirically in the Experiments section below.

Finally, we need to specify whether to use prototype normalization. We found that normalization
generally acts as a regularizer and speeds up training.

4 EXPERIMENTS

For few-shot learning, we performed experiments on Omniglot (Lake et al.,|201 1)), the minilmagenet
version of ILSVRC-2012 (Russakovsky et al.l [2015)) proposed by (Vinyals et al., [2016). For zero-
shot learning, we perform experiments on the 2011 version of the Caltech UCSD bird dataset (CUB-
200 2011) (Welinder et al., 2010).

Under review as a conference paper at ICLR 2017

4.1 OMNIGLOT

Omniglot (Lake et al.||2011])) is a dataset of 1623 handwritten characters collected from 50 alphabets.
There are 20 examples associated with each character, where each example was drawn by a different
human subject. We follow the procedure of (Vinyals et al.|[2016) by augmenting the characters with
rotations in multiples of 90 degrees and using 1200 characters for training and the remainder for
evaluation. Our embedding architecture mirrors that of Matching Nets and is composed of four
blocks of a 64 filter 3 x 3 convolution, batch normalization (loffe & Szegedyl, [2015)), a ReLU
nonlinearity and a 2 x 2 max-pooling, resulting in a 64-dimensional output space. The results of
our model trained to perform Omniglot classification are shown in Table[T]

We trained prototypical networks using episodes designed for 1-shot learning, i.e., the support sets
during training consist of a single input example, and we train using 20-way classification. Our re-
sults are as good or better than those reported in matching networks, and to our knowledge represent
the state-of-the-art on this dataset using these splits.

5-way 20-way
Model 1-shot 5-shot 1-shot 5-shot
Pixels 41.7% 632% 26.7% 42.6%
Baseline Classifier 80.0% 95.0% 69.5% 89.1%
Neural Statistician (Edwards & Storkey, [2016)* - - 88% 95%
Matching Nets (non-FCE, no fine-tune) 98.1% 989% 93.8% 98.5%
Prototypical Nets (1-shot) 98.1% 99.5% 94.2% 98.6%

Table 1: Omniglot few-shot classification accuracy. *Note that the Neural Statistician used non-
standard class splits.

4.2 miniIMAGENET

The minilmageNet dataset (Vinyals et al.l 2016)) is derived from the larger ImageNet dataset (Deng
et al., 2009). It consists of 60,000 color images of size 84 X 84 divided into 100 classes with 600
examples each. It is designed for testing one-shot learning algorithms, where 80 classes are chosen
for training, and 20 for testing.

Classification results for minilmageNet are shown in Table 2] The embedding architecture we used
for minilmagenet is the same as our experiments for Omniglot, though here it results in a 1600-
dimensional output space due to the increased size of the images. We trained two versions of pro-
totypical networks, one with episodes containing a single support examples per class (denoted by
1-shot) and one with five support examples per class (denoted by 5-shot). All episodes contained 20
randomly sampled classes, as 20-way classification represents a more difficult task than 5-way. We
evaluated both models on 1-shot and 5-shot for 5-way and 20-way classification at test and find that
each model performs best on the number of support examples it was trained for.

5-way 20-way
Model 1-shot 5-shot 1-shot 5-shot
Pixels 23.0% 26.6% 6.7% 7.8%
Baseline Classifier 36.6% 46.0% - -
Matching Nets (non-FCE, no fine-tune) 41.2% 56.2% - -
Prototypical Nets (1-shot) 40.6% 558% 16.5% 27.5%
Prototypical Nets (5-shot) 37.0% 57.0% 142% 29.4%

Table 2: minilmageNet classification accuracy

4.3 CUB ZERO-SHOT CLASSIFICATION

In order to assess the suitability of our approach for zero-shot learning, we also run experiments on
the Caltech-UCSD Birds (CUB) 200-2011 dataset (Welinder et al.l 2010). In the zero-shot setting,
the goal is to classify query images in the absence of any support examples. Instead, class metadata
(such as attributes or a textual description) is provided for each of the test classes. We adapt our

Under review as a conference paper at ICLR 2017

Method Image Features Top-1 Acc (50-way)
ALE (Akata et al.[[2013)) Fisher Vectors 26.9%
SJE (Akata et al.,|[2015)) AlexNet 40.3%
Sample-Clustering (Liao et al.,[2016) AlexNet 44.3%
SJE (Akata et al.,[2015) GooglLeNet 50.1%
DS-SJE (Reed et al.,[2016) GoogLeNet 50.4%
DA-SJE (Reed et al.,[2016) GoogleNet 50.9%
Prototypical Networks GoogLeNet 54.6%

Table 3: CUB-200 zero-shot classification accuracy for methods utilizing attribute vectors as class
metadata.

few-shot approach to the zero-shot setting by learning to jointly embed images and metadata in
a shared space. The embedded metadata serve as class prototypes and classification is performed
by embedding the query image and selecting the class whose prototype is nearest in the Euclidean
space.

The CUB dataset contains 11,788 images of 200 bird species. We closely follow the procedure of
Reed et al.| (2016) in preparing the data. We use their splits to divide the classes into disjoint sets of
100 training, 50 validation, and 50 test. For images we use 1,024-dimensional features extracted by
applying GoogLeNet (Szegedy et al.,2015) to middle, upper left, upper right, lower left, and lower
right crops of the original and horizontally-flipped image'| At test time we use only the middle crop
of the original image. For class metadata we use the 312-dimensional continuous attribute vectors
provided with the CUB dataset. These attributes encode various characteristics of the bird species
such as their color, shape, and feather patterns.

We learned a simple linear mapping on top of both the 1,024-dimensional image features and the
312-dimensional attribute vectors to produce a 1,024-dimensional output space. We apply prototype
normalization to the embedded attributes so that the class prototypes are always of unit length. This
serves as a form of regularization to help our embedding functions generalize better. The model
parameters were optimized according to our objective via SGD with Adam (Kingma & Ba, 2014)
at learning rate of 10~* and weight decay of 10~°. Early stopping on validation loss was used to
determine the optimal number of epochs for retraining on the training + validation set.

Table |3 shows that of methods utilizing attributes as class metadata, we achieve state-of-the-art
results by a large margin. Our approach is much simpler than that of other recent approaches
(Liao et al., [2016) which train an SVM on a learned feature space obtained by fine-tuning AlexNet
(Krizhevsky et al., 2012). These zero-shot classification results demonstrate that our approach is
general enough to be applied even when the data points (images) are from a different domain rela-
tive to the classes (attributes).

Figure [1| shows a t-SNE (Maaten & Hinton, |2008) visualization of attribute embeddings learned
using prototypical networks for zero-shot classification. We can see that the embeddings group the
bird species by characteristics such as their color and shape.

5 CONCLUSION

We have proposed a simple method called prototypical networks for few-shot learning based on the
idea that we can represent each class by the mean of its examples in a representation space learned
by a neural network. We train these networks to specifically perform well in the few-shot setting
by using episodic training. Prototypical networks are simple to implement, and computationally
efficient. We showed that this approach is equivalent to predicting the weights of a linear classifier,
where the weights and biases are a function of the prototypes. Prototypical networks achieve state-
of-the-art results on the Omniglot dataset, and competitive results on the minilmagenet dataset. We
further showed how this approach can be adapted to the zero-shot setting by taking an embedding of
an attribute vector for each class to be the prototype. This approach achieves state-of-the-art results
on zero-shot classification of the Caltech UCSD birds dataset.

'https://github.com/reedscot/cvpr2016,

https://github.com/reedscot/cvpr2016

Under review as a conference paper at ICLR 2017

Figure 1: A t-SNE visualization of the attribute embeddings learned by a prototypical network on
the CUB dataset. Each image is an arbitrarily chosen example from the corresponding test class.
The learned space successfully clusters unseen bird species by characteristics such as color, shape,
and pattern.

ACKNOWLEDGMENTS

We would like to thank Sachin Ravi and Hugo Larochelle for help in setting up the Omniglot and
minilmage data. We would also like to thank Renjie Liao for assistance with the CUB-200 zero-shot
procedure and Oriol Vinyals for confirming details regarding the Omniglot and minilmagenet splits
and matching nets architectures.

REFERENCES

Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and Cordelia Schmid. Label-embedding for
attribute-based classification. In Computer Vision and Pattern Recognition, pp. 819-826, 2013.

Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and Bernt Schiele. Evaluation of output
embeddings for fine-grained image classification. In Computer Vision and Pattern Recognition,
pp- 2927-2936, 2015.

Aurélien Bellet, Amaury Habrard, and Marc Sebban. A survey on metric learning for feature vectors
and structured data. arXiv preprint arXiv:1306.6709, 2013.

Under review as a conference paper at ICLR 2017

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248-255. IEEE, 20009.

Harrison Edwards and Amos Storkey. Towards a neural statistician. arXiv preprint
arXiv:1606.02185, 2016.

Jacob Goldberger, Geoffrey E. Hinton, Sam T. Roweis, and Ruslan Salakhutdinov. Neighbourhood
components analysis. In Advances in Neural Information Processing Systems, pp. 513-520, 2004.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Gregory Koch. Siamese neural networks for one-shot image recognition. Master’s thesis, University
of Toronto, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

Brian Kulis. Metric learning: A survey. Foundations and Trends in Machine Learning, 5(4):287—
364, 2012.

Brenden M. Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B. Tenenbaum. One shot learning
of simple visual concepts. In CogSci, 2011.

Renjie Liao, Alexander Schwing, Richard Zemel, and Raquel Urtasun. Learning deep parsimonious
representations. Advances in Neural Information Processing Systems, 2016.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579-2605, 2008.

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image
classification: Generalizing to new classes at near-zero cost. I[EEE transactions on pattern anal-
ysis and machine intelligence, 35(11):2624-2637, 2013.

Erik G Miller, Nicholas E Matsakis, and Paul A Viola. Learning from one example through shared
densities on transforms. In CVPR, volume 1, pp. 464-471. IEEE, 2000.

Scott Reed, Zeynep Akata, Bernt Schiele, and Honglak Lee. Learning deep representations of fine-
grained visual descriptions. arXiv preprint arXiv:1605.05395, 2016.

Oren Rippel, Manohar Paluri, Piotr Dollar, and Lubomir Bourdev. Metric learning with adaptive
density discrimination. International Conference on Learning Representations, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211-252, 2015.

Ruslan Salakhutdinov and Geoffrey E. Hinton. Learning a nonlinear embedding by preserving class
neighbourhood structure. In AISTATS, pp. 412419, 2007.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International Conference on Machine
Learning, pp. 1842-1850, 2016.

Under review as a conference paper at ICLR 2017

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9, 2015.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. arXiv preprint arXiv:1606.04080, 2016.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

	Introduction
	Related Work
	Prototypical Networks
	Prototype normalization
	Predicting the Weights of a Linear Classifier
	Design Choices

	Experiments
	Omniglot
	miniImageNet
	CUB Zero-shot Classification

	Conclusion

