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ABSTRACT

In this paper we study the problem of visual reasoning in the context of textual
question answering. We introduce Dynamic Spatial Memory Networks (DSMN),
a new deep network architecture that specializes in answering questions that admit
latent visual representations, and learns to generate and reason over such represen-
tations. Further, we propose two synthetic benchmarks, HouseQA and ShapeIn-
tersection, to evaluate the visual reasoning capability of textual QA systems. Ex-
perimental results validate the effectiveness of our proposed DSMN for visual
reasoning tasks.

1 INTRODUCTION

The ability to reason is a hallmark of intelligence and a requirement for building question-answering
systems. In AI research, reasoning has been strongly associated with logic and symbol manipulation,
as epitomized by work in automated theorem proving (Fitting, 2012). But for humans, reasoning
involves not only symbols and logic, but also images and shapes. Einstein famously wrote: “The
psychical entities which seem to serve as elements in thought are certain signs and more or less clear
images which can be ‘voluntarily’ reproduced and combined... Conventional words or other signs
have to be sought for laboriously only in a secondary state...” And the history of science abounds
with discoveries from visual thinking, from the Benzene ring to the structure of DNA (Pinker, 2003).

There are also plenty of ordinary examples of human visual thinking. Consider a square room with
a door in the middle of its southern wall. Suppose you are standing in the room such that the eastern
wall of the room is behind you. Where is the door with respect to you? The answer is “left.” Note
that in this case both the question and answer are just text. But in order to answer the question, it is
natural to construct a mental picture of the room and use it in the process of reasoning.

In this paper, we investigate how to model the process of visual reasoning using deep networks. In
particular, we address the task of answering textual questions through visual reasoning—both the
question and answer are in text (or symbols in general), but a visual representation is created and
used as part of the reasoning process.

We propose Dynamic Spatial Memory Network (DSMN), a novel deep architecture that uses virtual
imagery to answer textual questions. DSMN is similar to existing memory networks (Kumar et al.,
2016; Sukhbaatar et al., 2015; Henaff et al., 2016) in that it uses vector embeddings of questions and
memory modules to perform reasoning. The main novelty of DSMN is that it creates virtual images
for the input question and uses a spatial memory to aid the reasoning processing. To the best of
our knowledge, DSMN is the first deep architecture that “thinks visually” in order to answer textual
questions. Among the deep neural networks developed for textual question-answering, the use of
visual representation and spatial memory is unique to DSMN.

To evaluate visual thinking, we introduce two datasets, HouseQA and ShapeIntersection, designed
to test a system’s ability to reason visually. In the HouseQA dataset, we provide the blueprint of a
house in text, and ask questions about location and orientation of objects in it. For ShapeIntersection,
we give symobolic representation of various shapes, and ask at how many places do they intersect.
In both the datasets, a reference visual representation is provided for each question, which allows
the option to explicitly supervise a network to create visual representations from textual input.

We show through experiments that with the aid of an internal visual representation and a spatial
memory, DSMN outperforms strong textual question answering baselines on both HouseQA and
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ShapeIntersection. In addition, we demonstrate that explicitly learning to create visual representa-
tions further improves QA performance.

Our contributions are three-fold: First, we present Dynamic Spatial Memory Network (DSMN), a
novel deep neural network architecture that performs visual reasoning for textual question answer-
ing. Second, we introduce two new datasets that evaluate a system’s visual thinking ability. Third,
we demonstrate that DSMNs achieve superior performance for answering questions that require
visual thinking.

2 RELATED WORK

Textual QA: Several text-based datasets have been proposed to test AI systems’ reasoning ability
(Levesque et al., 2011; Lin & Parikh, 2015). In particular, the bAbI dataset (Weston et al., 2015) has
driven the development of several recent deep learning QA systems (Kumar et al., 2016; Sukhbaatar
et al., 2015; Henaff et al., 2016). bAbI consists of 20 different tasks to evaluate different kinds of
reasoning abilities. Two tasks, Task 17 on Positional Reasoning and Task 19 on Path Finding, are
related to visual reasoning. However, each question in Task 17 contains only two sentences, and can
be solved through simple logical deduction such as “A is left of B implies B is right of A”. Similarly,
Task 19 involves a search problem that requires simple spatial deductions such as “A is east of B
implies B is west of A”. In contrast, our datasets are focused on evaluating visual reasoning, with
more sophisticated and challenging questions.

Mental Imagery and Visual Reasoning: The importance of visual reasoning has been long recog-
nized in AI research (Forbus et al., 1991; Lathrop & Laird, 2007).

Recently, Lin & Parikh (2015) takes advantage of visual commonsense to tackle textual question-
answering problems. They propose to form “mental images” and use cues from it to perform fill-in-
the-blank (FITB) and visual paraphrasing tasks. Seo et al. (2015) use diagrams to help their machine
learning system solve SAT geometry problems. Our approach involves forming mental images as
well, but unlike Lin & Parikh (2015) and Seo et al. (2015), our models are based on deep networks
instead of hand-designed features.

Image Generation: Our work is related to image generation using deep networks, for wich there is a
large body of literature, with a diverse set of approaches (Reed et al., 2016; Gregor et al., 2015). Our
approach is connected to image generation in that a virtual image is generated from textual input.
But in our task, image generation is in the service of reasoning rather than an end goal in itself—as
a result, photorealism or artistic style of generated images is irrelevant and not considered.

Visual Question Answering: Our work is also related to visual question-answering (VQA) (John-
son et al., 2016; Antol et al., 2015). Our task is different from VQA because our questions are
completely textual whereas in VQA the questions are visual, consisting of both text descriptions and
images. The images involved in our task are internal and virtual, and are not part of the input or
output.

Memory and Attention: Memory and attention have been increasingly incorporated into deep
networks, especially for tasks involving algorithmic inference and/or natural language (Graves et al.,
2014; Vaswani et al., 2017). For QA tasks, memory and attention play an important role in state of
the art approaches. End-To-End Memory Networks (Sukhbaatar et al., 2015) introduced a neural
network with memory and recurrent attention mechanism, that can be trained end-to-end for diverse
tasks like textual question answering and language modeling. Concurrently, Kumar et al. (2016)
introduced Dynamic Memory Networks (DMN), which also used attention and memory. Xiong
et al. (2016) proposed the DMN+, which proposed several improvements over the previous version
of DMN, and achieved state-of-the-art results on the VQA (Antol et al., 2015) and the bAbI (Weston
et al., 2015) datasets. Our proposed DSMN is a generalization of DMNs (see Sec. 4.6). On removing
the images and spatial memory from DMN, our model reduces to a version of DMN.

Recently Gupta et al. (2017) also used spatial memory in their deep learning system, but for visual
navigation. We are using spatial memory for textual question-answering.
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A cube is located in 
the south-eastern 
part of the house.

Room 1 is located in the 
north-west of the house 
and is small in size. 

The door for this room 
is in the middle of its 
southern wall.

The house door is located in the 
north-eastern side of the house, 
such that it opens towards east. 

Question: If you 
are entering the 
house through its 
door, where is the 
cube with respect 
to you?  
Answer: Left 

Description and visual representation

Figure 1: An example in the HouseQA dataset.

[3, 8.00, 7.46,
 1.80, 1.83]

[3, 0.61, 5.40,
 8.94, 2.79]

[1, 0.66, 9.70,
 8.14, 3.59]

[2, 3.67, 5.51,
 0.80, 0.00]

Description and visual representation

1: line
2: circle
3: rectangle

Question: How many 
places do the shapes 
intersect? 

Figure 2: An example in the ShapeIntersection dataset.

3 DATASETS

We introduce two question-answering datasets: HouseQA and ShapeIntersection. They are created
synthetically for benchmarking a system’s ability to think visually. In both datasets, questions and
answers are represented as text and symbols. Each dataset also provides visual representations of
the questions. Each dataset has 38,400 questions, evenly split into a training set, a validation set and
a test set (12,800 each).

3.1 HOUSEQA

Each sample in the HouseQA dataset involves the layout of a house that has rooms and doors.
Objects like cubes, cuboids, spheres and cones are placed at different locations in the house.

Each sample in the dataset has four components, a textual description, a question, an answer and a
visual representation. Figure 1 shows an example.

Note that each sentence in the description describes either a room, a door or an object. On an
average, a house description has six sentences. A question is always of the following template:
Suppose you are entering the {house, room 1, room 2, room 3}, where is the {house door, room 1
door, room 2 door, room 3 door, cube, cuboid, sphere, cone} with respect to you?. The answer is
either of left, right, front, or back. The visual representation associated with each house consists of
an ordered set of image channels, one channel per sentence in the description. An image channel
pictorially represents the location and/or orientation of the described item (room, door, object) with
respect to the house. An example is shown in Figure 1.

To generate samples for the HouseQA dataset, we define a probabilistic generative process that
produces tree structures that represent layouts of houses, similar to scene graphs used in computer
graphics. The root node of a tree represents an entire house, and the leaf nodes represent rooms. We
do rejection sampling to ensure that all the answers are equally likely in the training, validation, and
test set.

3.2 SHAPEINTERSECTION

As the name suggests, the ShapeIntersection dataset is concerned with counting the number of in-
tersection points between shapes. In this dataset, the description consists of symbols representing
various shapes, and the question is always “how many intersections are there among these shapes?”

There are three types of shapes in our intersection dataset: rectangles, circles, and lines. The descrip-
tion of shapes is provided in the form of a sequence of 1D vectors, where each vector represents one
shape. Note that a vector in the ShapeIntersection dataset is analogous to a sentence in the HouseQA
dataset, so for the ShapeIntersection dataset, the term ‘sentence’ actually refers to a vector. Further,
each sentence describing a shape consists of 5 real numbers. The first number stands for the type of
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Figure 3: The architecture of the proposed Dynamic Spatial Memory Network (DSMN).

shape: 1 for a line, 2 for a circle, and 3 for a rectangle. The subsequent four real numbers specify
the size and location of the shape. For example, in case of a rectangle they represent its height, its
width, and coordinates of its bottom-left corner.

There are at most 6 lines, 3 rectangles and 3 circles in a given description. In generating the dataset,
we do rejection sampling to ensure that the number of intersections is uniformly distributed from 0
to the maximum possible number of intersections, regardless of the number of lines, rectangles and
circles. This ensures that the number of intersections cannot be estimated from the number of lines,
circles or rectangles.

Similar to the HouseQA dataset, the visual representation for a sample in this dataset is an ordered
set of image channels. Each channel is associated with a sentence, and it plots the shape described
by that sentence. An example is shown in Figure 2.

4 DYNAMIC SPATIAL MEMORY NETWORK

We propose Dynamic Spatial Memory Networks (DSMN), a novel deep learning architecture that is
built upon Dynamic Memory Networks (DMN) (Kumar et al., 2016; Xiong et al., 2016) and designed
for visual reasoning. What differentiates DSMN from other question-answering deep architectures
is that it forms an internal visual representation of its input. It then uses a spatial memory to reason
over this visual representation.

A DSMN and can be divided into five modules: the input module, visual representation module,
question module, spatial memory module and answer module. The input module generates an em-
bedding for each sentence in the description. The visual representation module uses these sentence
embeddings to produce an intermediate visual representation for each sentence. In parallel, the
question module produces an embedding for the question. The spatial memory module then goes
over the question embedding, the sentence embeddings, and the visual representation multiple times
to update the spatial memory. Finally, the answer module uses the spatial memory to output the
answer. Figure 3 illustrates overall architecture of a DSMN.

4.1 INPUT MODULE

The role of the input module is to produce an embedding for each sentence in the input descrip-
tion. The input module can therefore be customized based on how the description is represented
in a dataset. For example, in the HouseQA dataset the description is in natural language. Hence,
we include a position encoding layer, which uses the word embeddings to produce the initial sen-
tence embeddings. We include the positional encoding layer to enable a fair comparison with
DMN+ (Xiong et al., 2016) and MemN2N (Sukhbaatar et al., 2015), which use positional encoding
too. For ShapeIntersection, the input description is a sequence of vectors, each representing a shape.
We therefore use a fully connected layer to obtain the initial sentence embeddings from the shape
vectors.

These initial sentence embeddings are then fed into a bidirectional Gated Recurrent Unit (GRU) to
fuse the information together. Let −→si and←−si be the respective output of the forward and backward
GRU at ith step. Then, the final sentence embedding for the ith sentence is given by si = −→si +←−si
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4.2 QUESTION MODULE

The question module produces an embedding for the question. This module is also customized to
the specific dataset. In case of the HouseQA dataset, the question module consists of a GRU. The
embeddings of the words in the question are fed into the GRU, and the final output of the GRU is
used as the question embedding. For the ShapeIntersection dataset, the question is always fixed, so
we use a vector with all zero elements as the question embedding.

4.3 VISUAL REPRESENTATION MODULE

The visual representation module generates a visual representation for each sentence in the descrip-
tion. It consists of two sub-components: an attention network and an encoder-decoder network. The
purpose of the attention network is to gather the visual information from the previous sentences that
are important to produce the visual representation for the current sentence. For example, suppose
the current sentence describes the location of an object with respect to a room. Then, in order to
infer the location of the object with respect to the house, one needs the location of the room with
respect to the house, which is described in a previous sentence.

The encoder-decoder network encodes the visual information gathered by the attention network,
combines it with the information from the current sentence, and finally decodes it to obtain the
visual representation of the current sentence. As encoders and decoders form an integral part in
many components of the DSMN, we formally define them here. An encoder (En(.)) takes an image
as input and produces an embedding as output, while a decoder (De(.)) takes an embedding as input
and produces an image as output. An encoder is composed of series of convolution layers and a
decoder is composed of series of deconvolution layers.

Suppose we are currently processing the sentence sn. Let us assume that we have already
processed the sentences s1, s2, . . . , sn−1 and produced the corresponding visual representations
S1,S2, . . . ,Sn−1. Note that we also add s0 and S0, which are all-zero element vectors, to the set
of processed sentences and representations respectively. Here s0 represents the null sentence. The
attention network produces scalar values ai ∀ i ∈ [0, . . . , n− 1] to represent the attention for the ith
sentence, where ai is calculated using the following equations:

zi = [|si − st|; si ◦ st]; ai = Softmax(ws
tzi + bs).

Here, ws is a vector, bs is a scalar, ◦ represents element-wise multiplication, |.| represents element-
wise absolute value, and [v1;v2] represents the concatenation of vectors v1 and v2.

The gathered visual information is given by S̄t =
∑t−1

i=0 aiSi. It is then fed into the encoder-decoder
network. The produced visual representation of the tth sentence is given by:

St = Des([st;Ens(S̄t)])

Note that the parameters of Ens(.), Des(), ws, and bs are shared across multiple iterations. Also,
note that in the proposed model, we make the simplifying assumption that the visual representation
of the current sentence does not depend on any future sentence. In other words, it can be completely
determined from the previous sentences in the description. Both the HouseQA and ShapeIntersec-
tion datasets satisfy this assumption.

4.4 SPATIAL MEMORY MODULE

The spatial memory module collects the important information from the description, and updates
its memory depending on the gathered information. Similar to DMN+ (Xiong et al., 2016) and
MemN2N (Sukhbaatar et al., 2015), it performs the step of collecting information and updating
memory multiple times in order to perform transitive reasoning. An iteration of information collec-
tion and memory update is referred to as one memory “hop”.

The memory consists of two components: a 2D spatial memory and a tag vector. The 2D spatial
memory can be thought of as a visual scratch pad on which the network “sketches” out the visual
information. The tag vector is meant to represent what is ‘sketched’ on the 2D spatial memory. For
example, the network can sketch the location of room 1 on its 2D spatial memory, and store the fact
that it has sketched room 1 in the tag vector.
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As mentioned earlier, each step of the spatial memory module involves the gathering of relevant in-
formation and the updating of memory. The network gathers the relevant information by calculating
the attention value for each sentence based on the question and the current memory. Suppose we are
at step t. Let M (t−1) represent the 2D spatial memory after step t − 1 and m(t−1) represent the
tag vector. Then for each sentence embedding si, we find the scalar attention value g(t)i :

p
(t)
i = [|m(t−1) − si|; m(t−1) ◦ si; |q − si|; q ◦ si;
En(t)p1

(|M (t−1) − Si|); En(t)p2
(M (t−1) ◦ Si)]

g
(t)
i = Softmax(wt

yp
(t)
i + by)

Note that all elements of M (0) and m(0) are zero. This is meant to represent initial blank mem-
ory.Once the attention values are obtained, the gathered information is represented as a 2D context
and a context tag vector.

C(t) =
n∑

i=0

gi
(t)Si ; c(t) =

n∑
i=0

gi
(t)si

Finally, we use the 2D context and context tag vector to update the memory. The memory update
rule is given as follows:

m(t) = Wm
(t)[m(t−1); q; c(t); Enc(C

(t))] + bm
(t)

M (t) = De(t)m ([m(t); En(t)m (M (t−1))])

4.5 ANSWER MODULE

The answer module uses the final memory and question embedding to generate the output. The
feature vector used for predicting the answer is given by f .

f = [Enf (M (T )); m(T ); q],

where M (T ) and m(T ) represent the final memory.

4.6 DSMN AS A STRICT GENERALIZATION OF DMN

A DSMN is a strict generalization of a DMN (Kumar et al., 2016; Xiong et al., 2016). If we
remove the visual representation of the input along with the 2D spatial memory, and just use vector
representations with memory tags, then a DSMN reduces to a version of DMN.

4.7 DSMN WITH OR WITHOUT INTERMEDIATE VISUAL SUPERVISION

As described in previous sections, a DSMN forms an intermediate visual representation of the input.
Therefore, if we have a “ground-truth” visual representation for the training data, we could use
it to train our network better. This leads to two different ways for training a DSMN, one with
intermediate visual supervision and one without it. Without intermediate visual supervision, we
train the network in an end-to-end fashion just by using a loss (Lw/o vi) that compares the predicted
answer with the ground truth. With intermediate visual supervision, we train our network using an
additional visual representation loss (Lvi) that measures how close the formed intermediate visual
representation of the input is to the ground-truth visual representation. Thus, the loss used for
training with intermediate supervision is given by

Lw vi = λviLvi + (1− λvi)Lw/o vi,

where λvi is a hyperparameter which can be tuned for each dataset. Note that in neither case do we
need any visual input once the network is trained. During testing, the only input to the network is
the description and question.
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5 EXPERIMENTS

5.1 BASELINES

LSTM (Hochreiter & Schmidhuber, 1997) is a popular neural network model for sequence pro-
cessing tasks. We use two versions of LSTM-based baselines to evaluate our model. LSTM-1 is a
common version that is used as baseline for textual question answering (Sukhbaatar et al., 2015).
In LSTM-1, we concatenate all the sentences and the question into a long string. For the HouseQA
dataset, we do word embedding look-up, while for ShapeIntersection dataset we project each real
number into higher dimension via a series of fully connected layers. The sequence of vectors is fed
into an LSTM. The final output vector of the LSTM is then used to do prediction.

We also develop another version of LSTM we call LSTM-2, which uses a two-level hierarchy to
embed the question and description. In this version, we first extract an embedding for the ques-
tion and each sentence. For HouseQA, we use an LSTM to get the sentence embeddings, and for
ShapeIntersection, we use a series of fully connected layers. Then we feed the question embedding
and sentence embeddings into an LSTM, whose output is used to do prediction.

Further, we compare our model against DMN+ (Xiong et al., 2016) and MemN2N (Sukhbaatar
et al., 2015), which achieved state-of-the-art results on the bAbI dataset (Weston et al., 2015). In
particular, we compare the 3-hop versions of DSMN, DMN+ and MemN2N.

5.2 TRAINING DETAILS

We used ADAM (Kingma & Ba, 2014)to train all models, and the learning rate for each model is
tuned for each dataset. We tune the embedding dimension and l2 regularization weight for each
model and dataset pair separately. As reported by (Sukhbaatar et al., 2015; Kumar et al., 2016;
Henaff et al., 2016), we also observe that the results of memory networks are unstable across multiple
runs. Therefore for each hyperparameter choice we run all the models 10 times, and select the run
with the best performance on the validation set. For the HouseQA dataset, all models are trained
up to a maximum of 1600 epochs, with early stopping after 80 epochs if the validation accuracy
did not increase. The maximum number of epochs for ShapeIntersection is 800 epochs, with early
stopping after 80 epochs. Additionally, we modify the input module and question module of DMN+
and MemN2N to be same as ours for the ShapeIntersection dataset. We use publicly available
implementations of DMN+1 and MemN2N 2. For MemN2N, while the reported best result is on
the version with positional-encoding, linear start training, and random-injection of time index noise
(Sukhbaatar et al., 2015), the version we use has only positional encoding. Note that the comparison
is still meaningful because linear start straining and time index noise are not used in DMN (and as a
result neither in our proposed DSMN)

5.3 RESULTS

The results for HouseQA and ShapeIntersection dataset are summarized in Table 1a. For brevity, we
will refer to DSMN trained without intermediate visual supervison as DSMN, and DSMN trained
with intermediate visual supervision as DSMN*. We observe similar trends in both datasets. We
see that DSMN outperforms DMN, MemN2N, and LSTM baslines. This demonstrates that an inter-
mediate visual representation and a spatial memory are useful for visual reasoning, with or without
extra supervision on image generation. Finally, DSMN* (i.e. SMN with intermediate visual super-
vision) performs the best on both datasets, and outperforms all other approaches by a large margin,
suggesting the importance of visual reasoning for the tasks.

Table 1b shows the effect of the number of hops for DSMN and DSMN* on the HouseQA dataset.
For the 1-hop and 2-hop case, the differnece between performance of DSMN and DSMN* is larger
than for the 3-hop case. The 2-hop DSMN* performs slightly better than the 3-hop case. Even the
1-hop DSMN* performs very well. This is likely because DSMN* has learned to generate good
visual representations through additional supervision and can complete “one hop of reasoning” in
the visual representation module itself. For example, suppose one needs to find the location of an

1https://github.com/barronalex/Dynamic-Memory-Networks-in-TensorFlow
2https://github.com/domluna/memn2n
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Table 1: Experiment results.

(a) The test set performance of different models on the HouseQA
and ShapeIntersection dataset. DSMN* refers to the with interme-
diate supervision model.

HouseQA ShapeIntersection
MODEL (accuracy in %) (rmse)
LSTM-1 41.36 3.28
LSTM-2 50.69 2.99
MemN2N 45.92 3.52
DMN+ 63.92 2.90
DSMN 92.05 2.86
DSMN* 96.43 2.18

(b) The validation set performance
from our ablation study on HouseQA
dataset.

HouseQA
MODEL (accuracy in %)
1-Hop DSMN 63.91
2-Hop DSMN 59.09
3-Hop DSMN 92.69
1-Hop DSMN* 85.23
2-Hop DSMN* 97.39
3-Hop DSMN* 96.84

Room 1 is medium in size and it extends from the north-west to the north of the house.
This room's door is located in its south-western side, such that it opens towards south.
A cuboid is located in the north-western part of this room.
Room 2 is medium in size and it extends from the west to the center of the house.
The door for this room is in the middle of its eastern wall.
A cylinder is located in the middle of the southern part of this room.
A sphere is located in the north-eastern part of the house.
The house door is located in the south-eastern side of the house, such that it opens towards east.

hop 1
hop 2

hop 3

with
intermediate
supervision

without
intermediate
supervision

hop 1
hop 2

hop 3

Questions: Suppose you are entering room 1, where is the cylinder? Answer: Back.

Descriptions

Figure 4: Attention values for each sentence from a sample in House dataset. Darker color indicates
more attention is given.

object, which is placed in a room, with respect to the house. To do so, one first needs to find the
location of the room with respect to the house, and then the location of the object with respect to
the room. However, if one has already “sketched” out the location of the object, one can directly
use it. It is during sketching the object’s location that one has completed one hop of reasoning. To
illustrate this point, we visualize the attention maps in the spatial memory module of 3-hop DSMN
and 3-hop DSMN*. Fig. 4 shows an example. When asked about the cylinder, DSMN* directly
jumps to sentence 6. It completes the reasoning in two hops. This also indicates why the 2-hop
DSMN* performs so well. For the DSMN model (without the additional visual supervision), the
visual representations are not perfect, so it first tries to look for the location of room in which the
cylinder is kept, and then looks for it in the second hop.

6 CONCLUSION

We have investigated how to use deep neural networks for modeling the process of visual thinking.
We have introduced two question-answering datasets, HouseQA and ShapeIntersection, that test a
systems ability to think visually. We have developed Dynamic Spatial Memory Networks (DSMN),
a novel deep learning architecture that reasons in the visual space for answering textual questions.
Experimental results have demonstrated the effectiveness of DSMN for visual reasoning.
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