
Workshop track - ICLR 2018

LEARNING HOW NOT TO ACT IN TEXT-BASED GAMES

Matan Haroush, Tom Zahavy, Daniel J. Mankowitz and Shie Mannor
The Technion - Israel Institute of Technology
{matan.h@campus,tomzahavy@campus,danielm@campus,shie@ee}.technion.ac.il

ABSTRACT

Large actions spaces impede an agent’s ability to learn, especially when many of
the actions are redundant or irrelevant. This is especially prevalent in text-based
domains. We present the action-elimination architecture which combines the gen-
eralization power of Deep Reinforcement Learning and the natural language ca-
pabilities of NLP architectures to eliminate unnecessary actions and solves quests
in the text-based game of Zork, significantly outperforming the baseline agents.

1 INTRODUCTION

”This is an open field west of a white house, with a boarded front door. There is a small mailbox
here. A rubber mat saying ’Welcome to Zork!’ lies by the door”. This is an excerpt of the opening
clues provided to a player in “Zork I: The Great Underground Empire”; one of the first interactive
fiction computer games, created by members of the MIT Dynamic Modeling Group in the late
70s. The game immerses players in a strange reality where very little information is available. By
exploring the world via interactive text-based dialogue, the players progress in the game. The world
of Zork presents a rich environment with more than 200 different locations and abstract objects (see
Figure 1. In this paper, we focus on quests related to the zoomed sub-section of the map).

Figure 1: The world of Zork

Zork players are requested to describe their ac-
tions using language instructions. For exam-
ple, in the opening excerpt, an action might be
‘open the mailbox’ (Figure 1). Once the player
describes his/her action, it is processed by a so-
phisticated natural language parser. Based on
the parser results, the game presents the the out-
come of the player’s action. A scalar reward is
given to the player when a task has been com-
pleted. Zork presents multiple challenges to the
player like building plans to achieve long-term
goals, remembering implicit clues as well as
learning the interactions between objects in the
game and specific actions.
In this work, we focus on solving the game of Zork using Artificial Intelligence; in particular, using
the combination of Deep Reinforcement Learning (DRL) – to generalize across states – and Natural
Language Processing (NLP) – to deal with text-base state and action spaces.

The DQN (Mnih et al., 2015) is a DRL algorithm that achieved unprecedented success in solving
Atari games by learning to approximate a Q function using a Deep Neural Network (DNN). This
function approximation enables the DQN to generalize across states – thus, dealing with the chal-
lenge of exponentially large state spaces. In contrast to Atari’s finite, discrete action space, Zork’s
action space is composed of all possible sequences of words from a fixed size dictionary resulting
in a significantly larger action space.

This work proposes action elimination; that is, restricting the available actions in each state to a
subset of the most likely ones, based on feedback from the emulator. The core assumption here is
that it should be easier to learn to predict which actions are valid for each state and leverage that
information for agent control, rather than learning the actual Q function for all possible state-action
pairs. Our approach comprises two networks, a DQN and an Action Elimination Network (AEN),

1



Workshop track - ICLR 2018

both designed using DNN architectures suited to NLP tasks. The AEN eliminates irrelevant actions,
and the DQN learns Q-values for the relevant actions. We test our method in Zork and demonstrate
the agent’s ability to advance in the game faster than the baseline agents by eliminating actions.

Figure 2: Zork in-game interface

Previous studies have adapted the DQN
algorithm to Text-Based Games such as
LSTM-DQN (Narasimhan et al., 2015),
and DRRN (He et al., 2015), but con-
sider smaller action spaces and are or-
thogonal to this work. Other works have
generalized over large discrete actions
spaces (Dulac-Arnold et al., 2015), or
have learned to act using continuous ac-
tion spaces (Hausknecht & Stone, 2015;
Masson et al., 2016). However, none of
these works have considered action elim-
ination to accelerate learning, nor implemented this in text-based domains.

2 METHOD

States and Actions: Our approach builds on the standard RL formulation (Sutton & Barto, 1998).
We represent the state as a sequence of words, composed of the game descriptor (Figure 1, ”Obser-
vation”) and the player’s inventory. These are truncated or zero-padded (for simplicity) to a length
of 50 (descriptor) + 15 (inventory) words and are embedded into continuous vectors in R300 using
word2vec (Mikolov et al., 2013). We consider two types of actions. Action ”templates”, composed
of a {Verb, Object} tuple for all the objects in the game (e.g, open mailbox), and ”prior knowledge”
actions that are used here for practical reasons and contain simple actions that are crucial for solv-
ing the game (e.g., go east). In the next section we will show that action spaces of this size cause
standard DRL approaches to struggle, emphasizing the need for action elimination.

AEN: The agent stores in its Experience Replay (Lin, 1992) information about states, transitions,
actions, and rewards. In addition, our agent also stores feedback from the emulator regarding the
validity of its actions. Based on this information, we designed an NLP CNN classification architec-
ture, based on Kim (2014), to predict action relevance in each state. This network, refereed to as
AEN is trained to minimize the BCE loss (multi-label classification) over all possible game actions,
and estimates the probabilities for actions to fail in a given state.

AE-DQN: These predictions are then used by the Action Eliminating DQN (AE-DQN) to select
actions. Our DQN architecture is tailored for text domains and uses a word2vec embedding layer
followed by a simple, 2-layer NN with a ReLU activation. After embedding, the input to the network
is in R19500 (embedding size times input length 300 · 65), and the hidden layer size is 100 (the size
of the last layer depends on the size of the action space and is later specified per experiment).

Action Selection: At first, a standard epsilon-greedy mechanism is applied with linear epsilon an-
nealing (from 1 to 0.05, similar to (Mnih et al., 2015)). If a greedy action is chosen, then the agent
is using an Action Elimination mechanism. This mechanism restricts the agent to choose actions
only from a small subset of valid actions. The subset is generated at each time step and consists of
the k most likely actions (sorted according to the AEN probabilities) and an additional m actions
that are drawn at random from a multinomial distribution w.p. softmax(1 − prediction) (similar to
Boltzmann exploration, but on the AEN predictions). If a random action is chosen, then the agent
uses the Explore mechanism. First, the agent selects an action arand at random. If arand is valid,
i.e., its AEN probability is larger than a fixed threshold τ , it is selected. Otherwise, with probability
1− pdrop the agent still selects arand to promote exploration or with probability pdrop, the Explore
mechanism is repeated. This procedure helps the agent to select valid actions while avoiding action
starvation resulting from an incorrect model.

3 EXPERIMENTS

Domains: The agent is evaluated on two quests: (1) The Egg Quest: The agent quest is to find and
open the jewel-encrusted egg, hidden up on a tree in the forest. The agent is awarded 100 points

2



Workshop track - ICLR 2018

upon successful completion. (2) The Troll Quest: The agent must find a way to enter the house
grab a sword and the lantern, expose the hidden entrance to the underworld and then defeat the troll
guarding it, awarding him 100 points.
Action Space: The Zork agent is given a fixed set of actions that allow it to complete its quests;
these include navigate (south, east etc.) open an item and fight. In addition, we augment the action
space with a set of “take” actions for possible objects in the game. The “take” actions correspond
to taking a single object, and includes objects that need to be collected to complete quests, as well
as other irrelevant objects from the game dictionary.
Setup: The agent’s goal in each quest is to maximize its cumulative reward. A reward of −1 is
applied at every time step to encourage the agent to favor short paths. Each trajectory terminates
upon completing the quest or after 100 steps are taken. For AE-DQN we chose τ = 0.75 and pdrop =
0.8. Finally, we used the discounted factor γ during training to be γ = 0.8 but use γ = 1 during
evaluation (like in the DQN paper). We compared the AE-DQN agent (yellow) with the vanilla DQN
(blue) as well as two ablative instances of AE-DQN. One that only uses the Action Elimination (AE-
Greedy, red) and one that only uses the exploration mechanism (AE-Explore, green).
Results: Figure 3(a) presents the results for the Egg quest, with only 5 take actions (a total of 15
actions including the essential actions) and chose k = 2,m = 1 for the AE mechanism. We can
see that all the agents can solve this task when the action space is small; in addition, the action
elimination modifications do not harm the agent’s performance. Furthermore, the learning curve
shows that the modified agents can get to rewards earlier than the vanilla agent and produce a more
stable policy. Figure 3(b) also presents results for the Egg quest, but now with 200 take actions (a
total of 210 actions) and k = 10,m = 5 for the AE mechanism. We can see that increasing the
number of actions makes it harder for the vanilla agents to learn an optimal policy despite the small
size of the problem. On the other hand, all the action eliminating agents seem to perform better.
The AE-Explore agent reaches positive reward faster but suffers from instability, while both action
elimination agents are more stable.

(a) Egg quest, 5 take actions (b) Egg quest, 200 take actions (c) Troll quest, 200 take actions

Figure 3: A comparison of agent performance in the Egg (a),(b) and Troll (c) quests

Finally, Figure 3(c) presents the results for the Troll quest, with 200 take actions (totaling 215 ac-
tions) with k = 10 and m = 5 for the AE mechanism. We can see that the action elimination agents
solve this quest in very few iterations, outperforming the baseline vanilla DQN agent. The AE-
Explore agent does not seem to perform well without the action elimination mechanism, although
it performs better than the vanilla agent. Finally, we can see that both the AE-Explore and the AE-
DQN agents enjoy more stable behavior as they continually explore and evaluate actions without
suffering from action starvation.

4 SUMMARY

We proposed the AE-DQN, a DRL approach for solving text-based games that performs action
elimination, effectively learning which actions not to select. By doing so, the size of the action space
is reduced, exploration is more effective, and learning is improved. We believe that by eliminating
actions, we effectively reduce over-estimation errors in state-action pairs (Hester et al., 2018). This
direction has been explored less and we intend to investigate this in future work. We also plan to
remove most of the prior knowledge to solve the complete Zork game with an action space that is
exponential in size. This system can also potentially help in improving the performance of real-
world, NLP systems that use DRL-like chat bots (Serban et al., 2017; Li et al., 2016) and personal
assistants (Wu et al., 2016).

.

3



Workshop track - ICLR 2018

REFERENCES

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep rein-
forcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
arXiv preprint arXiv:1511.04143, 2015.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
reinforcement learning with an unbounded action space. CoRR, abs/1511.04636, 2015. URL
http://arxiv.org/abs/1511.04636.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Andrew
Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, et al. Learning from demon-
strations for real world reinforcement learning. AAAI, 2018.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep reinforce-
ment learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with parame-
terized actions. In AAAI, pp. 1934–1940, 2016.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Karthik Narasimhan, Tejas D. Kulkarni, and Regina Barzilay. Language understanding for text-
based games using deep reinforcement learning. CoRR, abs/1506.08941, 2015. URL http:
//arxiv.org/abs/1506.08941.

Iulian V Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep
Subramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke, et al. A deep
reinforcement learning chatbot. arXiv preprint arXiv:1709.02349, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

4


